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Summary. This paper is devoted to the numerical solution of two–dimensional
steady scalar convection–diffusion equations using the finite element method. If the
popular streamline upwind/Petrov–Galerkin (SUPG) method is used, spurious oscil-
lations usually arise in the discrete solution along interior and boundary layers. We
review various finite element discretizations designed to diminish these oscillations
and we compare them computationally.

1 Introduction

This paper is devoted to the numerical solution of the scalar convection–
diffusion equation

−ε ∆u + b · ∇u = f in Ω, u = ub on ∂Ω, (1)

where Ω ⊂ R
2 is a bounded domain with a polygonal boundary ∂Ω, ε > 0 is

constant and b, f and ub are given functions.
If convection strongly dominates diffusion, the solution of (1) typically

contains interior and boundary layers and solutions of Galerkin finite ele-
ment discretizations are usually globally polluted by spurious oscillations. To
enhance the stability and accuracy of these discretizations, various stabiliza-
tion strategies have been developed during the past three decades. One of
the most efficient procedures is the SUPG method developed by Brooks and
Hughes [2]. Unfortunately, the SUPG method does not preclude spurious os-
cillations localized in narrow regions along sharp layers and hence various
terms introducing artificial crosswind diffusion in the neighbourhood of layers
have been proposed to be added to the SUPG formulation. This procedure is
often referred to as discontinuity capturing (or shock capturing). The liter-
ature on discontinuity–capturing methods is rather extended and numerical
tests published in the literature do not allow to draw conclusions concern-
ing their advantages and drawbacks. Therefore, the aim of this paper is to
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provide a review of various discontinuity–capturing methods and to compare
these methods computationally.

The plan of the paper is as follows. In the next section, we recall the Galer-
kin discretization of (1) and, in Section 3, we formulate the SUPG method.
Section 4 contains a review and a computational comparison of discontinuity–
capturing methods and, in Section 5, we present our conclusions.

2 Galerkin’s finite element discretization

We introduce a triangulation Th of the domain Ω consisting of a finite number
of open polygonal elements K. We assume that Ω =

⋃
K∈Th

K and that the el-
ements of Th satisfy the usual compatibility conditions. Further, we introduce
a finite element space Vh approximating the space H1

0
(Ω) and satisfying

Vh ⊂ {v ∈ L2(Ω) ; v|K ∈ C∞(K) ∀ K ∈ Th} .

Since the functions from Vh may be discontinuous across edges of the trian-
gulation Th, we define the ‘discrete’ operators ∇h and ∆h by

(∇h v)|K = ∇(v|K) , (∆h v)|K = ∆(v|K) ∀ K ∈ Th .

Finally, let ubh ∈ L2(Ω) be a piecewise smooth function whose trace on ∂Ω
approximates ub. Then a discrete solution of (1) can be defined as a function
uh ∈ L2(Ω) satisfying uh−ubh ∈ Vh and ah(uh, vh) = (f, vh) ∀ vh ∈ Vh, where

ah(u, v) = ε (∇h u,∇h v) + (b · ∇h u, v)

and (·, ·) denotes the inner product in the space L2(Ω) or L2(Ω)2.

3 The SUPG method

Brooks and Hughes [2] enriched the Galerkin method by a stabilization term
yielding the streamline upwind/Petrov–Galerkin (SUPG) method. The dis-
crete solution uh ∈ L2(Ω) satisfies uh − ubh ∈ Vh and

ah(uh, vh) + (Rh(uh), τ b · ∇h vh) = (f, vh) ∀ vh ∈ Vh , (2)

where Rh(u) = −ε ∆h u + b · ∇h u − f is the residual and τ is a nonnegative
stabilization parameter. As we see, the SUPG method introduces numerical
diffusion along streamlines in a consistent manner. A delicate question is the
choice of the parameter τ which may dramatically influence the accuracy of
the discrete solution. Here we shall use the formula (cf. Galeão et al. [8])

