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Abstract

Residual based a posteriori error estimates for conforming finite element solutions of the incompressible Navier–
Stokes equations which are computed with four recently proposed two-level methods are derived. The a posteriori
error estimates contain additional terms in comparison to the estimates for the solution obtained by the standard
one-level method. The importance of these additional terms in the error estimates is investigated by studying
their asymptotic behaviour. For optimally scaled meshes, these bounds are not of higher order than the order of
convergence of the discrete solution. 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Modeling of processes in physics and engineering leads often to nonlinear partial differential
equations. An example are the incompressible Navier–Stokes equations which model incompressible
fluid flows. For standard conforming finite element discretizations of these equations, which fulfill the
Babuška–Brezzi stability condition, optimal a priori error estimates can be proven, provided there is a
sufficiently smooth nonsingular solution.

In practice, the numerical solution of the nonlinear system of equations arising in the discretization of
the Navier–Stokes equations may be very time consuming. Two-level methods aim to compute a discrete
approximation of the solution of the nonlinear partial differential equation with less computational work
and to preserve the optimal order of convergence. The basis of two-level methods are a coarse grid and
a fine grid. First, the given problem is solved on the coarse grid, which is in general inexpensive. The
second step is to spend some numerical work in doing very few (e.g., one) steps of an iterative method
for solving the problem on the fine mesh. It turns out that the crucial point for asymptotically optimal
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a priori error estimates is an appropriate scaling between the coarse and fine mesh. Recently investigated
two-level methods contain as a third step a defect correction on the coarse mesh.

Two-level methods have gained some attraction in the last couple of years. They have been investigated
for semilinear elliptic equations and scalar nonlinear partial differential equations by Xu [23,24].
Layton [14], Layton and Lenferink [15], and Layton and Tobiska [17] have studied four different
two-level methods for the incompressible Navier–Stokes equations. The methods differ in the (linear)
equation which is solved on the fine mesh and whether or not a correction step on the coarse mesh is
applied. Asymptotically optimal a priori error estimates in two norms have been proven. The numerical
efficiency of two-level methods has been demonstrated by Wu and Allen [21] for nonlinear reaction–
diffusion equations.

In this paper, residual based a posteriori error estimates for the four two-level methods given in [14,
15,17] (Algorithms 2–5) are proved. In contrast to a priori estimates, the error is estimated by known and
computed quantities, like the right hand side and the discrete solution. This enables an error control during
the computation. For each two-level method, a posteriori error estimates in two norms are proved. The
basic ideas to obtain these estimates go back to Verfürth [19] and Eriksson et al. [8]. They are sketched
here in the proofs of Propositions 1 and 2. It turns out that the estimates for the two-level methods contain
additional terms in comparison to a posteriori error estimates for standard solution techniques. This is
due to the fact that the discrete solutions obtained by the two-level methods fulfill only an approximate or
violated (as called by Angermann [1]) Galerkin orthogonality. We analyze the asymptotic behaviour of
these additional terms. In this way, we get useful information on the effect of solving different equations
on the fine mesh, on the gain of applying a final coarse mesh correction step, and on the necessity of
computing the additional terms for obtaining an asymptotically optimal a posteriori error estimate. We
show that for optimally scaled meshes, the bounds of the asymptotic behaviour of the additional terms are
in general not of higher order than the standard terms in the residual based a posteriori error estimators.
Thus, the computation of these terms is unavoidable in practice.

2. Notations and mathematical preliminaries

We consider a finite element approximation of the stationary Navier–Stokes equations in primitive
variables

−ν�u + (u · ∇)u + ∇p = f in Ω,

∇ · u = 0 inΩ, (1)

u = 0 on ∂Ω.

Here,Ω is a polyhedral domain inRd , d = 2,3, with boundary∂Ω , u :Ω → R
d is the flow field,

p :Ω → R is the pressure which is normalized by
∫
Ω p dx = 0, f :Ω → R

d a body force, and the
parameterν > 0 is the viscosity. Throughout this paper, we consider laminar fluid flows and assume that
there is a nonsingular solution(u,p) of (1). Hence, the viscosityν has to be sufficiently large. A weak
formulation of (1) reads as: Find(u,p) ∈ V ×Q satisfying

a(u,v)+ b(u,u,v)+ (q,∇ · u)− (p,∇ · v)= (f ,v) ∀(v, q) ∈ V ×Q (2)
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with

V = (
H 1

0 (Ω)
)d = {

v ∈ (
H 1(Ω)

)d
: v|∂Ω = 0

}
,

Q= L2
0(Ω)=

{
q ∈ L2(Ω):

∫
Ω

q dx = 0
}
,

a(u,v)= (ν∇u,∇v), b(u,v,w)= (
(u · ∇)v,w)

and(·, ·) the inner product inL2(Ω) and in its vector valued versions. The norm in(L2(Ω))d is denoted
by ‖ · ‖0, the seminorm in the standard Sobolev space(H k(Ω))d by | · |k, and the norm in(H k(Ω))d

by ‖ · ‖k . The spaceV is equipped with the norm| · |1 which is possible as a consequence of Poincaré’s
inequality. Bilinear forms, trilinear forms, and norms in subdomainsω⊂Ω are marked by an additional
index, e.g.,bω(·, ·, ·) or ‖ · ‖0,ω. The product spaceV ×Q is equipped with the norm

|||(u,p)||| = (|u|21 + ‖p‖2
0

)1/2
for (u,p) ∈ V ×Q.

Let Th denote a decomposition ofΩ into d-simplices. We denote byhT the diameter of a simplexT ,
by hE the diameter of a faceE, and we seth = maxT ∈Th{hT }. Each family of triangulations{Th}h is
assumed to be admissible and shape regular in the usual sense, e.g., see [5].

