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Abstract

Efficient incompressible flow simulations, using inf-sup stable pairs of finite ele-
ment spaces, require the application of efficient solvers for the arising linear sad-
dle point problems. This paper presents an assessment of different solvers: the
sparse direct solver UMFPACK, the flexible GMRES (FGMRES) method with
different coupled multigrid preconditioners, and FGMRES with Least Squares
Commutator (LSC) preconditioners. The assessment is performed for steady-
state and time-dependent flows around cylinders in 2d and 3d. Several pairs
of inf-sup stable finite element spaces with second order velocity and first or-
der pressure are used. It turns out that for the steady-state problems often
FGMRES with an appropriate multigrid preconditioner was the most efficient
method on finer grids. For the time-dependent problems, FGMRES with LSC
preconditioners that use an inexact iterative solution of the velocity subproblem
worked best for smaller time steps.

Keywords: linear saddle point problems, inf-sup stable pairs of finite element
spaces, UMFPACK, flexible GMRES, coupled multigrid preconditioners with
Vanka smoother, Least Squares Commutator preconditioners

1. Introduction

Inf-sup stable finite element methods are a popular approach for the spatial
discretization of incompressible flow problems. Within a Picard or Newton-type
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iteration, one has to solve in each step an algebraic linear saddle point problem

Ax = b, x, b ∈ Rn, A =

(
A BT

B 0

)
. (1)

The time spent for solving systems of form (1) constitutes usually a large part,
often even the dominant part, of the total simulation time. For this reason,
efficient algebraic solvers are of great importance.

This paper considers several solvers for algebraic linear saddle point prob-
lems, in particular iterative methods with an outer Krylov subspace iteration. It
is well known that the efficiency of such methods depends on an appropriately
constructed preconditioner P. The eigenvalues of the preconditioned system
should be clustered since this property is favorable for Krylov subspace methods
[14, p. 361]. Standard preconditioners, like the Jacobi method or SOR, cannot
be applied for systems of type (1) because of the zero block in the diagonal of A.

Concerning iterative solvers (or preconditioners) of linear saddle point prob-
lems, one can distinguish two classes. The class of coupled methods deals with
the full matrix as given in (1). Alternatively, methods were designed that solve
equations connected with the first and second row of blocks separately. In this
paper, representatives from both classes are studied.

Coupled multigrid methods belong to the class of coupled preconditioners.
Initially developed as solvers themselves, they have been proven to be more
efficient when applied as left preconditioners in Krylov subspace methods for
the solution of linear saddle point problems arising in the linearization and
discretization of the Navier–Stokes equations, [22, 23]. Using a multigrid pre-
conditioner, our experience is that the use of a flexible Krylov subspace method
is of advantage for the robustness of the overall solver. Each application of the
multigrid method might represent a (slightly) different preconditioner by con-
struction, e.g., when applying an iterative scheme on the coarsest grid whose
termination criterion is not a fixed number of iterations.

In recent years, a lot of effort has been spent to develop and improve ap-
proaches belonging to the second class of methods. Within this class, two princi-
pal approaches have been pursued, leading to Least Squares Commutator (LSC)
preconditioners [12] and Augmented Lagrangian preconditioners [4]. Overviews
are provided, e.g., in [11, 30, 35].

LSC preconditioners are right preconditioners. They are based on similar
ideas as the previously developed Pressure Convection-Diffusion (PCD) precon-
ditioner [27]. The LSC approach showed slightly better results than PCD [14,
pp. 389] and it performed even better in a modified version [14, p. 386]. A
detailed description of the LSC approach is given in Section 4.

The Augmented Lagrangian preconditioner was introduced in [4] and an-
alyzed in [5, 7]. It can be used as left or right preconditioner. A modified
version, which considers basically the upper triangular block of the Augmented
Lagrangian preconditioner, was proposed in [6]. The Augmented Lagrangian
preconditioner is similar to a matrix that is obtained by augmenting a mixed
finite element method with a grad-div stabilization. In fact, in [19], a precondi-
tioner based on the grad-div stabilization, instead of adding the augmentation,
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is proposed and studied. The case of the so-called sparse grad-div stabilization
is considered in [29].

This paper presents an assessment of solvers for algebraic linear saddle point
problems (1) which arise in the linearization and finite element discretization of
the incompressible Navier–Stokes equations. As Krylov subspace method, the
flexible GMRES (FGMRES) method [32] is used. Our main interest consists in
comparing the performance of preconditioners from the two classes mentioned
above: a coupled multigrid method with Vanka-type smoothers [37] and LSC-
type preconditioners. To the best of our knowledge, such a comparison is not
yet available in the literature. We preferred to study LSC-type preconditioners,
instead of the Augmented Lagrangian preconditioner, because LSC precondi-
tioners do not possess an algorithmic parameter that has to be chosen by the
user, which is in our opinion an advantage. In fact, it is known that the param-
eter of the Augmented Lagrangian method should neither be chosen too small
nor too large [18]. Since we think that it is of much interest for a broad audience,
also the sparse direct solver UMFPACK [10] is included in the assessment. The
numerical studies consider two- and three-dimensional as well as steady-state
and time-dependent problems.

We would like to add that for time-dependent problems there is a popular
class of methods where the solution of linear saddle point problems is avoided,
namely splitting schemes, see the review in [17]. However, our own experience
with some standard splitting schemes is that they are inferior with respect to
the accuracy of the computed solutions compared with inf-sup stable mixed
discretizations, see [24, Ex. 7.101]. Altogether, an assessment of coupled ap-
proaches vs. splitting schemes concerning various aspects (accuracy, efficiency,
scalability on parallel computers) is certainly of great interest. However, it is
outside the scope of the present paper.

This paper is organized as follows. Section 2 explains briefly the used dis-
cretization strategies for the Navier–Stokes equations. In Section 3, the coupled
multigrid methods are presented, with some emphasis on the used smoothers.
The LSC preconditioners are described in Section 4. Section 5 contains the nu-
merical studies and in Section 6 some aspects of the application of the methods
on parallel computers are discussed. The most important results are summa-
rized in Section 7.

2. The Navier–Stokes equations and linear saddle-point problems

2.1. The stationary case

Let Ω be a bounded domain in Rd, d ∈ {2, 3}. A stationary flow of an
incompressible Newtonian fluid which is not exerted to external forces is modeled
with the steady-state Navier–Stokes equations

−ν∆u+ (u · ∇)u+∇p = 0 in Ω,

∇ · u = 0 in Ω,
(2)
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where the velocity field u and the pressure p are the unknown quantities. Bold
symbols are used to distinguish vector-valued from scalar quantities. The mate-
rial constant ν is the kinematic viscosity (in (2) already in dimensionless form).
The inverse of this dimensionless viscosity is the Reynolds number, which is
commonly used to characterize and classify flows.

In order to define a well-posed problem, system (2) has to be equipped with
boundary conditions. In the considered examples, the boundary ∂Ω of Ω is
decomposed as ∂Ω = Γin ∪ Γout ∪ Γno-slip, where the decomposition is disjoint.
Then inflow, outflow, and no-slip boundary conditions are prescribed as follows

u = g(x) on Γin,
(ν∇u− pI)n = 0 on Γout,

u = 0 on Γno-slip.
(3)

With these boundary conditions, one can derive a weak formulation of (2). For
this purpose, one introduces the velocity test and ansatz spaces

V0 =
(
H1

Γ(Ω)
)d
, Vg =

{
v : v ∈

(
H1(Ω)

)d
with v|Γin

= g,v|Γno-slip
= 0

}
,

and the pressure space Q = L2(Ω). The subspace H1
Γ(Ω) of H1(Ω) consists of

those functions which vanish on Γ = Γin∪Γno-slip. Now the weak formulation of
(2) reads as follows: Find (u, p) ∈ Vg×Q such that for all pairs of test functions
(v, q) ∈ V0 ×Q, it holds

(ν∇u,∇v) + ((u · ∇)u,v)− (∇ · v, p) = 0,

(∇ · u, q) = 0,
(4)

where (·, ·) denotes the inner product in L2(Ω). The numerical solution of
(4) requires a linearization of the nonlinear convective term (u · ∇)u and a
discretization in space.

