
Chapter 6

Interpolation

Remark 6.1. Motivation. Variational forms of partial differential equations
use functions in Sobolev spaces. The solution of these equations shall be
approximated with the Ritz method in finite-dimensional spaces, the finite
element spaces. The best possible approximation of an arbitrary function
from the Sobolev space by a finite element function is a factor in the upper
bound for the finite element error, e.g., see the Lemma of Cea, estimate (4.19).

This section studies the approximation quality of finite element spaces.
Estimates are proved for interpolants of functions. Interpolation estimates
are of course upper bounds of the best approximation error and they can
serve as factors in finite element error estimates. ✷

6.1 Interpolation in Sobolev Spaces by Polynomials

Lemma 6.2. Unique determination of a polynomial with integral
conditions. Let Ω be a bounded domain in Rd with Lipschitz boundary. Let
m ∈ N∪{0} be given and let for all derivatives with multi-index α, |α| ≤ m, a
value aα ∈ R be prescribed. Then, there is a uniquely determined polynomial
p ∈ Pm(Ω) so that

�

Ω

∂αp(x) dx = aα, |α| ≤ m. (6.1)

Proof. Let p ∈ Pm(Ω) be an arbitrary polynomial. It has the form

p(x) =
�

|β|≤m

bβx
β.

Inserting this representation in (6.1) leads to a linear system of equations Mb = a with

M = (Mαβ), Mαβ =

�

Ω

∂αxβ dx, b = (bβ), a = (aα),
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98 6 Interpolation

for |α| , |β| ≤ m. Since M is a squared matrix, the linear system of equations possesses a

unique solution if and only if M is non-singular.
The proof is performed by contradiction. Assume that M is singular. Then, there exists

a non-trivial solution of the homogeneous system. That means, there is a polynomial

q ∈ Pm(Ω) \ {0} with �

Ω

∂αq(x) dx = 0 for all |α| ≤ m.

The polynomial q(x) has the representation q(x) =
�

|β|≤m cβx
β. Now, one can choose a

cβ �= 0 with maximal value |β|. Then, it is ∂βq(x) = Ccβ = const �= 0, where C > 0 comes

from the differentiation rule for polynomials, which is a contradiction to the vanishing of
the integral for ∂βq(x). �

Remark 6.3. To Lemma 6.2. Lemma 6.2 states that a polynomial is uniquely
determined if a condition on the integral on Ω is prescribed for each deriva-
tive. ✷

Lemma 6.4. Poincaré-type inequality. Denote by Dkv(x), k ∈ N ∪ {0},
the total derivative of order k of a function v(x), e.g., for k = 1 the gradient
of v(x). Let Ω be convex and be included into a ball of radius R. Let l ∈ N∪{0}
with k ≤ l and let p ∈ R with p ∈ [1,∞). Assume that v ∈ W l,p(Ω) satisfies

�

Ω

∂αv(x) dx = 0 for all |α| ≤ l − 1,

then it holds the estimate

��Dkv
��
Lp(Ω)

≤ CRl−k
��Dlv

��
Lp(Ω)

,

where the constant C does not depend on Ω and on v(x).

Proof. There is nothing to prove if k = l. In addition, it suffices to prove the lemma for

k = 0 and l = 1, since the general case follows by applying the result to ∂αv(x).
Since Ω is assumed to be convex, the integral mean value theorem can be written in

the form

v(x)− v(y) =

� 1

0

∇v(tx+ (1− t)y) · (x− y) dt, x,y ∈ Ω.

Integration with respect to y yields

v(x)

�

Ω

dy −
�

Ω

v(y) dy =

�

Ω

� 1

0

∇v(tx+ (1− t)y) · (x− y) dt dy.

It follows from the assumption that the second integral on the left-hand side vanishes that

v(x) =
1

|Ω|

�

Ω

� 1

0

∇v(tx+ (1− t)y) · (x− y) dt dy.