Given the decompositionTh, we can construct conforming velocity–pressure finite element spaces
Vh×Qh with Vh ⊂ V andQh ⊂Q. These spaces are assumed to satisfy the inf–sup condition, i.e., there
exists a constantβ > 0 independent of the triangulation such that

sup
vh∈Vh

(∇ · vh, qh)
|vh|1 � β‖qh‖0 ∀qh ∈Qh. (3)

Examples of spacesVh,Qh satisfying (3) can be found, e.g., in [2,10]. The standard finite element
approximation to (1) is to find(uh,ph) ∈ Vh ×Qh satisfying for all(vh, qh) ∈ Vh×Qh

a(uh,vh)+ b(uh,uh,vh)+ (qh,∇ · uh)− (ph,∇ · vh)= (f ,vh). (4)

We assume that the solution of (2) and the finite element spaces satisfy
u ∈ (H k+1(Ω))d ∩ V, p ∈Hk(Ω)∩Q, k � 1,

Vh contains piecewise polynomials of degreek,

Qh contains piecewise polynomials of degreek− 1.

(5)

Furthermore, the a priori error estimates{ |||(u − uh,p− ph)||| � chk(|u|k+1 + |p|k),
‖u − uh‖0 � chk+1

(|u|k+1 + |p|k), (6)

are assumed to hold, wherec denotes throughout this paper a generic constant independent ofTh. The
properties (5) are important to prove (6) for a wide variety of velocity–pressure finite element spaces
satisfying (3), see, e.g., [10].

Let (u,p) be the solution of (2). We consider a dual linearized Navier–Stokes problem of finding
(z, s) ∈ V ×Q satisfying for all(w, t) ∈ V ×Q

a(w,z)+ b(u,w,z)+ b(w,uh,z)− (t,∇ · z)+ (s,∇ · w)= (u − uh,w). (7)
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We assume that (7) isH 2 ×H 1-regular, namely(z, s) exists uniquely and satisfies

‖z‖2 + ‖s‖1 �Cs(u,uh, ν)‖u − uh‖0. (8)

As indicated by Johnson [12], the worst case behaviour of the stability constant isCs ∼ O(exp(ν−1)).
If this behaviour reflects the actual stability property of a flow, every error estimate involvingCs would
be worthless in practice even for relatively large viscosity parameters. However, the behaviour ofCs

for laminar flows is substantially better in many situations. For some model problems, Johnson and
Rannacher [13] could proveCs ∼ O(ν−1) and numerical results by Johnson [12] showCs � 1.6 for the
driven cavity flow in three dimensions andν � 1

700.
In the following, we need some estimates of the trilinear term, see [7,17,18]:∣∣b(u,v,w)∣∣ � c(ε)‖u‖1−ε

0 |u|ε1|v|1|w|1 ∀ u,v,w ∈ V,
ε ∈ (0,1) if d = 2, ε= 1

2 if d = 3, (9)∣∣b(u,v,w)∣∣ � c‖u‖0|v|1‖w‖2 ∀ u,v ∈ V, w ∈ (
H 2(Ω)

)d
, (10)∣∣b(u,v,w)∣∣ � c‖u‖0|v|1,∞‖w‖0 ∀ u,w ∈ V,v ∈ (

W 1,∞(Ω)
)d
. (11)

Let RVh andRQh denote interpolation operators of Clément [6] intoVh andQh, respectively. These
operators are based on localL2-projections and satisfy for 0� l �m� 1 and an interpolation constant
Ci 

∣∣v −RVh(v)
∣∣
l,T

� Cih
m−l+1
T |v|m+1,ω̃(T ) ∀v ∈ V ∩ (

Hm+1(Ω)
)d

,∥∥v −RVh(v)
∥∥

0,E � Cih
m+1/2
E |v|m+1,ω̃(E) ∀v ∈ V ∩ (

Hm+1(Ω)
)d

,∥∥q −RQh(q)
∥∥

0,T �CihT |q|1,ω̃(T ) ∀q ∈Q∩H 1(Ω).

(12)

Here, ω̃(T ) denotes the union of mesh cells which containsT and all mesh cells whose closure has
a point withT in common. Similarly,ω̃(E) denotes the union of all mesh cells whose closure has a
common point with the closure of the faceE. The interpolation operator of Clément satisfies, see also [5,
formulae (17.10) and (17.11)],{∥∥q −RQh(q)

∥∥
0 � c‖q‖0 ∀q ∈ L2(Ω),∣∣v −RVh(v)

∣∣
1 � c|v|1 ∀v ∈ V .

(13)

From (13) and Poincaré’s inequality, we get{∥∥RQh(q)∥∥0 � c‖q‖0 ∀q ∈L2(Ω),∥∥RVh(v)∥∥1 � c|RVh(v)|1 � c|v|1 � c‖v‖1 ∀v ∈ V .
(14)

Analytical as well as numerical results indicate that the constantCi in (12) are of moderate size, see
Carstensen and Funken [3,4].

The jump[|vh|]E of a functionvh across a faceE is defined by

[|vh|]E(x) :=


lim
t→+0

{
vh(x + tnE)− vh(x − tnE)}, x ∈E �⊂ ∂Ω,

lim
t→+0

{−vh(x − tnE)}, x ∈E ⊂ ∂Ω,

wherenE is a normal unit vector onE. If E ⊂ ∂Ω , nE denotes the outer normal, otherwisenE has an
arbitrary but fixed orientation. With that, every faceE which separates two neighboring mesh cellsT1
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andT2 is associated with a uniquely oriented normal (for definiteness fromT1 to T2). If v ∈ V , then we
know from the trace theoremv|E ∈ (H 1/2(E))d and therefore[|v|]E = 0 for almost everyx ∈E.

