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On the parameter choice in grad-div stabilization for the Stokes equations
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Abstract Standard error analysis for grad-div stabilization of inf-sup stable conforming pairs of finite
element spaces predicts that the stabilization parameter should be optimally chosen to be O(1). This paper
revisits this choice for the Stokes equations on the basis of minimizing the H1(Ω) error of the velocity and
the L2(Ω) error of the pressure. It turns out, by applying a refined error analysis, that the optimal parameter
choice is more subtle than known so far in the literature. It depends on the used norm, the solution, the
family of finite element spaces, and the type of mesh. In particular, the approximation property of the
pointwise divergence-free subspace plays a key role. With such an optimal approximation property and
with an appropriate choice of the stabilization parameter, estimates for the H1(Ω) error of the velocity are
obtained that do not directly depend on the viscosity and the pressure. The minimization of the L2(Ω) error
of the pressure requires in many cases smaller stabilization parameters than the minimization of the H1(Ω)
velocity error. Altogether, depending on the situation, the optimal stabilization parameter could range from
being very small to very large. The analytic results are supported by numerical examples. Applying the
analysis to the MINI element leads to proposals for the stabilization parameter which seem to be new.
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estimates · Pointwise divergence-free subspace
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1 Introduction

This paper investigates the choice of the parameter for grad-div stabilization in mixed finite element meth-
ods for the Stokes equations, which are given by

−ν∆u +∇p = f , ∇ · u = 0 in Ω.

Grad-div stabilization results from adding 0 = −γ∇(∇·u) to the continuous Stokes equations, which yields
the term γ(∇·uh,∇·vh) in the finite element formulation. Since ∇·uh 6= 0 for most common finite element
methods for the Stokes equations, due to the only discrete enforcement of the divergence-free condition, this
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additional term is non-zero and it acts to penalize a lack of mass conservation. This consistent stabilization
term was first introduced in [8], and it is well known that its use can improve solution accuracy for Stokes
[25] and Navier–Stokes equations [23,18], conditioning of discrete systems [13], convergence of iterative
solvers [5,14], and even solution accuracy for related problems such as the Boussinesq equations and others
[7,22,11,30,15].

Due to the proven usefulness of grad-div stabilization, there is a natural interest to deepen its under-
standing, and in particular to study how to choose the stabilization parameter γ optimally. Theoretical
analysis (which considers the dependence of γ on the mesh width and the viscosity) and numerical sim-
ulations, originally performed in [28], and subsequently in [24,20,25,3,12], suggest that γ = O(1) is an
appropriate choice in the context of inf-sup stable conforming finite element spaces, and this choice seems
to be widely accepted in the community. However, it was recently shown in [11] that in certain situations,
an optimal γ can actually be much larger than O(1). There, the authors showed analytically and with
numerical studies that for solutions with large or complicated pressures, e.g., caused by irrotational forcing,
one gets very good results with γ = 104 and bad results with γ = 1 or 10.

The goals of the present paper are to show for the simplest model problem, the Stokes equations, that

– the choice of the grad-div stabilization parameter from the analytic point of view is more involved than
it can be found so far in the literature, if the error in the H1(Ω) norm of the velocity is of primary
interest,

– an enormous increase in accuracy can be achieved sometimes by using a parameter that is predicted by
the analysis presented in this paper, instead of a standard O(1) parameter.

The Stokes equations are considered, e.g., instead of the Navier–Stokes equations, in order to concentrate on
the main statement of this paper, the more subtle choice of the stabilization parameter than it is known so
far, without introducing technical difficulties that arise, e.g., from the consideration of nonlinear problems.
In particular, it will be shown first that for minimizing the H1(Ω) velocity error the optimal parameter
choice depends critically on the magnitude of the pressure relative to the velocity in appropriate norms. A
statement of this form can be also found in [24,14], but the possibly large stabilization parameter is not
investigated further. Secondly, it depends on whether the pointwise divergence-free subspace of the finite
element velocity space has some optimal approximation properties, which seems to be a new observation.
These properties are closely related with the specific choice of the finite element space, i.e., with the family
of finite elements and with the mesh. The results will be derived by performing a finite element error
analysis for the H1(Ω) velocity error, considering it as a function of γ, and then minimizing it. Inserting
the proposed parameter into the error estimate reveals that there will be no direct dependence of the bound
on ν if a pointwise divergence-free subspace with optimal approximation property exists. It will be also
shown that one obtains different optimal stabilization parameters if one considers the L2(Ω) error of the
pressure. These parameters are smaller in many cases than those obtained for the minimization of the
H1(Ω) velocity error, in particular if the viscosity is small.

It turns out, depending on the specific situation, that the optimal stabilization parameter might be of
very different size, e.g., it depends on the norms of the velocity and pressure and the element choice, and
might depend on the mesh width h, and the viscosity ν. For the MINI element, for example, the optimal γ
decreases with h, but this is not true for the Taylor–Hood element. The proposed stabilization parameters
for the MINI element seem to be new. We like to remark that although the theory consists essentially in
refining a standard analysis, it is able to predict phenomena seemingly unobserved before. However, it does
not lead to formulas for choosing the grad-div stabilization parameter that can be used instantly in practice
since the formulas involve usually unknown constants and norms of derivatives of the velocity and pressure
solution of the continuous Stokes equations. Instead, the theory provides a qualitative understanding for
the practitioner, how the discretization method and the mesh influence the choice of a good stabilization
parameter.

