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Reference values for drag and lift of a two-dimensional
time-dependent �ow around a cylinder
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SUMMARY

This paper presents a numerical study of a two-dimensional time-dependent �ow around a cylinder. Its
main objective is to provide accurate reference values for the maximal drag and lift coe�cient at the
cylinder and for the pressure di�erence between the front and the back of the cylinder at the �nal time.
In addition, the accuracy of these values obtained with di�erent time stepping schemes and di�erent
�nite element methods is studied. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Navier–Stokes equations are the fundamental equations of �uid dynamics. Many schemes
for their numerical solution have been developed and probably will be developed. These
schemes have to be tested at appropriate examples. A common way consists in choosing a
velocity–pressure pair (u; p) and setting the right-hand side and the boundary conditions such
that (u; p) ful�ls the Navier–Stokes equations. But a solution (u; p) chosen in this way has
in general no physical meaning. In addition, the typical quantities which are investigated, like
errors in norms of Lebesgue or Sobolev spaces, are often not of interest in applications.
It is unlikely to �nd an analytical description of solutions of real �ow problems. Even

for academic test examples which try to mimic at least some features of real �ows, like the
test problem chosen in this paper, analytical solutions are not known generally. There are two
ways to provide reference data for such problems. The �rst one consists in the measurement of
quantities of interest in experiments. The second way is to perform careful numerical studies
with highly accurate discretizations. The development of high-performance computers in the
recent decades made this way feasible. An advantage of this approach is that in the reference
data no measurement errors are present. Thus, the use of advanced numerical techniques can
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provide highly accurate reference data which can be used, e.g. for the validation of codes
or for convergence studies of discretizations. Examples of this approach can be found in
the literature, e.g. for the stationary Navier–Stokes equations. In Reference [1], reference
data for the vortices in a two-dimensional driven cavity problem are obtained in this way.
The reattachment point of vortices in a two-dimensional backward facing step problem are
computed in Reference [2]. Drag and lift coe�cients of a two-dimensional �ow around a
cylinder are computed very accurately in References [3, 4]. Even for a three-dimensional �ow
around a cylinder such data are available in Reference [5].
This paper presents a numerical study of a time-dependent two-dimensional �ow through

a channel around a cylinder. The de�nition of this test problem is simple such that it can
be implemented easily in each code. The �ow described by the test problem possesses fea-
tures which often occur in real �ow problems and whose accurate simulation is important in
applications, like the formation and separation of eddies.
This test problem has been de�ned within the DFG high priority program �ow simulation

with high-performance computers in Reference [6]. The goal in Reference [6] was the de�ni-
tion of reference values for the maximum of the drag and lift coe�cient at the cylinder and
for the di�erence of the pressure between the front and the back of the cylinder at the �nal
time. The computational results of nine di�erent groups which worked with di�erent codes
can be found in Reference [6]. There were codes which used implicit temporal discretizations
as well as codes based upon explicit ones. As spatial discretizations �nite di�erence schemes,
�nite volume schemes or �nite element methods were applied. Based on the available numer-
ical results from these groups, the authors of Reference [6] could not de�ne reference values
for the above-mentioned parameters but they de�ned reference intervals, see also Section 4.
In the numerical studies presented in this paper, the underlying Navier–Stokes equations

are discretized by an implicit second-order time stepping scheme (fractional-step �-scheme or
Crank–Nicolson scheme) and by an isoparametric second-order �nite element discretization
(Q2=Pdisc1 or P2=P1). The computations on the �nest grids (6400 time steps, around half a
million degrees of freedom in space) allow the de�nition of reference values for the above-
mentioned parameters. This means that the accuracy of the reference data is improved con-
siderably in comparison to Reference [6]. The availability of reference values (instead of
reference intervals) simpli�es also the assessment of numerical results obtained at the given
test problem.
In addition to the de�nition of the reference values, the accuracy of the results obtained with

the di�erent discretizations with various lengths of the time step and on di�erent re�nement
levels in space is studied.

