
An assessment of the LCD method for solving

linear systems arising in SDFEM

discretizations of convection–diffusion

equations

Leopoldo P. Franca 1

Department of Mathematics, University of Colorado at Denver, P.O. Box 173364,

Campus Box 170, Denver, CO 80217-3364, U.S.A.

Christopher Harder 2

Department of Mathematics, University of Colorado at Denver, P.O. Box 173364,

Campus Box 170, Denver, CO 80217-3364, U.S.A.

Volker John 3

FR 6.1 – Mathematik, Universität des Saarlandes, Postfach 15 11 50, 66041

Saarbrücken, Germany

Abstract

A numerical assessment of the recently proposed left conjugate direction method
(LCD) for solving non–symmetric systems of linear equations is presented. A restarted
version of LCD is compared to GMRES with restart for systems which arise in the
streamline–diffusion finite element discretization (SDFEM) of convection–dominated
scalar convection–diffusion equations. We consider equations whose solution posses
boundary or interior layers in two or three space dimensions. The equations are
discretized with finite elements up to fourth order. The numerical studies show that
GMRES with restart works in general more efficiently than LCD with restart.

Key words: convection–diffusion equations, iterative solvers for non–symmetric
linear systems, left conjugate direction method, GMRES
1991 MSC: 65N22, 65N30

1 E-mail: lfranca@math.cudenver.edu, The research of this author was partially
funded by the NSF grant 0339107 and grant 0325314
2 E-mail: charder@math.cudenver.edu, The research of this author was partially
funded by the NSF grant 0339107
3 corresponding author, E-mail: john@math.uni-sb.de, The research of this author

Preprint submitted to Elsevier Science 23 November 2005



1 Introduction

The numerical solution of convection–dominated convection–diffusion equa-
tions is not only of interest by itself. It is also part of many numerical sim-
ulations of complex problems, like disperse systems, air and water pollution
simulations, etc.

A standard discretization scheme for such equations are finite element meth-
ods. One crucial issue in the discretization is the stabilization of the dominat-
ing convective term. Popular approaches are the Streamline–Diffusion Finite
Element Method (SDFEM), [3], or the use of residual free bubble (RFB) func-
tions, [1,2]. For an overview on possible approaches, consult [11]. The discrete
systems are in general large, sparse and non–symmetric. An iterative scheme
becomes necessary for their efficient solution.

There are a number of established iterative schemes for non–symmetric linear
systems of equations, like GMRES [13], BicGStab [14], QMR and their vari-
ants, see [12] for an overview. Recently, the left conjugate direction method
(LCD) has been introduced in [15]. A natural question is how LCD behaves
in comparison to established schemes for certain classes of non–symmetric lin-
ear systems of equations. This paper studies this question for systems which
arise from the SDFEM discretization of scalar convection–diffusion equations
in two and three space dimensions. The numerical studies compare a restarted
version of LCD with a restarted GMRES method.

A comparison of LCD(restart) and GMRES(restart) has been started in [4].
In this paper, two–dimensional convection–diffusion equations have been con-
sidered which were discretized with first order finite elements on triangular
grids. LCD(restart) was compared with GMRES(restart) without precondi-
tioner and with diagonal preconditioner. The conclusion of the numerical
studies in [4] show on the one hand that LCD(restart) required in general
less iterations than GMRES(restart) but often a larger computing time. On
the other hand, it is stated that “much more experiments are needed before
reaching a final conclusion on its effectiveness”. The present paper provides
these numerical experiments. In comparison to [4], the study of LCD was
extended into three directions:

- the consideration of three–dimensional convection–diffusion equations,

- the consideration of higher order finite element discretizations,
- the consideration of more preconditioners (SOR, ILU).

That in applications the solution of three–dimensional problems is of impor-
tance does not need any comment. The use of higher order discretizations has

was partially funded by the Deutsche Akademische Austauschdienst (D.A.A.D)

2



recently become quite popular and it is now a current topic of research. An
interesting approach in this respect for convection–diffusion equations is the
use of high order finite elements in subregions where the solution is smooth
and of fine meshes in the other subregions, the so–called h–p adaptive method.
It is well known that the algebraic properties of linear systems of equations
are different for low and high order discretizations. Systems arising from high
order discretizations are in general much harder to solve and the construction
of efficient solvers for such systems is a current field of research. Last, the
diagonal preconditioner is the simplest one and the use of other precondition-
ers will in general enhance the efficiency of the iterative solver. This will be
demonstrated in the numerical studies in this paper.

The paper is organized as follows. In Section 2, the scalar convection–diffusion
equations and their SDFEM discretization are introduced. The LCD method
is presented and commented in Section 3. The numerical studies can be found
in Section 4. Section 5 contains the final conclusions of these studies.

2 The governing equation and its finite element discretization

We consider scalar reaction–convection–diffusion equations of the form

−∇ · ε∇u + b · ∇u + cu = f in Ω

u = gD on ∂ΩD

ε
∂u

∂n
= gN on ∂ΩN ,

(1)

where Ω ⊂ R
d, d ∈ {2, 3}, is a bounded domain with boundary ∂Ω = ∂ΩD ∪

∂ΩN . The diffusion parameter ε > 0, the convection field b, the reaction c,
the right hand side f , the Dirichlet boundary condition gD and the Neumann
boundary condition gN are given functions, n denotes the outward normal on
∂Ω.