Now, taking the absolute value on both sides, using that the absolute value of an integral is

estimated from above by the integral of the absolute value, applying the Cauchy–Schwarz

inequality for vectors (3.3), and the estimate �x− y�2 ≤ 2R yields

|v(x)| = 1

|Ω|

����
�

Ω

� 1

0

∇v(tx+ (1− t)y) · (x− y) dt dy

����



6.1 Interpolation in Sobolev Spaces by Polynomials 99

≤ 1

|Ω|

�

Ω

� 1

0

|∇v(tx+ (1− t)y) · (x− y)| dt dy

≤ 2R

|Ω|

�

Ω

� 1

0

�∇v(tx+ (1− t)y)�2 dt dy. (6.2)

Then, (6.2) is raised to the power p and integrated with respect to x. One obtains with
Hölder’s inequality (3.4), with p−1 + q−1 = 1 =⇒ p/q − p = p(1/q − 1) = −1, that

�

Ω

|v(x)|p dx ≤ CRp

|Ω|p
�

Ω

��

Ω

� 1

0

�∇v(tx+ (1− t)y)�2 dt dy

�p

dx

≤ CRp

|Ω|p
�

Ω

���

Ω

� 1

0

1q dt dy

�p/q

� �� �
|Ω|p/q

×
��

Ω

� 1

0

�∇v(tx+ (1− t)y)�p2 dt dy

��
dx

=
CRp

|Ω|

�

Ω

��

Ω

� 1

0

�∇v(tx+ (1− t)y)�p2 dt dy

�
dx.

Applying the theorem of Fubini allows the commutation of the integration

�

Ω

|v(x)|p dx ≤ CRp

|Ω|

� 1

0

�

Ω

��

Ω

�∇v(tx+ (1− t)y)�p2 dy

�
dx dt.

Using the integral mean value theorem in one dimension gives that there is a t0 ∈ [0, 1] so
that �

Ω

|v(x)|p dx ≤ CRp

|Ω|

�

Ω

��

Ω

�∇v(t0x+ (1− t0)y)�p2 dy

�
dx.

The function �∇v(x)�p2 will be extended to Rd by zero and the extension will be also
denoted by �∇v(x)�p2. Then, it is

�

Ω

|v(x)|p dx ≤ CRp

|Ω|

�

Ω

��

Rd
�∇v(t0x+ (1− t0)y)�p2 dy

�
dx. (6.3)

Let t0 ∈ [0, 1/2]. Since the domain of integration is Rd, a substitution of variables

t0x+ (1− t0)y = z can be applied and leads to

�

Rd
�∇v(t0x+ (1− t0)y)�p2 dy =

1

1− t0

�

Rd
�∇v(z)�p2 dz ≤ 2 �∇v�p

Lp(Ω)
,

since 1/(1− t0) ≤ 2. Inserting this expression in (6.3) gives

�

Ω

|v(x)|p dx ≤ 2CRp �∇v�p
Lp(Ω)

.

If t0 > 1/2 then one changes the roles of x and y, applies the theorem of Fubini to
change the sequence of integration, and uses the same arguments. �

Remark 6.5. On Lemma 6.4. Lemma 6.4 proves an inequality of Poincaré-
type. It says that it is possible to estimate the Lp(Ω) norm of a lower deriva-
tive of a function v(x) by the same norm of a higher derivative if the integral
mean values of some lower derivatives vanish.
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An important application of Lemma 6.4 is in the proof of the Bramble1–
Hilbert2 lemma. The Bramble–Hilbert lemma considers a continuous linear
functional that is defined on a Sobolev space and that vanishes for all poly-
nomials of degree less than or equal to m. It states that the value of the func-
tional can be estimated by a Lebesgue norm of the (m+1)th total derivative
of the functions from this Sobolev space. ✷

Theorem 6.6. Bramble–Hilbert lemma. Let m ∈ N ∪ {0}, p ∈ [1,∞),
and F : Wm+1,p(Ω) → R be a continuous linear functional, and let the
conditions of Lemma 6.2 and Lemma 6.4 be satisfied. Let

F (p) = 0 ∀ p ∈ Pm(Ω),

then there is a constant C(Ω), which is independent of v, so that

|F (v)| ≤ C(Ω)
��Dm+1v

��
Lp(Ω)

∀ v ∈ Wm+1,p(Ω).

Proof. Let v ∈ Wm+1,p(Ω). It follows from Lemma 6.2 that there is a polynomial from
Pm(Ω) with

�

Ω

∂αp(x) dx = −
�

Ω

∂αv(x) dx ⇐⇒
�

Ω

∂α(v + p)(x) dx = 0 for |α| ≤ m.

Lemma 6.4 gives, with l = m+1 and considering each term in �·�Wm+1,p(Ω) individually,

the estimate

�v + p�Wm+1,p(Ω) ≤ C(Ω)
��Dm+1(v + p)

��
Lp(Ω)

= C(Ω)
��Dm+1v

��
Lp(Ω)

.

From the vanishing of F for p ∈ Pm(Ω) and the continuity of F , it follows that

|F (v)| = |F (v + p)| ≤ C �v + p�Wm+1,p(Ω) ≤ C(Ω)
��Dm+1v

��
Lp(Ω)

.