τ |K =
hK

2 |b| pK

(
coth(PeK) −

1

PeK

)
with PeK =

|b|hK

2 ε pK
, (3)

where hK is the diameter of K ∈ Th in the direction of b, pK is the order of
approximation of Vh on K (usually the maximum degree of polynomials in
Vh on K), | · | is the Euclidean norm and PeK is the local Péclet number.
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4 Methods diminishing spurious oscillations in layers

In this section, we present a review and a computational comparison of most
of the methods introduced during the last two decades to diminish the oscil-
lations arising in discrete solutions of the problem (1). These methods can be
divided into upwinding techniques and into methods adding additional artifi-
cial diffusion to the SUPG discretization (2). The artificial diffusion may be
either isotropic, or orthogonal to streamlines, or based on edge stabilizations.
These four classes of methods will be discussed in the following subsections.
It is not possible to describe here thoroughly the ideas on which the design
of the methods relies, see [11] for a more comprehesive description. Generally,
one can say that the methods are based either on convergence analyses or on
investigations of the discrete maximum principle (called DMP in the follow-
ing) or on heuristic arguments. As we shall see, most of the methods will be
nonlinear. The computational comparison of the methods will be performed
by means of two test problems specified by the following data of (1):

Example 1. Ω = (0, 1)2, ε = 10−7, b = (cos(−π/3), sin(−π/3))T , f = 0,
ub(x, y) = 0 for x = 1 or y ≤ 0.7, ub(x, y) = 1 otherwise.

Example 2. Ω = (0, 1)2, ε = 10−7, b = (1, 0)T , f = 1, ub = 0.
The solution of Ex. 1 possesses an interior layer and exponential bound-

ary layers whereas the solution of Ex. 2 possesses parabolic and exponential
boundary layers but no interior layers. All results were computed on uniform
N ×N triangulations of the type depicted in Fig. 1. Unless stated otherwise,
we used the conforming linear finite element P1, N = 20 for Ex. 1 and N = 10
for Ex. 2. The SUPG solutions of Ex. 1 and 2 are shown in Fig. 2 and 5, re-
spectively. It is important that the parameter τ is optimal for the P1 element
in the sense that the SUPG method approximates the boundary layers at
y = 0 in Ex. 1 and at x = 1 in Ex. 2 sharply and without oscillations.

4.1 Upwinding techniques

Initially, stabilizations of the Galerkin discretization of (1) imitated upwind
finite difference techniques. However, like in the finite difference method, the
upwind finite element discretizations remove the unwanted oscillations but
the accuracy attained is often poor since too much numerical diffusion is
introduced. According to our experiences, one of the most successful up-

Fig. 1. Type of triangulations (N = 5) Fig. 2. Ex. 1, SUPG
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Fig. 3. Ex. 1, IMH [14] Fig. 4. Ex. 1, do Carmo, Galeão [6]

winding techniques is the improved Mizukami–Hughes (IMH) method, see
Knobloch [14]. It is a nonlinear Petrov–Galerkin method for P1 elements
which satisfies the DMP on weakly acute meshes. In contrast with many other
upwinding methods for P1 elements satisfying the DMP, the IMH method
adds much less numerical diffusion and provides rather accurate solutions,
cf. Knobloch [15]. The IMH solution for Ex. 1 is depicted in Fig. 3. For Ex. 2,
it is even nodally exact.

4.2 Methods adding isotropic artificial diffusion

Hughes et al. [10] came with the idea to change the upwind direction in the

SUPG term of (2) by adding a multiple of the function b
‖
h which is the pro-

jection of b into the direction of ∇uh. This leads to the additional term

(Rh(uh), σ b
‖
h · ∇h vh) (4)

on the left–hand side of (2), where σ is a nonnegative stabilization parameter.