The linearization is achieved by a Picard-type fixed point iteration. With
a known approximation to the solution, the convection field um ∈ Vg, the
nonlinear convective term (u · ∇)u is replaced with (um · ∇)u, leading to a
so-called Oseen problem

(ν∇um+1,∇v) +
(
(um · ∇)um+1,v

)
− (∇ · v, pm+1) = 0 ∀ v ∈ V0,

(∇ · um+1, q) = 0 ∀ q ∈ Q,
(5)

to obtain a new approximation um+1. This process is iterated until a sufficiently
accurate approximate solution is reached.

For the solution of (5), a spatial discretization of test and ansatz spaces with
inf-sup stable pairs of finite element spaces is used. Let V h0 ⊂ V0, V hg ⊂ Vg, and

Qh ⊂ Q be conforming finite element spaces, where V h0 and Qh satisfy a discrete
inf-sup condition with a constant independent of the refinement level, then the
finite element formulation of (5) reads as follows: Find (uh,m+1, ph,m+1) ∈

4



V hg ×Qh such that

(ν∇uh,m+1,∇vh) +
(
(uh,m · ∇)uh,m+1,vh

)
− (∇ · vh, ph,m+1) = 0 ∀ vh ∈ V h0 ,

(∇ · uh,m+1, qh) = 0 ∀ qh ∈ Qh.
(6)

System (6) is equivalent to an algebraic linear saddle point system of the form

A
(
um+1

pm+1

)
=

(
A BT

B 0

)(
um+1

pm+1

)
=

(
f
g

)
, (7)

which has to be solved in every step of the fixed point iteration. Here, A ∈ Rn×n
is a nonsingular square matrix, and B ∈ Rk×n is a full rank rectangular matrix
where k < n. The unknowns (um+1, pm+1) are coefficient vectors for the finite
element functions of the ansatz spaces. The right-hand side in (7) arises, e.g.,
from boundary conditions and in the special case considered here, it is g = 0.

2.2. The time-dependent case

Whenever some data of the Navier–Stokes equations depend on time or ν
is sufficiently small, i.e., the Reynolds number of the considered problem is
sufficiently large, the behavior of the flow field becomes time-dependent. In such
situations, the flow is modeled by the time-dependent Navier–Stokes equations
which read, for Ω as before and T ∈ R+,

∂tu− ν∆u+ (u · ∇)u+∇p = 0 in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω.
(8)

These equations have to be equipped with boundary conditions, which are in
the considered examples analogous to (3):

u = g(t,x) on (0, T ]× Γin,
(ν∇u− pI)n = 0 on (0, T ]× Γout,

u = 0 on (0, T ]× Γno-slip.

The equations are closed with an initial condition

u(0, ·) = u0 in Ω,

where u0 has to satisfy the divergence constraint and the boundary conditions
in an appropriate sense.

In order to proceed as in the steady-state case, one can start with a discretiza-
tion of the temporal derivative. In the simulations presented in this paper, the
Crank–Nicolson scheme was used with a fixed time step length ∆t. Applying
this scheme and multiplying the whole system with ∆t leads to the following
time-discrete version of (8) at the discrete time tn:

un +
1

2
∆t (−ν∆un + (un · ∇)un) + ∆t∇pn

= un−1 −
1

2
∆t (−ν∆un−1 + (un−1 · ∇)un−1) ,

∆t∇ · un = 0,
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where (un, pn) denote velocity and pressure at tn. For a brief remark concerning
the treatment of the pressure term, it is referred to [24, Rem. 7.50]. To derive
a variational formulation, one uses similar ansatz and test spaces as in the
steady-state case. The only difference is that the velocity ansatz space for every
time point tn is replaced by Vg(tn, ·), which is defined in the same way as was
Vg, accounting for a time-dependent inflow. The variational formulation is once
again linearized with a Picard-type iteration. In one iterative step, the following
problem has to be solved for the unknown (um+1

n , pm+1
n ) ∈ Vg(tn, ·) × Q and

given umn ∈ Vg(tn, ·):

(um+1
n ,v) +

1

2
∆t
(
(ν∇um+1

n ,∇v) + ((umn · ∇)um+1
n ,v)

)
−∆t(pm+1

n ,∇ · v)

= (un−1,v)− 1

2
∆t (ν(∇un−1,∇v) + ((un−1 · ∇)un−1,v)) , (9)

0 = ∆t(∇ · um+1
n , q).

Here umn is the convection field, which is again chosen as the solution of the
previous iteration step. As a starting point for the iteration serves the solution
of the previous time step, (u0

n, p
0
n) = (un−1, pn−1). The spatial discretization

is performed with an inf-sup stable pair of finite element spaces. Its detailed
description results in almost literally the same text as written after (5), with
the index h for all finite element functions, V hg (tn, ·) replacing V hg , and applied
to system (9). From the point of view of linear algebra, a linear saddle point
system of form (7) is obtained.

Popular alternatives to the fully implicit approach (9) are IMEX schemes,
which use as convection field not umn but an extrapolation of the velocity from
previous time instances, e.g., see [20] or [24, Rem. 7.61] for concrete proposals.
Thus, in IMEX schemes one has to solve only one linear saddle point problem
in each discrete time. Since we have a long and good experience with the fully
implicit approach, we decided to use it also in the numerical studies presented
in this paper. A brief discussion of IMEX schemes is provided at the end of
Section 5.3.

2.3. Main difference of stationary and time-dependent case

Although the linearization and discretization of the stationary and time-
dependent Navier–Stokes equations lead to the same type (7) of linear saddle
point problems, there is an essential difference in the properties of the sys-
tem matrix. If the time-step is not too large, then the matrix A in the time-
dependent case is dominated by the mass matrix (φj ,φi)ij , which arises in the
discretization of the temporal derivative. All other contributions of A and also
all other matrices are multiplied with ∆t. In the stationary case, one has to
distinguish two regimes. If the viscosity of the flow is large, the dominating
contribution in A is (ν∇φj ,∇φi)ij , which comes from the discretization of the
viscous term. In the more interesting case that ν is small, the dominating
contribution arises from the convective term.
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The numerical studies will consider steady-state situations with dominat-
ing convection and time-dependent problems with sufficiently small time steps.
Hence, the matrix A in both cases has different properties that might have a
different impact on the efficiency of the studied solvers.

3. Coupled multigrid preconditioning

Multigrid approaches for solving large systems of linear equations show their
full potential when used as preconditioners for Krylov subspace methods like
flexible GMRES (FGMRES) [32]. Besides giving below a brief overview on the
components of the multigrid method, a detailed description of the used smoother
will be provided since the chosen smoother is key to the efficiency of a multigrid
method.

3.1. The standard and the multiple-discretization coupled multigrid approach

From the linearization and discretization of the Navier–Stokes equations
arise linear systems of equations with a block structure as in (7). Multigrid
approaches that do not decouple these systems but solve for velocity u and
pressure p simultaneously are referred to as coupled multigrid approaches.

