
Chapter 6

The Multigrid Method

Remark 6.1 Motivation. The two-level method leaves an open question: How to
solve the coarse grid equation

A2he2h = I2hh
(

rh
)

=: r2h (6.1)

efficiently? The answer might be apparent: by a two-level method. The form (6.1)
is not much different from the original problem. Thus, if one applies the two-level
method to the original equation, its application to (6.1) should be easy. A recursive
application of this idea, of using the two-level method for solving the coarse grid
equation, leads to the multigrid method. 2

6.1 Multigrid Cycles

Remark 6.2 Notations. To simplify the notations, the right-hand side vector of
the residual equation will be denoted by f2h instead of r2h since it is just another
right-hand side vector. The solution vector on the finest grid will be denoted by
uh and the current iterate by vh. Instead of denoting the solution vector on the
coarse grid by e2h, it will be denoted by v2h. These notations can be used in an
implementation of the method. 2

Example 6.3 A multigrid method. Now, the two-level method will be imbedded
into itself. It will be assumed that there are l+1 grids, l ≥ 0, where the finest grid
has the grid spacing h and the grid spacing increase by the factor 2 for each coarser
grid. Let L = 2l.

• Apply the smoother ν1 times to Ahuh = fh with the initial guess vh. The results
is denoted by vh.
• Compute f2h = I2hh rh = I2hh

(

fh −Ahvh
)

.

◦ Apply the smoother ν1 times to A2hu2h = f2h with the initial guess v2h = 0.
Denote the result by v2h.
◦ Compute f4h = I4h2hr

2h = I4h2h
(

f2h −A2hv2h
)

.
...

− Solve ALhuLh = fLh.
...

◦ Correct v2h := v2h + I2h4hv
4h.

◦ Apply smoother ν2 times to A2hu2h = f2h with the initial guess v2h.

• Correct vh := vh + Ih2hv
2h.

• Apply the smoother ν2 times to Ahuh = fh with the initial guess vh.
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Example 6.4 Multigrid method with γ-cycle. The multigrid scheme from Exam-
ple 6.3 is just one possibility to perform a multigrid method. It belongs to a family
of multigrid methods, the so-called multigrid methods with γ-cycle that have the
following compact recursive definition:

vh ←Mh
γ (v

h, fh)

1. Pre smoothing: Apply the smoother ν1 times to Ahuh = fh with the initial
guess vh.

2. If Ωh is the coarsest grid

− solve the problem.

else

− Restrict to the next coarser grid: f2h ← I2hh
(

fh −Ahvh
)

.
− Set initial iterate on the next coarser grid: v2h = 0.
− If Ωh is the finest grid, set γ = 1.
− Call the γ-cycle scheme γ times for the next coarser grid:

v2h ←M2h
γ

(

v2h, f2h
)

.

3. Correct with the prolongated update: vh ← vh + Ih2hv
2h.

4. Post smoothing: Apply the smoother ν2 times to Ahuh = fh with the initial
guess vh.

In practice, only γ = 1 (V-cycle) and γ = 2 (W-cycle) are used. The names
become clear if one has a look on how they move through the hierarchy of grids,
see Figures 6.1 and 6.2. 2
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Figure 6.1: Multigrid V-cycle (γ = 1), s – smoothing, r – restriction, p – prolon-
gated, e – exact solver.

Example 6.5 Multigrid F-cycle. In between the V-cycle and the W-cycle is the
F-cycle, see Figure 6.3. The F-cycle starts with the restriction to the coarsest grid.
In the prolongation process, after having reached each level the first time, again a
restriction to the coarsest grid is performed. 2

Remark 6.6 To the multigrid cycles.

• The system on the coarsest grid is often small or even very small. Then, it
can be solved efficiently with a direct method (Gaussian elimination, Cholesky
factorization). Otherwise, one can apply a few steps of an iterative scheme to
computed a sufficiently good approximate solution.
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Figure 6.2: Multigrid W-cycle (γ = 2), s – smoothing, r – restriction, p – prolon-
gated, e – exact solver.
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Figure 6.3: Multigrid F-cycle, s – smoothing, r – restriction, p – prolongated, e –
exact solver.