�

Remark 6.7. Strategy for estimating the interpolation error. Lemma 6.4 will
be used for estimating the interpolation error for finite elements. The strategy
is as follows:

• Show first the estimate on the reference mesh cell K̂.
• Transform the estimate on an arbitrary mesh cell K to the reference mesh
cell K̂.

• Apply the estimate on K̂.
• Transform back to K.

One has to study what happens if the transforms are applied to the estimate.
✷

Remark 6.8. Assumptions, definition of the interpolant. Let K̂ ⊂ Rd, d ∈
{2, 3}, be a reference mesh cell (compact polyhedron), P̂ (K̂) a polynomial

1 James H. Bramble, born 1930
2 Stephen R. Hilbert
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space of dimension N , and Φ̂1, . . . , Φ̂N : Cs(K̂) → R continuous linear
functionals. It will be assumed that the space P̂ (K̂) is unisolvent with respect

to these functionals. Then, there is a local basis φ̂1, . . . , φ̂N ∈ P̂ (K̂).
Consider v̂ ∈ Cs(K̂), then the interpolant IK̂ v̂ ∈ P̂ (K̂) is defined by

IK̂ v̂(x̂) =
N�

i=1

Φ̂i(v̂)φ̂i(x̂).

The operator IK̂ is a continuous and linear operator from Cs(K̂) to P̂ (K̂)

(exercise). It is the identity on P̂ (K̂)

IK̂ p̂ = p̂ ∀ p̂ ∈ P̂ (K̂).

(exercise) ✷

Example 6.9. Interpolation operators.

• Let K̂ ⊂ Rd be an arbitrary reference cell, P̂ (K̂) = P0(K̂), and

Φ̂(v̂) =
1���K̂
���

�

K̂

v̂(x̂) dx̂.

The functional Φ̂ is bounded, and hence continuous, on C0(K̂) since

���Φ̂(v̂)
��� ≤ 1���K̂

���

�

K̂

|v̂(x̂)| dx̂ ≤

���K̂
���

���K̂
���
max
x̂∈K̂

|v̂(x̂)| = �v̂�C0(K̂) .

For the constant function 1 ∈ P0(K̂), it is Φ̂(1) = 1 �= 0. Hence, {φ̂} =
{1} is the local basis and the space is unisolvent with respect to Φ̂. The
operator

IK̂ v̂(x̂) = Φ̂(v̂)φ̂(x̂) =
1���K̂
���

�

K̂

v̂(x̂) dx̂

is an integral mean value operator, i.e., each continuous function on K̂ will
be approximated by a constant function whose value equals the integral
mean value, see Figure 6.1

• It is possible to define Φ̂(v̂) = v̂(x̂0) for an arbitrary point x̂0 ∈ K̂.
This functional is also linear and continuous in C0(K̂). The interpolation
operator IK̂ defined in this way interpolates each continuous function by
a constant function whose value is equal to the value of the function at
x̂0, see also Figure 6.1.
Interpolation operators that are defined by using values of functions are
called Lagrangian interpolation operators.
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��
�
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value at ��
�
��

Fig. 6.1 Interpolation of x2 in [−1, 1] by a P0 function with the integral mean value and

with the value of the function at x0 = 0.

This example demonstrates that the interpolation operator IK̂ depends on

P̂ (K̂) and on the functionals Φ̂i. ✷

Theorem 6.10. Interpolation error estimate on a reference mesh
cell. Let Pm(K̂) ⊂ P̂ (K̂), let p ∈ [1,∞), and let ŝ ∈ N ∪ {0} such that
(m+ 1− ŝ)p > d ≥ (m− ŝ)p and ŝ ≥ s, where s appears in the definition of
the interpolation operator. Then there is a constant C that is independent of
v̂(x̂) so that

��v̂ − IK̂ v̂
��
Wm+1,p(K̂)

≤ C
��Dm+1v̂

��
Lp(K̂)

∀ v̂ ∈ Wm+1,p(K̂). (6.4)

Proof. Since K̂ is bounded, one has the Sobolev imbedding, Theorem 3.51,

Wm+1,p(K̂) = W (m+1−ŝ)+ŝ,p(K̂) → C ŝ(K̂).

