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H I G H L I G H T S

� Direct discretizations are used to simulate a bi-variate population balance system.
� A hybrid finite difference – finite volume discretization is presented.
� A monotone first order upwind and an ENO method of order three are applied.
� Important outputs of interest are predicted very differently.
� The impact on numerical errors on the computational results is shown.
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a b s t r a c t

The accurate and efficient simulation of bi-variate population balance systems is nowadays a great
challenge since the domain spanned by the external and internal coordinates is five-dimensional. This
report considers direct discretizations of this equation in tensor-product domains. In this situation, finite
difference methods can be applied. The studied model includes the transport of dissolved potassium
dihydrogen phosphate (KDP) and of energy (temperature) in a laminar flow field as well as the
nucleation and growth of KDP particles. Two discretizations of the coupled model will be considered
which differ only in the discretization of the population balance equation: a first order monotone upwind
scheme and a third order essentially non-oscillatory (ENO) scheme. The Dirac term on the right-hand
side of this equation is discretized with a finite volume method. The numerical results show that much
different results are obtained even in the class of direct discretizations.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Population balance modeling has gained a lot of attention in the
last few years, since many particulate processes can be described with
its help, e.g., crystallization, comminution, precipitation, polymeriza-
tion, aerosol, and emulsion processes. In particular, population balance
systems for crystallization processes model the interaction of the
surrounding medium and particles, which are described by a particle
size distribution (PSD). Moreover, this interaction leads to different
phenomena, e.g., nucleation, growth, aggregation, breakage, and
transport of particles (Hulburt and Katz, 1964; Gerstlauer, 1999).
Physical quantities in those systems, like temperature and concentra-
tions, depend on time and so-called external coordinates, i.e., the

spatial or geometrical coordinates, whereas the PSD depends on time,
external coordinates, and so-called internal coordinates, which
describe additional properties of the individual particles, e.g., diameter,
volume, or main axes in the case of anisotropic particles. Population
balance systems take into account a flow field transporting the
particles. This approach results in a system of partial differential
equations where the Navier–Stokes equations for the fluid velocity
and pressure are coupled to convection–diffusion equations for the
concentration of the species and the temperature of the system and a
transport equation for the PSD. The flow field, temperature field, and
concentration field are defined in a three-dimensional domain while
the PSD is defined in a higher-dimensional domain, spanned by the
external and internal coordinates.

There are different goals of numerical simulations. One goal
consists in gaining a deeper insight into physical processes
(models) by such simulations. In this case, one should use accurate
(high order) numerical methods. Of course, such methods are
generally computational expensive. Another goal might be to
utilize numerical simulations for a real time control of processes.
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In this situation, very efficient methods have to be applied.
However, such methods are usually of low order, i.e., one has to
expect only a low accuracy of the numerical results. Altogether,
different goals of numerical simulations require the use of numer-
ical methods with different properties and one should choose the
method according to the goal. This report focuses on the accuracy
of numerical methods. Main goals of this report consist, on the one
hand, in increasing the sensitivity of the population balance
community on the possible size of numerical errors and on the
other hand, in motivating careful and systematic studies of the
properties of numerical methods for solving multi-variate popula-
tion balance systems in order to obtain guidelines on which
method is appropriate for which goal.

To this end, the crystallization process of potassium dihydrogen
phosphate (KDP) is considered as a bi-variate model, i.e., with two
internal coordinates. These coordinates are the characteristic
length scales of the crystals. Particle transport as well as
temperature-dependent nucleation and growth are taken into
account. The coupling is modeled as one-way coupling, which
means that the flow field is used for the computation of concen-
tration, temperature, and the PSD. The back coupling can be
neglected in the used model because of a sufficiently small
amount of particles, suspended in a dilute dispersion medium,
and of the presence of sufficiently small temperature gradients.