3. On the analysis of residual based a posteriori error estimators

Let‖·‖ be a prescribed norm inV ×Q, ηT the error estimate on the mesh cellT andη= (∑T ∈Th η
2
T )

1/2

the global error estimate.
The local error estimateηT � cT ‖eh‖U(T ) serves to control an adaptive grid refinement. Here,eh =

(u − uh,p − ph) is the error,U(T ) is a neighbourhood ofT and cT is a constant which should be
approximately the same for all mesh cells. Proofs of local lower estimates for residual based a posteriori
error estimators use suitable cut-off functions as given in Verfürth [19,20] or in [11]. It turns out that
they can be proven for the error(u − vh,p − qh) with an arbitrary pair of discrete functions(vh, qh),
in particular, for the solution obtained by each two-level method which will be described in this paper.
Thus, an adaptive grid refinement for these methods can be controlled by the local estimators (16) or (19)
given below. However, it is not clear how to combine two-level methods with adaptive grid refinement
and to our knowledge there is no literature on this subject available.

Information on the global error are obtained from an upper estimate

‖eh‖ � cη.

This estimate serves as a stopping criterion for the solution process. Given a required accuracytol,
the discrete solution is sufficiently accurate ifcη � tol. Therefore, the constantc must be known at
least approximately. An important property for proving global upper estimates is the so-called Galerkin
orthogonality of the discretization. That means, the error of the discrete solution is in some sense
orthogonal to the finite element space, see (17) for the standard finite element discretization of the
Navier–Stokes equations. The Galerkin orthogonality allows to introduce an interpolant of a suitable
function into the error estimate such that the asymptotic correctness of the a posteriori error estimates
can be proved by applying interpolation estimates of type (12). However, there are many situations where
a Galerkin orthogonality might not hold, e.g., if

• only an approximation of the discrete solution is computed, e.g., by an iterative solver or a two-level
method,

• quadrature errors occur,
• the discrete problem differs from the standard finite element discretization,
• nonconforming finite element discretizations are used.
In these cases, only an approximate Galerkin orthogonality holds and a global a posteriori error

estimate of the form

‖eh‖ � cη+E(uh,ph) (15)

with the additional termE(uh,ph) can be obtained. Only ifE(uh,ph) is of higher order thanη, this term
can be neglected in computations.

The aim of this paper is to derive estimates of the form (15) for discrete solutions of the Navier–Stokes
equations in the case of several two-level methods. The asymptotic behaviour of the extra terms will be
bounded and it turns out that these bounds are in general not of higher order for optimally scaled meshes.
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4. The standard one-level method

We start by recalling the a posteriori error estimates in the||| · |||-norm and theL2-norm for the one-
level conforming finite element method (4).

Algorithm 1. Standard one-level algorithm
Step 1. Compute(uh,ph) ∈ Vh×Qh such that∀(vh, qh) ∈ Vh×Qh

a(uh,vh)+ b(uh,uh,vh)+ (qh,∇ · uh)− (ph,∇ · vh)= (f ,vh).
Proposition 1. If h is sufficiently small, then for(uh,ph) computed with Algorithm1, the a posteriori
error estimate

|||(u − uh,p− ph)||| � cη1((uh,ph))= c
(∑
T

η2
T ,|||·|||

)1/2

with

η2
T ,|||·||| := h2

T

∥∥f + ν�uh − (uh · ∇)uh − ∇ph
∥∥2

0,T + ‖∇ · uh‖2
0,T

+ ∑
E⊂∂T ,E �⊂∂Ω

hE
∥∥[|ν∇uh · nE − phnE|]E

∥∥2
0,E (16)

holds true, wherec depends on(u,p) andCi .

Proof. A proof of the ||| · |||-norm a posteriori error estimate can be found in Verfürth [19]. For
completeness and to show the rôle of the Galerkin orthogonality, we will sketch the proof here.

If h is sufficiently small, then Proposition 7.1 in [19] gives

|||(u − uh,p− ph)||| � 2
∥∥DF(u,p)−1∥∥

L((V×Q)∗,(V×Q))‖F(uh,ph)‖(V×Q)∗,

whereF(uh,ph) :V ×Q→ R is the residual

F(uh,ph)= a(uh,v)+ b(uh,uh,v)− (ph,∇ · v)+ (q,∇ · uh)− (f ,v),
DF(u,p) is the Fréchet derivative ofF at (u,p), and (V ×Q)∗ is the dual space ofV ×Q. Since
(u,p) is assumed to be a nonsingular solution of (1),‖DF(u,p)−1‖L((V×Q)∗,(V×Q)) <∞. Because of
F(u,p)= 0, we have∥∥F(uh,ph)∥∥(V×Q)∗ = ∥∥F(u,p)− F(uh,ph)∥∥(V×Q)∗

= sup
(0,0) �=(v,q)∈V×Q

{|||(v, q)|||−1∣∣a(u − uh,v)+ b(u,u,v)
− b(uh,uh,v)− (p− ph,∇ · v)+ (

q,∇ · (u − uh)
)∣∣}.