To define a multigrid method, the following components have to be specified:

• the grid hierarchy,
• the grid transfer operators, i.e., restriction and prolongation,
• the grid cycle, i.e., the sequence in which the levels of the grid hierarchy are

addressed,
• the smoother, i.e., an approximate solver on levels which are not the coarsest

one,
• the solver on the coarsest grid.

In the standard multigrid (MG) approach, there is a one-to-one mapping
between the geometric refinements of an initial grid and the levels in the multi-
grid hierarchy. In addition, all levels are equipped with the same type of finite
elements and discretization.

The grid transfer operators are the tools used to pass information between
the different levels. Consider the meshes Tl−1 and Tl, where Tl, l > 1, originates
from the refinement of the coarser mesh Tl−1, and the corresponding finite
element spaces Vl−1 and Vl for the velocity as well as Ql−1 and Ql for the
pressure. The prolongation operators

Pu
l−1,l : Vl−1 → Vl, P pl−1,l : Ql−1 → Ql, 1 ≤ l ≤ L,

and the restriction operators

Ru
l,l−1 : Vl → Vl−1, Rpl,l−1 : Ql → Ql−1 1 ≤ l ≤ L,

map finite element functions between grids. The operators proposed in [34]
are based on the concept of local and global functionals and can be used for
an almost arbitrary choice of finite element spaces. The used code utilizes the
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level geometry multilevel discretization

L

L−1

0

1

discretization of interest

lowest order non−conforming

lowest order non−conforming

lowest order non−conforming

with upwind

with upwind

with upwind
lowest order non−conforming

L+1

with upwind

multiple discretization multilevel approach (MDML)

Figure 1: Sketch of the multiple discretization multilevel (MDML) method.

concept of mapped finite elements. Thus, the implementation of the grid transfer
operators from [34] is as follows. For each mesh cell, the residual or function to
be transferred is mapped to a reference cell, the transfer operation is performed,
and the result is mapped back. The transfer operators on the reference cell
are given by small matrices, depending on the involved finite element spaces.
These matrices are computed only once and then stored in a database such that
subsequent transfer operations can be computed efficiently by matrix-vector
products. For a detailed discussion of the applied operators it is referred to [24,
Sec. 9.2.2], and [34].

Concerning the grid cycle, usual choices comprise the V-, F-, and W-cycle.
The least work per cycle is needed in the V-cycle but the W-cycle is sometimes
considerably more stable. The F-cycle, which is in between the V- and the
W-cycle, is in our experience a good compromise.

The multigrid method works solely with the finite element spaces. This
feature enables the definition of multigrid-type methods with different finite
element spaces on different geometric grids and even with more than one finite
element space defined on the same geometric grid. An example of this approach
is the multiple discretization multilevel (MDML) method introduced in [26]
and analyzed in [21], see Figure 1. The main motivation for constructing this
method is the experience that multigrid methods are usually very efficient for
lowest order finite elements. Thus, all coarser multigrid levels of the MDML
method are equipped with an inf-sup stable and convection-stabilized lowest
order discretization of the Oseen problems. On the finest geometric grid, the
discretization of interest forms the finest multigrid level and the lowest order
discretization forms the next coarser multigrid level.

If Dirichlet boundary conditions are prescribed on the whole boundary, the
pressure finite element space is a subspace of L2

0(Ω), i.e., the integral mean
value of the pressure has to vanish. In this situation, coupled multigrid pre-
conditioners require a preprocessing step at the beginning of each step of the
Picard or Newton iteration and a postprocessing step after the termination of
this iteration. Here, the approach that is applied in the used code ParMooN
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is described. In the preprocessing step, the arithmetic mean of the pressure
components of the residual vector is computed and then subtracted from these
components. In this way, the right-hand side of the equation for the error, which
is considered in multigrid methods, is projected to the range of the matrix. In
the postprocessing step, the integral mean of the computed pressure is calcu-
lated and subtracted from the pressure to ensure that the finite element pressure
solution is in L2

0(Ω).

3.2. Vanka-type smoothers

As already mentioned, the choice of the smoother is essential for the efficiency
of a multigrid method. It was already discussed in the introduction that the
difficulty for linear saddle point problems consists in the fact that standard
smoothers cannot be applied because of the zero diagonal block and special
smoothers need to be designed.

The most popular class of smoothers for problems of type (7) are Vanka-
type smoothers proposed in [37]. Since the smoothers are the essential part
of the multigrid method and to keep this paper self-contained, the used Vanka
smoothers will be described in some detail.

Vanka-type smoothers can be understood as block Gauss–Seidel methods.
Let the problem on multigrid level l have the form (7) and denote the sets of
velocity and pressure degrees of freedom by V l and Ql, respectively. These sets
are decomposed into (not necessarily disjoint) subsets

V l =

J⋃
j=1

V lj , Ql =

J⋃
j=1

Qlj . (10)

Local matrices Alj are defined to contain those entries of the global matrix

Al, whose row and column correspond to degrees of freedom from V lj ∪ Qlj .
Then each smoothing step with a Vanka-type smoother consists in a loop from
j = 1, . . . , J and in solving a small linear system of equations connected with
the corresponding degrees of freedom. Denote by (·)j the restriction of a vector
to the rows corresponding to the degrees of freedom in V lj ∪ Qlj . Then in each
smoothing step, a solution update of the form(

u
p

)
j

←
(
u
p

)
j

+A−1
j

((
f
g

)
−A

(
u
p

))
j

is performed. This block Gauss–Seidel approach is called multiplicative Vanka
smoother. It is completely described if the decomposition (10) is given. Our
strategy to define a decomposition is as follows:

• Take some pressure degrees of freedom which form Qlj .
• The corresponding velocity degrees of freedom in V lj are all those that are

connected to at least one of the pressure degrees of freedom in Qlj by an
existing entry in the sparsity pattern in the off-diagonal block B of A.
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It can be seen that with this strategy a Vanka-type smoother is determined by
the particular choice of the Qlj , j = 1, . . . , J .

To define the sets Qlj , in our experience, it is helpful to distinguish between
discretizations with continuous and discontinuous pressure finite element spaces.
For discontinuous approximations, the following Vanka smoother is appropriate:

• Mesh-cell-oriented Vanka smoother (cell Vanka smoother). This smoother
takes for Qlj all pressure degrees of freedom that belong to one mesh cell. It
turns out that the corresponding velocity degrees of freedom are all those
which belong to the same mesh cell. The number of local systems to be
solved in one smoothing step then equals the number of cells in the mesh
T l and all local systems are of the same size.

Smoothers for discretizations with continuous pressure are the following:

• Pressure-node-oriented Vanka smoother (nodal Vanka smoother). To define
this smoother, one takes for Qlj only one pressure degree of freedom. Then
the number of local systems to be solved in each smoothing step is the num-
ber of pressure degrees of freedom, and systems of different sizes appear.
The size of the systems depends on several aspects, like the geometric po-
sition of the (Lagrangian) pressure degree of freedom, the local grid, or the
proximity to the boundary, see [24, Sec. 9.2.2] for more details and some
examples.

• Cell-patch-oriented Vanka smoother (patch Vanka smoother). This approach
can be understood as a cell-oriented Vanka smoother applied to a continu-
ous pressure approximation. Each set Qlj is defined by gathering all pressure
degrees of freedom belonging to one mesh cell. For a continuous pressure
approximation, the pressure degrees of freedom are connected via B to ve-
locity degrees of freedom in neighboring cells. The number of local systems
per smoothing step equals the number of mesh cells. This approach leads to
local systems of different sizes, depending on the local mesh structure or the
proximity to the boundary. It is clear by construction that the dimension
of the local systems is generally larger than for the nodal Vanka smoother.