• In our experience, it is sometimes (depending on the problem) helpful to damp
the correction after having prolongated the update. Let β ∈ (0, 1] be given, then
instead of Step 3 of the multigrid γ-cycle, the update has the form

vh ← vh + βIh2hv
2h.

• The initial guess for the first pre smoothing step on the finest grid can be
obtained by a nested iteration, see Remark 4.5. In the nested iteration, the
system is first solved (or smoothed) on a very coarse gird, then one goes to the
next finer grid and smoothes the system on this grid and so on, until the finest
grid is reached. This approach is called full multigrid. If one uses on each grid,
which is not the finest grid, one multigrid V-cycle for smoothing, the so-called
full multigrid V-cycle is performed, see Figure 6.4. The full multigrid V-cycle
looks like a F-cycle without restriction and pre smoothing.
In practice, one solves the systems on the coarser grids up to a certain accuracy
before one enters the next finer grid.

2

6.2 Convergence of the W-cycle

Remark 6.7 Contents. It will be proved that the sufficient conditions for the
convergence of the two-level method, Theorem 5.11, almost imply the convergence of
the multigrid W-cycle. The rate of convergence will be bounded by a number ρ(ν) <
1 which depends on the number of pre smoothing steps and which is independent of
the finest step size h and of the number of levels involved in the multigrid scheme.
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Figure 6.4: Full multigrid V-cycle, s – smoothing, r – restriction, p – prolongated,
e – exact solver.

This technique cannot be applied to the multigrid V-cycle. The convergence
theory for the V-cycle is more complicated and beyond the scope of this course. 2

Remark 6.8 Preliminarities. As usual, one has to study the iteration matrix for
the investigation of the convergence of an iterative solver. The levels of the multigrid
hierarchy are numbered by 0, . . . , l, where level 0 is the coarsest grid. The iteration
matrix of the two-level method on level l, where the corresponding mesh width
should be h, is denoted by Sl and it has the form, see (5.5)

Sl(ν) =
(

I − I ll−1 (Al−1)
−1

I l−1
l Al

)

Sν
sm,l. (6.2)

This iteration matrix is the matrix without post smoothing.
The solution of Alul = fl is a fixed point of the multigrid γ-cycle. This statement

follows from the fact that it is a fixed point of the two-level method, see Remark 5.6.
2

Lemma 6.9 Iteration matrix of the multigrid γ-cycle. The iteration matrix

of the multigrid γ-cycle scheme is given by

Smg,l(ν) = Sl(ν) if l = 1,

Smg,l(ν) = Sl(ν) + I ll−1 (Smg,l−1(ν))
γ
A−1

l−1I
l−1
l AlS

ν
sm,l for l ≥ 2. (6.3)

Proof: For l = 1, the two-level method and the multigrid γ-cycle scheme are identical
and the statement of the lemma follows immediately.

The proof for l ≥ 2 will be performed by induction. Assume that (6.3) holds for l− 1.
The iteration matrix Smg,l(ν) can be written in the form

Smg,l(ν) = Cmg,lS
ν
sm,l,

where Cmg,l represents the iteration matrix of the complete coarse grid correction, i.e.,
everything which was done on the levels 0, . . . , l − 1. This matrix has to be determined.
To this end, consider the multigrid method with fl = 0 and let ul being arbitrary. For the
restricted residual, it holds

fl−1 = Il−1
l (fl −Alul) = −Il−1

l Alul.

Then, in the multigrid γ-cycle, γ iterates v
(1)
l−1, . . . ,v

(γ)
l−1 are computed, starting with the

initial iterate v
(0)
l−1 = 0. The multigrid γ-cycle on level l − 1, which is applied to

Al−1ul−1 = fl−1, (6.4)

can be described with the basic form of a fixed point iteration given in (3.3)

v
(j+1)
l−1 = Smg,l−1(ν)v

(j)
l−1 +Nl−1fl−1. (6.5)
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From Remark 6.8 it follows that the solution of (6.4) is the fixed point of (6.5). One
obtains

v
(1)
l−1 = Smg,l−1(ν)v

(0)
l−1 +Nl−1fl−1 = Nl−1fl−1

v
(2)
l−1 = Smg,l−1(ν)Nl−1fl−1 +Nl−1fl−1

v
(3)
l−1 = Smg,l−1(ν) (Smg,l−1(ν)Nl−1fl−1 +Nl−1fl−1) +Nl−1fl−1

= (Smg,l−1(ν))
2 Nl−1fl−1 + Smg,l−1(ν)Nl−1fl−1 +Nl−1fl−1

...

