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Abstract

This note proposes, analyzes, and studies numerically a regularization approach
in the computation of the initial condition for reduced-order models (ROMs) of
convection-diffusion equations. The aim of this approach consists in reducing
significantly spurious oscillations in the ROM solutions.
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1. Introduction

Convection-diffusion equations are part of many models for natural phenom-
ena and industrial processes. They model the behavior of, e.g., temperature
(energy balance) or concentrations. Often, convection dominates diffusion. In
this situation, it is well known that so-called stabilized discretizations have to be
employed to perform stable numerical simulations [8]. From the practical point
of view, not only the accuracy of a discretization, measured in some norm, is
of interest but also that the numerical solution possesses admissible values. For
instance, a computed concentration with strong negative spurious oscillations
is useless in practice. However, there are relatively few discretizations that lead
to solutions without spurious oscillations, like the FEM-FCT schemes [5, 6].

ROM is usually applied if simulations with nearly the same setup have to be
repeated over and over again and if the efficiency is of more importance than
the accuracy, like in the simulation of optimization problems. Based on a set of
snapshots and the proper orthogonal decomposition (POD) approach [9], one
may compute a basis that already captures important features of the solution.

Standard ROM simulations of convection-diffusion equations suffer from
strong spurious oscillations. The reasons for them are twofold: the construction
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of the ROM’s initial condition and the used discretization. This note addresses
the first issue. In addition to using the standard definition by an L2 projection,
a regularization is applied. To the best of the authors’ knowledge, this approach
has not been proposed in the literature so far. It will be analyzed briefly and
numerical studies show that spurious oscillations are damped significantly.

2. Reduced-Order Models for Convection-Diffusion Equations

Consider the convection-diffusion-reaction equation

∂tu− ε∆u+ b · ∇u+ cu = f in (0, T ]× Ω (1)

with homogeneous Dirichlet boundary conditions u = 0 and the initial condition
u0(x). In (1), Ω is a bounded domain in Rd, d ∈ {2, 3}, with boundary Γ, b(t,x)
and c(t,x) denote convection and reaction fields, respectively, ε > 0 is a constant
diffusion coefficient, and T is the length of the time interval.

Let X = H1
0 (Ω). To compute the POD basis functions, the centered-

trajectory method is utilized, i.e., the POD modes are computed from the fluc-
tuation of the snapshots ui − ūh, i = 1, . . . ,M , where ūh is the average of the
snapshots. For a detailed description of performing the POD and computing
the POD modes, it is referred to [10]. Let the ROM approximation uro of the
solution u be given by u(t,x) ≈ uro(t,x) = ūh(x) + ur(t,x), where ur(t,x) =∑r

i=1 αi(t)ϕro,i(x) with the unknown coefficients {αi}ri=1 and the POD basis
functions {ϕro,i}ri=1. The standard Galerkin reduced-order model (G-ROM)
is built by projecting the continuous problem into the finite-dimensional POD
space Xr = span{ϕro,i, i = 1, . . . , r}. Numerical investigations in [1] asserted
that the stabilization of a ROM was necessary in order to obtain stable simula-
tions for arbitrary POD dimensions r in the convection-dominated regime. The
stabilized Streamline-Upwind Petrov–Galerkin reduced-order model (SUPG-ROM)
was used, which is presented in the following.

Let the superscript n of a function denote the evaluation of the function at
the time instance tn and let ∆t denote the fixed time step. The SUPG-ROM
combined with the backward Euler method reads as follows: For n = 1, 2, . . .
find unr = unro − ūh ∈ Xr such that ∀vr ∈ Xr(

unr − un−1
r , vr

)
+ ∆taSUPG,r (unr , vr) = ∆t (fn, vr)−∆t aSUPG,r (ūh, vr)

+ ∆t
∑

K∈Th

δr,K (fn, bn · ∇vr)K −
∑

K∈Th

δr,K
(
unr − un−1

r , bn · ∇vr
)
K
, (2)

where δr,K is a stabilization parameter to be chosen and

aSUPG,r(ur, vr) = (ε∇ur,∇vr) + (bn · ∇ur, vr) + (cnur, vr)

+
∑

K∈Th

δr,K (−ε∆ur + bn · ∇ur + cnur, b
n · ∇vr)K

for all ur, vr ∈ Xr ⊂ Xh. Setting δr,K = 0 in (2) recovers the Galerkin ROM.
In [1], numerical analysis was utilized to derive the appropriate scalings of the
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stabilization parameter δr,K for the case of a family of uniform triangulations.
In the study, the finite element version of the SUPG stabilization parameter
δr = O(h), with h being the finite element mesh width, was recommended and
therefore this choice will be employed in the numerical simulations in Section 4.