In previous studies of Vanka-type smoothers, the application of the patch Vanka
smoother was not yet an option due to the relatively large local systems to be
solved, e.g., see the statement of even applying an iterative scheme for solving
the local systems if the dimension exceeded 100 in [23]. However, with the
enormous increase of computing power during the last decade, methods that
apply direct solvers for the solution of larger local systems gained efficiency.
The current paper will explore, besides other issues, whether the patch Vanka
smoother is already competitive.

Note that for the lowest order nonconforming discretizations P nc
1 /P0 [9] and

Qrot
1 /Q0 [31] the cell and the nodal Vanka smoothers are identical. In numerical

tests, we could observe that for higher order discretizations with discontinuous
pressure, the cell Vanka smoother performed much more efficient than the nodal
Vanka smoother. Thus, for the sake of brevity, the combination of the nodal
Vanka smoother and higher order discretizations with discontinuous pressure
will not be considered in the numerical studies presented in Section 5.
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In our implementation, the local systems with the matrices {Aj} are solved
directly by using the LAPACK routines dgetrf and dgetrs. All local matrices
are collected from the global matrix every time they are needed and then the
routines for the factorization and solution of the triangular systems of equations
are called. An alternative approach consists in storing all factorized local ma-
trices on all levels of the multigrid. This approach results in an considerable
increase of the memory requirements. The factorized matrices can be used for
all smoothing steps within one Picard or Newton iteration. For the next iter-
ation, new matrices have to be build and factorized. Some of our experience
with this alternative approach is summarized at the end of Section 5.2.

4. Least Squares Commutator (LSC) preconditioners

The LSC preconditioner decouples the update of the velocity and pressure
degrees of freedom.

4.1. The basic approach

The LSC preconditioner is derived from the LU decomposition of the matrix
A and the approximation of the pressure Schur complement by keeping a certain
operator commutator error small. This approach will be presented briefly. A
detailed explanation is available in [14] and some hints on the intuition when
introducing the commutator can be found in the original work [12].

A formal Gaussian elimination of A from (7) gives the LU decomposition

A =

(
I 0

BA−1 I

)(
A BT

0 −BA−1BT

)
= LU. (11)

As lower right matrix block appears the so-called Schur complement of A,

S := −BA−1BT .

Since from (11) it follows that AU−1 = L, which has perfectly clustered eigen-
values, the upper triangular factor U is a good starting point for building pre-
conditioners. Its drawback is the appearance of the Schur complement which
is not explicitly available and even if this would be the case, then the Schur
complement would be a dense matrix, since A−1 is dense. Constructing a good
approximation to the Schur complement is the difficulty that is addresses by the
LSC preconditioner.

The basic idea of the LSC preconditioner is to search for a regular matrix
Ap ∈ Rk×k, acting on (coefficients of) the pressure space, that solves the equa-
tion

BTAp = ABT (12)

and thus gives, by transforming (12) equivalently and multiplying with B from
the left,

−BA−1BT = −BBTA−1
p . (13)
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The right-hand side of (13) is a better to handle form of the Schur complement.
For this form, applying U as a preconditioner requires approximating the action

of
(
−BBTA−1

p

)−1
, which is more easily done, as Ap is known and BBT is

positive definite and symmetric, and it represents basically a discretization of a
pressure Poisson problem.

The difficulty is that BT ∈ Rn×k, n > k, is a full rank rectangular matrix
and so (12) is in general an overdetermined system and can only be solved in a
minimizing sense

min
Ap

∥∥ABT −BTAp∥∥ (14)

for some matrix norm ‖ · ‖ to be defined later.
The derivation of the LSC preconditioner as commutator-based is now mo-

tivated by the interpretation of the matrices appearing in (14) as discrete coun-
terparts of the underlying continuous operators from the (steady-state) Navier–
Stokes equations. In fact the matrix BT stems from the finite element discretiza-
tion of the gradient operator and the matrix A from a convection-diffusion op-
erator −ν∆ + um · ∇ acting on the velocity space. The unknown matrix Ap is
now assumed to originate from the discretization of a somewhat hypothetical
convection-diffusion operator acting on the pressure space. Problem (14) can
then be interpreted as minimizing the discrete commutation error of velocity
and pressure convection-diffusion operator with the gradient operator. To sup-
port this interpretation, one has to account for the concrete choice of the finite
element spaces and to introduce appropriate weights by multiplying with the
inverses of the velocity and pressure mass matrices Mv ∈ Rn×n and Mp ∈ Rk×k.
One now replaces (14) by the minimizing problem

min
Ap

∥∥M−1
v AM−1

v BT −M−1
v BTM−1

p Ap
∥∥ . (15)

Observe that by multiplication from left with BA−1Mv and from right with
A−1
p Mp the term inside the norm gives rise to a formula for the approximation

of the Schur complement

S = −BA−1BT ≈ −BM−1
v BTA−1

p Mp. (16)

The LSC approach now proceeds by specifying the minimizing problem (15)
as minimizing columnwise in a Mv-weighted vector norm

‖v‖Mv
= 〈Mvv, v〉

1
2 .

This choice leads to the eponymous least squares problems

min
[ap]j

∥∥[M−1
v AM−1

v BT ]j −M−1
v BTM−1

p [ap]j
∥∥
Mv

, j = 1, . . . , k, (17)

where the unknowns [ap]j are the columns of Ap. The first order optimality
conditions read

M−1
p BM−1

v BTM−1
p [ap]j =

[
M−1
p BM−1

v AM−1
v BT

]
j
, j = 1, . . . , k.
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In this way, one finally gets the representation

Ap = Mp

(
BM−1

v BT
)−1 (

BM−1
v AM−1

v BT
)
. (18)

The LSC preconditioner is now obtained by replacing M−1
v with (diag(Mv))

−1 =
D−1
v in (18) and inserting the arising formula in (16)

SLSC := −
(
BD−1

v BT
) (
BD−1

v AD−1
v BT

)−1 (
BD−1

v BT
)
. (19)

This expression approximates the lower right block in (11).
Note that in the application of the preconditioner, pressure Poisson-type

problems have to be solved by inverting the first and last term in parentheses
in (19). A problem for the velocity has to be solved by inverting the upper left
matrix in (11).

In our implementation, the saddle point problem (1) is assembled for all de-
grees of freedom including those on the Dirichlet boundary. Then, the respective
rows of A and BT are changed such that the Dirichlet values are imposed. With
this approach, the matrix B of (1) maintains full rank and this matrix and its
transposed are used for building the matrix BD−1

v BT of the pressure system.
Hence, the matrix for the pressure system is non-singular, independently of
having Dirichlet conditions on the whole boundary or not.

4.2. Incorporating boundary effects

Since its original development in [12] the LSC preconditioner has experienced
two major extensions. The first one, to extend the approach to inf-sup-stabilized
finite element approximations, has been performed in [13]. Since stabilized
discretizations were not used in our numerical studies, here only the second
modification, which considers the incorporation of boundary conditions into
the pressure convection-diffusion operator, will be described. It is reported,
e.g., in [14, Section 9.2.4], that this modification led to improvements in the
performance compared with the LSC preconditioner.