Because K̂ is convex, the imbedding C ŝ(K̂) → Cs(K̂) is compact3, see (Adams, 1975,

Theorem 1.31), such that the interpolation operator is well defined in Wm+1,p(K̂). From
the identity of the interpolation operator in Pm(K̂), the triangle inequality, the bound-

edness of the interpolation operator (it is a linear and continuous operator mapping
Cs(K̂) → P̂ (K̂) ⊂ Wm+1,p(K̂)), and the Sobolev imbedding, one obtains for q̂ ∈ Pm(K̂)

��v̂ − IK̂ v̂
��
Wm+1,p(K̂)

=
��v̂ + q̂ − IK̂(v̂ + q̂)

��
Wm+1,p(K̂)

≤ �v̂ + q̂�Wm+1,p(K̂) +
��IK̂(v̂ + q̂)

��
Wm+1,p(K̂)

≤ �v̂ + q̂�Wm+1,p(K̂) + C �v̂ + q̂�Cs(K̂)

≤ C �v̂ + q̂�Wm+1,p(K̂) .

Now, q̂(x̂) is chosen such that

�

K̂

∂αq̂ dx̂ = −
�

K̂

∂αv̂ dx̂ ⇐⇒
�

K̂

∂α(v̂ + q̂) dx̂ = 0 ∀ |α| ≤ m

holds. Hence, the assumptions of Lemma 6.4 are satisfied. It follows that

3 bounded sets are mapped to relatively compact sets (sets with compact closure in Cs(K̂)
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�v̂ + q̂�Wm+1,p(K̂) ≤ C
��Dm+1(v̂ + q̂)

��
Lp(K̂)

= C
��Dm+1v̂

��
Lp(K̂)

.

�

Definition 6.11. Quasi-uniform and regular family of triangulations,
(Brenner & Scott, 2008, Def. 4.4.13). Let {T h} with 0 < h ≤ 1, be a family
of triangulations such that

max
K∈T h

hK ≤ h diam(Ω),

where hK is the diameter of K = FK(K̂), i.e., the largest distance of two
points that are contained in K. The family is called to be quasi-uniform, if
there exists a C > 0 such that

min
K∈T h

ρK ≥ Ch diam(Ω) (6.5)

for all h ∈ (0, 1], where ρK is the diameter of the largest ball contained in K.
The family is called to be regular, if there exists a C > 0 such that for all

K ∈ T h and for all h ∈ (0, 1]

ρK ≥ ChK .

✷

Remark 6.12. Assumptions on the reference mapping and the triangulation.
For deriving the interpolation error estimate for arbitrary mesh cells K, and
finally for the finite element space, one has to study the properties of the
mapping from K to K̂ and of the inverse mapping. Here, only the case of
an affine family of finite elements whose mesh cells are generated by affine
mappings

FK x̂ = BK x̂+ b,

will be considered, see (5.3), where BK is a non-singular d×d matrix and b is
a d vector. For the global estimate, a quasi-uniform family of triangulations
will be considered. ✷

Lemma 6.13. Estimates of matrix norms. For each matrix norm �·�,
one has the estimates

�BK� ≤ ChK ,
��B−1

K

�� ≤ Ch−1
K , (6.6)

where the constants depend on the matrix norm.

Proof. Since K̂ is a Lipschitz domain with polyhedral boundary, it contains a ball B(x̂0, r)

with x̂0 ∈ K̂ and some r > 0. Hence, x̂0 + ŷ ∈ K̂ for all �ŷ�2 = r. It follows that the

images
x0 = BK x̂0 + b, x = BK(x̂0 + ŷ) + b = x0 +BK ŷ

are contained in K. Hence, one obtains for all ŷ
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�BK ŷ�2 = �x− x0�2 ≤ hK .

Now, it holds for the spectral norm that

�BK�2 = sup
�ẑ�2=1

�BK ẑ�2 =
1

r
sup

�ẑ�2=r
�BK ẑ�2 ≤ hK

r
.

A bound of this form, with a possible different constant, holds also for all other matrix
norms since all matrix norms are equivalent, see Remark 3.34.

The estimate for
��B−1

K

�� proceeds in the same way with interchanging the roles of K

and K̂. �

Theorem 6.14. Local interpolation estimate. Let an affine family of
finite elements be given by its reference cell K̂, the functionals {Φ̂i}, and a
space of polynomials P̂ (K̂). Let all assumptions of Theorem 6.10 be satisfied.
Then, for all v ∈ Wm+1,p(K), p ∈ [1,∞), there is a constant C, which is
independent of v, so that

��Dk(v − IKv)
��
Lp(K)

≤ Chm+1−k
K

��Dm+1v
��
Lp(K)

, 0 ≤ k ≤ m+ 1. (6.7)

Proof. The idea of the proof consists in transforming the left-hand side of (6.7) to the

reference cell, using the interpolation estimate on the reference cell, and transforming back.

i). Denote the elements of the matrices BK and B−1
K by bij and b

(−1)
ij , respectively.