2. THE TEST PROBLEM

We consider the time-dependent incompressible Navier–Stokes equations

ut − ��u+ (u · ∇)u+∇p= f in (0; T ]×�

∇ · u=0 in [0; T ]×�

u(0; x; y) = 0 in �
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Figure 1. Domain � of the test problem.

u= g in [0; T ]× @�
∫
�
p dx dy=0 in (0; T ] (1)

where � is the channel with the cylinder presented in Figure 1, �=10−3 m2 s−1, f = 0 and
T =8 s. The time-dependent in�ow and out�ow pro�le

u(t; 0; y)= u(t; 2:2; y)=0:41−2 sin(�t=8)(6y(0:41− y); 0) m s−1; 06y60:41

is prescribed. No-slip conditions are given at the other boundaries. The mean in�ow velocity
is U (t)= sin(�t=8) m s−1 such that Umax =1 m s−1. Based on U (t) and the diameter of the
cylinder L=0:1 m, the Reynolds number of the �ow is 06Re(t)6100. The density of the
�uid is given by �=1 kg m−3. Since the considered problem is two-dimensional, it is well
known that a weak solution (u; p) exists and this solution is unique, e.g. see References [7, 8]
for a precise de�nition of a weak solution and proofs.
The development of the �ow is depicted in Figure 2.‡ With increasing in�ow, two vortices

start to develop behind the cylinder, see t=2 and 4 s. Between t=4 and 5 s, the vortices
separate from the cylinder and a vortex street develops. The vortices are still visible at the
�nal time T =8 s.
The parameters of interest are the drag coe�cient cd(t) at the cylinder, the lift coe�cient

cl(t) and the di�erence of the pressure between the front and the back of the cylinder

�p(t)=p(t; 0:15; 0:2)− p(t; 0:25; 0:2)

The de�nition of cd(t) and cl(t) in Reference [6] is as follows:

cd(t) =
2

�LU 2
max

∫
S

(
��
@utS (t)
@n

ny − p(t)nx
)
dS (2)

cl(t) =− 2
�LU 2

max

∫
S

(
��
@utS (t)
@n

nx + p(t)ny

)
dS (3)

‡These pictures have been plotted with the software package GRAPE.
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Figure 2. The velocity at times 2, 4, 5, 6, 7 and 8 s.

Here, n=(nx; ny)T is the normal vector on S directing into �, tS =(ny;−nx)T the tangential
vector and utS the tangential velocity. A straightforward calculation gives

cd(t)=−20
∫
�
[�∇u(t) : ∇vd + (u(t) · ∇)u(t) · vd − p(t)(∇ · vd)] dx dy (4)

for all functions vd ∈ (H 1(�))2 with (vd)|S =(1; 0)T and vd vanishes on all other boundaries.
Similarly, one obtains

cl(t)=−20
∫
�
[�∇u(t) : ∇vl + (u(t) · ∇)u(t) · vl − p(t)(∇ · vl)] dx dy (5)

for all test functions vl ∈ (H 1(�))2 with (vl)|S =(0; 1)T and vl vanishes on all other boundaries.
We have the experience that the volume integral formulations (4), (5) are more accurate
and less sensitive to the approximation of the circular boundary S than the line integral
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formulations (2), (3), see Reference [9]. The actual choice of vd and vl in our computations
is the same as in the steady-state problem investigated in Reference [4].
The evolutions of cd(t); cl(t) and �p(t) which were computed with very �ne discretizations

in time and space will be presented in Section 4. Since it is not possible to give the complete
data of these curves as reference values, we will concentrate on one speci�c value for each
parameter. As proposed in Reference [6], we take the maximal drag and lift coe�cients
together with the corresponding times and the �nal pressure di�erence �p(8 s).

3. THE DISCRETIZATIONS

For discretizing system (1), we apply the following strategy:

1. Discretization of (1) in time: We will use a second-order implicit time stepping scheme.
The time discretization leads in each discrete time step to a non-linear system of equa-
tions.

2. Variational formulation and linearization: The non-linear system of equations is refor-
mulated as variational problem and the non-linear variational problem is linearized by a
�xed point iteration.

3. Discretization of the linear systems in space: The linear system of equations arising
in each step of the �xed point iteration is discretized by a second-order �nite element
discretization using an inf–sup stable pair of �nite element spaces.