The paper starts by introducing the continuous and the discrete Stokes equations as well as the space
of divergence-free and discretely divergence-free functions in Section 2. Section 3 presents the finite element
error analysis that leads to good parameter choices for minimizing different errors and for different approx-
imation properties of the pointwise divergence-free subspace. Numerical studies, presented in Section 4,
support the analytic results. In particular, it is shown that, depending on the example, the finite element
space, and the mesh, the optimal parameter might be vary from O(h2) to O(104). Section 5 summarizes the
results and further steps are discussed that are necessary for the application of the theory to more difficult
problems than considered in this paper. Throughout the paper, we use the notation (·, ·) to represent the
L2(Ω) inner product, ‖ · ‖0 the L2(Ω) norm, and | · |n the semi norm in Hn(Ω).
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2 The setup of the problem and its finite element discretization

This paper considers the Stokes equations with homogeneous Dirichlet boundary conditions: find (u, p) ∈
H1

0 (Ω)d × L2
0(Ω) in a Lipschitz domain with polyhedral boundary Ω ⊂ Rd, d ∈ {2, 3}, such that, for all

(v, q) ∈ H1
0 (Ω)d × L2

0(Ω) it holds

ν(∇u,∇v)− (∇ · v, p) = (f ,v),

(∇ · u, q) = 0.
(2.1)

For the finite element discretization, we choose pairs of conforming finite element spaces Vh ⊂ H1
0 (Ω)d

and Qh ⊂ L2
0(Ω) that satisfy the inf-sup stability condition (BB condition, LBB condition), see, e.g. [4,17],

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)

‖∇vh‖0 ‖qh‖0
≥ β > 0. (2.2)

In addition, the discrete bilinear form is extended with a grad-div stabilization in order to mitigate problems
with poor mass conservation. Then, the stabilized finite element discretization reads: For fixed γ ≥ 0, find
(uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh

ν(∇uh,∇vh) + γ(∇ · uh,∇ · vh)− (∇ · vh, ph) = (f ,vh),

(∇ · uh, qh) = 0.
(2.3)

We introduce now the spaces of weakly differentiable pointwise divergence-free functions and discretely
divergence-free functions, respectively,

V0 ={v ∈ H1
0 (Ω)d : ∇ · v = 0},

V0,h = {vh ∈ Vh : (∇ · vh, qh) = 0 for all qh ∈ Qh} .

In general, V0,h 6⊂ V0, i.e., discretely divergence-free functions need not to be pointwise divergence-free. Note
that there are only few pairs of finite element spaces that satisfy V0,h ⊂ V0. The space of divergence-free
and discretely divergence-free functions

V00,h := V0,h ∩ V0

will become important for an appropriate choice of the stabilization parameter γ.

Definition 1 (Optimal approximation properties of the divergence-free subspace) Consider a se-
quence of quasi-uniform meshes with characteristic mesh size h and the corresponding spaces V00,h. If for

all v ∈ V0 ∩Hk+1(Ω)d there exists a sequence of vh ∈ V00,h with

‖∇v −∇vh‖0 ≤ CV00,h
hk|v|k+1,

with CV00,h
independent of h, then the sequence of spaces V00,h is said to possess optimal approximation

properties (w.r.t. the space V0).

There are several known combinations of element choices and mesh types where optimal approxima-
tion properties are known to hold for V00,h, e.g. Xh = (Pk)d with k ≥ d on barycenter-refined triangu-
lar/tetrahedral meshes [27,2,31], and Xh = (P1)2 on Powell–Sabin grids [32] or Union Jack grids [33].

3 On choices of the grad-div parameter that are based on error estimates

The goal of the following analysis consists in finding good values for the stabilization parameter γ. It will be
shown that the standard parameter choice γ ∼ O(1), presented, e.g., in [25,29], is not always adequate, and
that it can even be far from optimal. This standard choice is justified in a paradigmatic way in the excellent
article [25] by deriving an optimal a-priori estimate for (2.3). We like to emphasize that the discussion of

an appropriate stabilization parameter in [25] is based on the norm (ν
1
2 ‖∇u‖0 + γ

1
2 ‖∇ · u‖0 + ‖p‖0). The

choice of an optimal γ is not really investigated there. Rather more, it is argued that the choice γ = O(1)
leads to a discrete problem that is uniformly well-posed in the corresponding energy norm with respect to
ν. Similarly, in [24] an optimal error estimate is derived in the norm (ν ‖∇u‖20 + γ ‖∇ · u‖20 + ‖p‖20)

1
2 , and

an optimal γ is derived from the right hand side of the estimate.
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In contrast, this paper studies first the optimality with respect to the velocity norm ‖∇u‖0 alone,
since one is often mainly interested in the control of this error. Such an estimate also allows to track the
influence of the divergence error in a more appropriate way, and it will be revealed that the existence of a
divergence-free subspace with optimal approximation properties changes the optimal choice of the grad-div
stabilization parameter significantly. Moreover, problems are avoided that arise from including γ into the
error norm on the left hand side of the error estimate and simultaneously varying γ in the right side of the
error estimate. Note that for large γ on a fixed grid the term γ

1
2 ‖∇ · u‖0 goes to zero only with O(γ−

1
2 )

[19]. Following this analysis, it will be verified that the asymptotic optimal choice of γ which is based on
the consideration of the error in the L2(Ω) pressure norm leads to different values as were derived for the
error in the velocity norm. The choice of a different norm with respect to the derivations in [25,29], as well
as the refined analysis, seem to explain the different results.

3.1 Appropriate choices of the grad-div parameter based on a velocity error estimate

We consider now the H1(Ω) velocity error of the discrete Stokes system with grad-div stabilization (2.3)
and use the resulting error estimate to find a good choice for γ.

Theorem 1 For a given f ∈ H−1(Ω)d, let (u, p) be the solution to (2.1), and let (uh, ph) be the solution to

(2.3). Then, the error in the L2(Ω) norm of the gradient of the velocity is bounded by

‖∇(u− uh)‖20 ≤ inf
wh∈V0,h

(
4‖∇(u−wh)‖20 + 2

γ

ν
‖∇ ·wh‖20

)
+

2

γν
inf

qh∈Qh

‖p− qh‖20. (3.1)

Proof Write u− uh = (u−wh) + (wh − uh) =: η +ψh, where wh ∈ V0,h is arbitrary. First, by the triangle
inequality and Young’s inequality, one obtains

‖∇u−∇uh‖20 ≤ 2 ‖∇η‖20 + 2 ‖∇ψh‖
2
0 . (3.2)

For any vh ∈ V0,h, one concludes by subtracting (2.1) and (2.3) that

ν(∇ψh,∇vh) + γ(∇ ·ψh,∇ · vh) = −ν(∇η,∇vh)− γ(∇ · η,∇ · vh) + (∇ · vh, p).