v
(γ)
l−1 =

γ−1
∑

k=0

(Smg,l−1(ν))
k Nl−1fl−1

=

γ−1
∑

k=0

(Smg,l−1(ν))
k Nl−1

(

−Il−1
l (Alul)

)

. (6.6)

Let ul−1 be the fixed point of (6.5) and the solution of (6.4), then it is

ul−1 = Smg,l−1(ν)ul−1 +Nl−1fl−1 = Smg,l−1(ν)ul−1 +Nl−1Al−1ul−1

= (Smg,l−1(ν) +Nl−1Al−1)ul−1.

It follows that
I = Smg,l−1(ν) +Nl−1Al−1

and
Nl−1 = (I − Smg,l−1(ν))A

−1
l−1. (6.7)

Using (telescopic sum)

γ−1
∑

k=0

xk(1− x) =

γ−1
∑

k=0

xk −

γ−1
∑

k=0

xk+1 = 1− xγ ,

one obtains from (6.6) and (6.7)

v
(γ)
l−1 =

(

γ−1
∑

k=0

(Smg,l−1(ν))
k (I − Smg,l−1(ν))

)

A−1
l−1

(

−Il−1
l (Alul)

)

= (I − (Smg,l−1(ν))
γ)A−1

l−1

(

−Il−1
l (Alul)

)

. (6.8)

From the coarse grid correction, step 3 auf the multigrid γ-cycle scheme, see Example 6.4,
it follows for the result of the multigrid γ-cycle that

u
new
l := Cmg,lul = ul + Ill−1v

(γ)
l−1.

Inserting (6.8), one obtains for the iteration matrix of the coarse grid correction

Cmg,l = I + Ill−1 (I − (Smg,l−1(ν))
γ)A−1

l−1

(

−Il−1
l Al

)

= I − Ill−1A
−1
l−1I

l−1
l Al + Ill−1 (Smg,l−1(ν))

γ A−1
l−1I

l−1
l Al.

Hence, the iteration matrix of the multigrid γ-cycle scheme is given by

Smg,l(ν) = Cmg,lS
ν
sm,l

=
(

I − Ill−1A
−1
l−1I

l−1
l Al

)

Sν
sm,l + Ill−1 (Smg,l−1(ν))

γ A−1
l−1I

l−1
l AlS

ν
sm,l.

The first term is equal to Sl(ν), see (6.2). Thus, (6.3) is proved for level l under the
assumption that it holds for level l − 1.

One can write the iteration matrix for l = 1 also in form (6.3), using the definition

Smg,0(ν) := 0. Then, (6.3) holds for l = 1 and hence it holds for all l ≥ 1 by induction.
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Remark 6.10 Estimate of the spectral norm of the iteration matrix. The iteration
matrix Smg,l(ν) of the multigrid γ-cycle scheme is the sum of the iteration matrix
of the two-level method and a perturbation. It will be shown that this perturbation
is, under certain assumptions, small.

The spectral norm of Smg,l(ν) will be estimated in a first step by the triangle
inequality and the rule for estimating the norm of products of matrices

‖Smg,l(ν)‖2 ≤ ‖Sl(ν)‖2 +
∥

∥I ll−1 (Smg,l−1(ν))
γ
A−1

l−1I
l−1
l AlS

ν
sm,l

∥

∥

2

≤ ‖Sl(ν)‖2 +
∥

∥I ll−1

∥

∥

2
‖Smg,l−1(ν)‖

γ

2

∥

∥A−1
l−1I

l−1
l AlS

ν
sm,l

∥

∥

2
. (6.9)

Now, bounds for all factors on the right-hand side of (6.9) are needed. 2

Remark 6.11 Assumptions on the prolongation operator. It will be assumed that
the prolongation is a bounded linear operator with a bound independent of l, i.e.,
there is a constant cp such that

∥

∥I ll−1

∥

∥

2
≤ cp ∀ l ≥ 1. (6.10)

In addition, a bound of
∥

∥I ll−1

∥

∥

2
from below will be needed. Thus, it will be assumed

that there is a constant cp > 0 such that for all ul−1 defined on level l − 1 it is

c−1
p ‖ul−1‖2 ≤

∥

∥I ll−1ul−1

∥

∥

2
∀ l ≥ 1. (6.11)