Since �BK� = maxi,j |bij | is also a matrix norm, it holds that

|bij | ≤ ChK ,
���b(−1)

ij

��� ≤ Ch−1
K . (6.8)

Using element-wise estimates for the matrix BK (Leibniz formula for determinants), one
obtains

|detBK | ≤ Chd
K ,

��detB−1
K

�� ≤ Ch−d
K . (6.9)

These estimates coincide with (5.15).
ii). The next step consists in proving that the transformed interpolation operator is

equal to the natural interpolation operator on K. The latter one is given by

IKv =

N�

i=1

ΦK,i(v)φK,i, (6.10)

where {φK,i} is the basis of the space

P (K) =
�
p : K → R : p = p̂ ◦ F−1

K , p̂ ∈ P̂ (K̂)
�
,

which satisfies ΦK,i(φK,j) = δij . The functionals are defined by

ΦK,i(v) = Φ̂i(v ◦ FK) = Φ̂i (v̂) . (6.11)

Hence, it follows for v = φ̂j ◦ F−1
K from the condition on the local basis on K̂ that

ΦK,i(φ̂j ◦ F−1
K ) = Φ̂i(φ̂j) = δij ,

i.e., the local basis on K is given by φK,j = φ̂j ◦ F−1
K . Using (6.11) and (6.10), one gets
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IK̂ v̂ =

N�

i=1

Φ̂i(v̂)φ̂i =

N�

i=1

ΦK,i(v̂ ◦ F−1
K� �� �

=v

) φK,i ◦ FK =

�
N�

i=1

ΦK,i(v)φK,i

�
◦ FK

= IKv ◦ FK .

Consequently, IK̂ v̂ is transformed correctly.

iii). One obtains with the chain rule

∂v(x)

∂xi
=

d�

j=1

∂v̂(x̂)

∂x̂j
b
(−1)
ji ,

∂v̂(x̂)

∂x̂i
=

d�

j=1

∂v(x)

∂xj
bji.

It follows with (6.8) that (with each derivative one obtains an additional factor of BK or

B−1
K , respectively)

��Dk
xv(x)

��
2
≤ Ch−k

K

��Dk
x̂v̂(x̂)

��
2
,

��Dk
x̂v̂(x̂)

��
2
≤ Chk

K

��Dk
xv(x)

��
2
.

One gets with (6.9)

�

K

��Dk
xv(x)

��p

2
dx ≤ Ch−kp

K |detBK |
�

K̂

��Dk
x̂v̂(x̂)

��p

2
dx̂ ≤ Ch−kp+d

K

�

K̂

��Dk
x̂v̂(x̂)

��p

2
dx̂

(6.12)
and
�

K̂

��Dk
x̂v̂(x̂)

��p

2
dx̂ ≤ Chkp

K

��detB−1
K

��
�

K

��Dk
xv(x)

��p

2
dx ≤ Chkp−d

K

�

K

��Dk
xv(x)

��p

2
dx.

(6.13)

Using now the interpolation estimate on the reference cell (6.4) yields

��Dk
x̂(v̂ − IK̂ v̂)

��p

Lp(K̂)
≤ C

��Dm+1
x̂ v̂

��p

Lp(K̂)
, 0 ≤ k ≤ m+ 1. (6.14)

It follows with (6.12), (6.14), and (6.13) that

��Dk
x(v − IKv)

��p

Lp(K)
≤ Ch−kp+d

K

��Dk
x̂(v̂ − IK̂ v̂)

��p

Lp(K̂)

≤ Ch−kp+d
K

��Dm+1
x̂ v̂

��p

Lp(K̂)

≤ Ch
(m+1−k)p
K

��Dm+1
x v

��p

Lp(K)
.

Taking the p-th root proves the statement of the theorem. �

Remark 6.15. On estimate (6.7).

• Note that the power of hK does not depend on p and d.
• Consider a quasi-uniform triangulation and define

h = max
K∈T h

{hK}.

Then, one obtains by summing over all mesh cells an interpolation esti-
mate for the global finite element space

��Dk(v − Ihv)
��
Lp(Ω)

=


 �

K∈T h

��Dk(v − IKv)
��p
Lp(K)




1/p
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Fig. 6.2 Example 6.18. Grids for level 2 and level 3.