Choosing vh = ψh, and using that (∇ · ψh, qh) = 0 for any qh ∈ Qh, the error equation becomes, for any
qh ∈ Qh,

ν‖∇ψh‖
2
0 + γ‖∇ ·ψh‖

2
0 = −ν(∇η,∇ψh)− γ(∇ · η,∇ ·ψh) + (∇ ·ψh, p− qh).

After applying the Cauchy-Schwarz and Young’s inequality on the right hand side, one gets

ν‖∇ψh‖
2
0 + γ‖∇ ·ψh‖

2
0 ≤ ν‖∇η‖20 + γ‖∇ · η‖20 + 2‖p− qh‖0‖∇ ·ψh‖0. (3.3)

The last term on the right hand side can be estimated by

2‖p− qh‖0‖∇ ·ψh‖0 ≤ γ
−1‖p− qh‖20 + γ‖∇ ·ψh‖

2
0, (3.4)

which leads to

‖∇ψh‖
2
0 ≤ ‖∇η‖20 +

γ

ν
‖∇ · η‖20 +

1

γν
inf

qh∈Qh

‖p− qh‖20.

Finally, (3.2) gives

‖∇u−∇uh‖20 ≤ 4‖∇η‖20 + 2
γ

ν
‖∇ · η‖20 +

2

γν
inf

qh∈Qh

‖p− qh‖20

for all wh ∈ V0,h, which is just the statement of the theorem. �

The key of the analysis consists in tracking the divergence error to the final estimate (3.1). This estimate
allows to study the consequences of the error bound (3.1) on the choice of γ for two different cases. These
two cases are characterized by whether or not the pointwise divergence-free subspace of the velocity space
has optimal approximation properties.
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Corollary 1 (Taylor–Hood elements) Consider (Vh, Qh) = ((Pk)d, Pk−1) on quasi-uniform meshes and

assume that the solution (u, p) of (2.1) lies in Hk+1(Ω)d ×Hk(Ω).

Case 1) In the general case, if V00,h does not have optimal approximation properties, then the a-priori estimate

of Theorem 1 has the form

‖∇u−∇uh‖20 ≤
(

4 +
2γ

ν

)
C2
V0,h

h2k|u|2k+1 +
2C2

Qh

γν
h2k|p|2k. (3.5)

Case 2) If V00,h has optimal approximation properties, one obtains the a-priori error estimate

‖∇u−∇uh‖20 ≤ min

{(
4 +

2γ

ν

)
C2
V0,h

, 4C2
V00,h

}
h2k|u|2k+1 +

2C2
Qh

γν
h2k|p|2k. (3.6)

The constants CQh
, CV00,h

, CV0,h
are constants coming from interpolation estimates, where CV00,h

and CV0,h

depend on β−1.

Proof For the first case, one can only use that ‖∇ ·wh‖ = ‖∇ · (u−wh)‖ ≤ ‖∇(u−wh)‖ holds in this
setting. Then, one applies standard approximation theory to prove (3.5).

For the second case, if the space V00,h has optimal approximation properties, one gets an additional
estimate. Here, one can choose wh ∈ V00,h in (3.1). Hence, the velocity error term can be bounded also by

inf
wh∈V0,h

(
4‖∇(u−wh)‖20 + 2

γ

ν
‖∇ ·wh‖20

)
≤ 4C2

V00,h
h2k|u|2k+1,

since 2γν ‖∇ ·wh‖20 vanishes. Combining both results gives (3.6). Since V00,h ⊂ V0,h, one expects that CV00,h

is larger than CV0,h
. �

Remark 1 (Taylor–Hood elements) The two different cases from Corollary 1 will be discussed now in more
detail.

Case 1) If V00,h does not have optimal approximation properties, one can regard the right hand side of
(3.5) as a function dependent on γ. This function has a minimum which can be determined by elementary
calculus:

γopt ≈
CQh

CV0,h

|p|k
|u|k+1

. (3.7)

Hence, with respect to ν and h, the standard parameter choice γ = O(1) is recovered. However, we emphasize
that γopt from (3.7) may be quite large, whenever the velocity norm is small compared with the pressure
norm, and that this situation can happen in practice, e.g., in coupled flow problems like Rayleigh–Bénard
convection, see Section 4. Moreover, inserting γopt into the error estimate (3.5) gives

‖∇u−∇uh‖0 ≤ 2hk
(
C2
V0,h
|u|2k+1 +

1

ν
CV0,h

CQh
|u|k+1|p|k

)1/2

. (3.8)

This error estimate reveals a direct dependence of the optimal velocity solution on (|p|k/ν)1/2, even for the
best possible stabilization parameter. In other words, even if the approximation space V0,h can approximate
the velocity solution u perfectly, it is not guaranteed that the discrete (grad-div)-stabilized solution is a
good approximation. The grad-div stabilization is therefore able to mitigate the problem of poor mass
conservation, but in general not able to heal it perfectly.

Case 2) If V00,h has optimal approximation properties, the right hand side of estimate (3.6) is not as
easy to analyze. The numerical results in Figure 2 show, depending on the complexity of the pressure, there
may or there may be not an optimal γ, since for |p|k � |u|k+1 one has γopt = ∞, which is not feasible
in practice (but is equivalent to using ((P2)2, Pdisc

1 ) Scott–Vogelius elements [6]). Therefore, giving up the
idea of finding the optimal γ, we only want to find a good γ, which should not be ∞. We used as criterion
for the choice of γ that the contribution of the pressure error equals the maximum possible contribution of
the velocity error 4C2

V00,h
h2k|u|2k+1, which is already asymptotically optimal. This criterion leads to

γgood ≈
1

2ν

(
CQh

CV00,h

|p|k
|u|k+1

)2

. (3.9)
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The numerical studies in Section 4 will show that this consideration delivers good results. It is interesting
that only in the second case γgood is ν-dependent, which can be observed in the numerical examples as
well. In addition, inserting γgood into (3.6) gives the error estimate

‖∇u−∇uh‖0 ≤
√

8CV00,h
|u|k+1h

k, (3.10)

which does not directly depend on ν and p, but of course |u|k+1 might still depend on ν. If |u|k+1 does not
depend on ν, (3.10) shows that the grad-div stabilization is able to deliver optimal robust approximations,
if there exists a subspace of optimally converging divergence-free trial functions.