For simplicity of presentation, let us now consider the case that ∂Ω = ∂ΩD

and gD = 0 on ∂Ω. Defining V = H1
0 (Ω), the variational formulation of (1)

reads as follows: Find u ∈ V such that for all v ∈ V

(ε∇u,∇v) + (b · ∇u + c, v) = (f, v), (2)

where (·, ·) denotes the inner product in L2(Ω).

We are interested in the convection–dominated case ε << ‖b‖L∞. It is well
known that in this case the standard Galerkin finite element solution of (2)

3



possesses spurious oscillations when the mesh cell Peclét number

PeK :=
‖b‖L∞(K)hK

2ε
,

is larger than one, where hK is the size of the mesh cell K. It becomes neces-
sary to introduce some stabilization. There are different proposals in the lit-
erature, such as the Streamline–Diffusion Finite Element Method (SDFEM),
(also known as Streamline–Upwind Petrov–Galerkin method (SUPG)), the
Galerkin/least–squares method, RFB methods or multiscale methods. See [7]
for a recent overview. The SDFEM, proposed in [3], might be the most popular
of these. We will use it in the numerical studies.

Let T h be a triangulation of Ω and let V h ⊂ V be a conforming finite element
space. The SDFEM has the form: Find uh ∈ V h such that for all vh ∈ V h

(ε∇uh,∇vh) + (b · ∇uh + cuh, vh)

+
∑

K∈T h

δK(−ε∆uh + b · ∇uh + cuh,b · ∇vh)K

=(f, vh) +
∑

K∈T h

δK(f,b · ∇vh)K . (3)

Different proposals for choosing the parameters δK can be found in the liter-
ature. We have used in our numerical studies, see [6],

δK =















hK

2‖b‖L∞(K)

(

coth(PeK) −
1

PeK

)

if ‖b‖L∞(K) 6= 0

0 if ‖b‖L∞(K) = 0.

In the numerical studies, finite element spaces V h = Pk, k ∈ {1, 2, 3, 4},
on triangular grids, k ∈ {1, 2, 3} on tetrahedral grids, and V h = Qk, k ∈
{1, 2, 3, 4}, in quadrilateral and hexahedral grids are considered.

3 The left preconditioned LCD method with restart

The application of the SDFEM leads to an algebraic system of equations of
the form

Ax = b. (4)

The matrix A is sparse and in general non–symmetric. Let M be a non–
singular matrix which will be applied as a left preconditioner to (4)

M−1Ax = M−1b. (5)

4



Also, the system matrix M−1A is in general non–symmetric.

The usual way of solving (5) consists of applying an iterative method, like GM-
RES [13] or BiCGStab [14], which can treat systems with a non–symmetric
matrix. See [12] for an overview. In particular GMRES has become quite pop-
ular since the norm of the residual cannot increase during the iteration. This
property results from the construction of the method where the j–th iterate is
chosen in the Krylov subspace x(0) + span{r(0), Ar(0), . . . , Aj−1r(0)} such that
the Euclidean norm of the residual becomes minimal. Here, x(0) and r(0) are
the initial iterate and the initial residual, respectively. Recently, an alternative
method has been proposed, the left conjugate direction method (LCD), [15].
Unlike GMRES, LCD does not rely upon the minimization of the residual in
some Krylov subspace. Instead, a basis of the Krylov subspace is constructed
where the solution of (4) can be determined by solving a triangular system.
Both methods share the property that they require the storage of additional
vectors in each iteration step. To keep the additional memory requirements
reasonable, restarted versions have been proposed for both.

As the left preconditioned GMRES method with restart can be found else-
where in the literature, e.g. in [12], we shall not present it here. However, we
present the left preconditioned LCD method with restart in detail:

Algorithm 3.1 left preconditioned LCD method with restart for the
solution of (5). Given A, M , b and x.

1. z := M−1(b− Ax)
2. res := ‖z‖

2

3. if (res ≤ resmin)

4. maxit := minit

5. choose v0

6. j := 1

7. while (j ≤ maxit)
8. for (i := 0; i < restart AND j ≤ maxit; i + +, j + +)

9. qi := ATM−Tvi

10. α := vi · z
11. α1 := vi · qi

12. α := α/α1

13. x := x + αvi

14. d := M−1Avi

15. z := z− αd

16. res := ‖z‖
2

17. if (res ≤ resmin)

18. return

19. vi+1 := z

5



20. for (k := 0; k <= i; k + +)

21. βk := qk · vi+1

22. if (k == i)

23. β := qi · vi

24. β := −β/βk

25. vi+1 := vi+1 + βvk

26. endfor

27. endfor

28. choose v0

29. endwhile

30. return

From now on, we will speak of “GMRES(k)” instead of “left preconditioned
GMRES method with restart” and of “LCD(k)” instead of ”left preconditioned
LCD method with restart”, where k is the restart parameter.