The numerical solution of bi-variate population balance sys-
tems is computationally challenging since the equation for the PSD
is given in a five-dimensional domain in each discrete time. In
order to overcome the increase in dimension, techniques based on
model simplification are widely employed. One approach consists
in replacing the higher-dimensional equation for the PSD by a
system of equations for the first moments of the PSD, which is a
system in three dimensions (Hulburt and Katz, 1964). The most
popular approaches in this direction are the quadrature method of
moments (QMOM) (McGraw, 1997) and nowadays the direct
quadrature method of moments (DQMOM) (Marchisio and Fox,
2005). The DQMOM has been used for the simulation of multi-
variate population balance systems, e.g., in Buffo et al. (2013).
However, it is well known that the reconstruction of a PSD from a
finite number of its moments is a severely ill-posed problem (John
et al., 2007; de Souza et al., 2010). Other approaches consider
directly the equation for the PSD, for instance, numerical methods
based on operator-splitting techniques or direct discretizations
(the so-called discrete methods). The basic idea of operator-
splitting techniques is to split the high-dimensional equation into
two low-dimensional equations, one with respect to the external
coordinates and one with respect to the internal coordinates, and
solve them sequentially, e.g., see Ganesan and Tobiska (2012) for
the use of such methods for the simulation of a crystallization
process. However, this approach introduces splitting errors whose
magnitude is known only in model situations (Ganesan, 2012).
With the increase of computational power, direct discretizations of
the population balance equation become an interesting option.
In these methods, the external and internal coordinates are
discretized together, thus additional errors from simplifying the
equation are not introduced. In this report, it will be shown that
this approach is nowadays possible. To our best knowledge, the
presented simulations are the first ones with direct discretizations
for bi-variate population balance systems. Altogether, we think
that among the numerical approaches mentioned here, potentially
the most accurate simulations can be performed by using direct
discretizations. For this reason, two methods from the class of
direct discretizations will be studied.

This report focuses on the accuracy of the considered two
methods from the class of direct discretizations. In both methods,
the flow field is simulated with a higher order finite element
method, the convection-dominated equations for temperature and

concentration with a linear flux-corrected transport (FCT) finite
element method, and the transport equation for the PSD with
methods based on finite difference schemes. Both studied meth-
ods differ only in the concrete finite difference approximation: a
first order monotone upwind scheme and a third order essentially
non-oscillatory (ENO) scheme. In the considered setup, the five-
dimensional domain spanned by the external and internal coordi-
nates can be decomposed by a tensor-product mesh, which
enables the utilization of finite difference methods for the differ-
ential operator of the population balance equation, which
describes the convection with respect to internal and external
coordinates. However, the model for the nucleation used in this
equation contains a Dirac distribution such that a finite difference
approach cannot be applied for this term. In this report, a finite
volume method will be used for the the nucleation term and it is
explained in detail how the correct scaling has to be chosen to
obtain finally a hybrid finite difference – finite volume discretiza-
tion for the population balance equation.

The report is organized as follows. The studied process is
described in Section 2. In Section 3, the system of equations
modeling the bi-variate population balance system is introduced.
A brief description of the numerical methods and the couplings

Fig. 1. Characteristic lengths of KDP crystals.

Fig. 2. Equally distributed seed PSD at the inlet of the channel for ~tA ½0; ~t inj� s.

Table 1
Degrees of freedom for simulating the population
balance system.

Simulation quantity Number of d.o.f.

Velocity 496 875
Pressure 76 032
Temperature 22 477
Concentration 22 477
PSD 45 515 925
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within the population balance system is presented in Section 4.
Section 5 constitutes the main part of this report, which includes
comprehensive numerical studies and a discussion of the results.
Finally, a summary and an outlook are given in Section 6.

2. The studied process

In the studied process, KDP is the solute and water is the
solvent. KDP is a popular model substance for bi-variate crystal
research. The shape of KDP crystals is a tetragonal prism in
combination with tetragonal bi-pyramids (Ma and Braatz, 2001),
as illustrated in Fig. 1. The length of the crystal is given by ~L2 and
the width and depth are both equal to ~L1r ~L2.

The volume of the crystal is given by

~V ¼ 1
3
~L
3
1þð~L2� ~L1Þ~L

2
1: ð1Þ

The model parameters used in our simulations are based on
experimental data from Borchert (2012), Braatz et al. (2002), and
Togkalidou et al. (2001).