≤


 �

K∈T h

Ch
(m+1−k)p
K

��Dm+1v
��p
Lp(K)




1/p

≤ Ch(m+1−k)
��Dm+1v

��
Lp(Ω)

. (6.15)

✷

Corollary 6.16. Finite element error estimate. Let u(x) be the solu-
tion of the model problem (4.10) with u ∈ Hm+1(Ω) and let uh(x) be the
solution of the corresponding finite element problem. Consider a family of
quasi-uniform triangulations and let the finite element spaces V h contain
polynomials of degree m. Then, the following finite element error estimate
holds

��∇(u− uh)
��
L2(Ω)

≤ Chm
��Dm+1u

��
L2(Ω)

= Chm |u|Hm+1(Ω) . (6.16)

Proof. The statement follows by combining Lemma 4.13 (for V = H1
0 (Ω)) and (6.15)

��∇(u− uh)
��
L2(Ω)

= inf
vh∈V h

��∇(u− vh)
��
L2(Ω)

≤ �∇(u− Ihu)�L2(Ω) ≤ Chm |u|Hm+1(Ω) .

�

Remark 6.17. To (6.16). Note that Lemma 4.13 provides only information
about the error in the norm on the left-hand side of (6.16), but not in other
norms. ✷

Example 6.18. Numerical study that supports the finite element error esti-
mate. Consider the model problem (4.10) in Ω = (0, 1)2 and the right-hand
side chosen such that

u(x, y) = sin(πx) sin(πy)
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Table 6.1 Example 6.18. Number of degrees of freedom, including nodes at the Dirichlet

boundary.

level P1 P2 P3

1 25 81 169

2 81 289 625
3 289 1089 2401

4 1089 4225 9409

5 4225 16641 37249
6 16641 66049 148225

7 66049 262169 591361

8 263169 1050625

9 1050625
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Fig. 6.3 Example 6.18. Convergence of
��∇(u− uh)

��
L2(Ω)

for different finite elements.

is the solution. The domain is decomposed by triangular grids, where some
levels are presented in Figure 6.2. The corresponding number of degrees of
freedom is shown in Table 6.1.

Figure 6.3 presents results for the finite elements P1, P2, and P3. It can
be seen that the order of convergence for

��∇(u− uh)
��
L2(Ω)

is exactly as

proposed by Corollary 6.16. ✷



108 6 Interpolation

ωi

Vi

ωi

Vi

ωK

K

Fig. 6.4 Subdomains ωi (left and center) and a subdomain ωK (right).

6.2 Interpolation of Non-Smooth Functions

Remark 6.19. Motivation. The interpolation theory of Section 6.1 requires
that the interpolation operator is continuous on the Sobolev space to which
the function belongs that should be interpolated. But if, e.g., discontinuous
functions should be interpolated with continuous, piecewise linear functions,
then Section 6.1 does not provide estimates.

There are two often used interpolation operators for non-smooth func-
tions. The interpolation operator of Clément (1975) is defined for functions
from L1(Ω) and it can be generalized to more or less all finite elements. The
interpolation operator of Scott & Zhang (1990) is more special. It has the
advantage that it preserves homogeneous Dirichlet boundary conditions in
a natural way. For the Clément interpolation operator, one needs a modi-
fication for the preservation of homogeneous Dirichlet boundary conditions,
which cannot be generalized easily to the non-homogeneous case. Here, only
the interpolation operator of Clément, for linear finite elements, will be con-
sidered.

Let T h be a regular triangulation of the polyhedral domain Ω ⊂ Rd, d ∈
{2, 3}, with simplices K. Denote by P1 the space of continuous, piecewise
linear finite elements on T h. ✷

Remark 6.20. Construction of the interpolation operator of Clément. For each
vertex Vi of the triangulation, the union of all grid cells that possess Vi as
vertex will be denoted by ωi, see Figure 6.4.

Let v ∈ L1(Ω) and let P1(ωi) be the space of continuous piecewise linear
finite element functions on ωi. The local contribution of the interpolation
operator of Clément is the solution pi ∈ P1(ωi) of

�

ωi

(v − pi)(x)q(x) dx = 0 ∀ q ∈ P1(ωi). (6.17)

If v ∈ L2(ωi), then (6.17) is a local L2(ωi) projection. The Clément interpo-
lation operator is defined by



6.2 Interpolation of Non-Smooth Functions 109

Ph
Clev(x) =

N�

i=1

pi(Vi)φ
h
i (x), (6.18)

where {φh
i }Ni=1 is the standard basis of the global finite element space P1.