The second factor will be estimated. From (2) and (4), we get the Galerkin orthogonality of the
discretization:∀(vh, qh) ∈ Vh×Qh

0 = −a(u − uh,vh)+ (p− ph,∇ · vh)− b(u,u,vh)+ b(uh,uh,vh)− (
qh,∇ · (u − uh)

)
. (17)

We setr = f + ν�uh − (uh · ∇)uh − ∇ph. The Galerkin orthogonality (17) withvh = RVh(v), qh =
RQh(q), integration by parts, (2),∇ · u = 0, the Cauchy–Schwarz inequality, the interpolation esti-
mates (12), the shape regularity of the mesh, and the definition of the||| · |||-norm imply
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∣∣a(u − uh,v)+ b(u,u,v)− b(uh,uh,v)− (p− ph,∇ · v)+ (
q,∇ · (u − uh)

)∣∣
� c

[(∑
T

h2
T ‖r‖2

0,T +∑
E

hE
∥∥[|ν∇uh · nE − phnE|]

E

∥∥2
0,E + ∑

T

‖∇ · uh‖2
0,T

)1/2]
|||(v, q)|||,

which concludes the proof.✷
Proposition 2. With the assumption(8)on the stability of the linearized dual problem(7), the a posteriori
error estimate

‖u − uh‖0 � cη2((uh,ph))= c
(∑
T

η2
T ,L2

)1/2

(18)

with

η2
T ,L2 := h4

T

∥∥f + ν�uh − (uh · ∇)uh − ∇ph
∥∥2

0,T + h2
T ‖∇ · uh‖2

0,T

+ ∑
E⊂∂T ,E �⊂∂Ω

h3
E

∥∥[|ν∇uh · nE − phn|]E∥∥2
0,E (19)

is valid for (uh,ph) computed with Algorithm1, wherec depends onCsCi .

Proof. The proof, which is the basis of proving a posterioriL2-error estimates below, follows the
framework developed by Eriksson et al. [8].

1. Error representation using the dual linearized problem.With w = u − uh, t = p − ph, we obtain
from (7)

‖u − uh‖2
0 = a(u − uh,z)+ b(u,u − uh,z)+ b(u − uh,u,z)

+ (
s,∇ · (u − uh)

)− (p− ph,∇ · z). (20)

2. Galerkin orthogonality of the discrete problem(17).
3. Interpolation estimates for the solution of the dual linearized problem.We setvh = RVh(z) =: zh,

qh =RQh(s)=: sh in (17), add (20), note∇ ·u = 0 and setr = f +ν�uh−(uh ·∇)uh−∇ph. Integration
by parts and the interpolation estimates (12) give

‖u − uh‖2
0 � Ci

∑
T

[
h2
T ‖r‖0,T ‖z‖2,ω̃(T ) + hT ‖∇ · uh‖0,T ‖s‖1,ω̃(T )

]
+Ci

∑
E

h
3/2
E

∥∥[|ν∇uh · nE − phnE|]E
∥∥

0,E‖z‖2,ω̃(E).

4. Strong stability of the dual problem.With assumption (8) and the shape regularity of the mesh, we
obtain (18) after dividing by‖u − uh‖0. ✷

It is well known that the a posteriori error estimates are asymptotically optimal, i.e.,η1((uh,ph)) =
O(hk) andη2((uh,ph))= O(hk+1).

5. A two-level method with one Newton step on the fine mesh

We now consider a two-level method which works on a fine meshTh and on a coarse meshTH
whereh < H is assumed throughout this paper. The coarse spacesVH andQH are assumed to have
the properties of the finite element spaces stated above.
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Algorithm 2. Two-level algorithm, coarse mesh solve followed by a fine mesh Newton step
Step 1. Compute(uH ,pH) ∈ VH ×QH such that∀(vH , qH ) ∈ VH ×QH

a(uH ,vH)+ b(uH ,uH ,vH )+ (qH ,∇ · uH )− (pH ,∇ · vH)= (f ,vH ).
Step 2. Compute(uh,ph) ∈ Vh×Qh such that∀(vh, qh) ∈ Vh×Qh

a(uh,vh)+ b(uH ,uh,vh)+ b(uh,uH ,vh)+ (qh,∇ · uh)− (ph,∇ · vh)
= (f ,vh)+ b(uH ,uH ,vh).

In Algorithm 2, only one step of a Newton iteration is performed on the fine meshTh, i.e., one has to
solve only one linear system on the fine mesh. It has been proposed by Layton [14] and further analyzed
by Layton and Lenferink [16]. Let the assumption (5) be fulfilled. Then, the a priori error estimate

|||(u − uh,p− ph)||| � c(u,p)(hk +H 2k+1−ε) (21)

holds true withε defined in (9). Thus, for an asymptotically optimal error estimate in the||| · |||-norm,
the optimal scaling ish= O(H 2+(1−ε)/k). TheL2-error of the velocity can be estimated in the form

‖u − uh‖0 � c(u,p)
(
hk+1 +H 2k+1), (22)

which leads to an optimal mesh scaling ofh= O(H 2−1/(k+1)).

An a posteriori error estimate for the||| · |||-norm of the solution computed with Algorithm 2 has been
proven by Ervin et al. [9]. The proof uses the same basic ideas as the proof of Proposition 1. In addition,
results of numerical tests with Algorithm 2 are presented in [9].

Proposition 3. If H is sufficiently small, then for(uh,ph) computed with Algorithm2, the a posteriori
error estimate

|||(u − uh,p− ph)||| � c
[(∑

T

η2
T ,|||·|||

)1/2

+ ‖uh − uH‖1−ε
0 |uh − uH |1+ε

1

]
(23)

holds true withc depending on(u,p) andCi .

Proposition 4. Under the assumptions of Proposition2 the a posteriori error estimate

‖u − uh‖0 � c
[(∑

T

η2
T ,L2

)1/2

+ h‖uh − uH‖1−ε
0 |uh − uH |1+ε

1 + ‖uh − uH‖0|uh − uH |1
]

(24)

is valid for (uh,ph) computed with Algorithm2.