Let A = L + D + U , where L is the strict lower triangle, D is the diagonal
and U the strict upper triangle. In the numerical studies, we have used the
following preconditioners:

1. no preconditioner: M = I (identity),

2. diagonal or Jacobi preconditioner: M = D,

3. SOR preconditioner: M = D + ωL, where ω = 1.5 was used in all com-
putations,

4. ILU preconditioner: M = L̃Ũ , where L̃Ũ is an incomplete factorization
of A.

We tested also the ILUβ preconditioner with various values of β > 0, where all
entries of the LU–factorization of A which do not fit into the sparsity pattern
of A are multiplied with β and the modulo of this product is added to the
diagonal of Ũ . The results were in most cases similar to the ILU preconditioner.

Remark 3.2 1. GMRES(k) requires in each iteration one matrix–vector
product and one application of the preconditioner. LCD(k) needs two of
both operations, lines 9 and 14. The solution is, however, directly available
in LCD(k), line 13, whereas it has to be computed in a post–processing
step in GMRES(k). But altogether, one iteration of LCD(k) is more ex-
pensive than one GMRES iteration.

2. The LCD(k) method requires the multiplication with AT and the appli-
cation of the transposed preconditioner, line 9. The multiplication with
AT can be easily performed if the matrix is stored in the standard CSR
sparse matrix structure. However, the application of the transposed pre-
conditioner may cause difficulties, namely if there is not a simple repre-
sentation of M . An example is

6



M =SSOR(A)

= (D + ωU)−1 ((1 − ω)D − ωL) (D + ωL)−1 ((1 − ω)D − ωU) ,(6)

with ω ∈ (0, 2). The implementation of this preconditioner requires only a
few lines of coding where its matrix representation is not used. However,
to apply the transposed preconditioner, we do not see any other possibility
than to use the transpose of (6). This will be quite inefficient and therefore
we did not pursue the use of M = SSOR(A) in LCD(k). Another example
of this kind would be that M is given by a multigrid method. In summary,
there are preconditioners whose application in LCD(k) is rather difficult.

3. The required application of the transposed matrix is also problematic in
Jacobian–free or matrix–free methods, e.g., see [10]. In these methods, the
entries of A are not stored explicitly and a multiplication by AT cannot
be performed that easy way as described in the Remark 3.2.2.

4. GMRES(k) needs one vector with length proportional to the number of
unknowns per iteration (the next basis vector of the Krylov subspace).
In comparison, LCD(k) needs two vectors of this length per iteration (qi

and vi+1). Thus, also from the point of additional memory requirements,
one iteration of LCD(k) is roughly twice as expensive as one iteration of
GMRES(k).

We performed our computations with the flexible finite element code
MooNMD, [9]. With respect to the total memory requirements, one has
to store also the (unstructured) grid information, the matrix, the right
hand side and the solution vector. We found out that for small restart
parameters, as they are used in the numerical studies presented in Sec-
tion 4, the total memory requirements of LCD(k) are only insignificantly
larger than that of GMRES(k) for the same restart parameter k.

5. The use of the SOR and the ILU preconditioner in LCD(k) requires the
solution of triangular systems with the matrices (D + ωL)T , L̃T and ŨT ,
respectively. The matrices (D + ωL), L̃ and Ũ are stored using the CSR
sparse matrix structure. For the efficient solution of the triangular systems
with the transposed matrices, it is necessary to have a CSR sparse matrix
structure for the transposed matrices. This structure has to be computed
in a pre–processing step. Its storage requires some additional memory.

6. Crucial for the efficiency of LCD(k) are the choices of v0 in lines 5 and 28.
Let x be the solution of (5) and x0 be the initial iterate. It is shown in [15]
that the optimal choice of v0 is a vector which is parallel to x̄ = x − x0.
Then LCD converges in one iteration. However, the same holds true for
GMRES if the initial iterate is parallel to the solution.

One obtains from (5)

x̄ = A−1(b − Ax0).

In the numerical tests presented in this paper, we used the approximation

7



of x̄
5. v0 := D−1(b− Ax0).

In addition to this choice, we also tested also v0 := b, as proposed in [4],
and v0 := M−1b. The final number of iterations was in all tests similar
for all three choices of the initial iterate.

Concerning the choice of v0 after the restart, line 28, we used also

28. v0 := D−1(b− Ax),

where x is the current iterate. The best option found in [4] was v0 :=

vrestart (last vector v computed before the restart). We also tested this
choice and we found that the number of iterations changed in general
only slightly compared to the vector which we used.

Altogether, there were no substantial differences in the numerical re-
sults with all the different choices of v0 in lines 5 and 28 which we tested.

4 The Numerical Studies

The computational studies have been performed with the code MooNMD, [8,9].
The GMRES(k) and LCD(k) methods have been assessed on two examples in
two dimensions and on two three–dimensional examples. All examples were
defined in Ω = (0, 1)d, d ∈ {2, 3}. In each dimension, we considered one
example with interior layers (Examples 4.1 and 4.3) and one example with
layers at the outflow boundary (Examples 4.2 and 4.4). Such layers are typical
for solutions of convection–diffusion equations.