Since Ph
Clev(x) is a linear combination of basis functions of P1, it defines a

map Ph
Cle : L1(Ω) → P1. ✷

Theorem 6.21. Interpolation estimate. Let k, l ∈ N∪{0} and q ∈ R with
k ≤ l ≤ 2, 1 ≤ q ≤ ∞, and let ωK be the union of all subdomains ωi that
contain the mesh cell K, see Figure 6.4. Then, it holds for all v ∈ W l,q(ωK)
the estimate

��Dk(v − Ph
Clev)

��
Lq(K)

≤ Chl−k
��Dlv

��
Lq(ωK)

, (6.19)

with h = diam(ωK), where the constant C is independent of v and h.

Proof. The statement of the lemma is obvious in the case k = l = 2 since it is
D2Ph

Clev(x)|K = 0.

Let k ∈ {0, 1}. Since P1(ωK) ⊂ L2(ωK) and because the L2(ωi) projection gives an
element with best approximation, one gets with (6.17)

Ph
Clep = p in K ∀ p ∈ P1(ωK). (6.20)

Hence, Ph
Cle is a consistent operator.

The next step consists in proving the stability of Ph
Cle. One obtains with the inverse

inequality, see (6.25) below,

�p�L∞(ωi)
≤ Ch−d/2 �p�L2(ωi)

for all p ∈ P1(ωi).

The inverse inequality, definition (6.17) with the test function q = pi, and Hölder’s in-

equality gives

�pi�2L∞(ωi)
≤ Ch−d �pi�2L2(ωi)

≤ Ch−d �v�L1(ωi)
�pi�L∞(ωi)

.

Dividing by �pi�L∞(ωi)
and applying Hölder’s inequality, one obtains for p−1 = 1− q−1

|pi(Vi)| ≤ �pi�L∞(ωi)
≤ Ch−d �v�L1(ωi)

= Ch−d �1v�L1(ωi)
(6.21)

≤ Ch−d �v�Lq(ωi)
�1�Lp(ωi)� �� �
=Chd/p

= Chd(1/p−1) �v�Lq(ωi)
= Ch−d/q �v�Lq(ωi)

for all Vi ∈ K. From the regularity of the triangulation, it follows for the basis functions
that (inverse estimate)

��Dkφi

��
L∞(K)

≤ Ch−k, k = 0, 1. (6.22)

Using the triangle inequality and combining (6.21) and (6.22) yields the stability of Ph
Cle

��DkPh
Clev

��
Lq(K)

≤
�

Vi∈K

|pi(Vi)|
��Dkφi

��
Lq(K)

≤ C
�

Vi∈K

h−d/q �v�Lq(ωi)

��Dkφi

��
L∞(K)

�1�Lq(K)
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≤ C
�

Vi∈K

h−d/q �v�Lq(ωi)
h−khd/q

= Ch−k �v�Lq(ωK) . (6.23)

The remainder of the proof follows the proof of the interpolation error estimate for the

polynomial interpolation, Theorem 6.10, apart from the fact that a reference cell is not
used for the Clément interpolation operator. Using Lemma 6.2 and Lemma 6.4, one can

find a polynomial p ∈ P1(ωK) with (exercise)

��Dj(v − p)
��
Lq(ωK)

≤ Chl−j
��Dlv

��
Lq(ωK)

, 0 ≤ j ≤ l ≤ 2. (6.24)

With (6.20), the triangle inequality, �·�Lq(K) ≤ �·�Lq(ωK), (6.23), and (6.24), one obtains

��Dk
�
v − Ph

Clev
���

Lq(K)
=

��Dk
�
v − p+ Ph

Clep− Ph
Clev

���
Lq(K)

≤
��Dk(v − p)

��
Lq(K)

+
��DkPh

Cle(v − p)
��
Lq(K)

≤
��Dk(v − p)

��
Lq(ωK)

+ Ch−k �v − p�Lq(ωK)

≤ Chl−k
��Dlv

��
Lq(ωK)

+ Ch−khl
��Dlv

��
Lq(ωK)

= Chl−k
��Dlv

��
Lq(ωK)

.

�

Remark 6.22. Uniform meshes.

• If all mesh cells in ωK are of the same size, then h can be replaced by hK

in the interpolation error estimate (6.19).
• If one assumes that the number of mesh cells in ωK is bounded uniformly
for all considered triangulations, the global interpolation estimate

��Dk(v − Ph
Clev)

��
Lq(Ω)

≤ Chl−k
��Dlv

��
Lq(Ω)

, 0 ≤ k ≤ l ≤ 2,

follows directly from (6.19).