For both cases, one does not observe a dependence on the mesh width h. The dependence of the
stabilization parameter on higher order norms of the solution can be already found in [24,14].

The corollary and remark above are specific to Taylor–Hood elements, but the same techniques can be
applied to any conforming inf-sup stable finite element pair used for computing solutions of (2.3). Naturally,
results for optimal stabilization parameter γ will vary. In the numerical experiments in Section 4, the theory
will be tested on both the Taylor–Hood element and the MINI element.

3.2 Appropriate choices of the grad-div parameter based on a pressure error estimate

We consider now the effect of grad-div stabilization on the L2(Ω) pressure error and how the optimal
parameter scales with the problem data.

Theorem 2 For a given f ∈ H−1(Ω)d, let (u, p) be the solution to (2.1), let (uh, ph) be the solution to (2.3),

and assume for the inf-sup constant 0 < β ≤ O(1). Then the pressure error is bounded by

‖p− ph‖0 ≤ C(β−1)

{(
1 +

(
ν

γ

)1/2
)

inf
qh∈Qh

‖p− qh‖0

+ inf
wh∈V0,h

((
ν + (νγ)1/2

)
‖∇(u−wh)‖0 +

(
(νγ)1/2 + γ

)
‖∇ ·wh‖0

)}
. (3.11)

Proof From Equations (2.1) and (2.3) it follows that ∀vh ∈ Vh

(p− ph,∇ · vh) = ν(∇(u− uh),∇vh) + γ(∇ · (u− uh),∇ · vh).

Writing p− ph = (p− qh) + (qh− ph) for arbitrary qh ∈ Qh, and dividing both sides by ‖∇vh‖ and reducing
gives

(qh − ph,∇ · vh)

‖∇vh‖0
= ν

(∇(u− uh),∇vh)

‖∇vh‖0
+ γ

(∇ · (u− uh),∇ · vh)

‖∇vh‖0
− (∇ · vh, p− qh)

‖∇vh‖0
≤ ν ‖∇(u− uh)‖0 + γ ‖∇ · (u− uh)‖0 + ‖p− qh‖0 .

Next, applying the inf-sup stability (2.2) implies that

β ‖ph − qh‖0 ≤ ν ‖∇(u− uh)‖0 + γ ‖∇ · (u− uh)‖0 + ‖p− qh‖0

for any qh ∈ Qh. Hence by the triangle equality one obtains

‖p− ph‖0 ≤
ν

β
‖∇(u− uh)‖0 +

γ

β
‖∇ · (u− uh)‖0 +

(
1 +

1

β

)
inf

qh∈Qh

‖p− qh‖0 . (3.12)

From (3.1) it follows immediately that

‖∇(u− uh)‖0 ≤ inf
wh∈V0,h

(
2‖∇(u−wh)‖0 +

(
2γ

ν

)1/2

‖∇ ·wh‖0

)
+

(
2

γν

)1/2

inf
qh∈Qh

‖p− qh‖0. (3.13)

Applying to (3.3)

2‖p− qh‖0‖∇ ·ψh‖0 ≤ 2γ−1‖p− qh‖20 +
γ

2
‖∇ ·ψh‖

2
0
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instead of (3.4), one can derive with the same arguments the estimate

‖∇ · (u− uh)‖0 ≤ inf
wh∈V0,h

((
2ν

γ

)1/2

‖∇(u−wh)‖0 +
(

1 +
√

2
)
‖∇ ·wh‖0

)
+

2

γ
inf

qh∈Qh

‖p− qh‖0. (3.14)

Then from (3.12)–(3.14), one gets

‖p− ph‖0 ≤ β
−1

{(
β + 1 + 2 +

(
2ν

γ

)1/2
)

inf
qh∈Qh

‖p− qh‖0

+ inf
wh∈V0,h

((
2ν + (2νγ)1/2

)
‖∇(u−wh)‖0 +

(
(2νγ)1/2 +

(
1 +
√

2
)
γ
)
‖∇ ·wh‖0

)}
,

and assuming that β ≤ O(1) allows this to be reduced to (3.11). �

Note that the assumption on β is without loss of generality. If (2.2) holds for some positive β, it holds
also for all positive stabilization parameters smaller than β.

The impact of the error bound (3.11) on the choice of the stabilization parameter will be studied in
more detail again for the pairs of Taylor–Hood elements.

Corollary 2 (Taylor–Hood elements) Let the conditions of Corollary 1 hold.

Case 1) If V00,h does not have optimal approximation properties, one obtains the error estimate

‖p− ph‖0 ≤ C(β−1)

((
1 +

(
ν

γ

)1/2
)
CQh

hk|p|k +
(
ν + (νγ)1/2 + γ

)
CV0,h

hk|u|k+1

)
. (3.15)

Case 2) If V00,h has optimal approximation properties, the a-priori error estimate becomes

‖p− ph‖0 ≤ C(β−1)

((
1 +

(
ν

γ

)1/2
)
CQh

hk|p|k

+ min
{(
ν + (νγ)1/2 + γ

)
CV0,h

,
(
ν + (νγ)1/2

)
CV00,h

}
hk|u|k+1

)
. (3.16)

Proof The statements follow with the same arguments as were used in the proof of Corollary 1. �

Remark 2 Similarly to the velocity case, we want to find good values for γ. However, minimizing the a priori
error estimate with respect to γ is more complex than in the velocity case. For instance, the necessary
condition for getting the optimal value of γ from (3.15) leads to an equation of the form

ν

4

(
CQh
|p|k

CV0,h
|u|k+1

− γ
)2

= γ3. (3.17)

Standard calculus gives that there is at least one non-negative value of γ that satisfies (3.17) which is
smaller than (CQh

|p|k)/(CV0,h
|u|k+1). This value is the most left non-negative intersection of the curves on

both sides of (3.17). Since the right hand side of (3.15) is a continuous function for γ ∈ (0,∞) with the
limit ∞ at both ends of this interval, the most left local extremum must be a minimum. In the interesting
case that ν is small, the curve on the left hand side of (3.17) becomes flat and then there will be exactly
one intersection of both curves, which has to correspond to a minimum and which has to be smaller than
(CQh

|p|k)/(CV0,h
|u|k+1). We could not obtain an analytic expression for this minimum, but a comparison

with (3.7) shows already that one gets a different (smaller) optimum than obtained for minimizing the
H1(Ω) error of the velocity. In the case of small ν, where the lowest power of ν is of importance, a slight
dependence γgood = O(ν1/3) can be deduced from (3.17).