Proof. To apply the techniques of proving Proposition 2, the crucial point is to find an approximate
Galerkin orthogonality similar to (17). Step 2 of Algorithm 2, Eq. (2) and the identity

b(uH ,uh,vh)+ b(uh,uH ,vh)− b(uH ,uH ,vh)= b(uh,uh,vh)− b(uh − uH ,uh − uH ,vh)

give for all (vh, sh) ∈ Vh ×Qh
b(uh − uH ,uh − uH ,vh) = −a(u − uh,vh)+ (p− ph,∇ · vh)− b(u,u,vh)

+ b(uh,uh,vh)− (
sh,∇ · (u − uh)

)
,
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see [9]. Now, following the proof of Proposition 2, we have to estimate the additional term|b(uh −
uH ,uh − uH ,zh)|. Its estimation starts with the splitting∣∣b(uh − uH ,uh − uH ,zh)

∣∣ = ∣∣b(uh − uH ,uh− uH ,zh − z)+ b(uh − uH ,uh − uH ,z)
∣∣.

Using now (9), (10), the interpolation estimate (12), and the strong stability assumption (8), we obtain
the estimate (24). ✷

The asymptotic order of convergence of the fine grid solution(uh,ph) is at least as good as that of the
coarse grid solution, see (21), (22). Thus, the following asymptotic behaviour of the extra term in (23)
can be derived, using the a priori estimate (6) foru − uH :

‖uh − uH‖1−ε
0 |uh − uH |1+ε

1 �
(‖u − uH‖0 + ‖u − uh‖0

)1−ε(|u − uH |1 + |u − uh|1)1+ε

�
((
Hk+1 +Hk+1)c(u,p)

)1−ε((
Hk +Hk)c(u,p))1+ε

= O
(
H 2k+1−ε).

In this bound, the asymptotic behaviour of the additional term does not depend on the fine mesh
sizeh. If the fine mesh size is chosen asymptotically coarser than given by the optimal mesh scaling,
H 2k+1−ε = o(hk), we conclude from the a priori error estimate (21)

|||(u − uh,p− ph)||| � c(u,p)hk.
In this case, the asymptotic behaviour of the extra term is of higher order. Ifh is chosen to be optimal
or asymptotically smaller, the asymptotic behaviour of the additional term and the discrete solution
coincide. Now, the computation of the additional term becomes important for an asymptotically optimal
a posteriori error estimation. The extra term measures the difference of the coarse and fine grid solution
and it becomes the more important the greater this difference becomes. Analogously, we find that the
additional terms in the a posterioriL2-error estimate behave like O(H 2k+1).

6. A two-level method with one Oseen step on the fine mesh

The two-level method analyzed in this section is a simplification of Algorithm 2. The Newton step of
Algorithm 2 is replaced by one step of a fixed point iteration.

Algorithm 3. Two-level algorithm, coarse mesh solve followed by a fine mesh Oseen step
Step 1. Same as Step 1 of Algorithm 2.
Step 2. Compute(uh,ph) ∈ Vh×Qh such that for all(vh, qh) ∈ Vh ×Qh

a(uh,vh)+ b(uH ,uh,vh)+ (qh,∇ · uh)− (ph,∇ · vh)= (f ,vh).

Algorithm 3 is called modified Picard method and the equation in Step 2 is called Oseen equation.
It has been proposed by Layton and Lenferink [15]. If the assumption (5) is fulfilled, the a priori error
estimates{ |||(u − uh,p− ph)||| � c(u,p)(hk +Hk+1

)
,

‖u − uh‖0 � c(u,p)
(
hk+1 +Hk+1

)
,

(25)
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are valid, [15], which results in optimal mesh scalingsh= O(H 1+1/k) for the||| · |||-norm andh= O(H)
for theL2-norm of the velocity.

In Algorithm 3 as well as in Algorithm 2, only one linear system on the fine mesh has to be solved. But
the termb(uh,uH ,vh) on the left-hand side of Step 2 in Algorithm 2 may lead to certain computational
disadvantages, e.g., to bad matrix properties and large memory requirements. For this reason, the Newton
iteration is replaced often by a fixed point iteration, where the termb(uh,uH ,vh) is put on the right-hand
side anduh is replaced by the current approximation ofuh. In this fixed point iteration, a number of
Oseen equations has to be solved. Algorithm 3 is obtained if only one step of this fixed point iteration is
performed with the initial approximationuh ≈ uH in b(uh,uH ,vh).

Proposition 5. Let (uh,ph) be computed with Algorithm3. With the assumptions of Proposition3, the
a posteriori error estimate

|||(u − uh,p− ph)||| � c
[(∑

T

η2
T ,|||·|||

)1/2

+ ‖uh − uH‖1−ε
0 |uh − uH |ε1|uh|1

]
(26)

holds true. With the assumption of Proposition4, the a posteriori error estimate

‖u − uh‖0 � c
[(∑

T

η2
T ,L2

)1/2

+ h‖uh − uH‖1−ε
0 |uh − uH |ε1|uh|1 + ‖uh − uH‖0|uh|1

]
(27)

is valid.

Proof. For the first estimate, we follow the proof of Proposition 1. Step 2 of Algorithm 3 and (2) yield
the approximate Galerkin orthogonality for all(vh, qh) ∈ Vh ×Qh

−b(uH − uh,uh,vh) = −a(u − uh,vh)+ (p− ph,∇ · vh)− b(u,u,vh)
+ b(uh,uh,vh)− (

qh,∇ · (u − uh)
)
. (28)

In addition to the proof of Proposition 1, we have to estimate the extra term|b(uH − uh,uh,vh)|. To
obtain (26), we use (9), (14), and the definition of the||| · |||-norm.