The assumptions (6.10) and (6.11) are satisfied for the prolongation operator
defined in Section 4.2. These properties can be deduced, e.g., by using the definition
of the operator norm, exercise. 2

Remark 6.12 Assumptions on the smoother. It will be assumed that there is a
constant cs such that

∥

∥Sν
sm,l

∥

∥

2
≤ cs ∀ l ≥ 1, 0 < ν <∞. (6.12)

This assumption is satisfied, e.g., for the damped Jacobi iteration, Ssm,l = Sjac,ω

applied to the model problem, with cs = 1. It was shown in the proof of Lemma 3.10
that ρ(Sjac,ω) < 1. Since Sjac,ω is a symmetric matrix, it is ‖Sjac,ω‖2 = ρ(Sjac,ω).
It follows that

∥

∥Sν
sm,l

∥

∥

2
= ‖Ssm,l‖

ν

2
= ρ(Sjac,ω)

ν < 1.

2

Lemma 6.13 Estimate of last term in (6.9) with the iteration matrix of

the two-level method. Suppose (6.11) and (6.12), then
∥

∥A−1
l−1I

l−1
l AlS

ν
sm,l

∥

∥

2
≤ cp (cs + ‖Sl(ν)‖2) . (6.13)

Proof: One gets with (6.11)
∥

∥

∥
A−1

l−1I
l−1
l AlS

ν
sm,lul

∥

∥

∥

2
≤ cp

∥

∥

∥
Ill−1A

−1
l−1I

l−1
l AlS

ν
sm,lul

∥

∥

∥

2

for all ul, where it is noted that A−1
l−1I

l−1
l AlS

ν
sm,lul is a vector on level l − 1. Using the

definition of an operator norm gives
∥

∥

∥
A−1

l−1I
l−1
l AlS

ν
sm,l

∥

∥

∥

2
≤ cp

∥

∥

∥
Ill−1A

−1
l−1I

l−1
l AlS

ν
sm,l

∥

∥

∥

2
. (6.14)

The right-hand side of this estimate can be rewritten as follows

Ill−1A
−1
l−1I

l−1
l AlS

ν
sm,l = Sν

sm,l −A−1
l AlS

ν
sm,l + Ill−1A

−1
l−1I

l−1
l AlS

ν
sm,l

= Sν
sm,l −

(

A−1
l − Ill−1A

−1
l−1I

l−1
l

)

AlS
ν
sm,l

= Sν
sm,l − Sl(ν).
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Using this identity in (6.14), applying the triangle inequality, and assumption (6.12) gives

∥

∥

∥
A−1

l−1I
l−1
l AlS

ν
sm,l

∥

∥

∥

2
≤ cp

(
∥

∥Sν
sm,l

∥

∥

2
+ ‖Sl(ν)‖2

)

≤ cp
(

cs + ‖Sl(ν)‖2
)

.

Remark 6.14 Impact on estimate (6.9). Only the case will be considered that the
number ν of smoothing steps is sufficiently large such that the two-level method
converges, i.e., it is

‖Sl(ν)‖2 < 1.

Inserting (6.13) into (6.9) and using the assumption on the number of smoothing
steps yields, together with (6.10),

‖Smg,l(ν)‖2 ≤ ‖Sl(ν)‖2 + cp
∥

∥I ll−1

∥

∥

2
‖Smg,l−1(ν)‖

γ

2
(cs + ‖Sl(ν)‖2)

≤ ‖Sl(ν)‖2 + cpcp (cs + 1) ‖Smg,l−1(ν)‖
γ

2

= ‖Sl(ν)‖2 + c∗ ‖Smg,l−1(ν)‖
γ

2
. (6.15)

This inequality is of the recursive form

x1 = x, xl ≤ x+ c∗xγ
l−1, l ≥ 2, (6.16)

with x = ‖Sl(ν)‖2 < 1 and for l = 1 the multigrid and the two-level method
coincide. 2

Lemma 6.15 Bound for the iterates of inequality (6.16). Assume that c∗γ >
1. If γ ≥ 2 and

x ≤ xmax :=
γ − 1

γ
(c∗γ)

− 1

γ−1 ,

then every iterate of (6.16) is bounded by

xl ≤
γ

γ − 1
x < 1.