Considering Case 2 on the same basis like in Remark 1 gives

γgood =
CQh
|p|k

CV00,h
|u|k+1

. (3.18)

Again, the parameter is different from those obtained for minimizing the H1(Ω) error of the velocity. In
contrast to (3.9), the parameter (3.18) does not depend on the inverse of ν such that one can expect that
for small ν the parameter (3.9) is larger than (3.18).
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4 Numerical experiments

Two numerical experiments will be presented in this section. The first one is for an analytic test problem
with known solution to support the analysis. In this experiment, the optimal values for γ can be computed
and these values will be compared with the predictions from Section 3. The second example is of more
practical interest; it is a Rayleigh–Bénard convection for silicon oil. Here, an analytic expression for the
analytic solution is unknown, but from experiments one can hypothesize that |p|2/|u|3 is very large, and
therefore large grad-div stabilization parameters may significantly improve results. It will be verified that
this is indeed the case.

4.1 Optimal stabilization parameters for an analytic test problem

This section will verify that the different regimes for choosing γopt or γgood given in the previous section
can be observed in numerical simulations. Examples with prescribed analytic solutions will be considered.
Further steps of the application of the analytic results to more complicated situations will be pointed out
at the end of Section 4.1.

The discretization of the Stokes problem was studied with two choices of conforming inf-sup stable pairs
of finite element spaces and with three types of meshes. We considered (2.1) with Ω = (0, 1)2 and with the
prescribed velocity solution

u =

(
cos(2πy)
sin(2πx)

)
.

Four values for the viscosity were studied, ν ∈ {1, 10−1, 10−3, 10−6}, and three different functions that serve
as a prescribed pressure solution:

p1 = sin(2πy), p2 = sin(8πy), p3 = 104 sin(2πy).

For each of these solutions, the forcing f was computed using the Stokes equation. In all examples, Dirichlet
boundary conditions for the velocity were applied. The discrete problem (2.3) was then solved with varying
stabilization parameter γ ∈ [10−3, 104]. More than 500 values for γ were chosen in this interval, with finer
distances for small γ and increasing distances for large γ. The simulations were performed with the code
MooNMD [16] and selected results were double checked with freeFEM [10].

The first purpose of the numerical studies was to verify that the analysis-based selections of γopt or
γgood, e.g., see (3.7) or (3.9) for the Taylor–Hood finite element, are close to the actual optimal γ, in the
sense of minimizing the H1(Ω) velocity error. Secondly, the optimal stabilization parameters were computed
also on the basis of minimizing the L2(Ω) error of the pressure to show the differences to the velocity case
and to illustrate the predictions from Remark 2.

There are unknown interpolation constants in the predictions of the optimal stabilization parameter.
For each simulation, after having found the optimal parameter, one can compute an estimate of these
constants. To get some idea of the magnitude of these constants, for all results with respect to the velocity
error in the H1(Ω) norm, we computed the estimate if the optimal parameter was not a boundary point
of the interval [10−3, 104]. Then, the three smallest and the three largest of these estimates were neglected
(to remove extreme values which might come from round-off errors, see below) and from the remaining
estimates the median and the arithmetic mean will be given.

Delaunay triangulations, barycenter refinements of triangular meshes, and Union Jack (criss-cross)
meshes were considered. The use of these meshes allows to study the cases of optimal vs. non-optimal
approximation properties of the pointwise divergence-free subspaces of the velocity spaces for the ((P2)2, P1)
and the ((Pbub

1 )2, P1) pairs of finite elements. From [2,27] it is known that the pointwise divergence-free
subspace of the (P2)2 velocity space has optimal approximation properties on a barycenter refinement of a
regular mesh. Also, the pointwise divergence-free subspace of the (Pbub

1 )2 velocity on Union Jack meshes
has optimal approximation properties, see [33]. An example of each of the considered mesh types is shown
in Figure 1.

From the available numerical analysis, which tracks the dependence of the stabilization parameter on
the viscosity and the mesh width, the proposal for this parameter is γ = O(1) in the case of inf-sup stable
pairs of finite element spaces of Taylor–Hood type, [3,21]. The analysis of Section 3 leads to the same
asymptotics for the case that the divergence-free subspace does not possess the optimal approximation
property, see (3.7). However, in the other case, the dependence O(ν−1) is predicted, see (3.9).

We could not find in the literature studies of the grad-div stabilization for the MINI element. However,
the use of the MINI element ((Pbub

1 )2, P1) for the Stokes problem is equivalent to applying the PSPG
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Fig. 1 Barycenter-refined (h = 1/8), Delaunay (h = 1/16), and Union Jack (criss-cross, h = 1/16) meshes (left to right)
used in the numerical studies.

stabilization with the equal-order pair ((P1)2/P1) with a special choice of the PSPG parameter [26]. The
finite element error analysis of the PSPG/grad-div stabilization for the ((P1)2/P1) pair of finite element
spaces applied to the Stokes equations proposes to choose γ = O(ν) [8,9,21,3]. In this analysis, contributions
from the PSPG stabilization are used to estimate the coupled velocity-pressure terms of the weak form of
the Stokes equations. In the analysis of Section 3, these terms had to be estimated in a different way. It will
turn out that the application of the results of Section 3 to the MINI element lead to different proposals for γ
than O(ν), namely O(h2/ν) or O(h), depending on the approximation property of the pointwise divergence-
free subspace. Since the results from Sections 4.1.3 and 4.1.4 indicate that γ = O(ν) is often a bad choice
for small ν, we do not wish to call it the standard choice for the grad-div parameter. Altogether, we could
not identify a parameter choice which is standard for the MINI element.

To unify and simplify the presentation of the numerical results, the analytically proposed parameters
will be denoted by γgood below and the “optimal γ” will be the stabilization parameter that corresponds
to the actually best results in the simulations.