For the considered configuration, we do not possess measure-
ment data, neither for an initial nor for a final particle size
distribution. However, for the goals of this report, it is sufficient
to use some kind of realistic data sets and to demonstrate
the impact of different methods on the obtained numerical
results. The flow domain is a channel of the same size as in

Fig. 3. Cut planes, parallel to the plane ~x1 ¼ 0, for comparing the results obtained
with the two numerical schemes.

Fig. 4. Inflow rate ~V r ¼ 30 ml=min, the stationary velocity field at the inlet of the channel in a cut plane, domain not to scale.

Fig. 5. Inflow rate ~V r ¼ 30 ml=min: maximal value of the PSD at ð ~x1 ; ~x2; ~x3Þ ¼ ð17:5;1=2;1=2Þ cm for different time steps, FWE-UPW-FDM (left), RK-ENO-FDM (right). Note
the different scaling of the y-axes.
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Hackbusch et al. (2012). Note that the simulations from Hackbusch
et al. (2012) are based on experiments such that data sets taken as
in, or similar to, Hackbusch et al. (2012) represent realistic
situations. At the inlet, equally distributed seed particles of
prescribed lengths within a rather narrow interval of both lengths
are chosen. The inlet of particles occurs only for a short time
interval. Then, the particles are transported from the inlet to the
outlet of the channel. The flow fields are almost the same as in
Hackbusch et al. (2012), only the solvent ethanol in Hackbusch
et al. (2012) is here replaced by water. During the residence time
in the channel, the particles grow and new particles are created by

nucleation in supersaturated solution. Growth and nucleation
depend on the temperature. The data for the temperature field
and the concentration field (initial and boundary conditions) are
computed or chosen the same way as in Hackbusch et al. (2012).
Aggregation of particles is not included into the model for two
reasons. First, one would need some model on how to classify the
aggregate of two particles of the form presented in Fig. 1 within
the framework of the considered bi-variate population. And second,
to the best of our knowledge, predictive models for aggregation
kernels for bi-variate populations are not known so far.

Outputs of interest are the form of the PSD and its maximal
value in three planes perpendicular to the flow direction: one
rather close to the inlet, one at around one fourth of the length of
the channel, and the last one at the outlet.

3. The model for the population balance system

The population of KDP crystals is modeled by a system of
equations describing the flow field (velocity, pressure), the energy
balance (temperature), the mass balance (concentration), and the
particle size distribution. Secondary nucleation, growth, and
transport of the particles are taken into account.

Based on the experimental setup from Borchert and
Sundmacher (2011) and the simulations from Hackbusch et al.
(2012), the flow field will be described by the incompressible
steady-state Navier–Stokes equations

�μΔ ~uþρðð ~u � ∇Þ ~uÞþ∇ ~p ¼ ρ ~g in ~Ω;

∇ � ~u ¼ 0 in ~Ω; ð2Þ

Fig. 6. Inflow rate ~V r ¼ 30 ml=min: maximal value of the PSD for different time steps, FWE-UPW-FDM (left); RK-ENO-FDM (right), ð ~x1 ; ~x2; ~x3Þ ¼ ð49;1=2;1=2Þcm (top),
ð ~x1 ; ~x2 ; ~x3Þ ¼ ð200;1=2;1=2Þ cm (bottom). Note the different scaling of the y-axes.

Fig. 7. Studied nodes for the cut planes parallel to the plane ~x1 ¼ 0.
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where ~Ω ¼ ð0:210Þ � ð0:1Þ � ð0:1Þ cm3 is the flow domain, μ¼ 1:5�
10�3 kg=ðmsÞ is the dynamic viscosity of the overall solution at
298 K, ρ¼ 1160 kg=m3 is density of the overall solution at 298 K, and
~g ðm=s2Þ is the gravitational acceleration. The functions to be simu-
lated are the fluid velocity ~u ðm=sÞ and the pressure p ðPaÞ. Since the
process is set up in such a way that the suspension is sufficiently
dilute, the size of the particles is sufficiently small, and the tempera-
ture gradient is also small enough, the influence of all these aspects
on the flow field can be neglected. The Navier–Stokes equations (2)
have to be equipped with boundary conditions. The boundary is given
by ~Γ ¼ ~Γ in [ ~Γout [ ~Γwall, with ~Γ in ¼ f0 cmg � ð1=3 cm;2=3 cmÞ �
ð1=3 cm; 2=3 cmÞ as the inlet boundary, ~Γout ¼ f210 cmg �
ð0 cm;1 cmÞ � ð0 cm;1 cmÞ as the outlet boundary, and ~Γwall ¼
Γ\ðΓin [ ΓoutÞ as the boundary at the walls. Analogously as in
Hackbusch et al. (2012), it is assumed that only the flow rate at the
inlet ~Γ in is known from an experiment. The construction of a
continuous boundary condition at the plane where the inlet is
situated, which matches a prescribed flow rate, is described in
Hackbusch et al. (2012). It has the form