Since b
‖
h depends on uh, the resulting method is nonlinear. Hughes et al. [10]

proposed to set σ = max{0, τ(b
‖
h) − τ(b)} where we use the notation τ(b?)

for τ defined by (3) with b replaced by b
?. Other definitions of σ in (4) were

proposed by Tezduyar and Park [17]. Since the term (4) equals to

(ε̃∇h uh,∇h vh) (5)

with ε̃ = σ Rh(uh) b·∇uh/|∇uh|
2, it introduces an isotropic artificial diffusion.

Another stabilization strategy was introduced by Galeão and do Carmo [9]
who proposed to replace the flow velocity b in the SUPG stabilization term
by an approximate upwind direction. This gives rise to the additional term

(Rh(uh), σ zh · ∇h vh) (6)

on the left–hand side of (2), where zh = Rh(uh)∇uh/|∇uh|
2 and σ =

max{0, τ(zh)−τ(b)}. If f = 0 and ∆h uh = 0, we have zh = b
‖
h and hence the

method of Galeão and do Carmo [9] is identitical with the method of Hughes
et al. [10]. Do Carmo and Galeão [6] proposed to simplify σ to

σ = τ(b) max

{
0,

|b|

|zh|
− 1

}
. (7)
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Almeida and Silva [1] suggested to replace (7) by

σ = τ(b) max

{
0,

|b|

|zh|
− ζh

}
with ζh = max

{
1,

b · ∇h uh

Rh(uh)

}
, (8)

which reduces the amount of artificial diffusion along the zh direction.
Do Carmo and Galeão [6] also introduced a feedback function which should

minimize the influence of the term (6) in regions where the solution u of (1)
is smooth. Since this approach was rather involved, do Carmo and Alvarez [5]
introduced another procedure (still defined using several formulas) suppressing
the addition of the artificial diffusion in regions where u is smooth.

Again, the term (6) can be written in the form (5), now with ε̃ =
σ |Rh(uh)|2/|∇uh|

2. To prove error estimates, Knopp et al. [16] proposed to
replace this ε̃, on any K ∈ Th, by

ε̃|K = σK(uh) |QK(uh)|2 with QK(uh) =
‖Rh(uh)‖

0,K

SK + ‖uh‖1,K

, (9)

where σK(uh) ≥ 0 and SK > 0 are appropriate constants.
The stabilization term (5) was also used by Johnson [12], who considered

ε̃|K = max{0, α [diam(K)]ν |Rh(uh)| − ε} ∀ K ∈ Th

with some constants α and ν ∈ (3/2, 2). He suggested to take ν ∼ 2.
If the above methods are applied to Ex. 1, the discrete solution improves

in comparison to the SUPG method. However, most of the methods do not re-
move the spurious oscillations completely and/or lead to an excessive smearing
of the layers. The best methods are the methods of do Carmo and Galeão [6]
and Almeida and Silva [1] which are identical in this case, see Fig. 4.

4.3 Methods adding artificial diffusion orthogonally to streamlines

Since the streamline diffusion introduced by the SUPG method seems to be
enough along the streamlines, an alternative approach to the above methods
is to modify the SUPG discretization (2) by adding artificial diffusion in the
crosswind direction only as considered by Johnson et al. [13]. A straightfor-
ward generalization of their approach leads to the additional term

(ε̃ D∇h uh,∇h vh) (10)

on the left–hand side of (2), where ε̃|K = max{0, |b|h
3/2

K − ε} ∀K ∈ Th and
D = I − b⊗ b/|b|2 is the projection onto the line orthogonal to b, I being the
identity tensor.