The coarsest quadrilateral grid (level 0) in two dimensions and the coarsest
hexahedral grid in three dimensions consist just of one mesh cell. The coarsest
triangular grid is obtained by dividing the unit square from (0, 0) to (1, 1).
The coarsest tetrahedral grid is obtained by decomposing the unit cube into
six tetrahedra. The numbers of degrees of freedom (d.o.f.), including Dirichlet
nodes, are given for different finite element spaces on different levels in Tables 1
and 2. The number of non–zero matrix entries in the stiffness matrices on the
finest levels from Tables 1 and 2 are given in Table 3.

The initial iterate on each level was set to be zero for all interior nodes and
to the value of the boundary condition for nodes on Dirichlet boundaries.
This is a natural situation in one–level methods for solving a linear system
of equations. If a hierarchy of levels is available, a multigrid method should
be used as solver or as preconditioner. We also performed studies with initial
iterates which were prolongations from the next coarser grid. In these studies,
we found the same conclusions concerning the efficiency of GMRES(k) and
LCD(k) as will be reported below for the zero initial iterate.

8



Table 1
Degrees of freedoms in the two–dimensional examples.

level P1, Q1 P2, Q2 P3, Q3 P4, Q4

3 625 1089

4 1089 2401 4225

5 1089 4225 9409 16641

6 4225 16641 37249 66049

7 16641 66049 148225 263169

8 66049 263169

9 263169

Table 2
Degrees of freedoms in the three–dimensional examples.

level P1, Q1 P2, Q2 P3, Q3 Q4

2 2197 4913

3 4913 15625 35937

4 4913 35937 117649 274625

5 35937 274625

6 274625

Table 3
Number of non–zero matrix entries on the finest levels given in Tables 1 and 2.

P1 Q1 P2 Q2 P3 Q3 P4 Q4

2d 1831939 2354692 3006472 4181515 2495632 3668374 6137371 9398821

3d 3895491 6980352 7408330 16399545 5214680 13319110 54884481

We compare GMRES(k) and LCD(k) with the same restart parameter k.
Numerical tests were performed for k ∈ {5, 10, 20} which are commonly used
values. Since the qualitative results are the same for all these parameters,
we present only results for k = 20 in detail. Comments to the other restart
parameters will be given below. The iterations were stopped if the Euclidean
norm of the residual was less than 10−10. We found out in the course of our
numerical studies that changing the stopping criterion, e.g. to the Euclidean
norm of the residual less than 10−6 or 10−8, does not change the conclusions
in comparing GMRES(k) and LCD(k). All computations were performed on
a PC with a 3 GHz Intel Pentium 4 processor. The computing times are given
in seconds.

9



4.1 The two–dimensional examples

We did not observe substantial differences in the behavior of the solvers be-
tween the linear systems of equations coming from finite elements on triangu-
lar and on quadrilateral grids. Therefore, we will present only a subset of the
numerical results covering each polynomial degree once.

Example 4.1 2D solution with interior layers. The coefficients in (1) are
given by ε = 1e − 8, b = (−y, x)T , c = 0 and f = 0. Homogeneous Neumann
boundary conditions gN = 0 are prescribed on ∂ΩN = {(x, y) ∈ ∂Ω : x =
0, y ∈ (0, 1)}. The Dirichlet boundary conditions on the rest of the boundary
are as follows:

gD =











1 if x ∈ (1/3, 2/3) and y = 0,

0 else.

An illustration of the solution is presented in Figure 1. The number of itera-
tions and the computing times for GMRES(20) and LCD(20) for computing
the solution of this example are presented in Tables 4 – 7.

Fig. 1. Contour lines of the solutions of Example 4.1 (left) and Example 4.2 (right).

Example 4.2 2D solution with regular boundary layers. We consider (1)
with ε = 1e − 8, b = (2, 3)T , c = 1 and ∂ΩD = ∂Ω. The right hand side and
the boundary conditions are chosen such that

u(x, y)= xy2 − y2 exp

(

2(x − 1)

ε

)

− x exp

(

3(y − 1)

ε

)

+ exp

(

2(x − 1) + 3(y − 1)

ε

)

is the solution, see Fig. 1. The solution possesses typical regular boundary
layers at x = 1 and y = 1. The behavior of GMRES(20) and LCD(20) in this
example is presented in Tables 8 – 11.

