
Chapter 4

The Ritz Method and the

Galerkin Method

Remark 4.1 Contents. This chapter studies variational or weak formulations of
boundary value problems of partial differential equations in Hilbert spaces. The
existence and uniqueness of an appropriately defined weak solution will be discussed.
The approximation of this solution with the help of finite-dimensional spaces is
called Ritz method or Galerkin method. Some basic properties of this method will
be proved.

In this chapter, a Hilbert space V will be considered with inner product a(·, ·) :
V × V → R and norm ‖v‖V = a(v, v)1/2. 2

4.1 The Theorems of Riesz and Lax–Milgram

Theorem 4.2 Representation theorem of Riesz. Let f ∈ V ′ be a continuous

and linear functional, then there is a uniquely determined u ∈ V with

a(u, v) = f(v) ∀ v ∈ V. (4.1)

In addition, u is the unique solution of the variational problem

F (v) =
1

2
a(v, v)− f(v) → min ∀ v ∈ V. (4.2)

Proof: First, the existence of a solution u of the variational problem will be proved.
Since f is continuous, it holds

|f(v)| ≤ c ‖v‖V ∀ v ∈ V,

from what follows that

F (v) ≥
1

2
‖v‖2V − c ‖v‖V ≥ −

1

2
c
2
,

where in the last estimate the necessary criterion for a local minimum of the expression of
the first estimate is used. Hence, the function F (·) is bounded from below and

d = inf
v∈V

F (v)

exists.
Let {vk}k∈N be a sequence with F (vk) → d for k → ∞. A straightforward calculation

(parallelogram identity in Hilbert spaces) gives

‖vk − vl‖
2
V + ‖vk + vl‖

2
V = 2 ‖vk‖

2
V + 2 ‖vl‖

2
V .
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Using the linearity of f(·) and d ≤ F (v) for all v ∈ V , one obtains

‖vk − vl‖
2
V

= 2 ‖vk‖
2
V + 2 ‖vl‖

2
V − 4

∥
∥
∥
vk + vl

2

∥
∥
∥

2

V
− 4f(vk)− 4f(vl) + 8f

(
vk + vl

2

)

= 4F (vk) + 4F (vl)− 8F
(
vk + vl

2

)

≤ 4F (vk) + 4F (vl)− 8d → 0

for k, l → ∞. Hence {vk}k∈N is a Cauchy sequence. Because V is a complete space, there
exists a limit u of this sequence with u ∈ V . Because F (·) is continuous, it is F (u) = d

and u is a solution of the variational problem.
In the next step, it will be shown that each solution of the variational problem (4.2)

is also a solution of (4.1). It is

Φ(ε) = F (u+ εv) =
1

2
a(u+ εv, u+ εv)− f(u+ εv)

=
1

2
a(u, u) + εa(u, v) +

ε2

2
a(v, v)− f(u)− εf(v).

If u is a minimum of the variational problem, then the function Φ(ε) has a local minimum
at ε = 0. The necessary condition for a local minimum leads to

0 = Φ′(0) = a(u, v)− f(v) for all v ∈ V.

Finally, the uniqueness of the solution will be proved. It is sufficient to prove the
uniqueness of the solution of the equation (4.1). If the solution of (4.1) is unique, then
the existence of two solutions of the variational problem (4.2) would be a contradiction to
the fact proved in the previous step. Let u1 and u2 be two solutions of the equation (4.1).
Computing the difference of both equations gives

a(u1 − u2, v) = 0 for all v ∈ V.

This equation holds, in particular, for v = u1 − u2. Hence, ‖u1 − u2‖V = 0, such that

u1 = u2.