~uð ~xÞ ¼ UinðΨ ðξð ~xÞ;ηð ~xÞÞ;0;0ÞT ; ~xA ~Γ in;

where the profile Ψ ðξ;ηÞ is the solution of the two-dimensional
Poisson equation

�ΔΨ ¼ 1 in ~Γ in; Ψ ¼ 0 on ∂ ~Γ in:

The parameter Uin is chosen to match the given inflow rates. The
boundary condition at the outlet ~Γout is the standard do-nothing
condition,

ðμ∇ð ~uÞ� ~pIÞ � ~n ~Γ ¼ 0; ~xA ~Γout; ð3Þ

where ~n ~Γ is the unit outer normal on ~Γ . A boundary condition at the
outlet is often not known from experiments. In particular it is unclear
how good this boundary condition corresponds to (3). For this reason,
the computational domain should be somewhat larger than the actual
domain such that a possible slight incorrectness of the outflow
boundary condition (3) has no impact on the computational results
in the region that corresponds to the outlet of the actual domain. In
this report, this aspect is taken into account by studying ~x ¼ 200 cm
as the outlet plane. At all other boundaries (the walls), the no-slip
condition

~uð ~xÞ ¼ 0; ~xA ~Γwall;

is applied.
The mass balance of the KDP system is modeled by

∂~c
∂~t

�DΔ~cþ ~u � ∇~c ¼ ~sgr

mmol
in ð0; ~tendÞ � ~Ω; ð4Þ

where ~c ðkg=m3Þ is the concentration of the solute, ~sgr ðkg=ðm3sÞÞ
is the mass transferred from the suspension to the solid phase due
to the growth per unit time and unit space, mmol ¼ 136:08� 10�3

kg=mol is the molar mass of KDP, and D¼ 5:5� 10�10 m2=s is the
diffusion coefficient of KDP in water. The consumption of the
solute by the growth of particles is modeled by the term on the
right-hand side in (4)

~sgr ¼ �ρd
Z ~L2;max

~L2;min

Z minf ~L2 ; ~L1;maxg

~L1;min

ð2 ~G1ð~L1 ~L2� ~L
2
1Þþ ~G2

~L
2
1Þ

�~f ð~t ; ~x ; ~L1; ~L2Þ d~L1d~L2; ð5Þ

with ~L1;min ¼ ~L2;min ¼ 0 m, ~L1;max ¼ 1200� 10�6 m, and ~L2;max ¼
4000� 10�6 m. The growth rates for the individual internal

Fig. 8. Inflow rate ~V r ¼ 30 ml=min: maximal value of the PSD at different nodes ð17:5; ~x2 ; ~x3Þ cm, FWE-UPW-FDM (left); RK-ENO-FDM (right). Note the different scaling of
the y-axes.

V. John, C. Suciu / Chemical Engineering Science 106 (2014) 39–52 43



coordinates are given by

~Gið~c; ~T Þ ¼
kgi

~c� ~csatð ~T Þ
~csatð ~T Þ

 !gi

if ~c4 ~csatð ~T Þ;

0 else;

8>><
>>: i¼ 1;2;

with the model parameters ρd ¼ 2338 kg=m3 as the density of KDP
(dispersed phase), kg1 ¼ 1:221� 10�5 m=s as growth rate constant
with respect to ~L1, kg2 ¼ 10:075� 10�5 m=s as growth rate con-
stant with respect to ~L2, g1 ¼ 1:48 ð�Þ as growth rate power with
respect to ~L1, and g2 ¼ 1:74 ð�Þ as growth rate power with respect
to ~L2. Eq. (4) has to be equipped with initial and boundary
conditions. The boundary condition is given by