The derivation starts with the continuous version of a commutator

divA− Ap div

with velocity convection-diffusion operator A and a hypothetical pressure con-
vection-diffusion operator Ap. Observe that the original notion of “commutator
with the gradient operator” has been replaced by “commutator with divergence
operator”, an approach justified in [15]. Assuming that making the commuta-
tor error of the continuous version “small” also makes the discrete commutator
error small motivates the investigation of the commutator error at the domain
boundaries. A careful analysis given in [15] shows that in the one-dimensional
case the commutator error (continuous and discrete) vanishes if Ap is equipped
with a Robin boundary conditions at the inflow and a Dirichlet boundary condi-
tion at the outflow. Then, it was proceeded with transferring these observations
to the higher-dimensional case by splitting the commutator error into compo-
nents associated with coordinate directions of its factors. It was shown that
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these error components depend too strongly on each other to set them to zero
simultaneously, but the most perturbing parts can be suppressed by carefully
weighting the least squares problem (17).

The least squares problem (17) is replaced by

min
[ap]j

∥∥[M−1
v AM−1

v BT ]j −M−1
v BTM−1

p [ap]j
∥∥
M̃v

, j = 1, . . . , k,

where the modified norm ‖ · ‖M̃v
= 〈M̃v·, ·〉

1
2 with

M̃v = MvD
1
2M−1

v D
1
2Mv

is employed. The diagonal matrix D = (dij)i,j is responsible for suppressing
certain error contributions. It was proposed in [15] to suppress contributions
tangential to the Dirichlet boundaries. For a grid aligned domain1 in two di-
mensions, D takes the block form

D =

(
Dx 0
0 Dy

)
.

The entries of the diagonal sub-matrix Dx are responsible for suppressing con-
tributions tangential to horizontal (x-aligned) boundaries. Its diagonal entries
are defined by

dii =


ε if the velocity degree of freedom i is connected to a pressure

degree of freedom on a horizontal Dirichlet boundary by an
entry in the sparsity pattern of B,

1 else.

The entries of Dy are defined in a similar way for tangential velocity degrees of
freedom near vertical Dirichlet domain boundaries. The parameter ε, responsi-
ble for the suppressing, is chosen empirically as ε = 0.1. This choice is proposed
in [14]. The definition of D can be adapted to the three-dimensional case and
non-grid aligned domains, see [14].

Analogously to the treatment of (17), one obtains the boundary-corrected
LSC preconditioner by determining the first order optimality conditions and
plugging the result in (16). One gets

Sbdry
LSC := −

(
BH−1BT

) (
BD−1

v AH−1BT
)−1 (

BD−1
v BT

)
,

where now
H = D− 1

2DvD
− 1

2 .

Numerical results given in [14] show a significant improvement of the boundary-
corrected LSC preconditioner compared with its basic version in terms of needed
GMRES iterations to achieve a certain error tolerance.2

1A domain with a rectangular/hexahedral grid where each mesh edge lies parallel to one
boundary part.

2Our implementation of both LSC variants was verified by reproducing the results from
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5. Numerical studies

5.1. General setup

Numerical studies were performed mostly on benchmark problems for the
steady-state and time-dependent Navier–Stokes equations in 2d and 3d, namely
for flow around cylinder examples defined in [33]. Only for the case of a time-
dependent flow in 3d, a modified setup was used, which is motivated and de-
scribed below. Besides [33], descriptions of these examples can be found at
many places, e.g., in [22, 23, 24, 26], such that here only a brief explanation is
provided.

The Picard iterations for solving the nonlinear problems were terminated if
the Euclidean norm of the residual vector was less than 10−8. For discretizing
the arising saddle point problems, the Galerkin finite element method with inf-
sup stable pairs of finite element spaces with second order velocity and first
order pressure was used. On simplicial grids, the Taylor–Hood pair P2/P1 and
the pair P bubble

2 /P disc
1 were studied and on quadrilateral/hexahedral grids the

Taylor–Hood pair Q2/Q1 and the pair Q2/P
disc
1 were applied. Hence, for both

types of grids, a pair with continuous and a pair with discontinuous pressure
was used. Both Taylor–Hood pairs and Q2/P

disc
1 belong to the most popular

choices of inf-sup stable finite elements for incompressible flow problems.
As discretization of the temporal derivative, the Crank–Nicolson scheme

with an equidistant time step ∆t was used.
The following solvers for the arising linear saddle point problems were stud-

ied:

• UMFPACK: sparse direct solver [10],
• FGMRES + MG(cell): flexible GMRES, preconditioner standard multigrid

with cell Vanka smoother, only discretizations with discontinuous pressure,
• FGMRES + MDML(cell): flexible GMRES, preconditioner MDML method

with cell Vanka smoother, only discretizations with discontinuous pressure,
• FGMRES + MG(nodal): flexible GMRES, preconditioner standard multi-

grid with nodal Vanka smoother, only discretizations with continuous pres-
sure,

• FGMRES + MDML(nodal): flexible GMRES, preconditioner MDML method
with nodal Vanka smoother, only discretizations with continuous pressure,

• FGMRES + MG(patch): flexible GMRES, preconditioner standard multi-
grid with patch Vanka smoother, only discretizations with continuous pres-
sure,

• FGMRES + MDML(patch): flexible GMRES, preconditioner MDML method
with patch Vanka smoother, only discretizations with continuous pressure,

• FGMRES + LSC(dir): flexible GMRES, preconditioner least squares com-
mutator, sparse direct solver for all linear subsystems,

[14] for the lid-driven cavity example. The characteristic number for the performance of the
preconditioners is the number of GMRES iterations needed in the last step of the Picard
iteration. Whereas the original LSC exhibits an unfavorable grid dependency, the boundary-
corrected LSC fixes this issue.
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• FGMRES + LSC(ite): flexible GMRES, preconditioner least squares com-
mutator, iterative solver for velocity system, see Sections 5.2 and 5.3 for
details,

• FGMRES + boundary-corr. LSC(dir): flexible GMRES, preconditioner
boundary-corrected least squares commutator, sparse direct solver for all
linear subsystems,

• FGMRES + boundary-corr. LSC(ite): flexible GMRES, preconditioner
boundary-corrected least squares commutator, iterative solver for velocity
system.

As in the classical multigrid approach, the systems on the coarsest grids were
solved directly with UMFPACK.

In the multigrid approaches there is the possibility, and generally the neces-
sity, to apply a damping. There are two opportunities for damping, namely for
the update that is proposed from the Vanka smoother and for the update that
comes from the prolongation from a coarse level to the next finer one. Both
possibilities for damping are independent and generally, one gets the most ef-
ficient method by a different choice of the corresponding damping parameters.
However, to facilitate the numerical studies and the application of the multigrid
methods, only configurations with a single damping parameter for both places
were considered.

The simulations were performed with the finite element code ParMooN
[39] on compute servers HP BL460c Gen9 2xXeon, 2600MHz, using only one
processor for all routines. All simulations were performed five times, the fastest
and the slowest computing time were neglected and the average of the remaining
three times is presented below. The given computing times include the times
for assembling, setting up the preconditioners, and for solving the linear saddle
point problems, thus representing the complete time for solving the considered
problem, which is the relevant time in applications.

5.2. Steady-state flows around a cylinder

For both, 2d and 3d, there is a prescribed parabolic inflow at the left-hand
side of the channel and outflow boundary conditions were used at the right-hand
side, for details see [33, Test cases 2D-1, 3D-1Z]. The coarsest grids (level 0)
used in our simulations are presented in Fig. 2.

The Picard iteration was started with velocity zero for all degrees of free-
dom, only Dirichlet nodes were set to their appropriate values. An important
control mechanism for the efficiency of the iterative solvers is the accuracy re-
quired for FGMRES in each step of the Picard iteration. In our experience,
it is sufficient to compute only an approximate solution of the linear saddle
point problem (5) before going to the next Picard step. Thus, we prescribed
the termination of FGMRES after having reduced the Euclidean norm of the
residual vector by the factor 10. In addition, for the multigrid methods, at most
10 iterations should be performed. It turned out that the LSC-type methods
required more iterations. In numerical studies, it was found that FGMRES(50),
where in parentheses the restart parameter is given, with 100 iterations was
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Figure 2: Initial grids, level 0.

