
Chapter 4

Grid Transfer

Remark 4.1 Contents of this chapter. Consider a grid with grid size h and the
corresponding linear system of equations

Ahuh = fh.

The summary given in Section 3.4 leads to the idea that there might be an iterative
method for solving this system efficiently, which uses also coarser grids. In order
to construct such a method, one needs mechanisms that transfer the information in
an appropriate way between the grids. 2

4.1 The Coarse Grid System and the Residual Equa-

tion

Remark 4.2 Basic idea for obtaining a good initial iterate with a coarse grid solu-

tion. One approach for improving the behavior of iterative methods, at least at the
beginning of the iteration, consists in using a good initial iterate. For the model
problem, one can try to find a good initial iterate, e.g., by solving the problem
approximately on a coarse grid, using only a few iterations. The application of only
a few iterations is called smoothing, and the iterative method itself smoother, since
only the oscillating error modes (on the coarse grid) are damped. The solution from
the coarse grid can be used as initial iterate on the fine grid. 2

Remark 4.3 Study of the discrete Fourier modes on different grids. Given a grid
Ω2h. In practice, a uniform refinement step consists in dividing in halves all intervals
of Ω2h, leading to the grid Ωh. Then, the nodes of Ω2h are the nodes of Ωh with
even numbers, see Figure 4.1.
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Figure 4.1: Coarse and fine grid.

Consider the k-th Fourier mode of the fine grid Ωh. If 1 ≤ k ≤ N/2, then it
follows for the even nodes that

wh
k,2j = sin
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2jkπ
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N

2
− 1.
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Hence, the k-th Fourier mode on Ωh is the k-th Fourier mode on Ω2h. From the
definition of the smooth and oscillating modes, Remark 3.7, it follows that by going
from the fine to the coarse grid, the k-th mode gets a higher frequency if 1 ≤ l ≤
N/2. Note again that the notion of frequency depends on the grid size. The Fourier
mode on Ωh for k = N/2 is represented on Ω2h by the zero vector.

For the transfer of the oscillating modes on Ωh, i.e., for N/2 < k < N , one
obtains a somewhat unexpected results. These modes are represented on Ω2h as
relatively smooth modes. The k-th mode on Ωh becomes the negative of the (N−k)-
th mode on Ω2h (exercise ?):
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i.e., wh
k,2j = −w2h

N−k,2j . This aspect shows that it is necessary to damp the oscil-

lating error modes on Ωh before a problem on Ω2h is considered. Otherwise, one
would get additional smooth error modes on the coarser grid. 2

Remark 4.4 The residual equation. An iterative method for the solution of Au = f

can be applied either directly to this equation or to an equation for the error, the
so-called residual equation. Let u(m) be an approximation of u, then the error
e(m) = u− u(m) satisfies the equation

Ae(m) = f −Au(m) =: r(m). (4.1)

2

Remark 4.5 Nested iteration. This remark gives a first strategy for using coarse
grid problems for the improvement of an iterative method for solving Auh = fh.
This strategy is a generalization of the idea from Remark 4.2. It is called nested
iteration:

• solve Ah0uh0 = fh0 on a very coarse grid approximately by applying a smoother,

•
...

• smooth A2hu2h = f2h on Ω2h,
• solve Ahuh = fh on Ωh by an iterative method with the initial iterate provided
from the coarser grids.

However, there are some open questions with this strategy. How are the linear
systems defined on the coarser grids? What can be done if there are still smooth
error modes on the finest grid? In this case, the convergence of the last step will be
slowly. 2

Remark 4.6 Coarse grid correction, two-level method. A second strategy uses also
the residual equation (4.1):

• Smooth Ahuh = fh on Ωh. This step gives an approximation vh of the solution
which still has to be updated appropriately. Compute the residual rh = fh −
Ahvh.
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• Project (restrict) the residual to Ω2h. The result is called R(rh).
• Solve A2he2h = R(rh) on Ω2h. With this step, one obtains an approximation
e2h of the error.

• Project (prolongate) e2h to Ωh. The result is denoted by P (e2h).
• Update the approximation of the solution on Ωh by vh := vh + P (e2h).