~cð~t ; ~xÞ ¼ ~csatð ~T Þ; ~xA ~Γ in;

D
∂ ~c
∂ ~n ~Γ

¼ 0; ~xA ~Γout [ ~Γwall;

8><
>:
with the saturation concentration taken as in (Majumder et al.,
2012)

~csatð ~T Þ ¼
9:3027� 10�5 ~T

2�9:7629� 10�5 ~T þ0:2087
mmol

;

where ~T ðKÞ is the temperature of the system. With this boundary
condition, Eq. (4) without the coupling term to the PSD is solved
until a steady state is reached. This steady state is used as initial
condition

~cð0; ~xÞ ¼ ~csteadyð ~xÞ:

Next, the energy balance of the KDP system is modeled by

ρcp
∂ ~T
∂t

þu �∇ ~T

 !
�λΔ ~T ¼Δhcryst ~sgr in ð0; ~tendÞ � ~Ω; ð6Þ

where cp ¼ 4181:3 J=ðkg KÞ is the specific heat capacity of water,
λ¼ 0:602 J=ðK m sÞ is the thermal conductivity of water, and
Δhcryst ¼ 119 J=kg is the heat of solution (enthalpy change of
solution). The decrease of temperature with respect to the growth
of the particles is modeled by the term on the right-hand side of
(6), where ~sgr is defined as in (5). The boundary conditions are
given by

~T ð~t ; ~xÞ ¼ 308:15 K; ~xA ~Γ in;

λ
∂ ~T
∂ ~n ~Γ

¼ 0; ~xA ~Γout;

~T ð~t ; ~xÞ ¼ 291:15 K; ~xA ~Γwall:

8>>>><
>>>>:
Hence, the suspension is cooled at the wall. As initial condition, a
fully developed temperature field, based on the solution of a
steady-state equation without the coupling term to the PSD, is
chosen

~T ð0; ~xÞ ¼ ~T steadyð ~xÞ:

Finally, the population balance equation for the bi-variate
model is given by

∂~f
∂~t

þ ~G1ð~c; ~T Þ
∂~f
∂ ~L1

þ ~G2ð~c; ~T Þ
∂~f
∂ ~L2

þ ~u �∇~f ¼ ~Hnuc

in ð0; ~tendÞ � ~Ω � ð~L1;min; ~L1;maxÞ � ð~L2;min; ~L2;maxÞ: ð7Þ

Fig. 9. Inflow rate ~V r ¼ 30 ml=min: maximal value of the PSD at different nodes ð200; ~x2 ; ~x3Þ cm, FWE-UPW-FDM (left), RK-ENO-FDM (right). Note the different scaling of the
x- and y-axes. Maximal values of the PSD in the nodes with a distance less than or equal to 1=6 cm of one of the walls are negligible (magenta and cyan curves). (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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The right-hand side in (7) accounts for nucleation which is
assumed to occur at the smallest particles

~Hnuc ¼ ~Bnucð~c; ~T Þ ~V crystδð~L1� ~L1;nucÞδð~L2� ~L2;nucÞ; ð8Þ

with δ being the Dirac delta distribution,

δð~Li� ~Li;nucÞ ¼
1 if ~Li ¼ ~Li;nuc;
0 else;

(
i¼ 1;2;

with ~L1;nuc ¼ 50� 10�6 m and ~L2;nuc ¼ 100� 10�6 m. This model
for the nucleation is standard and it has been proposed, e.g., in
Borchert (2012). The ratio between the volume of the crystalline
phase and the total volume can be computed by

~V cryst ¼
Z ~L2;max

~L2;min

Z minf ~L2 ; ~L1;maxg

~L1;min

~V ~f d~L1d~L2;

where ~V is given in (1), and the nucleation rate is defined by

~Bnucð~c; ~T Þ ¼ kb
~c� ~ccsatð ~T Þ
~ccsatð ~T Þ

 !b

if ~c4 ~ccsatð ~T Þ;

0 else;