Proof: The proof of the bound is performed by induction. For l = 2, one has

x2 ≤ x+ c∗xγ
1 ≤ x+ c∗xγ = x

(

1 + c∗xγ−1)

≤ x
(

1 + c∗xγ−1
max

)

= x

(

1 + c∗
(

γ − 1

γ

)γ−1
1

c∗γ

)

= x

(

1 +

(

(γ − 1)γ−1

γγ

))

= x

(

1 +
1

γ − 1

(

1−
1

γ

)γ)

≤ x
γ − 1 + 1

γ − 1
= x

γ

γ − 1
,

since
(

1− 1
γ

)γ

< 1 (positive power of a real number in (0, 1)).

Let the statement be already proved for l − 1, then one obtains with the assumption
of the induction

xl ≤ x+ c∗xγ

l−1 ≤ x+ c∗
(

γ

γ − 1

)γ

xγ

= x

(

1 + c∗
(

γ

γ − 1

)γ

xγ−1

)

≤ x

(

1 + c∗
(

γ

γ − 1

)γ

xγ−1
max

)

= x

(

1 +

(

γ

γ − 1

)γ (

γ − 1

γ

)γ−1
1

γ

)

= x

(

1 +
1

γ − 1

)

= x
γ

γ − 1
.
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Using now the assumption on x and the assumption c∗γ > 1, one gets

γ

γ − 1
x ≤

γ

γ − 1
xmax = (c∗γ)

−
1

γ−1 < 1.

Remark 6.16 To Lemma 6.15. The condition γ ≥ 2 is used in the definition of
xmax. Note that xmax < 1 since both factors are lower than 1.

In the case of the W-cylce, i.e., γ = 2, the statement of the Lemma 6.15 implies

x ≤ xmax =
1

4c∗
, xl ≤ 2x = 2 ‖Sl(ν)‖2 .

2

Theorem 6.17 Convergence of the multigrid γ-cycle for γ ≥ 2. Suppose

γ ≥ 2, (6.10), (6.11), (6.12) with ν(h) =∞, and the assumptions of Theorem 5.11.

Let ρ ∈ (0, 1) be a fixed number. Then there is a number ν such that

‖Smg,l(ν)‖2 ≤ ρ < 1, ‖Smg,l(ν)‖2 ≤
γ

γ − 1
Caη(ν), (6.17)

whenever the number of smoothing iterations ν is larger or equal than ν. The

estimates (6.17) are independent of the level l and the number of levels. The function

η(ν) is defined in the smoothing property (5.7) and the constant Ca is defined in the

approximation property.

Proof: Starting point of the proof is inequality (6.15). Lemma 6.15 will be applied
with

x = ‖Sl(ν)‖2 , xl = ‖Smg,l(ν)‖2 .

Without loss of generality, one can choose

c∗ >
1

γ
⇐⇒ c∗γ > 1.

In particular, c∗ can be chosen so large that

x ≤
γ − 1

γ
(c∗γ)

−
1

γ−1 ≤
γ − 1

γ
ρ < 1.

Note that large values of c∗ imply small values of x, which can be always obtained by
applying sufficiently many smoothing steps. Thus, the assumptions of Lemma 6.15 are
satisfied and one obtains

‖Smg,l(ν)‖2 ≤
γ

γ − 1
‖Sl(ν)‖2 =

γ

γ − 1
x ≤ ρ.

The second estimate is obtained recursively. Using formally the same computations as
in the proof of Lemma 6.15, one gets

‖Smg,2(ν)‖2 ≤
γ

γ − 1
‖S2(ν)‖2 ≤

γ

γ − 1
Caη(ν),

and by induction

‖Smg,l(ν)‖2 ≤
γ

γ − 1
‖Sl(ν)‖2 ≤

γ

γ − 1
Caη(ν),

The details of this proof are an exercise.

Remark 6.18 To Theorem 6.17.