Table 1: Steady-state flow around a cylinder, damping parameters used in the multigrid
methods. No entry means that the combination of smoother and finite element spaces were
not considered, see Section 3.2 for explanations.

P2/P1 Q2/Q1 P bubble
2 /P disc

1 Q2/P
disc
1

MG(cell) 2d 0.7 0.9
3d 0.8 0.9

MDML(cell) 2d 0.7 0.9
3d 0.8 0.9

MG(nodal) 2d 0.8 0.7
3d 0.8 0.6

MDML(nodal) 2d 0.8 0.7
3d 0.8 0.8

MG(patch) 2d 0.9 0.9
3d 0.9 0.9

MDML(patch) 2d 0.9 0.9
3d 0.9 0.9

an appropriate choice. One approach that was studied used the direct solver
UMFPACK for all linear systems of the LSC-type preconditioners. Note that
the factorization of both system matrices in the LSC-type iterations needs to
be computed only in the first FGMRES iteration. Moreover, the factorization
of the pressure matrix BD−1

v BT has to be computed even only once at the
beginning of the Picard iteration. As an alternative, LSC-type preconditioners
with iterative solvers for the velocity system with matrix A were tested. The
only approach that resulted sometimes in a convergent Picard iteration was to
use a routine provided by the library PETSc [1, 2, 3], namely FGMRES with
the Boomer AMG preconditioner using the same flags as in [39]. But even then,
the simulations were not more efficient than with the direct solver, see Fig. 5 for
a representative result. In addition, this approach failed usually for P2/P

disc
1 in

2d and on the hexahedral grids in 3d. In our experience, the multigrid F-cycle
is a good compromise between efficiency and stability and thus, the multigrid
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Figure 3: Steady-state flow around a cylinder in 2d: computing times and slope of best-fit
line for continuous pressure approximations, first solution level is level 2.
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Figure 4: Steady-state flow around a cylinder in 2d: total number of FGMRES iterations,
first solution level is level 2.

methods were used with the F(2,2) cycle. Table 1 summarizes the used damping
parameters.

Results for the steady-state 2d flow are presented in Figs. 3 – 5 and for the
3d flow in Figs. 6 – 8. It can be seen at first glance that there is no solver which
performed best in all situations.

First, the 2d results are evaluated. For discretizations with continuous pres-
sure, Fig. 3, the direct solver and the LSC-type preconditioners were most ef-
ficient on coarser grids whereas the multigrid approaches showed a superior
efficiency on finer grids. The MDML approach was generally a little bit faster
than the standard multigrid scheme. Using the nodal Vanka smoother was more
efficient than applying the patch Vanka smoother. In Fig. 4, it can be seen that
the number of necessary FGMRES iterations for the patch Vanka smoother

18



105 106

# dof

101

102

103

104
co
m
p
u
ti
n
g
 t
im

e
 i
n
 s
e
c.

P bubble
2 /P disc

1

UMFPACK, slope 1.68
FGMRES + MG(cell), slope 0.99
FGMRES + MDML(cell), slope 1.03
FGMRES + LSC(dir), slope 1.85
FGMRES + boundary-corr. LSC(dir), slope 1.85

105 106

# dof

101

102

103

104

co
m
p
u
ti
n
g
 t
im

e
 i
n
 s
e
c.

Q2/P
disc
1

UMFPACK, slope 1.67
FGMRES + MG(cell), slope 0.90
FGMRES + MDML(cell), slope 0.98
FGMRES + LSC(dir), slope 1.75
FGMRES + boundary-corr. LSC(dir), slope 1.73
FGMRES + LSC(ite), slope 1.78
FGMRES + boundary-corr. LSC(ite), slope 1.76

Figure 5: Steady-state flow around a cylinder in 2d: computing times and slope of best-fit
line for discontinuous pressure approximations, first solution level is level 2.
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Figure 6: Steady-state flow around a cylinder in 3d: computing times and slope of best-fit
line for continuous pressure approximations, first solution level is level 0.

was smaller than for the nodal Vanka smoother. However, the costs for each
smoothing step were larger for the patch Vanka smoother. For all multigrid
approaches, the number of necessary FGMRES iterations did not increase if the
grid was refined, Fig. 4. In contrast, these numbers increased considerably for
the LSC-type preconditioners.

The situation is somewhat different for the discretizations with discontinuous
pressure approximation, Fig. 5. In these cases, the multigrid approaches with
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Figure 7: Steady-state flow around a cylinder in 3d: computing times and slope of best-fit
line for discontinuous pressure approximations, first solution level is level 0.

the cell Vanka smoother were most efficient on all considered levels, with the
standard method being more efficient than the MDML approach. The LSC-type
schemes performed considerably worse compared with the discretizations with
continuous pressure.

The LSC and boundary-corrected LSC preconditioner behaved always very
similarly.

Based on the ansatz

computing time = C(number of dofs)α,

the power α was computed with a linear regression (best-fit line in the double
logarithmic plots). It can be seen that α is around 1 for all multigrid approaches,
thus showing the desired linear dependency. For the sparse direct solver and
the LSC-type schemes, α is larger than 1.6. Since the LSC-type methods used
a sparse direct solver for the arising linear subproblems, a similar behavior can
be expected for both approaches.

The evaluation of the results for the 3d problem arrives often at the same
conclusions as for the 2d problem. The systems on the finest grids could be
solved only with multigrid preconditioners, whereas on coarser grids, the LSC-
type methods were often more efficient. The latter situation is most notable
for Q2/Q1 in Fig. 6. Again, the results for both LSC-type methods were very
similar such that only those for the boundary-corrected variant are presented.
In 3d, the patch Vanka smoother is considerably more expensive than the nodal
Vanka smoother. For all multigrid methods, there were only small differences
between the standard and the MDML approach, with the standard approach
often a little bit more efficient. Concerning two-level methods (level 0 for MDML
and level 1 for MG), we could observe that often the times spent on the coarsest
grid were negligible. The only notable exceptions were the cell Vanka methods,
where sometimes around half of the computing time was taken for the coarsest
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Figure 8: Steady-state flow around a cylinder in 3d: Peak resident set size (RSS) in main
memory during entire computation, same legend as in Fig. 6.

grid. The reason of this high percentage is that the cell Vanka smoother used
considerably less time on the finer grid than the other smoothers. Whereas the
multigrid methods still showed an approximately linear relation between the
number of degrees of freedom and computing time, the order of increase was in
3d even higher, compared with 2d, for UMFPACK (by around one order) and
the LSC-type preconditioners (often by half an order).

A representative observation for the memory requirements of the methods is
presented in Fig. 8. One can observe that all multigrid approaches needed more
or less the same amount of memory whereas the other methods required con-
siderably more memory, with FGMRES + LSC(dir) needing a smaller amount
than UMFPACK.

We also examined the option of storing the local Vanka systems, see the end
of Section 3.2, where one expects a gain in speed and higher memory require-
ments. In investigations of the stationary 2d problem, the P2/P1 pair of finite
element spaces, and FGMRES + MG(nodal), the computation sped up by fac-
tor 4 on level 2. The same problem on the finest grid (level 5) could be solved
2.5 times faster. The memory requirement on level 2 was two times as much
as in the basic version of the algorithm. On level 5, it was already three times
as much. For 3d, experience for the Q2/P

1
disc discretization with FGMRES +

MG(cell) is reported. There we found that the trade-off between memory con-
sumption and speed gain improved somewhat with refinement. Storing the local
systems led to a speed-up of factor 1.5 on level 1, while it was factor 2 on re-
finement levels 2 and 3. The memory requirements behaved roughly the same.
One can conclude that storing the local systems can offer a valuable reduction
of computing times, but it should only be applied, if sufficient RAM is available
and memory is a minor concern.