Evaluation of the computational results. With respect to the computing time,
GMRES(20) was in most cases better than LCD(20). Only for first order dis-

10



Table 4
Example 4.1, Q1 finite element discretization on a quadrilateral mesh

level 5 6 7 8 9

prec. ite time ite time ite time ite time ite time

no GMRES(20) 278 0.02 350 0.20 599 1.46 970 17.12 1698 126.59

LCD(20) 181 0.04 221 0.19 329 1.47 534 13.16 958 97.12

diag. GMRES(20) 203 0.03 284 0.24 430 1.50 701 15.28 1191 108.42

LCD(20) 100 0.03 164 0.20 241 1.50 409 13.20 719 99.10

SOR GMRES(20) 76 0.01 166 0.16 234 0.91 412 9.60 746 73.18

LCD(20) 68 0.02 107 0.18 194 1.45 316 11.96 572 90.92

ILU GMRES(20) 30 0.01 56 0.06 179 0.85 240 6.59 459 51.02

LCD(20) 31 0.01 47 0.08 92 0.89 178 8.24 255 49.50

Table 5
Example 4.1, P2 finite element discretization on a triangular mesh

level 4 5 6 7 8

prec. ite time ite time ite time ite time ite time

no GMRES(20) 362 0.07 515 0.33 850 2.27 1431 26.70 2648 202.85

LCD(20) 353 0.07 424 0.45 656 3.24 1178 31.31 2092 226.32

diag. GMRES(20) 224 0.03 362 0.31 540 2.02 909 19.98 1634 150.26

LCD(20) 173 0.04 244 0.34 371 2.57 626 21.93 1117 161.07

SOR GMRES(20) 118 0.02 252 0.25 352 1.49 537 13.43 860 90.97

LCD(20) 90 0.04 128 0.26 193 1.66 322 13.64 541 95.84

ILU GMRES(20) 72 0.01 196 0.25 296 1.67 456 13.47 694 84.08

LCD(20) 74 0.04 162 0.41 193 2.23 260 14.15 440 99.18

cretizations in Example 4.1, Table 4, LCD(20) was sometimes a little faster
than GMRES(20). For higher order discretizations, GMRES(20) was always
superior. Considering the ratio of computing times of LCD(20) and GM-
RES(20), one finds that this ratio tends to grow with the order of the fi-
nite element. Consequently, for fourth order finite elements, GMRES(20) was
clearly faster. The smaller sensitivity of GMRES(20) with respect to the poly-
nomial degree of the finite element can be also observed at the number of
iterations. Whereas LCD(20) needs often much less iterations for linear and
bilinear finite elements than GMRES(20), the numbers of iterations became
similar for both schemes for higher order discretizations. Since one iteration of

11



Table 6
Example 4.1, Q3 finite element discretization on a quadrilateral mesh

level 3 4 5 6 7

prec. ite time ite time ite time ite time ite time

no GMRES(20) 318 0.01 456 0.27 721 1.51 1128 12.89 2037 106.49

LCD(20) 319 0.07 434 0.40 681 2.61 1008 19.21 1794 143.98

diag. GMRES(20) 218 0.02 325 0.23 469 1.26 743 10.76 1330 83.03

LCD(20) 195 0.03 279 0.34 369 1.94 586 14.31 973 101.05

SOR GMRES(20) 109 0.02 213 0.18 287 1.10 458 8.30 719 56.89

LCD(20) 110 0.04 150 0.28 214 1.75 296 10.97 466 72.99

ILU GMRES(20) diverges

LCD(20) diverges

Table 7
Example 4.1, P4 finite element discretization on a triangular mesh

level 3 4 5 6 7

prec. ite time ite time ite time ite time ite time

no GMRES(20) 834 0.17 1167 1.06 1867 7.04 3747 84.89 6100 548.88

LCD(20) 937 0.29 1577 2.62 2217 15.28 3557 121.76 6439 903.14

diag. GMRES(20) 411 0.11 592 0.64 837 4.11 1319 36.07 2577 279.88

LCD(20) 399 0.18 612 1.32 1017 9.51 1421 62.98 2344 424.20

SOR GMRES(20) 227 0.07 320 0.51 475 3.15 714 24.44 1203 158.79

LCD(20) 212 0.12 286 1.02 388 5.57 573 37.67 901 239.39

ILU GMRES(20) diverges

LCD(20) diverges

GMRES(20) is considerably cheaper than one iteration of LCD(20), the corre-
sponding computing times with GMRES(20) are much better for higher order
discretizations. For smaller restart parameters k ∈ {5, 10}, we obtained quali-
tatively the same results as for k = 20. We could observe that the superiority
of GMRES(k) in comparison to LCD(k) was even larger for k ∈ {5, 10}.

Concerning the preconditioners, one can observe that the diagonal precondi-
tioner improved the performance of the solvers, measured in computing time,
only in Example 4.1. In Example 4.2, no preconditioning was in general bet-
ter than applying this preconditioner. For the systems coming from the first