TheL2-error estimate of the velocity can be proved analogously to Proposition 4 using the approximate
Galerkin orthogonality (28). ✷

With (5) and (6), we can establish a O(H k+1−ε) asymptotic behaviour of the extra term in (26) and a
O(H k+1) asymptotic behaviour of the additional terms in (27).

7. The modified Picard method with a correction step

The next algorithm extends the modified Picard method, Algorithm 3, by the solution of a defect
correction equation on the coarse mesh.

Algorithm 4. Two-level algorithm, coarse mesh solve followed by a fine mesh Oseen step and a
coarse mesh correction

Step 1. Same as Step 1 of Algorithms 2 and 3.
Step 2. Same as Step 2 of Algorithm 3, the solution is denoted by(u∗,p∗).
Step 3. Compute(eH , εH ) ∈ VH ×QH such that for all(vH , qH ) ∈ VH ×QH
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a(eH ,vH)+ b(uH , eH ,vH )+ b(eH ,uH ,vH)− (εH ,∇ · vH)+ (qH ,∇ · eH)
= b(uH − u∗,uH ,vH )

and setuh = u∗ + eH , ph = p∗ + εH .

A two-level method with an additional coarse mesh correction was studied first by Xu [23] for
semilinear elliptic equations. Algorithm 4 has been proposed and a priori error estimates have been given
by Layton and Tobiska [17]:{ |||(u − uh,p− ph)||| � c(u,p)(hk +H 2k+1−ε),

‖u − uh‖0 � c(u,p)
(
hk+1 + hkH 2 + hHk+1 +Hmin(k+3,2k+1)

)
,

(29)

with ε defined in (9). Thus, scalings which ensure optimal order of convergence (6) are

||| · |||-norm: for k = 1: h= O
(
H 3−ε), for k � 2: h= O

(
H 1+2/k),

‖ · ‖0-norm: for k = 1: h= O
(
H 3/2), for k � 2: h= O

(
H 1+1/k).

The Galerkin projection(RV ,RQ) :V ×Q→ VH ×QH with respect to the dual linearized problem of
Step 3 in Algorithm 4 is defined in the following way: for all(w, t) ∈ Vh×Qh, (v, q) ∈ V ×Q

0 = a(w,v −RV (v, q)) + b(uH ,w,v −RV (v, q)) + b(w,uH ,v −RV (v, q))
− (
t,∇ · (v −RV (v, q)))+ (

q −RQ(v, q),∇ · w)
.

In [17], the approximate Galerkin orthogonality for all(vh, qh) ∈ Vh×Qh
b(u − uH ,u − uH ,vh)− b(uH − u∗,uH ,vh −RV (vh, qh))

= −a(u − uh,vh)+ (p− ph,∇ · vh)− b(uH ,u − uh,vh)
− b(u − uh,uH ,vh)− (

qh,∇ · (u − uh)
)
, (30)

and the estimates

|||(v −RV (v, q), q −RQ(v, q))||| � c|||(v, q)|||, ∀ (v, q) ∈ V ×Q, (31)
‖vh −RV (vh, qh)‖θ � cH 1−θ |||(vh, qh)|||, ∀(vh, qh) ∈ Vh ×Qh, θ ∈ [0,1], (32)
‖v −RV (v, q)‖0 +H |v −RV (v, q)|1 � cH 2(‖v‖2 + ‖q‖1

)
∀(v, q) ∈ (V ×Q)∩ (

H 2(Ω)d ×H 1(Ω)
)

(33)

have been proved.

Proposition 6. Let (uh,ph) be computed with Algorithm4. Then, with the assumptions of Proposition3,
the a posteriori error estimate

|||(u − uh,p− ph)|||
� c

[(∑
T

η2
T ,|||·|||

)1/2

+ ‖uh − uH‖1−ε
0 |uh − uH |1+ε

1 + ‖u∗ − uH‖1−ε
0 |u∗ − uH |ε1|uH |1

]
(34)

and with the assumption of Proposition4, the a posteriori error estimate

‖u − uh‖0 � c
[(∑

T

η2
T ,L2

)1/2

+ h‖uh − uH‖1−ε
0 |uh − uH |1+ε

1 + ‖uh − uH‖0|uh − uH |1
+H‖u∗ − uH‖1−ε

0 |u∗ − uH |ε1|uH |1
]

(35)
are valid.
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Proof. The proof of the first estimate starts like that of Proposition 1. Using the approximate Galerkin
orthogonality (30) and reordering some terms, we obtain for all(vh, qh) ∈ Vh×Qh∣∣a(u − uh,v)+ b(u,u,v)− b(uh,uh,v)− (p− ph,∇ · v)+ (

q,∇ · (u − uh)
)∣∣

= ∣∣(f ,v − vh)− [
a(uh,v − vh)+ b(uh,uh,v − vh)+ (q − qh,∇ · uh)− (

ph,∇ · (v − vh)
)]

− b(uh − uH ,uh − uH ,vh)+ b(uH − u∗,uH ,vh −RV (vh, qh))∣∣.
The first terms are estimated in the same way as in Proposition 1. For estimating the last two terms, we
use estimate (9) for the trilinear form, estimate (32) for the Galerkin projection, (14), and the definition
of the ||| · |||-norm.