3. Computation of the ROM’s Initial Condition

The coefficients {α0
i }ri=1 of the initial condition for a projection-based ROM

such as (2) are usually obtained by projecting u0 − ūh in the L2 sense onto the
POD basis: α0

i =
(
u0 − ūh, ϕro,i

)
, i = 1, . . . , r. Consequently, the reduced-order

approximation u0
ro of the initial condition u0 has the form

u0 ≈ u0
ro = ūh +

r∑
i=1

α0
iϕro,i, (3)

which is the best approximation of u0 in the POD space Xr in the L2 sense.
However, there might be different goals than this. Depending on the origin

of the POD basis, the initial condition (3), although optimal in the L2 sense,
can be polluted by spurious oscillations, e.g., see Fig. 2. From the point of
view of physical applications, it is desirable to be able to construct a ROM
initial condition that suppresses spurious oscillations as well as possible but still
approximates well the function u0.

A possible way to achieve this goal originates from turbulence modeling. In
some turbulence models, like Approximate Deconvolution Models and the Leray
α-model, a regularized velocity is defined by solving a Helmholtz equation

−µ2∆ufil + ufil = u, (4)

where µ is the filter width usually chosen to be µ ∼ h, see [4, 7] for more details
on this so-called differential filter. Thus, the ROM initial condition (3) can be
filtered in a post-processing step by computing the Galerkin approximation of
(4) with respect to the POD basis. Finally, the following problem has to be
solved: Find uro,fil with uro,fil − ūh =

∑r
i=1 α̃

0
iϕro,i ∈ Xr such that

µ2 (∇uro,fil,∇ϕro,i) + (uro,fil, ϕro,i) =
(
u0

ro, ϕro,i

)
, i = 1, . . . , r, (5)

where u0
ro is the ROM approximation (3). It should be noted that the differential

filter was used in ROM simulations of turbulent flows [11].
Next, the convergence of u0

ro,fil for the special case of a family of uniform
triangulations will be investigated. Using the triangle inequality yields∥∥u0 − uro,fil

∥∥
0
≤
∥∥u0 − u0

ro

∥∥
0

+
∥∥u0

ro − u0
ro,fil

∥∥
0
.

The first term on the right-hand side can be expected to be small by the con-
struction of u0

ro as the best approximation in L2. To obtain an estimation of the
second term on the right-hand side, the difference u0

ro−u0
ro,fil can be utilized as

a test function in (5). By shifting the second term on the left-hand side to the
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Figure 1: Interpolated continuous initial condition (left) and solution at t = 6.28 for the
FEM-FCT scheme (right).

right-hand side of the equation, by using the Cauchy–Schwarz inequality and
the standard inverse estimate, one obtains∥∥u0

ro − u0
ro,fil

∥∥2

0
≤ µ2

∥∥∇u0
ro,fil

∥∥
0

∥∥∇ (u0
ro − u0

ro,fil

)∥∥
0

≤ Ch−1µ2
∥∥∇u0

ro,fil

∥∥
0

∥∥u0
ro − u0

ro,fil

∥∥
0
,

such that for µ ∼ h it holds∥∥u0
ro − u0

ro,fil

∥∥
0

= O(h). (6)

On the one hand, the filtering procedure (5) yields a solution that does not
represent the best approximation of u0 in the L2 sense anymore. But because
of (6) the function u0

ro,fil is still a good approximation of u0 with the convergence
of at least first order in the L2 sense. On the other hand, u0

ro,fil can lead to a
better approximation of u0 with respect to spurious oscillations.