12



Table 8
Example 4.2, P1 finite element discretization on a triangular mesh

level 5 6 7 8 9

prec. ite time ite time ite time ite time ite time

no GMRES(20) 100 0.01 168 0.08 310 0.70 426 7.39 736 52.88

LCD(20) 85 0.02 179 0.15 237 0.94 377 8.82 644 62.67

diag. GMRES(20) 111 0.02 198 0.15 340 1.07 477 9.99 801 68.44

LCD(20) 97 0.03 184 0.22 260 1.43 404 13.24 680 88.38

SOR GMRES(20) 48 0.01 107 0.08 174 0.61 276 5.98 470 43.78

LCD(20) 53 0.01 98 0.15 167 1.11 236 8.33 352 51.85

ILU GMRES(20) 22 0.01 39 0.03 84 0.36 200 5.05 326 34.46

LCD(20) 28 0.01 49 0.10 100 0.83 168 6.99 233 40.61

Table 9
Example 4.2, Q2 finite element discretization on a quadrilateral mesh

level 4 5 6 7 8

prec. ite time ite time ite time ite time ite time

no GMRES(20) 107 0.02 244 0.17 376 1.13 536 10.36 923 75.80

LCD(20) 115 0.04 232 0.32 320 1.73 501 14.77 831 100.77

diag. GMRES(20) 110 0.03 283 0.29 380 1.46 595 14.85 1026 106.05

LCD(20) 127 0.03 241 0.44 353 2.74 517 20.82 917 148.16

SOR GMRES(20) 63 0.01 116 0.14 225 1.14 346 9.93 560 63.47

LCD(20) 65 0.03 103 0.25 197 2.09 324 16.49 466 95.29

ILU GMRES(20) 37 0.02 72 0.11 125 0.83 260 9.05 355 51.84

LCD(20) 40 0.02 68 0.24 128 1.91 193 13.03 305 83.74

and second order discretizations, ILU was the most efficient preconditioner.
However, ILU failed in general for higher order discretizations. Obviously, the
higher the order of the discretization becomes the worse is the approximation
of A−1 by (ILU(A))−1. Failures of ILU preconditioning in other situations, e.g.,
with matrices arising from linearized Navier–Stokes equations, are observed
also in [5]. The best preconditioner for the solution of the systems from third
and fourth order discretizations was in general SOR. It can be observed that
both iterative schemes behaved similar with respect to the preconditioners
studied, i.e., there was no case in which a certain preconditioner improved one
scheme much more than the other one.

13



Table 10
Example 4.2, P3 finite element discretization on a triangular mesh

level 3 4 5 6 7

prec. ite time ite time ite time ite time ite time

no GMRES(20) 117 0.01 181 0.09 299 0.51 401 4.05 680 32.33

LCD(20) 116 0.01 208 0.13 253 0.80 421 6.24 660 46.17

diag. GMRES(20) 119 0.01 204 0.10 314 0.76 478 5.95 743 41.28

LCD(20) 126 0.03 187 0.17 329 1.42 457 8.85 697 65.43

SOR GMRES(20) 74 0.01 99 0.07 198 0.56 302 4.58 471 30.79

LCD(20) 77 0.02 107 0.12 154 0.94 256 7.19 392 47.58

ILU GMRES(20) 80 0.01 118 0.13 207 0.80 369 6.93 639 52.60

LCD(20) 80 0.03 121 0.21 226 1.93 438 16.85 760 122.41

Table 11
Example 4.2, Q4 finite element discretization on a quadrilateral mesh

level 3 4 5 6 7

prec. ite time ite time ite time ite time ite time

no GMRES(20) 325 0.11 379 0.43 587 2.81 1016 25.98 1775 199.61

LCD(20) 299 0.13 434 0.94 639 5.51 1079 46.15 1902 330.81

diag. GMRES(20) 314 0.10 384 0.53 582 3.32 1071 32.51 1801 227.92

LCD(20) 314 0.18 447 1.20 621 6.80 1039 55.18 1921 414.39

SOR GMRES(20) 210 0.08 300 0.60 419 3.47 667 26.94 1074 184.73

LCD(20) 215 0.18 302 1.43 422 8.15 690 59.82 1141 398.96

ILU GMRES(20) diverges

LCD(20) diverges

4.2 The three–dimensional examples

In the three–dimensional examples, we found only small differences for the
behavior of the solvers on tetrahedral and hexahedral meshes. For this reason,
we will present for each examples only one result for each polynomial degree
of the finite element spaces.

Example 4.3 3D solution with interior layers. This example is given by
the coefficients ε = 1e − 8, b = (0.5, 0.75,−0.75)T , c = 0 and f = 0 in (1).

14



Homogeneous Neumann boundary conditions gN = 0 are described on the
outflow boundary ∂ΩN = {(x, y, z) ∈ ∂Ω : x = 1 or y = 1 or z = 0}. The
Dirichlet boundary condition on the rest of the boundary is given by

gD =











1 if (x, y, z) ∈ ∂Ω ∈ and
√

(x − 1/4)2 + y2 + (z − 3/4)2 < 0.1,

0 else.

In this example, an inflow of the form of a circular disk is transported through
the domain to the outflow boundary, see Figure 2. The behavior of GM-
RES(20) and LCD(20) is presented in Tables 12 – 15.

Fig. 2. Isosurface u = 1 of the solution of Example 4.3.