✷

Remark 6.23. Other finite element spaces. The idea of the Clément interpo-
lation can be extended to other finite element spaces, see Clément (1975).
In this paper, it is just assumed that the global functionals are values or
derivatives of the function in the nodes. Optimal interpolation estimates are
given in Clément (1975). ✷

Remark 6.24. Preservation of homogeneous Dirichlet boundary conditions.
For global finite element spaces V h ⊂ H1

0 (Ω), it is shown in Clément (1975)
that homogeneous Dirichlet boundary conditions can be preserved under
some (weak) assumptions on the finite element space. First, the analysis
of Clément (1975) is restricted to finite element spaces with certain global
functionals as mentioned in Remark 6.23. In addition, it is assumed that for
the nodes on the boundary the functionals are only values of the function
(and no derivatives). For the definition of the global Clément interpolation
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operator, these values are left unchanged, i.e., equal to zero, and the inter-
polation is computed for all other degrees of freedom. For this construction,
optimal interpolation estimates were proved in Clément (1975).

As a consequence, for finite element spaces V h = Pk ∩ H1
0 (Ω) or V h =

Qk ∩H1
0 (Ω), the Clément interpolant of v ∈ H1

0 (Ω) into V h is well defined
and, in particular, the homogeneous Dirichlet boundary values are preserved.

✷

6.3 Inverse Estimate

Remark 6.25. On inverse estimates. An inverse estimate was already utilized
at the beginning of the proof of Theorem 6.21.

The approach for proving interpolation error estimates can be used also to
prove so-called inverse estimates. With inverse estimates, a norm of a higher
order derivative of a finite element function is estimated by a norm of a lower
order derivative of this function. Likewise, norms in different Lebesgue spaces
are estimated. One obtains as penalty a factor with negative powers of the
diameter of the mesh cell. ✷

Theorem 6.26. Inverse estimate. Let 0 ≤ k ≤ l be natural numbers
and let p, q ∈ [1,∞]. Then there is a constant Cinv, which depends only on
k, l, p, q, K̂, P̂ (K̂), so that

��Dlvh
��
Lq(K)

≤ Cinvh
(k−l)−d(p−1−q−1)
K

��Dkvh
��
Lp(K)

∀ vh ∈ P (K). (6.25)

Proof. In the first step, (6.25) is shown for hK̂ = 1 and k = 0 on the reference mesh cell.

Since all norms are equivalent in finite-dimensional spaces, one obtains

��Dlv̂h
��
Lq(K̂)

≤
��v̂h

��
W l,q(K̂)

≤ C
��v̂h

��
Lp(K̂)

∀ v̂h ∈ P̂ (K̂). (6.26)

If k > 0, then one sets

P̃ (K̂) =
�
∂αv̂h : v̂h ∈ P̂ (K̂), |α| = k

�
,

which is also a space consisting of polynomials. The application of (6.26) to P̃ (K̂) gives

��Dlv̂h
��
Lq(K̂)

=
�

|α|=k

��Dl−k
�
∂αv̂h

���
Lq(K̂)

≤ C
�

|α|=k

��∂αv̂h
��
Lp(K̂)

= C
��Dk v̂h

��
Lp(K̂)

.

This estimate is transformed to an arbitrary mesh cell K analogously as for the interpo-
lation error estimates, compare the proof of Theorem 6.14. From the estimates (6.12) and

(6.13) for the transformations, one obtains

��Dlvh
��
Lq(K)

≤ Ch
−l+d/q
K

��Dlv̂h
��
Lq(K̂)

≤ Ch
−l+d/q
K

��Dk v̂h
��
Lp(K̂)

≤ Cinvh
k−l+d/q−d/p
K

��Dkvh
��
Lp(K)

.
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�

Remark 6.27. On the proof. The crucial point in the proof is the equivalence
of all norms in finite-dimensional spaces. Such a property does not hold in
infinite-dimensional spaces. ✷

Corollary 6.28. Global inverse estimate. Let p = q and let
�
T h

�
be a

quasi-uniform family of triangulations of Ω, then

��Dlvh
��
Lp,h(Ω)

≤ Cinvh
k−l

��Dkvh
��
Lp,h(Ω)

,

where

�·�Lp,h(Ω) =


 �

K∈T h

�·�pLp(K)




1/p

.

Remark 6.29. On �·�Lp,h(Ω). The cell-wise definition of the norm is important
for k ≥ 2 or l ≥ 2 since in these cases finite element functions generally do
not possess the regularity for the global norm to be well defined. It is also
important for l ≥ 1 and non-conforming finite element functions. ✷