4. Numerical Studies

In this section, it will be numerically investigated to which extent the Ga-
lerkin ROM and SUPG-ROM based on oscillation-free snapshots are able to
compute admissible ROM solutions. Moreover, the impact of the filtering pro-
cedure (5) of the ROM initial condition on the ROM results will be studied.
The code MooNMD [2] was utilized to perform the numerical studies.

For the sake of brevity, numerical results are presented only for one example,
the standard rotating body example. A detailed description of this example can
be found, e.g., in [3]. Initially, three bodies are given, see Fig. 1, which are
rotated counter clock wise. The coefficients of (1) are Ω = (0, 1)2, T = 6.28,
ε = 10−20, b = (0.5 − y, x − 0.5)T , and c = f = 0. Because of the very small
diffusion, the result after one revolution should recover the initial solution.

To evaluate the results of the simulations, several measures of interest will be
monitored. Besides considering plots of the obtained solutions, the L2(Ω) error
‖un − unro‖0 at certain times and the discrete analog of the L1(0, T ;L2(Ω)) error

1
N+1

∑N
n=0 ‖un − unro‖0, respectively, will be considered, where un denotes the
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Figure 2: Standard ROM initial condition (3) (left) and regularized ROM initial condition (5)
(right) based on physically admissible snapshots from the FEM-FCT approach for r = 50.

solution of the continuous problem at time tn. In addition, the minimum and
the maximum values of the solution will be computed in the vertices of the mesh
cells. The L2(Ω) error gives some idea of the accuracy of the methods and the
smearing in the numerical solutions. The minimum and the maximum values
indicate the under- and overshoots of the numerical solution. The reference
minimum and maximum values of the solution are 0 and 1, respectively.

The snapshots were obtained by approximating the solution of (1) with the
nonlinear flux-corrected transport (FEM-FCT) scheme with the Crank–Nicolson
method as time integrator, e.g., see [5, 6]. Piecewise linear finite elements P1

and the length of the time step ∆t = 10−3 were utilized. The computations were
carried out using 16641 degrees of freedom with the mesh width h = 1.1 · 10−2.
Then, 1257 snapshots, corresponding to every fifth numerical solution, were
used to compute the POD basis. In Fig. 1, the FEM-FCT solution for the final
time is shown. By construction of the scheme, the solution does not exhibit
any spurious oscillations. The POD basis was computed from the fluctuating
part of the snapshots with respect to the L2 inner product by the method of
snapshots [9].

G-ROM and SUPG-ROM simulations were carried out with the backward
Euler scheme (2) using ∆t = 10−3. Note that the spatial error usually dominates
in ROM simulations such that the choice of the time integrator is of only minor
importance. The ROMs with the standard ROM initial condition are denoted
by G-ROM and SUPG-ROM and the ones equipped with the regularized ROM
initial condition (5) by G-ROM(reg) and SUPG-ROM(reg). Simulations with
different values of µ were performed. The best results were obtained with µ =
0.8h and for the sake of brevity only these will be presented. Figure 2 shows the
standard and the regularized initial conditions for r = 50. It can be seen that
the standard ROM initial condition is polluted by spurious oscillations even if
the FEM-FCT snapshots are free of oscillations. The post-processing filtering
procedure is able to suppress them significantly.

Computational results are presented in Figs. 3 and 4. The results for all
r ∈ {50, 150} are qualitatively similar. With G-ROM, the L1(0, T ;L2(Ω)) error
is a little bit smaller than with SUPG-ROM. However, the spurious oscillations
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Figure 3: Measures of interest at t = 6.28.
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Figure 4: Time evolution of the measures of interest for G-ROMs and SUPG-ROMs for r = 50.

in the first part of the time interval are considerably larger. Using the regularized
initial condition uro,fil leads to a significant damping of the undershoots and
particularly of the overshoots. This desired property can be observed in the
whole time interval. But, the L1(0, T ;L2(Ω)) error is somewhat larger than
with the standard initial condition u0.

5. Summary and Outlook

This note proposed a regularization of the ROM’s initial condition for con-
vection-diffusion equations. Numerical studies showed a significant damping
of spurious oscillations in the computed solutions. The main open question
for future research is the construction of a ROM discretization that ensures
numerical solutions without spurious oscillations.
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