• The theorem states the convergence of the multigrid γ-cycle with a rate of
convergence that is independent of the level. The estimate of this rate, i.e.,
γ

γ−1
Caη(ν), is in general somewhat pessimistic.
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• A similar result can be proved if only post smoothing and no pre smoothing is
applied, as well as in the case that both pre and post smoothing are used.
• The convergence proof for the V-cycle, i.e., γ = 1, does not rely on the conver-
gence of the two-level method. In this proof, the multigrid iteration matrix is
analyzed directly, e.g., see (Hackbusch, 1985, pp. 164).
• For problems without symmetric positive definite system matrix, multigrid works
often quite well. But only very little is proved on the convergence of multigrid
methods for such problems. Results on the multigrid convergence for problems
without symmetric positive definite matrix are in general for problems which
are only a slight perturbation of a s.p.d. problem. But many interesting prob-
lems are not small perturbations of a s.p.d. problem, like convection-dominated
convection-diffusion equations or the Navier–Stokes equations. In these fields,
many questions concerning the theory of multigrid methods are open. Some
results for convection-diffusion problems can be found in Reusken (2002); Ol-
shanskii and Reusken (2004).

2

6.3 Computational Work of the Multigrid γ-Cycle

Remark 6.19 Goal. So far it is proved that the rate of convergence for the multi-
grid γ-cycle is bounded by a number ρ < 1 independently of the level. That means,
the number of iterations for solving the equation up to a certain accuracy is bounded
from above by a constant which is independent of the level, i.e., one needs on each
grid level essentially the same number of iterations to solve the equation. This be-
havior is in contrast to the classical iteration schemes or the PCG method, where
the number of iterations increases by the factor of 4 or 2, respectively, if the grid is
refined once, cf. Table 2.1.

Let Nl the number of degrees of freedom on level l, 1 ≤ l ≤ L. To obtain an
optimal algorithm, one needs to show that the number of operations (flops) per
multigrid cycle behaves like O (Nl). Since the number of multigrid cycles for the
solution of the linear system is bounded uniformly, i.e., independently of l, it follows
that then also the solution of the linear system requires O (Nl) operations. 2

Remark 6.20 Assumptions on the computational costs of the components of the

multigrid method. The following bounds for the number of operations are assumed
for the basic components of the multigrid method:

• one smoothing step ul := Sl(ul)

flops ≤ csNl, l ≥ 1,

• restriction fl−1 = I l−1
l (fl −Alvl)

flops ≤ crNl, l ≥ 1,

• prolongation and correction ul := ul + I ll−1vl−1

flops ≤ cpNl, l ≥ 1,

• coarsest grid problem u0 = A−1
0 f0

flops ≤ c0.

For sparse matrices and the prolongation and restriction which were introduced in
Chapter 4, the bounds are true. The system on the coarsest grid can be solved, e.g.,
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by Gaussian elimination. Then, c0 depends on the number of degrees of freedom
on the coarsest grid, but not on Nl.

Let

ch = sup
l≥1

Nl−1

Nl

.

For uniformly refined grids, i.e., hl−1 = 2hl, this constant has the value ch = 2−d,
where d is the dimension of the domain. 2

Theorem 6.21 Number of operations for the multigrid γ-cycle. Set θ =
chγ, let θ < 1 and let the assumptions from Remark 6.20 be satisfied. Then, one

cycle of the multigrid γ-cycle with ν smoothing steps on each level requires clNl

operations, where

cl <
νcs + cr + cp

1− θ
+ θl−1 c0

N1

. (6.18)

Proof: One iteration at level l involves γl−k iterations at level k, 1 ≤ k ≤ l, since
there are

• γ iterations on level l − 1,

• at each of these iterations, γ iterations on level l − 2, i.e., γ2 iterations on level l − 2,

• and so on.

On level 0, γl−1 coarsest grid systems have to be solved, since in each of the γl−1 situations
where one is on level 1, level 0 is called. Using the assumptions on the costs of the basic
components of the multigrid method, on obtains the following costs

(νcs + cr + cp)Nl + γ (νcs + cr + cp)Nl−1 + γ2 (νcs + cr + cp)Nl−2

+ . . .+ γl−1 (νcs + cr + cp)N1 + γl−1c0

= (νcs + cr + cp)
(

Nl + γNl−1 + . . .+ γl−1N1

)

+ γl−1c0

= (νcs + cr + cp)Nl

(

1 + γ
Nl−1

Nl

+ . . .+ γl−1N1

Nl

)

+ γl−1c0

= (νcs + cr + cp)Nl

(

1 + γ
Nl−1

Nl

+ γ2Nl−2

Nl−1

Nl−1

Nl

+ . . .