Definition 4.3 Bounded bilinear form, coercive bilinear form, V -elliptic

bilinear form. Let b(·, ·) : V × V → R be a bilinear form on the Banach space
V . Then it is bounded if

|b(u, v)| ≤ M ‖u‖V ‖v‖V ∀ u, v ∈ V,M > 0, (4.3)

where the constant M is independent of u and v. The bilinear form is coercive or
V -elliptic if

b(u, u) ≥ m ‖u‖
2
V ∀ u ∈ V,m > 0, (4.4)

where the constant m is independent of u. 2

Remark 4.4 Application to an inner product. Let V be a Hilbert space. Then the
inner product a(·, ·) is a bounded and coercive bilinear form, since by the Cauchy–
Schwarz inequality

|a(u, v)| ≤ ‖u‖V ‖v‖V ∀ u, v ∈ V,

and obviously a(u, u) = ‖u‖
2
V . Hence, the constants can be chosen to be M = 1

and m = 1.
Next, the representation theorem of Riesz will be generalized to the case of

coercive and bounded bilinear forms. 2

Theorem 4.5 Theorem of Lax–Milgram. Let b(·, ·) : V × V → R be a

bounded and coercive bilinear form on the Hilbert space V . Then, for each bounded

linear functional f ∈ V ′ there is exactly one u ∈ V with

b(u, v) = f(v) ∀ v ∈ V. (4.5)
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Proof: One defines linear operators T, T ′ : V → V by

a(Tu, v) = b(u, v) ∀ v ∈ V, a(T ′
u, v) = b(v, u) ∀ v ∈ V. (4.6)

Since b(u, ·) and b(·, u) are continuous linear functionals on V , it follows from Theorem 4.2
that the elements Tu and T ′u exist and they are defined uniquely. Because the operators
satisfy the relation

a(Tu, v) = b(u, v) = a(T ′
v, u) = a(u, T ′

v), (4.7)

T ′ is called adjoint operator of T . Setting v = Tu in (4.6) and using the boundedness of
b(·, ·) yields

‖Tu‖2V = a(Tu, Tu) = b(u, Tu) ≤ M ‖u‖V ‖Tu‖V =⇒ ‖Tu‖V ≤ M ‖u‖V

for all u ∈ V . Hence, T is bounded. Since T is linear, it follows that T is continuous.
Using the same argument, one shows that T ′ is also bounded and continuous.

Define the bilinear form

d(u, v) := a(TT ′
u, v) = a(T ′

u, T
′
v) ∀ u, v ∈ V,

where (4.7) was used. Hence, this bilinear form is symmetric. Using the coercivity of b(·, ·)
and the Cauchy–Schwarz inequality gives

m
2 ‖v‖4V ≤ b(v, v)2 = a(T ′

v, v)2 ≤ ‖v‖2V
∥
∥T

′
v
∥
∥2

V
= ‖v‖2V a(T ′

v, T
′
v) = ‖v‖2V d(v, v).

Applying now the boundedness of a(·, ·) and of T ′ yields

m
2 ‖v‖2V ≤ d(v, v) = a(T ′

v, T
′
v) =

∥
∥T

′
v
∥
∥2

V
≤ M ‖v‖2V . (4.8)

Hence, d(·, ·) is also coercive and, since it is symmetric, it defines an inner product on V .
From (4.8) one has that the norm induced by d(v, v)1/2 is equivalent to the norm ‖v‖V .
From Theorem 4.2 it follows that there is a exactly one w ∈ V with

d(w, v) = f(v) ∀ v ∈ V.

Inserting u = T ′w into (4.5) gives with (4.6)

b(T ′
w, v) = a(TT ′

w, v) = d(w, v) = f(v) ∀ v ∈ V,

hence u = T ′w is a solution of (4.5).

The uniqueness of the solution is proved analogously as in the symmetric case.

4.2 Weak Formulation of Boundary Value Prob-

lems

Remark 4.6 Model problem. Consider the Poisson equation with homogeneous
Dirichlet boundary conditions

−∆u = f in Ω ⊂ R
d,

u = 0 on ∂Ω.
(4.9)

2

Definition 4.7 Weak formulation of (4.9). Let f ∈ L2(Ω). A weak formulation
of (4.9) consists in finding u ∈ V = H1

0 (Ω) such that

a(u, v) = (f, v) ∀ v ∈ V (4.10)

with

a(u, v) = (∇u,∇v) =

∫

Ω

∇u(x) · ∇v(x) dx

and (·, ·) is the inner product in L2(Ω). 2
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Remark 4.8 On the weak formulation.

• The weak formulation is also called variational formulation.
• As usual in mathematics, ’weak’ means that something holds for all appropri-
ately chosen test functions.