5.3. Time-dependent flows around a cylinder

Similar to the steady-state problem, there is a prescribed parabolic inflow at
the left-hand side of the channel and outflow boundary conditions were applied
at the right-hand side. In 2d, a steady-state inflow was used, test case 2D-2
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Table 2: Time-dependent flow around a cylinder, damping parameters and cycle type used
in the multigrid methods. The combinations of smoother and finite element spaces without
entries were not considered, see Section 3.2 for explanations.

P2/P1 Q2/Q1 P bubble
2 /P disc

1 Q2/P
disc
1

MG(cell) 2d F(1,1): 0.9 F(2,2): 0.9
3d F(2,2): 0.9 F(1,1): 0.9

MDML(cell) 2d F(1,1): 0.9 F(2,2): 0.8
3d F(1,1): 0.9 F(2,2): 0.8

MG(nodal, F(1,1)) 2d 0.6 0.7
3d 0.9 0.9

MDML(nodal, F(1,1)) 2d 0.7 0.7
3d 0.9 0.9

MG(patch, F(1,1)) 2d 0.8 0.8
3d 0.9 0.7

MDML(patch, F(1,1)) 2d 0.9 0.8
3d 0.7 0.9

in [33], which leads to a Kármán vortex street. Since one period of this vortex
street is approximately 0.34 s, the final time in our simulations was set to be
T = 0.34. The initial solutions were precomputed, fully developed flow fields.
The corresponding 3d problem in [33], test case 3D-2Z, does not lead to a time-
dependent flow. For our simulations, we computed the steady-state solutions as
initial conditions. Then, the original steady-state inflow was scaled with

1

2
sin

(
2π

(
2t− 1

4

))
+

3

2
, 0 ≤ t ≤ T =

1

2
,

such that a time-dependent flow occurs due to the time-dependent inflow con-
dition.

A goal of the simulations was to study the impact of the time step on the
computing times. With respect to the spatial resolution, grids were consid-
ered on which all solvers behaved reasonably well for the steady-state problems.
With respect to controlling the Picard iteration and the FGMRES method,
essentially the same strategy was used as for the steady-state problems, in par-
ticular the inexact solution of the linear system in each Picard iteration. The
only difference was that the maximal number of FGMRES iterations for the
multigrid preconditioners was set to be 5. For these preconditioners, both the
F(1,1)- and the F(2,2)-cycle were studied. The results for the more efficient
approach are presented below and the other one are commented briefly. Again,
the application of damping was essential for the efficiency of the multigrid pre-
conditioners and the used damping parameters for the more efficient type of
cycle are presented in Table 2. For the LSC-type methods, as well the solution
of both systems with UMFPACK as the solution of the system with the matrix
A with the iterative method BiCGStab [36] with SSOR preconditioner (ω = 1)
was investigated. Since in the second approach it is inefficient to solve the sys-
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Figure 9: Time-dependent flow around a cylinder in 2d: computing times on level 3 (left
pictures) and level 4 (right pictures). The numbers of degrees of freedom in space correspond
to the second and third marker from left in Fig. 3, respectively.
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Figure 10: Time-dependent flow around a cylinder in 2d: computing times on level 3 (left
pictures) and level 4 (right pictures). The numbers of degrees of freedom in space correspond
to the second and third marker from left in Fig. 5, respectively.

tem with A very accurately, one needs an appropriate stopping criterion. Some
numerical tests showed that terminating the BiCGStab iteration after having
reduced the Euclidean norm of the residual vector by the factor 100 worked
often well for the considered problems. In addition, at most 1000 BiCGStab
iterations were performed.

Figures 9 – 14 present the computing times and the total number of FGM-
RES iterations for the different solvers. Again, the LSC and boundary-corrected
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Figure 11: Time-dependent flow around a cylinder in 2d: total number of FGMRES iterations
on level 3 (left pictures) and level 4 (right pictures). Qualitatively, the same behavior as for
P2/P1 was observed for Pbubble

2 /Pdisc
1 and for Q2/Q1 as for Q2/Pdisc

1 , same legends as in
Figs. 9 and 10.

LSC preconditioners behaved very similarly, such that only the results for the
first one are shown. First, the results for the 2d time-dependent problem, Figs. 9
– 11, are discussed. One can see at first glance that there is only one solver that
profits from smaller time steps and the dominance of the mass matrix, compare
Section 2.3: FGMRES with the LSC-type preconditioner and the iterative so-
lution of the system with matrix A. A reason is that the number of BiCGStab
iterations decreased considerably if the time step became smaller. In addition,
the expensive setup and factorization of the Poisson-type problems had to be
performed only in the first Picard iteration of the initial time step. The more
time steps were computed, the less was the impact of the first time step on the
total computing time. On the triangular grids, even the total number of FGM-
RES iterations decreased slightly when the time step was reduced. FGMRES
+ LSC(ite) was the most efficient solver for the smallest time step in almost
all cases, save for P bubble

2 /P disc
1 . For discretizations with continuous pressure,

Fig. 9, the LSC preconditioner performed usually well with the direct solver for
larger time steps and the iterative solver for smaller time steps. Only for P2/P1

on level 4 and for large time steps, the multigrid preconditioner with F(1,1)-
cycle and nodal Vanka smoother was more efficient. For both, the nodal and
the patch Vanka smoother, the F(1,1)-cycle was generally considerably faster
than the F(2,2)-cycle. Generally, the standard multigrid and the MDML ap-
proaches needed computing times of the same order. Figures 9 and 11 contain
a result which illustrates that the choice of an appropriate damping parame-
ter in the multigrid methods might depend on the time step. For FGMRES
+ MDML(nodal), the used damping parameter was too large for ∆t = 0.01
but it was appropriate for smaller time steps. Regarding the discretizations
with discontinuous pressure spaces, the situation is somewhat different. For the
P bubble

2 /P disc
1 pair, the standard multigrid method with the cell Vanka smoother

was always the most efficient approach. The LSC preconditioner with the itera-
tive solution of the system with matrix A was often the best performing method
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Figure 12: Time-dependent flow around a cylinder in 3d: computing times, same legends as
in Figs. 9 and 10, multigrid cycles given in Table 2. The LSC(ite) preconditioner blew up for
∆t = 0.01. The number of degrees of freedom in space corresponds to the second marker from
left in Figs. 6 and 7.
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Figure 13: Time-dependent flow around a cylinder in 3d: total number of FGMRES itera-
tions, same legends as in Figs. 9 and 10, multigrid cycles given in Table 2. The LSC(ite)
preconditioner blew up for ∆t = 0.01.

for the Q2/P
disc
1 pair. Concerning the total number of FGMRES iterations, one

can often observe a linear increase with a factor smaller than two for all multi-
grid preconditioners if the time step is halved, compare Fig. 11. Using the
standard multigrid approach required less iterations than applying the MDML
method.