For the second estimate, we follow the proof of Proposition 2, now using the approximate Galerkin
orthogonality (30). In this way, we have to estimate the additional terms|b(uh − uH ,uh − uH ,zh)| and
|b(uH −u∗,uH ,zh−RV (zh, sh))|. The first one was estimated already in Proposition 4. Only the second
term needs to be estimated in a different way. Applying (9), we obtain∣∣b(uH − u∗,uH ,zh −RV (zh, sh))∣∣ � c‖uH − u∗‖1−ε

0 |uH − u∗|ε1|uH |1
∣∣zh −RV (zh, sh)

∣∣
1.

Further, we get with (31), (12) and (33)∣∣zh −RV (zh, sh)
∣∣
1 �

∣∣RV (z, s)−RV (zh, sh)∣∣1 + |z − zh|1 + ∣∣z −RV (z, s)
∣∣
1

� c
(|z − zh|1 + ‖s − sh‖0

) + ∣∣z −RV (z, s)
∣∣
1

� cH
(‖z‖2 + ‖s‖1

)
.

Applying (8) completes the proof.✷
The dominating extra term in (34) is‖u∗ − uH‖1−ε

0 |u∗ − uH |ε1|uH |1. Since the asymptotic behaviour
of u − u∗ is not worse than ofu − uH , see (25), the triangle inequality together with the a priori error
estimate (6) foru − uH and the assumption (5) give a O(H k+1−ε) behaviour of the extra terms. For the
L2-error estimate, the asymptotic convergence of the extra terms in (35) can be estimated with the a priori
error estimates (6) and (29) foru − uH andu − uh, respectively. The result is a O(H k+2−ε) asymptotic
behaviour of these terms.

The asymptotic behaviour of the extra terms in (34) and (35) differs from the asymptotic orders of
convergence derived from (29). This comes from an alternative estimation technique of the trilinear term
which has been used in [17]. However, this technique requires additional regularity ofu and leads to the
fact that the constants in (29) depend on other norms ofu than, e.g., the constants in (21), (22), and (25).
We show in Remark 7 that this technique leads to essentially the same asymptotic behaviour of the extra
terms as given above after an appropriate modification of the constants.

Remark 7 (Alternative estimate of the trilinear term). If the additional assumption|uH |1,∞ � c with c
independent ofH holds true, the trilinear term in the proof of Proposition 6 can be estimated in a different
way. Using (11), (32), and (14), we obtain

sup
(0,0) �=(v,q)∈V

|b(uH − u∗,uH ,vh −RV (vh, qh))|
|||(v, q)||| � cH‖uH − u∗‖0|uH |1,∞. (36)

This techniques is used in [17] which results in the fact that the constants in the a priori error
estimates (29) depend on|u|1,∞. Formally, the behaviour of the right hand side in (36) is O(H 2k+1).



V. John / Applied Numerical Mathematics 37 (2001) 503–518 515

Using (36), one can prove an asymptotic behaviour of the extra terms in the a posteriori error estimates
which coincides with the asymptotic orders of convergence given in (29). But in order to have a fair
comparison, e.g., to (34),|uH |1,∞ should be replaced in (36) by|uH |1. From [22, formula (5.5)], we
know the discrete Sobolev inequality

‖vH‖0,∞ � c(d,H)|vH |1 ∀vH ∈ VH
with c(d,H) = c| lnH |1/2 if d = 2 and c = cH−1/2 if d = 3. Besides that, it holds|uH |1,∞ �
cH−1‖uH‖0,∞, see [5, formula (17.22)]. Applying these estimates to|uH |1,∞ in (36) gives

sup
0�=(v,q)∈V

|b(uH − u∗,uH ,vh −RV (vh, qh))|
|||(v, q)||| � c(d,H)‖uH − u∗‖0|uH |1.

This is of order O(H k+1/2) for d = 3 and therefore no improvement. Ford = 2, the extra term is now of
order O(H k+1| lnH |1/2) which is a slight improvement compared to O(H k+1−ε) for H → 0.

8. Algorithm 2 with a correction step

In the previous section, we have seen that the correction step improves the a posteriori error estimate
in theL2-norm of Algorithm 4 in comparison to Algorithm 3. In this section, we will study if there holds
a similar result for Algorithm 2 with an appropriate correction step. The following algorithm has been
proposed by Layton and Tobiska [17].

Algorithm 5. Two-level algorithm, coarse mesh solve followed by a fine mesh Newton step and a
coarse mesh correction

Step 1. Same as Step 1 of Algorithms 2.
Step 2. Same as Step 2 of Algorithm 2, the solution is denoted by(u∗,p∗).
Step 3. Compute(eH , εH ) ∈ VH ×QH such that for all(vH , qH ) ∈ VH ×QH

a(eH ,vH)+ b(uH , eH ,vH )+ b(eH ,uH ,vH)+ (qH ,∇ · eH)− (εH ,∇ · vH)
= b(uH − u∗,u∗ − uH ,vH)

and setuh = u∗ + eH , ph = p∗ + εH .

The a priori error estimates{ |||(u − uh,p− ph)||| � c(u,p)(hk +H 2k+1−ε),
‖u − uh‖0 � c(u,p)

(
hk+1 +H 2k+3/2 +Hk+1hk

)
,

(37)

with ε defined in (9), have been proven in [17]. Thus, the optimal mesh scaling ish= O(H 2+(1−ε)/k) for
the ||| · |||-norm andh= O(H 2−1/(2k+2)) for theL2-norm of the velocity. The scaling with respect to the
||| · |||-norm is not better than for Algorithm 2, compare (21). For Algorithm 5, the approximate Galerkin
orthogonality for all(vh, qh) ∈ Vh ×Qh
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−b(u − u∗,u − u∗,vh)+ b(u − uH ,u − u∗,vh)+ b(u − u∗,u − uH ,vh)

− b(u∗ − uH ,u∗ − uH ,RV (vh, qh)− vh
)

= −a(u − uh,vh)+ (p− ph,∇ · vh)− b(uH ,u − uh,vh)

− b(u − uh,uH ,vh)− (
qh,∇ · (u − uh)

)
(38)

holds.