4.1.1 ((P2)2, P1) Taylor–Hood element on barycenter-refined meshes

First, the ((P2)2, P1) Taylor–Hood element on a barycenter-refined uniform mesh is considered, a case where
it is known that the divergence-free subspace of the velocity space has optimal approximation properties [2].
Thus, following the scaling analysis of the previous section, a good choice of γ for this test problem for
minimizing the H1(Ω) velocity error will satisfy, see (3.9),

γgood ≈ C0
1

2ν

|p|22
|u|23

=



C0

16νπ2
for p1,

16C0

νπ2
for p2,

108C0

16νπ2
for p3,

(4.1)

where C0 is an unknown constant, which is independent of h and γ. Numerical simulations were performed
on three meshes, with h ∈ {1/8, 1/16, 1/32} (the h = 1/8 mesh is shown in Figure 1 on the left hand side).

The results of the numerical studies are presented in Figure 2, where the H1(Ω) velocity error is plotted
against the grad-div stabilization parameter γ. The legends contain the actual optimal values of γ and
the H1(Ω) velocity error for the standard choice γ = 1 (std.). The qualitative behavior of the results
in relation with the predictions from (4.1) will be discussed. From (4.1) one expects an increase of the
optimal parameter for decreasing viscosities. A good situation for observing this behavior are the cases
where |p|22/|u|23 is small, i.e., the cases p1 and p2. In Figure 2, one can see the expected behavior always
for p1 (first column) and mostly for p2 (second column). For the case p2 it should be noted that the error
is always almost constant for all viscosities and γ & 100. In such a situation, small changes of the velocity
errors due to round-off errors might become important for the determination of the optimal stabilization
parameter. Next, one expects from (4.1) that γ increases notably if |p|22 increases. This effect is clearly
visible by comparing, on the one hand, p2 and p1 (second and first column) and, on the other hand, p3 and
p2 (third and second column). The next prediction is that very large optimal γ occur if ν is very small or |p|22
is large. Finally, one does not expect a dependence of the optimal γ on the mesh width. Both expectations
were always met. For C0 in (4.1), the mean value 3.36 and the median 3.33 were estimated.

With respect to the accuracy of the computed solution, one can see clearly that in the case of |p|22 being
large, i.e. for p3 (third column), the errors computed with the optimal γ are smaller by several orders of
magnitude than the errors obtained with the standard parameter γ = 1. The independence of the error for
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Fig. 2 H1(Ω) velocity errors vs. grad-div stabilization parameter γ, for each of the Stokes solutions, on successive refine-
ments of barycenter-refined uniform meshes, “std” gives the error for γ = 1.

the optimal parameter γ on ν, which is predicted in (3.10) together with |u|3 being independent of ν, can
be observed as well.

Results for the L2(Ω) pressure error are shown in Figure 3. We could observe that for all pressures and
for all viscosities, the pressure error was almost constant and the relative change in the pressure error was
very small for varying γ. For this reason, numerical errors, like round-off errors (in particular in the case
of small viscosities), might have influence in the determination of the optimal parameter and we are not
sure if it is possible to draw reliable conclusions with respect to all aspects of the prediction (3.18) on the
basis of these results. Also, one should keep in mind that (3.18) was derived under the assumption of the
maximal possible second term in (3.16). For the sake of brevity, only the results for p3 are presented and
discussed in some detail. Similar discussions could be performed for p1 and p2. First of all, it was predicted
in Remark 2 that the optimal stabilization parameter for the pressure error is smaller than for the velocity
error. This behavior can be seen clearly for all simulations. Then, we could observe that the optimal γ
generally increases with increasing pressure norm |p|2 and in Figure 3 one can see that the optimal γ
does not depend on the mesh width. Both observation are conform with (3.18). However, in Figure 3, a
dependence of the optimal γ on ν can be observed, which is not predicted by (3.18). The dependence is
inverse to the velocity case. At the moment, one possible explanation are the round-off errors mentioned
above.

4.1.2 ((P2)2, P1) Taylor–Hood element on Delaunay-generated triangulations

Next, the case of ((P2)2, P1) Taylor–Hood elements on a Delaunay-generated triangulation is considered,
which is a situation where it is not expected that the pointwise divergence-free subspace of the velocity
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Fig. 3 L2(Ω) pressure errors vs. grad-div stabilization parameter γ, for p3 on three barycenter refined triangulations with
h ∈ {1/8, 1/16, 1/32}, “std” gives the error for γ = 1.

space has optimal approximation properties. Hence, the parameter choice (3.7) should be applied, such that

γgood ≈



C0√
8π

for p1,

C0

√
32

π
for p2,

C0104

√
8π

for p3.

(4.2)

The test problems were computed on three successively finer Delaunay-generated triangulations with
h ∈ {1/8, 1/16, 1/32}. The mesh with h = 1/16 is depicted in Figure 1.

The results with respect to the error in the H1(Ω) velocity norm are displayed in Figure 4. Again, the
behavior of the numerical results in comparison with the analytical predictions will be discussed. From (4.2)
one does not expect a dependence of the optimal stabilization parameter on the viscosity. This behavior
can be observed rather well for p1 and p2 (first and second column), except for the case ν = 10−6. But
note that in this case the error is almost constant in a wide range of γ and the round-off errors might have
influence particularly in this case. Next, a moderate increase of the optimal γ between p1 and p2 is expected
from (4.2). Comparing with the other case of a subspace with optimal approximation property, (4.1) and
Figure 2, the increase should be smaller in the present case. Both predictions can be observed well in the
numerical results. Further, very large optimal parameters are expected for large |p|2, which is clearly seen
for p3 (third column). Finally, a dependence of the optimal parameter on the mesh width is not predicted
from (4.2). Also this feature can be observed. The estimated mean value of C0 from (4.2) was 6.45 and the
median was 3.00.

From the prediction (4.2), one can expect that for each pressure there is a parameter choice, which is
independent of the mesh width and the viscosity, that should give good results. In Figure 4 one can see
that such choices are γ = 1 for p1, γ = 5 for p2, and γ = 104 for p3. Since inserting (3.7) into the error
estimate (3.5) leads to the dependence on ν−1/2 of terms on the right hand side of the estimate, see (3.8),
one expects to see an increase of the error for the optimal stabilization parameter if ν decreases. For p1
and p2 (first and second column), this increase can be observed. One cannot see this effect for p3. We think
that again round-off errors are responsible. The case p3 requires a very large γ, see (4.2), and then the
grad-div contribution in the velocity-velocity coupling dominates the contribution from the viscous term.
In the numerics, the round-off errors arising in adding terms of much different magnitudes annihilate the
contribution of the viscous term.