Table 12
Example 4.3, Q1 finite element discretization on a hexahedral mesh

level 4 5 6

prec. ite time ite time ite time

no GMRES(20) 86 0.08 163 1.80 290 30.11

LCD(20) 67 0.11 90 1.70 152 24.52

diag. GMRES(20) 107 0.16 195 2.71 349 43.88

LCD(20) 81 0.21 115 2.75 189 38.53

SOR GMRES(20) 45 0.09 59 1.00 164 25.16

LCD(20) 46 0.19 60 2.29 102 32.02

ILU GMRES(20) 24 0.08 30 0.90 59 13.25

LCD(20) 25 0.17 31 1.83 57 26.61

Example 4.4 3D solution with regular boundary layers. In this exam-
ple, we consider (1) with ε = 1e − 8, b = (2, 3, 4)T , c = 1 and ∂ΩD = ∂Ω.
The right hand side f and the Dirichlet boundary conditions have been chosen
such that

15



Table 13
Example 4.3, P2 finite element discretization on a tetrahedral mesh

level 3 4 5

prec. ite time ite time ite time

no GMRES(20) 269 0.27 392 4.46 524 55.66

LCD(20) 281 0.56 361 6.40 521 86.70

diag. GMRES(20) 220 0.29 347 5.03 533 66.02

LCD(20) 216 0.58 321 8.14 443 91.92

SOR GMRES(20) 115 0.21 176 3.20 293 46.28

LCD(20) 119 0.52 161 6.50 229 76.01

ILU GMRES(20) 124 0.34 218 5.70 325 72.15

LCD(20) 127 0.80 195 11.38 290 138.45

Table 14
Example 4.3, P3 finite element discretization on a tetrahedral mesh

level 2 3 4

prec. ite time ite time ite time

no GMRES(20) 417 0.27 485 2.44 858 46.70

LCD(20) 380 0.44 537 5.14 937 85.65

diag. GMRES(20) 286 0.21 477 2.82 725 45.35

LCD(20) 281 0.39 447 5.39 676 73.67

SOR GMRES(20) 187 0.19 283 2.45 383 32.53

LCD(20) 203 0.50 299 6.66 361 71.83

ILU GMRES(20) diverges

LCD(20) diverges

u(x, y, z)

=

(

x − exp

(

2(x − 1)

ε

))(

y2 − exp

(

3(y − 1)

ε

))(

z3 − exp

(

4(z − 1)

ε

))

is the solution of (1). The solution possesses regular boundary layers at x = 1,
y = 1 and z = 1. This is a three–dimensional version of Example 4.2. The
computational results obtained with GMRES(20) and LCD(20) are presented
in Tables 16 – 19.

16



Table 15
Example 4.3, Q4 finite element discretization on a hexahedral mesh

level 2 3 4

prec. ite time ite time ite time

no GMRES(20) 714 3.14 874 33.6 1663 559.89

LCD(20) 627 5.31 1375 104.73 1657 1070.47

diag. GMRES(20) 732 3.43 1312 55.17 1117 400.08

LCD(20) 654 6.13 839 69.17 1230 852.53

SOR GMRES(20) 365 2.92 534 36.84 726 427.9

LCD(20) 379 8.34 557 105.78 769 1217.19

ILU GMRES(20) diverges

LCD(20) diverges

Table 16
Example 4.4, P1 finite element discretization on a tetrahedral mesh

level 2 3 4

prec. ite time ite time ite time

no GMRES(20) 59 0.04 82 0.71 147 12.77

LCD(20) 62 0.07 87 1.19 132 16.73

diag. GMRES(20) 71 0.08 112 1.33 171 18.02

LCD(20) 73 0.13 113 2.07 173 29.09

SOR GMRES(20) 39 0.05 50 0.64 68 8.02

LCD(20) 39 0.10 50 1.20 69 14.83

ILU GMRES(20) 22 0.03 30 0.51 40 6.26

LCD(20) 22 0.08 30 1.04 41 12.68

Evaluation of the computational results. The evaluation of the three–dimensional
computational results shows a picture similar to that of the two–dimensional
results. With respect to the computing time, LCD(20) was occasionally com-
petitive with GMRES(20) for the first order discretizations, Table 12. For
higher order discretizations, GMRES(20) was clearly better. In addition, we
could observe that the superiority of GMRES(k) in comparison to LCD(k)
increased for k ∈ {5, 10}. The best preconditioner for the solution of the sys-
tems coming from the first order discretizations was ILU. This preconditioner
failed often for higher order discretizations. SOR was the best preconditioner
for higher order discretizations on tetrahedral grids. For higher order dis-

17



Table 17
Example 4.4, Q2 finite element discretization on a hexahedral mesh

level 2 3 4

prec. ite time ite time ite time

no GMRES(20) 89 0.14 102 1.64 176 26.06

LCD(20) 96 0.28 111 3.14 159 39.72

diag. GMRES(20) 105 0.19 128 2.36 199 32.56

LCD(20) 110 0.36 134 4.54 199 58.39

SOR GMRES(20) 56 0.17 72 1.96 92 22.52

LCD(20) 57 0.38 72 4.89 99 56.86

ILU GMRES(20) 34 0.37 44 3.89 55 37.45

LCD(20) 34 0.58 43 6.55 59 68.23

Table 18
Example 4.4, P3 finite element discretization on a tetrahedral mesh

level 2 3 4

prec. ite time ite time ite time

no GMRES(20) 140 0.08 200 0.88 257 13.16

LCD(20) 145 0.13 197 1.69 244 21.12

diag. GMRES(20) 127 0.09 211 1.14 303 18.22

LCD(20) 133 0.12 205 2.22 337 35.31

SOR GMRES(20) 77 0.07 117 0.96 161 13.47

LCD(20) 82 0.18 121 2.39 167 31.33

ILU GMRES(20) 640 0.84 diverges

LCD(20) diverges

cretizations on hexahedral grids, often no preconditioning was the best choice
among the approaches which were studied in this paper.