• Formally, one obtains the weak formulation by multiplying the strong form of
the equation (4.9) with the test function, by integrating the equation on Ω, and
applying integration by parts. Because of the Dirichlet boundary condition, on
can use as test space H1

0 (Ω) and therefore the integral on the boundary vanishes.
• The ansatz space for the solution and the test space are defined such that the
arising integrals are well defined.

• The weak formulation reduces the necessary regularity assumptions for the so-
lution by the integration and the transfer of derivatives to the test function.
Whereas the solution of (4.9) has to be in C2(Ω), the solution of (4.10) has to
be only in H1

0 (Ω). The latter assumption is much more realistic for problems
coming from applications.

• The regularity assumption on the right hand side can be relaxed to f ∈ H−1(Ω).

2

Theorem 4.9 Existence and uniqueness of the weak solution. Let f ∈
L2(Ω). There is exactly one solution of (4.10).

Proof: Because of the Poincaré inequality (3.9), there is a constant c with

‖v‖L2(Ω) ≤ c ‖∇v‖L2(Ω) ∀ v ∈ H
1
0 (Ω).

It follows for v ∈ H1
0 (Ω) ⊂ H1(Ω) that

‖v‖H1(Ω) =
(

‖v‖2L2(Ω) + ‖∇v‖2L2(Ω)

)1/2

≤
(

c ‖∇v‖2L2(Ω) + ‖∇v‖2L2(Ω)

)1/2

≤ C ‖∇v‖L2(Ω) ≤ C ‖v‖H1(Ω) .

Hence, a(·, ·) is an inner product on H1
0 (Ω) with the induced norm

‖v‖H1

0
(Ω) = a(v, v)1/2,

which is equivalent to the norm ‖·‖H1(Ω).

Define for f ∈ L2(Ω) the linear functional

f̃(v) :=

∫

Ω

f(x)v(x) dx ∀ v ∈ H
1
0 (Ω).

Applying the Cauchy–Schwarz inequality (3.5) and the Poincaré inequality (3.9)

∣
∣
∣f̃(v)

∣
∣
∣ = |(f, v)| ≤ ‖f‖L2(Ω) ‖v‖L2(Ω) ≤ c ‖f‖L2(Ω) ‖∇v‖L2(Ω) = c ‖f‖L2(Ω) ‖v‖H1

0
(Ω)

shows that this functional is continuous on H1
0 (Ω). Applying the representation theorem

of Riesz, Theorem 4.2, gives the existence and uniqueness of the weak solution of (4.10).
In addition, u(x) solves the variational problem

F (v) =
1

2
‖∇v‖22 −

∫

Ω

f(x)v(x) dx → min for all v ∈ H
1
0 (Ω).

Example 4.10 A more general elliptic problem. Consider the problem

−∇ · (A(x)∇u) + c(x)u = f in Ω ⊂ R
d,

u = 0 on ∂Ω,
(4.11)
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with A(x) ∈ R
d×d for each point x ∈ Ω. It will be assumed that the coefficients

ai,j(x) and c(x) ≥ 0 are bounded, f ∈ L2(Ω), and that the matrix (tensor) A(x)
is for all x ∈ Ω uniformly elliptic, i.e., there are positive constants m and M such
that

m ‖y‖
2
2 ≤ yTA(x)y ≤ M ‖y‖

2
2 ∀ y ∈ R

d, ∀ x ∈ Ω.

The weak form of (4.11) is obtained in the usual way by multiplying (4.11) with
test functions v ∈ H1

0 (Ω), integrating on Ω, and applying integration by parts: Find
u ∈ H1

0 (Ω), such that
a(u, v) = f(v) ∀ v ∈ H1

0 (Ω)

with

a(u, v) =

∫

Ω

(

∇u(x)TA(x)∇v(x) + c(x)u(x)v(x)
)

dx.

This bilinear form is bounded (exercise). The coercivity of the bilinear form is
proved by using the uniform ellipticity of A(x) and the non-negativity of c(x):

a(u, u) =

∫

Ω

∇u(x)TA(x)∇u(x) + c(x)u(x)u(x) dx

≥

∫

Ω

m∇u(x)T∇u(x) dx = m ‖u‖
2
H1

0
(Ω) .