8>><
>>:

with the model parameters kb ¼ knuc � Voverall ð1=ðm3sÞÞ with
knuc ¼ 3:75� 10131=ðm6sÞ, Voverall ¼ 2:1� 10�4 m3 (volume of the
channel), and b¼ 2:04 ð�Þ as the nucleation rate power. The initial
condition is given by

~f ð0; ~x ; ~L1; ~L2Þ ¼ 0 in ~Ω � ð~L1;min; ~L1;maxÞ � ð~L2;min; ~L2;maxÞ;

i.e., there are no particles in the flow domain. Boundary conditions
are necessary on the closure of the inflow boundaries

~f ð~t ; ~x ; ~L1; ~L2Þ ¼
~f inð~t ; ~x ; ~L1; ~L2Þ; ~xA ~Γ in; ~tA ½0; ~t inj� s;
0 else;

(

where ~f in is given by, see Fig. 2,

~f inð~t ; ~x ; ~L1; ~L2Þ ¼
1 if ~L1Að150;250Þ � 10�6 m; ~L2Að600;1000Þ � 10�6 m;

0 else;

(

for ~tA ½0; ~t inj� s with ~t inj ¼ 10 s.
Numerical simulations are based on dimensionless equations.

In our numerical studies, the following reference values are used
for deriving these equations: f1 ¼ 10131=m5, l1 ¼ 0:01 m,
u1 ¼ 0:01 m=s, T1 ¼ 1 K, c1 ¼ 1 mol=m3, L1;1 ¼ 1000� 10�6 m,
and L2;1 ¼ 1000� 10�6 m.

4. Numerical methods

The model of the population balance system presented in Section 3
results in a system of partial differential equations where the Navier–
Stokes equations for the fluid velocity and pressure are coupled to
convection–diffusion equations for the species concentration and the
system temperature and a transport equation for the particle size
distribution. The last three equations are coupled mutually. All spatial
discretizations are performed on a hexahedral grid.

For the considered flow rates, it turns out that the Navier–
Stokes equations (2) admit a stable steady-state solution. Since the
computation of the velocity u and the pressure p does not require

Fig. 10. Inflow rate ~V r ¼ 30 ml=min: (logarithm of the) PSD at ð200; ~x2; ~x3Þ cm, nodes on the line between the wall and the center; FWE-UPW-FDM. Note that at
A¼ ð200;1=12;1=2Þ cm and B¼ ð200;2=12;1=2Þ cm there is no notable amount of particles predicted. (a) O¼ ð200;1=2;1=2Þ cm, ~tmax ¼ 240 s, (b) E¼ ð200;5=12;1=2Þ cm,
~tmax ¼ 245 s, (c) D¼ ð200;4=12;1=2Þ cm, ~tmax ¼ 264 s, (d) C ¼ ð200;3=12;1=2Þ cm, ~tmax ¼ 300 s.
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any information from temperature (T), concentration (c), and PSD
(f), the steady-state flow field is computed in a preprocessing step.
For discretizing this equation, the inf-sup stable pair of finite
element spaces Q2=P

disc
1 is applied, which is considered to be an

accurate choice, e.g., see Gresho and Sani (2000).
Both equations for the temperature and the concentration are

time-dependent and strongly convection-dominated. Therefore,
apart from the spatial discretization, a discretization in time is also
required. To this end, the Crank–Nicolson scheme is applied. In
space, the Q1 finite element is used. Due to the dominant
convection, a stabilized finite element has to be applied. Here, a
linear flux-corrected transport (FEM-FCT) method is used, which is
a variant of a method proposed in Kuzmin (2009). The combina-
tion of this method and the Crank–Nicolson scheme has been
proved to be one of the best performing, with respect to the ratio
of accuracy and efficiency, finite element methods in competitive
studies (John and Schmeyer, 2008, 2009; John and Novo, 2012).

Altogether, the equations that are defined in the physical
domain only are discretized with accurate finite element methods
that are state of the art.

Since the domain ~Ω is of tensor-product form, the domain
spanned by the external and internal coordinates can be decom-
posed by a tensor-product mesh. Such a mesh enables the
utilization of finite difference methods. Finite difference methods
are comparatively cheap methods. In competitive studies (John
and Novo, 2012) it has been shown that they are superior, with
respect to the ratio of accuracy and efficiency, to finite element
methods in the tensor-product setting. However, the usual appli-
cation of finite difference methods to (7) becomes impossible due
to the Dirac distribution contained in the right-hand side (8),
because for finite difference methods, the right-hand side must be

a continuous function. But the Dirac distribution can be discretized
with finite volume methods since the integral of this distribution
is well defined.