This approach is called coarse grid correction or two-level method. With this ap-
proach, one computes on Ω2h an approximation of the error. However, also for
this approach one has to answer some questions. How to define the system on the
coarse grid? How to restrict the residual to the coarse grid and how to prolongate
the correction to the fine grid? 2

4.2 Prolongation or Interpolation

Remark 4.7 General remarks. The transfer from the coarse to the fine grid is
called prolongation or interpolation. In many situations, one can use the simplest
approach, which is the linear interpolation. For this reason, this section will only
consider this approach. 2

Example 4.8 Linear interpolation for finite difference methods. For finite differ-
ence methods, the prolongation operator is defined by a local averaging. Let Ω2h be
divided into N/2 intervals and Ωh into N intervals. The node j on Ω2h corresponds
to the node 2j on Ωh, 0 ≤ j ≤ N/2, see Figure 4.1. Let v2h be given on Ω2h. Then,
the linear interpolation

Ih2h : R
N/2−1 → R

N−1, vh = Ih2hv
2h

is given by
vh2j = v2hj , j = 1, . . . , N/2− 1,

vh2j+1 =
1

2

(
v2hj + v2hj+1

)
, j = 0, . . . , N/2− 1,

(4.2)

see Figure 4.2. For even nodes of Ωh, one takes directly the value of the correspond-
ing node of Ω2h. For odd nodes of Ωh, the arithmetic mean of the values of the
neighbor nodes is computed.
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Figure 4.2: Linear interpolation for finite difference methods.

The linear prolongation is a linear operator, see below Lemma 4.10, between
two finite-dimensional spaces. Hence, it can be represented as a matrix. Using the
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standard basis of RN/2−1 and R
N−1, then
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1
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1
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
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








∈ R
(N−1)×(N/2−1). (4.3)

2

Example 4.9 Canonical prolongation for finite element methods. Consider con-
forming finite element methods and denote the spaces on Ω2h and Ωh with V 2h

and V h, respectively. Because Ωh is a uniform refinement of Ω2h, it follows that
V 2h ⊂ V h. Hence, each finite element function defined on Ω2h is contained in the
space V h. This aspect defines a canonical prolongation

Ih
2h : V 2h → V h, v2h 7→ v2h.

The canonical prolongation will be discussed in detail for P1 finite elements. Let

{ϕ2h
i }

N/2−1
i=1 be the local basis of V 2h and {ϕh

i }
N−1
i=1 be the local basis of V h. Each

function v2h ∈ V 2h has a representation of the form

v2h(x) =

N/2−1
∑

i=1

v2hi ϕ2h
i (x), v2hi ∈ R, i = 1, . . . , N/2− 1.

There is a bijection between V 2h and R
N/2−1.

Let j = 2i be the corresponding index on Ωh to the index i on Ω2h. From the
property of the local basis, it follows that

ϕ2h
i =

1

2
ϕh
j−1 + ϕh

j +
1

2
ϕh
j+1.

Inserting this representation gives

v2h(x) =

N/2−1
∑

i=1

v2hi

(
1

2
ϕh
2i−1 + ϕh

2i +
1

2
ϕh
2i+1

)

= v2h1

(
1

2
ϕh
1 + ϕh

2 +
1

2
ϕh
3

)

+v2h2

(
1

2
ϕh
3 + ϕh

4 +
1

2
ϕh
5

)

+v2h3

(
1

2
ϕh
5 + ϕh

6 +
1

2
ϕh
7

)

+ . . . .

From this formula, one can see that the representation in the basis of V h is of the
following form. For basis functions that correspond to nodes which are already
on Ω2h (even indices on the fine grid), the coefficient is the same as for the basis
function on the coarser grids. For basis functions that correspond to new nodes, the
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coefficient is the arithmetic mean of the coefficients of the neighbor basis functions.
Hence, if local bases are used, the coefficients for the prolongated finite element
function can be computed by multiplying the coefficients of the coarse grid finite
element function with the matrix (4.3). 2

Lemma 4.10 Properties of the linear interpolation operator. The operator

Ih2h : R
N/2−1 → R

N−1 defined in (4.2) is a linear operator. It has full rank and

only the trivial kernel.

Proof: i) Ih2h is a linear operator. The operator is homogeneous, since for α ∈ R and
v ∈ R

N/2−1 it is

vh2j = (αv)j = αvj ,

vh2j+1 =
1

2

(

(αv)j + (αv)j+1

)

= α
1

2
(vj + vj+1) .

The operator is additive. Let v,w ∈ R
N/2−1, then

(

Ih2h(v +w)
)

2j
= (v +w)j = vj + wj =

(

Ih2h(v)
)

2j
+

(

Ih2h(w)
)

2j
,

(

Ih2h(v +w)
)

2j+1

=
1

2
((v +w)j + (v +w)j+1) =

1

2
(vj + vj+1) +

1

2
(wj + wj+1)

=
(

Ih2h(v)
)

2j+1

+
(

Ih2h(w)
)

2j+1

.

An homogeneous and additive operator is linear.

ii) Ih2h has full rank and trivial kernel. Since N/2 − 1 < N − 1, both properties are

equivalent. Let 0 = v
h = Ih2h(v

2h). From (4.2) it follows from the vanishing of the even

indices of vh immediately that v2hj = 0, j = 1, . . . , N/2− 1, i.e., v2h = 0. Hence, the only

element in the kernel of Ih2h is the zero vector.