The temporal discretization which were applied in the computations are the Crank–Nicolson
scheme and the fractional-step �-scheme. These are popular time stepping schemes in CFD,
e.g. see Reference [10]. The optimal order convergence of these schemes applied in the
solution of the Navier–Stokes equations, also in connection with �nite element discretizations
in space, is proven, e.g. in References [11, 12].
Let �tn be the current time step from tn−1 to tn, i.e. �tn= tn − tn−1. We denote quantities

at time level tk by a subscript k. The time step in both time stepping schemes has the form

uk + �1 �tn[−��uk + (uk · ∇) uk] + �tk∇pk
= uk−1 − �2 �tn[−��uk−1 + (uk−1 · ∇)uk−1] + �3 �tnfk−1 + �4�tnfk

∇ · uk =0
(6)

with the parameters �1; : : : ; �4. The Crank–Nicolson scheme is given by �1 = �2 = �3 = �4 = 0:5,
tk−1 = tn−1, �tk =�tn and tk = tn. The fractional-step �-scheme is obtained by three steps of
form (6). The parameters for these steps are given in Table I, where

�=1−
√
2
2
; �̃=1− 2�; �=

�̃
1− � ; �=1− �

System (6) is reformulated as a non-linear variational problem in time step tk . This problem
is solved iteratively by a �xed point iteration. Let (u0k ; p

0
k) be an initial guess. Given (u

m
k ; p

m
k ),
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Table I. Parameters for the fractional-step �-scheme.

�1 �2 �3 �4 tk−1 tk �tk

First substep �� �� �� �� tn−1 tn−1 + ��tn ��tn
Second substep ��̃ ��̃ ��̃ ��̃ tn−1 + ��tn tn − ��tn �̃�tn
Third substep �� �� �� �� tn − ��tn tn ��tn

the iterate (um+1k ; pm+1k ) is computed by solving

(um+1k ; v) + �1 �tn[�(∇um+1k ;∇v) + ((umk · ∇)um+1k ; v)]−�tk(pm+1k ;∇ · v)
= (uk−1; v)− �2�tn[(�∇uk−1;∇v) + ((uk−1 · ∇)uk−1; v)]
+ �3�tn(fk−1; v) + �4�tn(fk ; v); ∀v∈ (H 1

0 (�))
2

0= (∇ · um+1k ; q) ∀q∈L20(�)

(7)

m=0; 1; 2; : : : : Here, L20(�) is the space of all functions in L
2(�) with

∫
� q dx dy=0.

The linear system (7) is discretized by a second order, isoparametric and inf–sup stable
pair of �nite elements. On a quadrilateral grid, we use the mapped Q2=Pdisc1 �nite element,
i.e. the velocity is approximated by continuous piecewise biquadratics and the pressure by
discontinuous piecewise linears on a reference mesh cell. The �nite element on a mesh cell
in � is given by the reference map from the reference mesh cell. The inf–sup stability for
the mapped version of this pair of �nite elements has been proven recently in Reference [13].
On a triangular grid, we use the P2=P1 �nite element (Taylor–Hood element). The use of
isoparametric �nite elements, which provide a better approximation of the curved boundary
S than standard �nite elements, has been proven essential to compute accurate drag and lift
coe�cients in steady state �ows around a cylinder, see References [4, 5].

4. EVALUATION OF THE COMPUTATIONAL RESULTS

Computations were carried out on di�erent re�nement levels of the spatial grid and with
di�erent lengths of the equidistant time step. The complete results are given in Tables III–VI.
The initial spatial quadrilateral and triangular grid (level 0) are presented in Figure 3 and

the corresponding numbers of degrees of freedom on di�erent re�nement levels in Table II.
The �xed point iteration (7) for solving the non-linear system in each time step was stopped

if the Euclidean norm of the residual vector was less than 1e − 10. With this very accurate
solution of the non-linear problems, we tried to minimize the in�uence of the error committed
by stopping the �xed point iteration on the computed parameters. For the combination of the
Crank–Nicolson scheme with �tn=0:04 and the P2=P1 �nite element discretization, it was
not possible to ful�l this stopping criterion for every discrete time. That is why, no results
are reported for these computations in Table VI. For solving the linear systems, we used a
�exible GMRES method with a multiple discretization multilevel method as preconditioner,
see Reference [5] for details.
The evolution of cd(t); cl(t) and �p(t) is presented in Figure 4. For de�ning reference

values for the maximal drag cd;max, the maximal lift c l;max and �p(8 s), we consider only the
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Table II. Number of degrees of freedom on di�erent re�nement levels.

Q2=Pdisc1 P2=P1

Level Velocity Pressure Total Velocity Pressure Total

1 6960 2496 9456 6496 848 7344
2 27 232 9984 37 216 25 408 3248 28 656
3 107 712 39 936 147 648 100 480 12 704 113 184
4 428 416 159 744 588 160 399 616 50 240 449 856

Table III. Fractional-step �-scheme and Q2=Pdisc1 �nite element discretization.