With respect to the L2(Ω) norm of the pressure, we could again observe that the error was almost
constant in a wide range of γ. For this reason, we present again only the results obtained for p3, see
Figure 5. Most importantly, one can clearly see that the optimal γ is smaller than for the H1(Ω) error
of the velocity, as it was predicted in Remark 2. In addition, one can see that the optimal γ decreases
with decreasing ν, which was also predicted. For p3, one gets larger optimal γ with decreasing mesh width,
although in (3.17) a mesh dependence does not occur. However, because of the very small relative changes
of the pressure errors and the possible influence of round-off errors, in our opinion, the last two observations
should not be used for conclusive statements.
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Fig. 4 H1(Ω) velocity errors vs. grad-div stabilization parameter γ, for each of the Stokes solutions, on three Delaunay-
generated triangulations with h ∈ {1/8, 1/16, 1/32}, “std” gives the error for γ = 1.

Fig. 5 L2(Ω) pressure errors vs. grad-div stabilization parameter γ, for p3 on three Delaunay-generated triangulations
with h ∈ {1/8, 1/16, 1/32}, “std” gives the error for γ = 1.

4.1.3 The MINI element on Union Jack triangulations

Now, the MINI element ((Pbub
1 )2, P1) is considered, which was first studied in [1]. The simulations were

performed on meshes of Union Jack type with h ∈ {1/16, 1/32, 1/64}, see the right hand side picture in
Figure 1 for the coarsest of these meshes. From [33] it is known that on this type of meshes the MINI
element has the property that the pointwise divergence-free subspace of the velocity space has optimal
approximation properties. Arguing the same way as for the Taylor–Hood finite element, the theory derived
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Fig. 6 H1(Ω) velocity errors vs. grad-div stabilization parameter γ, for each of the Stokes solutions, using the MINI element
on Union Jack triangulations with h ∈ {1/16, 1/32, 1/64}. We think that round-off errors influenced the simulations with
the largest stabilization parameters and ν = 10−6 on the finest mesh.

in the previous section predicts that a good choice of γ should satisfy

γgood ≈
C0h

2

2ν

|p|22
|u|22

=


C0

h2

4ν
for p1,

64C0
h2

ν
for p2,

2.5 · 107C0
h2

ν
for p3.

(4.3)

Note that there is now a dependence of the parameter on the mesh width, which comes from the equal-order
interpolation of the velocity and pressure finite element space. Asymptotically, one has γgood = O(h2/ν)
and in particular γgood → 0 as h→ 0.

The results of the numerical simulations are presented in Figure 6. From (4.3), one predicts decreasing
optimal stabilization parameters for decreasing mesh sizes. This expectation is always met. Similarly, the
increase of the optimal stabilization parameter for small viscosities can be observed well for p1 and p2. For
p3, there is one exception concerning this issue, the computation for ν = 10−6 on the grid with h = 1/64.
We think that round-off errors might gained some influence in the simulations with the largest stabilization
parameters. For C0 in (4.3), the mean value 0.068 and the median 0.075 was estimated.

For the same reason as discussed in Sect. 4.1.1, no dependence of the error for the optimal stabilization
parameter on ν is expected. This expectation is met.

4.1.4 The MINI element on Delaunay-generated triangulations

Finally, the MINI element on Delaunay-generated triangulations will be considered, where one does not
expect the divergence-free subspace of the velocity space to have optimal approximation properties. Hence,
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Fig. 7 H1(Ω) velocity errors vs. grad-div stabilization parameter γ, for each of the Stokes solutions, using the MINI
element on Delaunay-generated triangulations with h ∈ {1/16, 1/32, 1/64}.

the optimal stabilization parameter should be derived with the same arguments that were used to get (3.7),
such that

γgood ≈ C0h
|p|2
|u|2

=


C0√

2
h for p1,

8
√

2C0h for p2,

5000
√

2C0h for p3.

(4.4)

Figure 7 presents the results of the numerical simulations. In accordance with the expectations from
(4.4), the optimal parameter decreases with mesh refinement. A dependence on the viscosity is not predicted.
Save on the coarsest mesh, this prediction is fulfilled. In addition, note that particularly for small viscosities
the error is almost constant on these meshes in a wide interval that includes the optimal stabilization
parameter. The estimated mean value of C0 from (4.4) was 0.19 and the median 0.17.

In this case, one expects from (3.8) a dependence of the error for the optimal γ on ν−1/2. In fact, an
increase of the error for small ν can be observed in Figure 7.

4.1.5 Outlook to more complicated situations

For applying the results of the analysis, it is crucial to know whether or not a pointwise divergence-free
subspace with optimal approximation properties exists. A first idea for answering this question for unknown
situations is based on the fact that the existence of such a subspace depends only on the finite element
space (grid and element choice) but not on the concrete problem. Given a triangulation, one can consider
the Stokes equations with different viscosities and with a prescribed solution which does not depend on the
viscosity. Performing simulations as presented in this section, one monitors the dependence of the optimal
stabilization parameter and of the error in the H1(Ω) norm of the velocity on the viscosity. If there is
a pointwise divergence-free subspace with optimal approximation property, the optimal parameter should
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Fig. 8 The domain and boundary conditions for the natural convection problem.

increase for decreasing ν and the error should not depend on ν. For the other case, the situation should
be vice versa. After having identified the case, an estimate for C0 can be computed. The study of the
practicability of this approach is outside the scope of this paper.

4.2 Rayleigh–Bénard convection for silicon oil

The second test problem we consider is the differentially heated cavity on the unit square with Rayleigh
number Ra = 106, Prandtl number Pr =∞ (corresponding to silicon oil), with no slip boundary conditions
for the velocity, and mixed Dirichlet/Neumann conditions for the temperature, see Figure 8. Since Pr =∞,
the system of equations that governs this flow is given by

−∆u +∇p = (0,Ra T )T in Ω,

∇ · u = 0 in Ω,

−∆T + u · ∇T = 0 in Ω.