Remark 4.11 Effect of the prolongation on different error modes. Assume that
the error, which is of course unknown is a smooth function on the fine grid Ωh. In
addition, the coarse grid approximation on Ω2h is computed and it should be exact
in the nodes of the coarse grid. The interpolation of this coarse grid approximation
is a smooth function on the fine grid (there are no new oscillations). For this reason,
one can expect a rather good approximation of the smooth error on the fine grid.

If the error on the fine grid is oscillating, then each interpolation of a coarse grid
approximation to the fine grid is a smooth function and one cannot expect that the
error on the fine grid is approximated well, see Figure 4.3.

Altogether, the prolongation gives the best results, if the error on the fine grid
is smooth. Hence, the prolongation is an appropriate complement to the smoother,
which works most efficiently if the error is oscillating. 2

4.3 Restriction

Remark 4.12 General remarks. For the two-level method, one has to transfer the
residual from Ωh to Ω2h before the coarse grid equation can be solved. This transfer
is called restriction. 2

Example 4.13 Injection for finite difference schemes. The simplest restriction is
the injection. It is defined by

I2hh : R
N−1 → R

N/2−1, v2h = I2hh vh, v2hj = vh2j , j = 1, . . . ,
N

2
− 1,

see Figure 4.4. For this restriction, one takes for each node on the coarse grid simply
the value of the grid function at the corresponding node on the fine grid.
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Figure 4.3: Oscillating error and interpolation.
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Figure 4.4: Injection.

It turns out that the injection does not lead to an efficient method. If one ignores
every other node on Ωh, then the values of the residual in these nodes, and with
that also the error in these nodes, do not possess any impact on the system on the
coarse grid. Consequently, these errors will generally not be corrected. 2

Example 4.14 Weighted restriction for finite difference schemes. The weighted
restriction uses all nodes on the fine grid. It is defined by an appropriate averaging

I2hh : R
N−1 → R

N/2−1,

v2h = I2hh vh, v2hj =
1

4

(
vh2j−1 + 2vh2j + vh2j+1

)
, j = 1, . . . ,

N

2
− 1, (4.4)

see Figure 4.5. For finite difference schemes, only the weighted restriction will be
considered in the following.

If the spaces RN−1 and R
N/2−1 are equipped with the standard bases, the matrix
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Figure 4.5: Weighted restriction.

representation of the weighted restriction operator has the form

I2hh =
1

4










1 2 1
1 2 1

1 2 1
. . .

1 2 1










∈ R
(N/2−1)×(N−1). (4.5)

With this representation, one can see an important connection between weighted
restriction I2hh and interpolation Ih2h:

Ih2h = 2
(
I2hh

)T
.

2

Lemma 4.15 Properties of the weighted restriction operator. Let the re-

striction operator I2hh given by (4.4). This operator is linear. The rank of this

operator is N/2− 1 and the kernel has dimension N/2.

Proof: i) Linearity. exercise.

ii) Rank and kernel. From linear algebra, it is known that the sum of the dimension

of the kernel and the rank is N − 1. The rank of I2hh is equal to the dimension of its

range (row rank). The range of I2hh is equal to R
N/2−1, since every vector from R

N/2−1

might be the image in the space of grid functions of Ω2h of a vector corresponding to grid

functions of Ωh. Hence, the rank is N/2− 1 and consequently, the dimension of the kernel

is N − 1− (N/2− 1) = N/2.

Example 4.16 Canonical restriction for finite element schemes. Whereas for fi-
nite difference methods, one works only with vectors of real numbers, finite element
methods are imbedded into the Hilbert space setting. In this setting, a finite ele-
ment function is, e.g, from the space V h, but the residual, which is the right-hand
side minus the finite element operator applied to a finite element function (current
iterate) is from the dual space

(
V h

)
∗

of V h. In this setting, it makes a difference if
one restricts an element from V h or from its dual space.

For restricting a finite element function from V h to V 2h, one can take the anal-
ogon of the weighted restriction. If local bases are used, then the coefficients of
the finite element function from V h are multiplied with the matrix (4.5) to get the
coefficients of the finite element function in V 2h.

In the two-level method, one has to restrict the residual, i.e., one needs a re-
striction from

(
V h

)
∗

to
(
V 2h

)
∗

. In this situation, a natural choice consists in using
the dual prolongation operator, i.e.,

I2h
h :

(
V h

)∗
→

(
V 2h

)∗
, I2h

h =
(
Ih
2h

)∗
.
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The dual operator is defined by

〈
Ih
2hv

2h, rh
〉

V h,(V h)∗
=

〈
v2h, I2h

h rh
〉

V 2h,(V 2h)∗
∀ v2h ∈ V 2h, rh ∈

(
V h

)∗
.

Thus, if local bases and the bijection between finite element spaces and the
Euclidean spaces are used, then the restriction of the residual can be represented
by the transposed of the matrix (4.3). This issue makes a difference of a factor of
2 compared with the matrix for the weighted restriction. 2
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