Level �tk t(c d;max) c d;max t(c l;max) c l;max �p(8 s)

1 0.04 3.92 2.9506391 5.92 0.40715733 −0:11033257
1 0.02 3.94 2.9507340 5.9 0.41665841 −0:10949532
1 0.01 3.93 2.9507247 5.89 0.41920611 −0:10915065
1 0.005 3.935 2.9507228 5.89 0.41963964 −0:10907600
1 0.00025 3.935 2.9507167 5.8875 0.41969340 −0:10910838
1 0.000125 3.93375 2.9507161 5.88875 0.41970676 −0:10914699
2 0.04 3.92 2.9508005 5.72 0.46735721 −0:10933540
2 0.02 3.94 2.9509575 5.72 0.48088381 −0:11135376
2 0.01 3.94 2.9509598 5.71 0.48567099 −0:11168681
2 0.005 3.935 2.9509514 5.705 0.48674228 −0:11180484
2 0.0025 3.9375 2.9509474 5.705 0.48677266 −0:11186812
2 0.00125 3.93625 2.9509476 5.70375 0.48679031 −0:11191150
3 0.04 3.92 2.9507807 5.72 0.46668809 −0:11051418
3 0.02 3.94 2.9509409 5.7 0.47595858 −0:11141326
3 0.01 3.94 2.9509414 5.7 0.47696648 −0:11145178
3 0.005 3.935 2.9509362 5.695 0.47833933 −0:11152352
3 0.0025 3.9375 2.9509283 5.6925 0.47841502 −0:11158920
3 0.00125 3.93625 2.9509232 5.69375 0.47838978 −0:11161155
4 0.04 3.92 2.9507765 5.72 0.46624734 −0:11053528
4 0.02 3.94 2.9509386 5.7 0.47551966 −0:11141362
4 0.01 3.94 2.9509292 5.7 0.47641039 −0:11150460
4 0.005 3.935 2.9509241 5.695 0.47785984 −0:11149907
4 0.0025 3.9375 2.9509219 5.6925 0.47797551 −0:11160224
*4 0.00125 3.93625 2.9509220 5.6925 0.47797321 −0:11163948

computations with the �nest discretizations in Tables III–VI (marked with an asterisk). The
following reference intervals are given in Reference [6]:

crefd;max ∈ [2:93; 2:97]; crefl;max ∈ [0:47; 0:49]; �pref (8 s)∈ [−0:115;−0:105]
The maximal drag coe�cient is the least sensitive of the parameters of interest. It is com-

puted with both time stepping schemes and with both spatial discretizations at the same
discrete time and the six leading digits are in all four cases the same. We propose to take
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Table IV. Fractional-step �-scheme and P2=P1 �nite element discretization.

Level �tk t(c d;max) c d;max t(c l;max) c l;max �p(8 s)

1 0.04 3.92 2.9528222 6.12 0.28268683 −0:11021790
1 0.02 3.94 2.9528819 6.08 0.29192437 −0:10863794
1 0.01 3.93 2.9528799 6.08 0.29548536 −0:10822905
1 0.005 3.935 2.9528380 6.08 0.29607335 −0:10817002
1 0.0025 3.935 2.9528602 6.08 0.29615308 −0:10820374
1 0.00125 3.93375 2.9528498 6.08 0.29633652 −0:10823178
2 0.04 3.92 2.9507820 5.76 0.46134147 −0:10668118
2 0.02 3.94 2.9509452 5.72 0.47597790 −0:10998301
2 0.01 3.93 2.9509371 5.72 0.48048129 −0:11075046
2 0.005 3.935 2.9509319 5.72 0.48103846 −0:11104868
2 0.0025 3.9375 2.9509593 5.72 0.48116515 −0:11090129
2 0.00125 3.9 2.9541462 5.71875 0.48108260 −0:11110045
3 0.04 3.92 2.9508632 5.72 0.46673290 −0:11043995
3 0.02 3.94 2.9509351 5.7 0.47600081 −0:11143063
3 0.01 3.94 2.9509555 5.7 0.47755069 −0:11151841
3 0.005 3.935 2.9509291 5.695 0.47870779 −0:11157032
3 0.0025 3.9375 2.9509245 5.695 0.47877711 −0:11153602
3 0.00125 3.93625 2.9509240 5.69375 0.47873533 −0:11164246
4 0.04 3.92 2.9507778 5.72 0.46626260 −0:11053065
4 0.02 3.94 2.9509481 5.7 0.47548079 −0:11138078
4 0.01 3.94 2.9509307 5.7 0.47642030 −0:11146902
4 0.005 3.935 2.9509209 5.695 0.47799101 −0:11151052
4 0.0025 3.9375 2.9509231 5.6925 0.47814399 −0:11146390
*4 0.00125 3.93625 2.9509216 5.6925 0.47811979 −0:11158097

the average of the four values as reference value. This gives

t(crefd;max)=3:93625; crefd;max =2:950921575 (8)