Simulations of the 3d time-dependent problem were performed on level 1.
Hence, the standard multigrid method is just a two-level method. The results
presented in Fig. 12 show that FGMRES + LSC(ite) was generally the most
efficient method for smaller steps ∆t ∈ {0.005, 0.0025}. Often, it was by far
faster than the other methods. For larger time steps, FGMRES with one of
the multigrid preconditioners were best. But altogether, it was generally much
more efficient to apply FGMRES + LSC(ite) with a small time step than to
use the multigrid preconditioner with a large time step. In addition, apart from
P2/P1, the total number of FGMRES iterations for FGMRES + LSC(ite) was
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Figure 14: Time-dependent flow around a cylinder in 2d (left) and 3d (right): computing
times with the LSC-type preconditioner and coupled multigrid preconditioners. 2d: level 3
(lowest curves), level 4 (middle curves), and level 5 (upper curves); 3d: level 1 (lower curves)
and level 2 (upper curves); same legends as in Figs. 9 and 10. The number of degrees of
freedom in space corresponds to the second to fourth marker from left in Fig. 3 (2d) and to
the second and third marker from left in Fig. 7 (3d).

comparatively small, see Fig. 13. The sparse direct solver and the multigrid
approaches with patch Vanka smoother were in all studies not competitive. For
the cell Vanka smoother, the computing times with the F(1,1)- and F(2,2)-cycle
were of the same order, whereas for the nodal and patch Vanka smoothers, the
use of the F(1,1) cycle was much more efficient.

Figure 14 presents studies of the LSC preconditioner and multigrid precon-
ditioners which include an additional refinement in space. It can be observed
that, on the one hand, the superiority of the LSC preconditioner became smaller
with increasing spatial refinement. But on the other hand, this preconditioner
was still more efficient than the multigrid preconditioners, in particular for small
time steps.

The memory requirements on level 1 were very similar to the steady-state
case, compare Fig. 8. The method FGMRES + LSC(ite) needed around four
times the memory of the multigrid methods but less than half times the memory
of UMFPACK.

Finally, a brief summary of our experience with IMEX schemes is given. In
these schemes, only one linear saddle point problem in each discrete time has
to be solved, but this system has to be solved accurately. The only one of the
studied solvers that really takes advantage of this fact is UMFPACK. For the
considered examples, the solver times with UMFPACK were reduced by a factor
of 4-4.5 for the largest time step and 2-2.5 for the smallest time step if an IMEX
scheme was applied. These reductions are less than an order of magnitude.
Concerning the iterative methods, we have the experience that there is not
that much difference between the computing times for solving one linear saddle
point problem accurately compared with solving several systems inexactly (and
assembling in between new matrix blocks A), as it is done in our numerical
studies. Altogether, there is no qualitative difference of the computing times of
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the fully implicit and an IMEX approach for the considered examples.

6. Some remarks on the application of the methods on parallel com-
puters

The numerical studies presented in this paper were restricted to the serial
case. First, we think that this case is still of interest for many users. And
second, to extend the numerical studies by incorporating the behavior of the
considered methods with respect to their performance on parallel computers
would be beyond the scope of a single paper. However, problems coming from
applications are simulated nowadays often on parallel computers. For this rea-
son, we like to provide here at least a discussion on some aspects of the parallel
implementation of the methods and on the available numerical experience.

A parallel implementation of the coupled multigrid preconditioners is avail-
able in ParMooN, see [16] for details of the implementation. In this implemen-
tation, the Vanka-type smoothers depend on the distribution of the mesh cells to
the processors. For each processor, the block Gauss–Seidel Vanka smoothers as
described in Section 3.2 are applied. Then, the values at the degrees of freedom
at the processor interfaces are computed as an arithmetic average of the con-
tributions from all processors sharing this interface. In this way, the smoother
becomes an outer Jacobi-type method (with respect to the processors) with an
inner block Gauss–Seidel iteration. The coarsest grid is available on all pro-
cessors such that an iterative method or a direct solver, applied simultaneously
on all processors, can be applied. In [39], numerical results are reported for
the 3d steady-state flow around a cylinder, which is described in Section 5.2,
and the Q2/P

disc
1 pair of finite element spaces. On the finest grid, which cor-

responds to the rightmost marker in the right picture of Fig. 7, a fairly good
strong scalability of around 66 % was observed up to 20 processors.

A parallel version of the LSC preconditioner is provided by the library
PETSc, [1, 2, 3]. This preconditioner was applied in the numerical studies
of [39] for the solution of the 3d steady-state flow around a cylinder from Sec-
tion 5.2 and in [38], where the flow in a helically coiled tube was simulated.
In [39], several options to call this preconditioner were tested, but only an ap-
proach with a direct solution of the arising linear systems of equations worked.
However, it was much more inefficient than the parallelized coupled multigrid
method. On the second finest grid, second marker from the right in the right
picture of Fig. 7, a reasonable scaling was observed up to 12 processors. It could
be seen in Section 5.3 that the costs of the initial factorization of the matrix
BD−1

v BT are more than compensated if sufficiently many time steps have to
be performed. It is an open question up to which number of processors the
building of BD−1

v BT and the direct solution of the arising system is feasible. A
Krylov subspace method, which requires only the multiplication of this matrix
with vectors, and a Jacobi-type preconditioner, which needs only the explicit
computation of the diagonal entries of this matrix, might be an efficient option
for a large number of processors.
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The parallel implementation and performance of the modified Augmented
Lagrangian preconditioner proposed in [6] is studied in [8]. Several steady-state
examples in 2d and 3d were considered. A good strong parallel scaling was
observed generally up to 32 processors, of course depending on the problem
size.

As already mentioned in the introduction, splitting schemes are an alterna-
tive to coupled approaches for the solution of time-dependent incompressible
flow problems. This alternative might be particularly attractive from the point
of view of parallel scalability, since highly parallelized splitting schemes have
been already proposed in the literature, e.g., in [28].

In summary, there are some experiences with the available preconditioners
on parallel computers. But these are restricted to a rather small number of
processors.

7. Summary and Outlook

This paper studied a number of solvers for linear saddle point problems that
arise in the linearization and discretization of the incompressible Navier–Stokes
equations using inf-sup stable second order velocity and first order pressure fi-
nite element spaces. It could be seen that the efficiency of the solvers depends
on the concrete pair of spaces, the fineness of the spatial mesh, and the length of
the time step. The most important conclusions of these studies are as follows.
For steady-state problems on fine grids, in particular in 3d, FGMRES with
an appropriate coupled multigrid preconditioner (nodal Vanka for continuous
pressure, cell Vanka for discontinuous pressure) was generally the most efficient
approach. The simulation of time-dependent problems, discretized with suf-
ficiently small time steps, could be performed fastest with FGMRES and the
LSC-type preconditioners with an iterative and inexact solution of the velocity
subproblem. In almost all situations, the use of an appropriate iterative solver
was more efficient, often even by orders of magnitude, than the application
of the sparse direct solver UMFPACK. Further findings include first that the
computing times of the standard multigrid and the MDML preconditioner were
generally similar and second that the patch Vanka smoother for discretizations
with continuous finite element pressure is not competitive to the nodal Vanka
smoother.

The presented numerical studies cover just the basic setup: the Galerkin dis-
cretization of laminar flow problems simulated in a sequential way. The behavior
of the solvers with respect to the size of the viscosity coefficient (or equivalently
to the Reynolds number) is a topic of future research, in particular for small ν.
Very small values of ν lead to turbulent flows whose simulation requires the use
of a turbulence model. Such models might change the block structure of the
matrix A from block-diagonal to full. So far, coupled multigrid preconditioners
have been used by ourselves for performing turbulent flow simulations, e.g., in
[25]. It is an open question whether LSC-type or Augmented Lagrangian-type
preconditioners could be more efficient in this case. As already discussed in
Section 6, there are only few experiences and several open questions concerning
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the performance and algorithmic options of the considered preconditioners on
parallel computers.
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