Investigating the validity of the DMP for several model problems, Cod-
ina [7] came to the conclusion that the artificial diffusion ε̃ in (10) should be
defined, for any K ∈ Th, by
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Fig. 5. Ex. 2, SUPG Fig. 6. Ex. 2, MBE

ε̃|K =
1

2
max

{
0, C −

2 ε

|b
‖
h| diam(K)

}
diam(K)

|Rh(uh)|

|∇uh|
, (11)

where C is a suitable constant (we use C = 0.6 for linear elements and C =
0.35 for quadratic elements). Motivated by assumptions and results of general
a priori and a posteriori error analyses, Knopp et al. [16] changed (11) to

ε̃|K =
1

2
max

{
0, C −

2 ε

QK(uh) diam(K)

}
diam(K) QK(uh) , (12)

where QK(uh) is defined in (9) (the constants SK equal to 1 in numerical
experiments of [16]). Combining the above two definitions of ε̃, we further
propose to use (10) with ε̃ defined by (12) where QK(uh) = |Rh(uh)|/|∇uh|.
This modified method of Codina is called MC method in the following. It is
equivalent to (11) if f = 0 and ∆h uh = 0.

Based on investigations of the DMP for strictly acute meshes and linear
simplicial finite elements, Burman and Ern [3] suggested to use (10) with ε̃
defined, on any K ∈ Th, by

ε̃|K =
τ(b) |b|2 |Rh(uh)|

|b| |∇h uh| + |Rh(uh)|

|b| |∇h uh| + |Rh(uh)| + tan αK |b| |D∇h uh|

|Rh(uh)| + tan αK |b| |D∇h uh|
.

Here, αK is equal to π/2 minus the largest angle of K (if K is a triangle). In
case of right triangles, it is recommended to set αK = π/6.

Our numerical experiments indicate that the above value of ε̃ is too large
and therefore we also consider (10) with ε̃ defined, on any K ∈ Th, by

ε̃|K =
τ(b) |b|2 |Rh(uh)|

|b| |∇h uh| + |Rh(uh)|
. (13)

This modified Burman–Ern method is called MBE method in the following.
If we apply the methods of this subsection to Ex. 2, then only the MC

and MBE methods give satisfactory results (and they are comparable), see
Fig. 6. For Ex. 1, these methods provide comparable results to the solution in
Fig. 4. On the other hand, the two best methods of the previous subsection
(do Carmo and Galeão [6], Almeida and Silva [1]) give almost the same results
for Ex. 2, which are comparable to the results of the MC and MBE methods.
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Fig. 7. Ex. 1, MC, P2, N = 10 Fig. 8. Ex. 1, do Carmo, Galeão [6], P
nc

1

4.4 Edge stabilizations

Another stabilization strategy for linear simplicial finite elements was intro-
duced by Burman and Hansbo [4]. The term to be added to the left–hand side
of (2) is defined by

∑

K∈Th

∫

∂K

ΨK(uh) sign(t∂K · ∇(uh|K)) t∂K · ∇(vh|K) dσ ,

where t∂K is a unit tangent vector to the boundary ∂K of K, ΨK(uh) =
diam(K) (C1 ε + C2 diam(K)) maxE⊂∂K | [|nE · ∇uh|]E |, nE are normal vec-
tors to edges E of K, [|v|]E denotes the jump of a function v across the edge E
and C1, C2 are appropriate constants. Burman and Hansbo proved that, using
an edge stabilization instead of the SUPG term, the DMP is satisfied. Other
choices of ΨK(uh) based on investigations of the DMP were recently proposed
by Burman and Ern. However, all these edge stabilizations add much more
artificial diffusion than the best methods of the previous subsections.

5 Conclusions

Our computations indicate that, among the methods mentioned in this paper,
the best ones are: the IMH method [14], the method of do Carmo, Galeão [6]
defined by (6), (7), the method of Almeida and Silva [1] defined by (6), (8),
the MC method introduced below (12) and the MBE method defined by (10),
(13). The IMH method can be used for the P1 element only but gives best
results in this case. The other methods can be successfully also applied to
other finite elements as Figs. 7 and 8 show (for the conforming quadratic
element P2 and the nonconforming Crouzeix–Raviart element P nc

1
). However,

much more comprehensive numerical studies are still necessary to obtain clear
conclusions of the advantages and drawbacks of the discontinuity–capturing
methods.
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