From the computational results can be deduced that the error of crefd;max to the true value is
less than 5e − 7.
The results for the maximal lift coe�cient among the four computations with the �nest

discretizations are not as equal as for the drag coe�cient. In the computations with the
fractional-step �-scheme, c l;max is obtained at 5:6925 s whereas using the Crank–Nicolson
scheme, it is obtained one time step later. The di�erence between the smallest and the largest
value for c l;max is about 2e− 4. The values obtained on the triangular grid are larger than the
values obtained on the quadrilateral grid. The �neness of the spatial grid has more in�uence
on c l;max than the �neness of the time step. Considering �tn=0:00125, the numerical order
of convergence for c l;max computed with the values on levels 2–4 is approximately 4 on the
quadrilateral grid and approximately 2 on the triangular grid. Extrapolations of the values on
level 4 with these orders yield c l;max ∈ [0:4779; 0:4780]. We take the centre of this interval as
reference value

t(crefl;max)=5:693125; crefl;max =0:47795 (9)
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Table V. Crank–Nicolson scheme and Q2=Pdisc1 �nite element discretization.

Level �tk t(c d;max) c d;max t(c l;max) c l;max �p(8 s)

1 0.04 3.96 2.9505083 6.08 0.32464525 −0:10018096
1 0.02 3.94 2.9506817 5.94 0.39561339 −0:10857361
1 0.01 3.94 2.9507128 5.9 0.41374429 −0:10955200
1 0.005 3.935 2.9507191 5.895 0.41871121 −0:10908404
1 0.0025 3.935 2.9507186 5.89 0.41966279 −0:10903674
1 0.00125 3.93375 2.9507178 5.88875 0.41977686 −0:10909697
2 0.04 3.96 2.9505154 5.92 0.38267229 −0:10408771
2 0.02 3.94 2.9508259 5.76 0.46347330 −0:10483694
2 0.01 3.94 2.9509214 5.72 0.48183570 −0:11055802
2 0.005 3.935 2.9509429 5.71 0.48592837 −0:11142277
2 0.0025 3.94 2.9509537 5.705 0.48675826 −0:11167859
2 0.00125 3.93625 2.9509487 5.705 0.48684486 −0:11182187
3 0.04 3.96 2.9505770 5.88 0.38547587 −0:10218613
3 0.02 3.94 2.9508121 5.74 0.45313392 −0:10682960
3 0.01 3.94 2.9508996 5.71 0.47341914 −0:11096780
3 0.005 3.94 2.9509211 5.7 0.47744148 −0:11127794
3 0.0025 3.9375 2.9509263 5.695 0.47843334 −0:11139759
3 0.00125 3.93625 2.9509266 5.69375 0.47851502 −0:11150848
4 0.04 3.96 2.9507127 5.88 0.38520920 −0:10215215
4 0.02 3.94 2.9508480 5.74 0.45281094 −0:10686868
4 0.01 3.94 2.9508913 5.71 0.47292459 −0:11097007
4 0.005 3.94 2.9509159 5.7 0.47693587 −0:11126441
4 0.0025 3.9375 2.9509213 5.695 0.47797207 −0:11136252
*4 0.00125 3.93625 2.9509212 5.69375 0.47805421 −0:11150005

The computational results suggest that the di�erence of crefl;max to the true value is not larger
than 1e − 4.
For �p(8 s), the leading three digits are the same in all four computations. The values

obtained with the fractional-step �-scheme are a little bit less than the values obtained with
the Crank–Nicolson scheme. The �neness of the time step seems to in�uence �p(8 s) more
than the �neness of the spatial level. On level 4, there is the tendency that �p(8 s) decreases
the �ner the time step becomes. De�ning the reference value by