Applying the Theorem of Lax–Milgram, Theorem 4.5, gives the existence and
uniqueness of a weak solution of (4.11).

If the tensor is not symmetric, aij(x) 6= aji(x) for one pair i, j, then the solution
cannot be characterized as the solution of a variational problem. 2

4.3 The Ritz Method and the Galerkin Method

Remark 4.11 Idea of the Ritz method. Let V be a Hilbert space with the inner
product a(·, ·). Consider the problem

F (v) =
1

2
a(v, v)− f(v) → min, (4.12)

where f : V → R is a bounded linear functional. As already proved in Theorem
4.2, there is a unique solution u ∈ V of this variational problem which is also the
unique solution of the equation

a(u, v) = f(v) ∀ v ∈ V. (4.13)

For approximating the solution of (4.12) or (4.13) with a numerical method, it
will be assumed that V has a countable orthonormal basis (Schauder basis). Then,
there are finite-dimensional subspaces V1, V2, . . . ⊂ V with dimVk = k, which has
the following property: for each u ∈ V and each ε > 0 there is a K ∈ N and a
uk ∈ Vk with

‖u− uk‖V ≤ ε ∀ k ≥ K. (4.14)

Note that it is not required that there holds an inclusion of the form Vk ⊂ Vk+1.
The Ritz approximation of (4.12) and (4.13) is defined by: Find uk ∈ Vk with

a(uk, vk) = f(vk) ∀ vk ∈ Vk. (4.15)

2

Lemma 4.12 Existence and uniqueness of a solution of (4.15). There exists

exactly one solution of (4.15).
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Proof: Finite-dimensional subspaces of Hilbert spaces are Hilbert spaces as well. For

this reason, one can apply the representation theorem of Riesz, Theorem 4.2, to (4.15)

which gives the statement of the lemma. In addition, the solution of (4.15) solves a

minimization problem on Vk.

Lemma 4.13 Best approximation property. The solution of (4.15) is the best

approximation of u in Vk, i.e., it is

‖u− uk‖V = inf
vk∈Vk

‖u− vk‖V . (4.16)

Proof: Since Vk ⊂ V , one can use the test functions from Vk in the weak equation
(4.13). Then, the difference of (4.13) and (4.15) gives the orthogonality, the so-called
Galerkin orthogonality,

a(u− uk, vk) = 0 ∀ vk ∈ Vk. (4.17)

Hence, the error u−uk is orthogonal to the space Vk: u−uk ⊥ Vk. That means, uk is the
orthogonal projection of u onto Vk with respect of the inner product of V .

Let now wk ∈ Vk be an arbitrary element, then it follows with the Galerkin orthogo-
nality (4.17) and the Cauchy–Schwarz inequality that

‖u− uk‖
2
V = a(u− uk, u− uk) = a(u− uk, u− (uk − wk)

︸ ︷︷ ︸

vk

) = a(u− uk, u− vk)

≤ ‖u− uk‖V ‖u− vk‖V .

Since wk ∈ Vk was arbitrary, also vk ∈ Vk is arbitrary. If ‖u− uk‖V > 0, division by

‖u− uk‖V gives the statement of the lemma. If ‖u− uk‖V = 0, the statement of the

lemma is trivially true.

Theorem 4.14 Convergence of the Ritz approximation. The Ritz approxi-

mation converges

lim
k→∞

‖u− uk‖V = 0.

Proof: The best approximation property (4.16) and property (4.14) give

‖u− uk‖V = inf
vk∈Vk

‖u− vk‖V ≤ ε

for each ε > 0 and k ≥ K(ε). Hence, the convergence is proved.

Remark 4.15 Formulation of the Ritz method as linear system of equations. One
can use an arbitrary basis {φi}

k
i=1 of Vk for the computation of uk. First of all, the

equation for the Ritz approximation (4.15) is satisfied for all vk ∈ Vk if and only if
it is satisfied for each basis function φi. This statement follows from the linearity
of both sides of the equation with respect to the test function and from the fact
that each function vk ∈ Vk can be represented as linear combination of the basis
functions. Let vk =

∑k
i=i αiφi, then from (4.15) it follows that

a(uk, vk) =
k

∑

k=1

αia(uk, φi) =
k

∑

k=1

αif(φi) = f(vk).