Although this system is nonlinear because of the energy equation, the momentum equation is a Stokes
equation. Thus, the theory developed in this paper is applicable.

This system was implemented with a standard finite element approach, see, e.g., [11], using (Vh, Qh) =
((P2)2, P1) Taylor–Hood elements to approximate velocity and pressure, respectively, and Xh = P2 to
approximate temperature. The finite element formulation for a specified Ra takes the form: Find (uh, ph, Th−
Td,h) ∈ Vh ×Qh ×Xh such that for all (vh, qh, sh) ∈ Vh ×Qh ×Xh

ν(∇uh,∇vh) + γ(∇ · uh,∇ · vh)− (∇ · vh, ph) = ((0,Ra Th)T,vh),

(∇ · uh, qh) = 0,

(∇Th,∇sh) + (u · ∇Th, sh) = 0,

(4.5)

where Td,h is an extension of the Dirichlet data to the finite element space with inhomogeneous Dirichlet
boundary conditions. The nonlinearity of (4.5) is resolved using Newton’s method, to a relative difference
of 10−10 in successive iterates. We also found it necessary to use a continuation method in Ra to get
convergence with Ra = 106 (via Ra ∈ {104, 105, 106}), and each Newton iteration typically took 4 or
5 iterations to converge. Plots of the resolved solution’s velocity streamlines, pressure contours, speed
contours, and temperature contours are shown in Figure 9. Observe that the size of the pressure ph is on
the order of 105, while the speed |uh|2 is on the order of 102, and hence the size of the velocity is on the
order 101. Thus, the ratio of the size of the pressure to the size of the velocity is very large, and from
the contour plots one can expect |p|2/|u|3 to be large as well. Considering this problem on a coarse mesh,
a larger velocity error (compared with the reference solution) can be expected that is dominated by the
contribution from the pressure. The analysis presented in this paper suggests that this contribution can be
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Max vertical velocity at y = 0.5 is 237.705
Max horizontal velocity at x = 0.5 is 84.6975
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Fig. 9 The velocity streamlines (top left), temperature contours (top right), pressure contours (bottom left), and speed
contours (bottom right) of the resolved solution to the differentially heated cavity.

Fig. 10 The mesh used for the differentially heated cavity problem.

reduced by increasing the grad-div stabilization parameter γ, thereby reducing the overall error, and finally
leading to significantly improved solutions for the velocity.

We computed solutions to (4.5), using ((P2)2, P1, P2) elements for velocity-pressure-temperature, on the
mesh shown in Figure 10 that provided 3,679 total degrees of freedom, with varying grad-div stabilization
parameter γ. Solutions are shown in Figure 11, as velocity streamlines and temperature contours. Comparing
with the resolved solution in Figure 9, the temperature contours agree for all solutions except when γ = 0,
but the velocity streamlines are correct only for the γ = 1, 000 and γ = 10, 000 simulations. Hence, one
observes an increase in accuracy from the use of large grad-div stabilization parameters, as expected. A
similar observation was reported in [7] for the case Pr = 1.

5 Conclusions and outlook

A re-investigation of the question of optimal grad-div stabilization parameters in finite element methods for
the Stokes equations was presented that clarified that one has to distinguish several situations for designing
such a parameter for conforming inf-sup stable pairs of finite element spaces, depending on whether the
H1(Ω) error of the velocity or the L2(Ω) error of the pressure is of interest. It was verified that the
question of the existence of a divergence-free subspace with optimal approximation properties is crucial.
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Max vertical velocity at y = 0.5 is 242.214
Max horizontal velocity at x = 0.5 is 84.6142
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γ = 1, 000 γ = 10, 000

Max vertical velocity at y = 0.5 is 242.023
Max horizontal velocity at x = 0.5 is 83.4122

Max vertical velocity at y = 0.5 is 242.015
Max horizontal velocity at x = 0.5 is 83.4028

Fig. 11 Differentially heated cavity problem: velocity streamlines and temperature contours of solutions with varying γ.

Consequently, the optimal parameter choice does not even have the same expression within classes of finite
element spaces, e.g., within the class of Taylor–Hood finite elements, as it depends on the concrete space
itself, i.e., on the properties of the grid and the element choice together. In addition, the regularity of
the solution also plays a role for the optimal stabilization parameter. Based on estimate (3.1), one can
derive parameters for solutions with reduced smoothness by applying interpolation estimates to spaces
with appropriate regularity.

A main observation is that the bound of the error estimate for the H1(Ω) error of the velocity does
not depend directly on the viscosity and the pressure if a pointwise divergence-free subspace with optimal
approximation properties exists and an appropriate stabilization parameter is used. It was shown that a
good choice of the stabilization parameter for minimizing the H1(Ω) velocity error gives in many cases
larger parameters than obtained for minimizing the L2(Ω) error of the pressure. For the MINI element,
good stabilization parameters were derived on the basis of the present analysis which seem to be new.

The present paper gave an analytic support for the observation from [11] that the use of large stabi-
lization parameters is appropriate in certain situations. Numerical studies were presented that support the
analytic results. Moreover, and particularly important for applications, an enormous error reduction (in
the H1(Ω) error of the velocity) could be observed in certain cases by using parameters predicted on the
basis of the present analysis instead of parameters of O(1), as they were proposed in the literature (based
on error estimates for other norms). Also in a more complex flow problem, the choice of large stabilization
parameters resulted in considerable improvements of the computed velocity field.

Extending the analytic considerations to more complex equations or systems from Computational Fluid
Dynamics will result in more terms on the right hand side of the error estimates. Hence, it will become more
complicated to derive information about a good value of the stabilization parameters. This issue will be
studied in future work. Also from the practical point of view, a number of issues need to be addressed. How
to determine whether the divergence-free subspace of the finite element velocity has optimal approximation
properties? A first idea for answering this question was presented in Section 4.1.5. Or, how to estimate
parameters of form (3.7) or (3.9) efficiently without knowledge of the analytic solution? Altogether, there
are a number of topics for further research on the grad-div stabilization.

Acknowledgment. We would like to acknowledge two unknown referees whose valuable hints helped to
improve this paper considerably.
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