�pref (8s)=−0:1116 (10)

the computed values lead to the conjecture that the deviation from the real value is less than
1e − 4.
The four computations which were used to determine the reference values give very similar

results not only for these values but in the whole time interval. The maximal di�erence in
[0; 8] of cd(t) between any of these computations is about 2:45e− 3, of cl(t) is 4:38e− 3 and
of �p(t) is 1:89e − 3.
In Tables III–VI, all coe�cients are emphasized whose relative error is less than 0:1% for

the drag coe�cient and less than 1% for the lift coe�cient and the pressure di�erence. It
can be seen that there are only minor di�erences between the results obtained with both time
stepping schemes. Only for large time steps, the fractional-step �-scheme gives more accurate
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Table VI. Crank–Nicolson scheme and P2=P1 �nite element discretization.

Level �tk t(c d;max) c d;max t(c l;max) c l;max �p(8 s)

1 0.02 3.94 2.9528629 6.14 0.27500061 −0:10997106
1 0.01 3.94 2.9528743 6.1 0.29101136 −0:10882587
1 0.005 3.935 2.9528769 6.085 0.29516392 −0:10817065
1 0.0025 3.935 2.9528739 6.0825 0.29604608 −0:10810506
1 0.00125 3.93375 2.9528735 6.08 0.29622602 −0:10821017
2 0.02 3.94 2.9508028 5.78 0.45611390 −0:10178337
2 0.01 3.94 2.9508900 5.73 0.47502698 −0:10873577
2 0.005 3.935 2.9509017 5.725 0.48020958 −0:11034456
2 0.0025 3.9375 2.9509065 5.72 0.48096861 −0:11082242
2 0.00125 3.93625 2.9509085 5.72 0.48117740 −0:11100239
3 0.02 3.98 2.9516650 5.74 0.45192747 −0:10667705
3 0.01 3.94 2.9508963 5.71 0.47369666 −0:11096193
3 0.005 3.935 2.9509249 5.7 0.47777323 −0:11132001
3 0.0025 3.9375 2.9509237 5.695 0.47856834 −0:11146826
3 0.00125 3.93625 2.9509252 5.695 0.47882390 −0:11156480
4 0.02 3.94 2.9508519 5.74 0.45281283 −0:10686458
4 0.01 3.94 2.9508915 5.71 0.47293898 −0:11097224
4 0.005 3.935 2.9509534 5.7 0.47694264 −0:11125744
4 0.0025 3.9375 2.9509225 5.695 0.47804047 −0:11141205
*4 0.00125 3.93625 2.9509215 5.69375 0.47814971 −0:11150381

Figure 3. Coarsest grids for the computations (level 0).

results. This observation corresponds with the statements in Reference [10, Section 3.2.2].
Also the quality of the results on the quadrilateral and the triangular grid is very similar.
We like to note that using a �rst-order discretization in space or in time yields much more

inaccurate results. A study with the �rst-order non-conforming Crouzeix–Raviart �nite element
discretization and the Crank–Nicolson scheme as time stepping method in Reference [9] gave
as best results

cd;max =2:9749; c l;max =0:4808; �p(8 s)= − 0:1011
These results were obtained with about 785 000 degrees of freedom in space and with �tn=
0:0025. Using the �rst-order backward Euler scheme as time discretization (�1 = �4 = 1,
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Figure 4. Evolution of cd(t); cl(t) and �p(t).

�2 = �3 = 0;�tk =�tn in (6)) with �tn=0:00125 and the Q2=Pdisc1 �nite element discretization
on level 4 gives

t(cd;max) = 3:93375; cd;max =2:9505567

t(c l;max) = 5:7175; c l;max =0:38212635

�p(8 s) =−0:11134512
Whereas the results for cd;max and �p(8s) are rather close to the reference values, the maximal
lift coe�cient is computed very inaccurately.

5. SUMMARY

A two-dimensional �ow through a channel around a cylinder with a time-dependent in�ow was
computed with two di�erent second-order implicit time stepping schemes and two di�erent
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second-order �nite element discretizations. The evolutions of the drag and the lift coe�cient
at the cylinder and the pressure di�erence between the front and the back of the cylinder
have been studied. Using about 500 000 degrees of freedom in space and an equidistant time
step of �tn=0:00125, the results with the four combinations of these schemes show very
similar results. New reference values for the maximal drag coe�cient, (8), the maximal lift
coe�cient, (9), and the pressure di�erence at the �nal time, (10), have been derived from
the computational results.
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