Proposition 8. Let (uh,ph) be computed with Algorithm5. With the assumptions of Proposition3, the a
posteriori error estimate

|||(u − uh,p− ph)||| � c
[(∑

T

η2
T ,|||·|||

)1/2

+ ‖uh − uH‖1−ε
0 |uh − uH |ε1|u∗ − uh|1

+ ‖uh − u∗‖1−ε
0 |uh − u∗|ε1|u∗ − uH |1

+ ‖u∗ − uH‖1−ε
0 |u∗ − uH |1+ε

1

]
(39)

and with the assumptions of Proposition4, the a posteriori error estimate

‖u − uh‖0 � c
[(∑

T

η2
T ,L2

)1/2

+ h‖uh − uH‖1−ε
0 |uh − uH |ε1|u∗ − uh|1

+ ‖uh − uH‖0|u∗ − uh|1 + h‖uh − u∗‖1−ε
0 |uh − u∗|ε1|u∗ − uH |1

+ ‖uh − u∗‖0|u∗ − uH |1 +H‖u∗ − uH‖1−ε
0 |u∗ − uH |1+ε

1

]
(40)

hold true.

Proof. The proof of the first estimate is similar to those of Proposition 1 and the first part of Proposition 6.
With the approximate Galerkin orthogonality (38), we obtain for all(vh, qh) ∈ Vh×Qh∣∣a(u − uh,v)+ b(u,u,v)− b(uh,uh,v)− (p− ph,∇ · v)+ (

q,∇ · (u − uh)
)∣∣

= ∣∣(f ,v − vh)− [
a(uh,v − vh)+ b(uh,uh,v − vh)+ (q − qh,∇ · uh)− (

ph,∇ · (v − vh)
)]

+ b(uh − uH ,u∗ − uh,vh)− b(uh − u∗,uH − u∗,vh)
+ b(u∗ − uH ,u∗ − uH ,RV (vh, qh)− vh)

∣∣.
The proof continues like in the propositions mentioned above.

The proof of the second estimate is similar to those of Propositions 2 and 4. With the approximate
Galerkin orthogonality (38) follows

‖u − uh‖2
0 = [

a(u − uh,z − zh)− (
p− ph,∇ · (z − zh)

)+ b(u,u,z − zh)

− b(uh,uh,z − zh)+ (
s − sh,∇ · (u − uh)

)]+ b(uh − uH ,u∗ − uh,zh)

− b(uh − u∗,uH − u∗,zh)+ b(u∗ − uH ,u∗ − uH ,RV (zh, sh)− zh
)
.

Now, each term can be estimated as in Propositions 2 and 4.✷
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Table 1
A posteriori error estimates and bounds for the asymptotic behaviour of the additional terms

Algorithm |||(u − uh,p− ph)||| ‖u − uh‖0

1 η1 η2

2 η1 + O(H 2k+1−ε) η2 + O(H 2k+1)

3 η1 + O(Hk+1−ε) η2 + O(Hk+1)

4 η1 + O(Hk+1−ε) η2 + O(Hk+2−ε)
5 η1 + O(H 2k+1−ε) η2 + O(H 2k+2−ε)

Assuming (5), all additional terms in the estimate (39) behaves asymptotically like O(H 2k+1−ε). To
prove this, use the a priori error estimates (6) foru − uH and (21), (22), (37), to estimateu − uh and
u − u∗. An analogous estimate of the first, third and fifth additional term in (40) shows that these terms
behave like O(H 2k+2−ε). However, for the second and the fourth extra term, we obtain only O(H 2k+1).
But with the assumptionh = O(H 1+(1−ε)/k), we get also for these terms O(H 2k+2−ε) with the help
of (21), (22), and (37). Thus, to obtain a O(H 2k+2−ε) behaviour of the extra terms in (40),Th needs
to be sufficiently fine but not optimal.

9. Summary

We have derived residual based a posteriori error estimates for several two-level algorithms to compute
discrete approximations of the solution of the Navier–Stokes equations. Additional terms arise in the
estimates due to an approximate Galerkin orthogonality of these algorithms. The estimates and the
asymptotic behaviour of the additional terms are summarized in Table 1, whereη1 = η1((uh,ph)) and
η2 = η2((uh,ph)) are defined in (16) and (19), respectively,ε in (9), andk in (5).

The asymptotic behaviour of the additional terms in the error estimates of Algorithms 2–5 has
been studied under the assumptionh < H (except theL2-error estimate in Algorithm 5, whereh =
O(H 1+(1−ε)/k) has been used). For optimally scaled meshes, the bounds of the asymptotic behaviour of
the extra terms are in general not of higher order than the order of convergence of the discrete solution.
Thus, the extra terms have to be computed in practice to guarantee an asymptotically correct a posteriori
error estimate. Table 1 shows that the asymptotic behaviour of the additional terms in all a posteriori error
estimates decreases byk powers ofH if the Newton step is replaced by the Oseen step. The additional
correction step improves the asymptotic order of convergence of the extra terms in the a posteriori error
estimates for theL2-norm of the velocity by the factorH 1−ε and it does not influence the asymptotic
behaviour of the extra terms in the a posteriori error estimates in the||| · |||-norm.
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