5 Concluding remarks

The paper presented an assessment of the LCD(restart) algorithm for solv-
ing non–symmetric linear systems of equations which arise in the SDFEM
discretization of convection–dominated convection–diffusion equations in two

18



Table 19
Example 4.4, Q4 finite element discretization on a hexahedral mesh

level 2 3 4

prec. ite time ite time ite time

no GMRES(20) 500 1.81 520 18.59 718 235.51

LCD(20) 506 3.70 538 37.94 657 410.33

diag. GMRES(20) 348 1.40 507 19.69 789 276.17

LCD(20) 372 2.95 581 44.36 699 469.43

SOR GMRES(20) 234 1.59 345 22.54 483 280.00

LCD(20) 267 4.73 362 62.05 520 790.32

ILU GMRES(20) diverges

LCD(20) diverges

and three space dimensions. LCD(restart) was compared to GMRES(restart).
With respect to the computing times, GMRES(restart) was more efficient than
LCD(restart) for all systems which came from second or higher order finite el-
ement spaces. LCD(restart) was occasionally competitive to GMRES(restart)
for solving systems coming from first order discretizations. Among the studied
preconditioners, ILU worked best for low order discretizations but it failed in
general for higher order discretizations. The best preconditioner for systems
generated from high order discretizations was in general SOR.

Since the preconditioned LCD method requires the application of the trans-
posed preconditioner, the application of several preconditioners which is easily
with GMRES, like SSOR or multigrid methods, becomes much harder with
LCD. In particular, the application of a multigrid preconditioner enhances
the performance of GMRES considerably. Together with the numerical results
obtained in this paper, one must conclude that LCD, in its current form, does
not present an efficient alternative to GMRES (or other iterative schemes
which perform comparable to GMRES) for the solution of linear systems aris-
ing in SDFEM discretizations of convection–dominated convection diffusion
equations. The development of a transposed–free version of LCD in the future
might change this conclusion.

References

[1] C. Baiocchi, F. Brezzi, and L.P. Franca. Virtual bubbles and the galerkin/least
squares method. Comp. Meth. Appl. Mech. Engrg., 105:125 – 142, 1993.

19



[2] F. Brezzi, L.P. Franca, T.J.R. Hughes, and A. Russo. b =
∫

g. Comp. Meth.

Appl. Mech. Engrg., 145(329 - 339), 1997.

[3] A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin
formulations for convection dominated flows with particular emphasis on the
incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng.,
32:199–259, 1982.

[4] L. Catabriga, A.L.G.A. Coutinho, and L.P. Franca. Evaluating the LCD
algorithm for solving linear systems of equations arising from implicit supg
formulation of compressible flows. Int. J. Numer. Meth. Engrg., 60:1513 –
1534, 2004.

[5] E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite
matrices. J. Comp. Appl. Math., 86:387 – 414, 1997.

[6] I. Christie, D.F. Griffiths, A.R. Mitchell, and O.C. Zienkiewicz. Finite element
methods for second order differential equations with significant first derivatives.
Int. J. Numer. Meth. Engrg., 10:1389 – 1396, 1976.

[7] T.J.R. Hughes, G. Scovazzi, and L.P. Franca. Mulitiscale and stabilized
methods. In E. Stein, R. de Borst, and T.J.R. Hughes, editors, Encyclopedia of

Computational Mechanics, volume 3, chapter 2. John Wiley & Sons, 2004.

[8] V. John. Large Eddy Simulation of Turbulent Incompressible Flows. Analytical

and Numerical Results for a Class of LES Models, volume 34 of Lecture Notes

in Computational Science and Engineering. Springer-Verlag Berlin, Heidelberg,
New York, 2004.

[9] V. John and G. Matthies. MooNMD - a program package based on mapped
finite element methods. Comput. Visual. Sci., 6:163 – 170, 2004.

[10] D.A. Knoll and D.E. Keyes. Jacobian-free Newton-Krylov methods: a survey
of approaches and applications. J. Comput. Phys., 193:357 – 397, 2004.

[11] H.-G. Roos, M. Stynes, and L. Tobiska. Numerical Methods for Singularly

Perturbed Differential Equations. Springer, 1996.

[12] Y. Saad. Iterative methods for sparse linear systems. SIAM, Philadelphia, 2nd
edition, 2003.

[13] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856
– 869, 1986.

[14] H.A. van der Vorst. Bi-cgstab: A fast and smoothly converging variant of bi-
cg for the solution of non-symmetric linear systems. SIAM Sci. Stat. Comp.,
12:631 – 644, 1992.

[15] J.Y. Yuan, G.H. Golub, R.J. Plemmons, and W.A.G. Cecilio. Semi-
conjugate direction methods for real positive definite systems. BIT Numerical

Mathematics, 44:189 – 207, 2004.

20