This equation is satisfied if a(uk, φi) = f(φi), i = 1, . . . , k. On the other hand, if
(4.15) holds then it holds in particular for each basis function φi.

Then, one uses as ansatz for the solution also a linear combination of the basis
functions

uk =
k

∑

j=1

ujφj
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with unknown coefficients uj ∈ R. Using as test functions now the basis functions
yields

k
∑

j=1

a(ujφj , φi) =

k
∑

j=1

a(φj , φi)u
j = f(φi), i = 1, . . . , k.

This equation is equivalent to the linear system of equations Au = f , where

A = (aij)
k
i,j=1 = a(φj , φi)

k
i,j=1

is called stiffness matrix. Note that the order of the indices is different for the
entries of the matrix and the arguments of the inner product. The right hand side
is a vector of length k with the entries fi = f(φi), i = 1, . . . , k.

Using the one-to-one mapping between the coefficient vector (v1, . . . , vk)T and

the element vk =
∑k

i=1 v
iφi, one can show that the matrix A is symmetric and

positive definite (exercise)

A = AT ⇐⇒ a(v, w) = a(w, v) ∀ v, w ∈ Vk,

xTAx > 0 for x 6= 0 ⇐⇒ a(v, v) > 0 ∀ v ∈ Vk, v 6= 0.

2

Remark 4.16 The case of a bounded and coercive bilinear form. If b(·, ·) is bounded
and coercive, but not symmetric, it is possible to approximate the solution of (4.5)
with the same idea as for the Ritz method. In this case, it is called Galerkin method.
The discrete problem consists in finding uk ∈ Vk such that

b(uk, vk) = f(vk) ∀ vk ∈ Vk. (4.18)

2

Lemma 4.17 Existence and uniqueness of a solution of (4.18). There is

exactly one solution of (4.18).

Proof: The statement of the lemma follows directly from the Theorem of Lax–

Milgram, Theorem 4.5.

Remark 4.18 On the discrete solution. The discrete solution is not the orthogonal
projection into Vk in the case of a bounded and coercive bilinear form, which is not
the inner product of V . 2

Lemma 4.19 Lemma of Cea, error estimate. Let b : V ×V → R be a bounded

and coercive bilinear form on the Hilbert space V and let f ∈ V ′ be a bounded linear

functional. Let u be the solution of (4.5) and uk be the solution of (4.18), then the

following error estimate holds

‖u− uk‖V ≤
M

m
inf

vk∈Vk

‖u− vk‖V , (4.19)

where the constants M and m are given in (4.3) and (4.4).

Proof: Considering the difference of the continuous equation (4.5) and the discrete
equation (4.18), one obtains the error equation

b(u− uk, vk) = 0 ∀ vk ∈ Vk,

which is also called Galerkin orthogonality. With (4.4), the Galerkin orthogonality, and
(4.3) it follows that

‖u− uk‖
2
V ≤

1

m
b(u− uk, u− uk) =

1

m
b(u− uk, u− vk)

≤
M

m
‖u− uk‖V ‖u− vk‖V , ∀ vk ∈ Vk,

from what the statement of the lemma follows immediately.
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Remark 4.20 On the best approximation error. It follows from estimate (4.19)
that the error is bounded by a multiple of the best approximation error, where
the factor depends on properties of the bilinear form b(·, ·). Thus, concerning error
estimates for concrete finite-dimensional spaces, the study of the best approximation
error will be of importance. 2

Remark 4.21 The corresponding linear system of equations. The corresponding
linear system of equations is derived analogously to the symmetric case. The system
matrix is still positive definite but not symmetric. 2

Remark 4.22 Choice of the basis. The most important issue of the Ritz and
Galerkin method is the choice of the spaces Vk, or more concretely, the choice of
an appropriate basis {φi}

k
i=1 that spans the space Vk. From the point of view of

numerics, there are the requirements that it should be possible to compute the
entries aij of the stiffness matrix efficiently and that the matrix A should be sparse.

2

59