)

+ γl−1c0

≤ (νcs + cr + cp)Nl

(

1 + γch + γ2c2h + . . .+ γl−1cl−1
h

)

+ γl−1c0

= (νcs + cr + cp)Nl

(

1 + θ + θ2 + . . .+ θl−1
)

+ γl−1c0 (6.19)

≤ (νcs + cr + cp)
Nl

1− θ
+ θl−1 c0

cl−1
h

Nl

Nl

≤

(

νcs + cr + cp
1− θ

+ θl−1 c0
N1

)

Nl,

since cl−1
h ≥ N1/Nl for l ≥ 1.

Remark 6.22 On the bound (6.18). The bound (6.18) depends formally on l. One
can remove this dependence by using that θl−1 < θ. However, in the form (6.18) it
becomes clearer that the importance of the flops of the coarsest grid solver decreases
with increasing level. 2

Example 6.23 Computational costs for different cycles. Consider a standard uni-
form refinement, i.e., it is ch = 2−d, where d is the dimension of the domain.

For one dimension, the theory applies for the V-cycle because γch = 1/2, but
not for the W-cycle since γch = 1.

In two dimensions, one has for the V-cycle γch = 1/4 and for the W-cycle γch =
1/2. Then, one obtains from (6.18) the following estimates for the computational
costs:

46



• V-cycle

cl <
4

3
(νcs + cr + cp) +

(

1

4

)l−1
c0
N1

,

• W-cycle

cl < 2 (νcs + cr + cp) +

(

1

2

)l−1
c0
N1

.

Neglecting the flops for the coarsest grid solver, a W-cycle for a two-dimensional
problem requires roughly 1.5 times the number of flops of a V-cycle.

In three dimensions, one finds for the V-cycle that γch = 1/8 and for the W-cycle
that γch = 1/4. Then, the number of flops per cycle is bounded by

• V-cycle

cl <
8

7
(νcs + cr + cp) +

(

1

8

)l−1
c0
N1

,

• W-cycle

cl <
4

3
(νcs + cr + cp) +

(

1

4

)l−1
c0
N1

.

Hence, the W-cycle is only 1.167 times as expensive as the V-cycle.
These results to think about using different strategies for different dimensions.

The V-cycle is always more efficient whereas the W-cycle is generally more stable.
Since the efficiency gain of the V-cycle in three dimensions is only small, one should
apply there the W-cycle. In two dimensions, one should first try if the V-cycle
works. As alternative, one can use in both cases the F-cycle. The computation of
the numerical costs of the F-cycle is an exercise. 2

Corollary 6.24 Number of flops for θ = 1. Let the notations be as in The-

orem 6.21 and let θ = 1. Then, the number of operations on level l is bounded

by
(

(νcs + cr + cp) l +
c0
N1

)

Nl.

Proof: The proof starts like the proof of Theorem 6.21 until (6.19). Then, one sets

θ = 1 in (6.19) to obtain the statement of the corollary.

Example 6.25 W-cycle in one dimension. The corollary states that the number
of flops for the W-cycle in one dimension is not proportional to Nl. Hence, the
W-cycle is not optimal in one dimension. 2

Remark 6.26 Memory requirements of the multigrid method. The sparse matrix
on level l requires the storage of cmNl numbers, where cm is independent of l. In
addition, one has to store the arrays vl and fl, which are 2Nl numbers. It follows
that the total storage requirements are

(2 + cm)

l
∑

k=0

Nk = (2 + cm)

(

Nl +Nl

Nl−1

Nl

+Nl

Nl−1

Nl

Nl−2

Nl−1

+ . . .

)

≤ (2 + cm)Nl

l−1
∑

k=0

ckh

≤
(2 + cm)Nl

1− ch
,

if ch < 1. A method that works only on the finest grid requires at least the storage
of (2+Nl) numbers. Thus, for uniform standard refinement, i.e., ch = 2−d, one has
for
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• d = 1: that the multigrid method needs 100 %,
• d = 2: that the multigrid method needs 33.3 %,
• d = 3: that the multigrid method needs 14.3 %,

more memory than a single grid algorithm on the finest grid. 2
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