Thus, in the numerical simulations, a hybrid discretization is
utilized that uses for the left-hand side of (7) finite difference
methods and for the right-hand side of a finite volume method. Let
ΩL ¼ ½L1;min; L1;max� � ½L2;min; L2;max�. This domain is decomposed by
cells

Ki;j ¼ ½L1;i�1=2; L1;iþ1=2� � ½L2;j�1=2; L2;jþ1=2�; 1r irNL1 ;1r jrNL2 ;

with Li;min ¼ Li;1=2rLi;3=2r⋯rLi;NLi
þ1=2 ¼ Li;max, i¼ 1;2. Denote by

ðL1;i; L2;jÞ the barycenter of Ki;j and by ΔL1;i ¼ L1;iþ1=2�L1;i�1=2,
ΔL2;j ¼ L2;jþ1=2�L2;j�1=2 its edge sizes. The finite volume formula-
tion of (7) with respect to the internal coordinates for the cell Ki;j

reads (Hirsch, 1988)Z
Ki;j

G � ∇Lf dL1dL2 ¼
Z
Ki;j

Hnuc dL1dL2; ð9Þ

with

G¼
G1

G2

 !
; ∇L f ¼

∂f
∂L1
∂f
∂L2

0
@

1
A; Hnuc ¼ CnucδðL1�L1;nucÞδðL2�L2;nucÞ;

where Cnuc comprises the parameters from (8) and the factor
coming from deriving the dimensionless equations. Applying
the Gaussian divergence theorem to (9) and using the fact that
∇L � G¼ 0 yieldsZ
ΓKi;j

ðG � nKi;j
Þf dΓL ¼ Cnuc

Z
Ki;j

δðL1�L1;nucÞδðL2�L2;nucÞ dL1 dL2

Fig. 11. Inflow rate ~V r ¼ 30 ml=min: (logarithm of the) PSD at ð200; ~x2 ; ~x3Þ cm, nodes on the line between the wall and the center; RK-ENO-FDM. Note that at
A¼ ð200;1=12;1=2Þ cm and B¼ ð200;2=12;1=2Þ cm there is no notable amount of particles predicted. (a) O¼ ð200;1=2;1=2Þ cm, ~tmax ¼ 240 s, (b) E¼ ð200;5=12;1=2Þ cm,
~tmax ¼ 245 s, (c) D¼ ð200;4=12;1=2Þ cm, ~tmax ¼ 264 s, (d) C ¼ ð200;3=12;1=2Þ cm, ~tmax ¼ 300 s.
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¼ Cnuc
1 if ðL1;nuc; L2;nucÞAKi;j;

0 else;

(

≕Cnuc;δij ; ð10Þ

where nKi;j
is the unit outward normal vector to ΓKi;j

. The left-hand
side in (10) is discretized by applying the midpoint rule on the
edges of Ki;j, leading toZ
ΓKi;j

ðG � nKi;j
Þf dΓL

� G1ΔL2;jðf hiþ1=2;j� f hi�1=2;jÞþG2ΔL1;iðf hi;jþ1=2� f hi;j�1=2Þ:

Thus, the finite volume discretization of (9) becomes

G1ΔL2;jðf hiþ1=2;j� f hi�1=2;jÞþG2ΔL1;iðf hi;jþ1=2� f hi;j�1=2Þ ¼ Cnuc;δij : ð11Þ

Multiplying this equation by 1=ðΔL1;iΔL2;jÞ, one gets

G1
ðf hiþ1=2;j� f hi�1=2;jÞ

ΔL1;i
þG2

ðf hi;jþ1=2� f hi;j�1=2Þ
ΔL2;j

¼
Cnuc;δij

ΔL1;iΔL2;j
; ð12Þ

which is the central finite volume discretization. This type of dis-
cretization might lead to spurious oscillations in the numerical
solutions in the case that convection dominates. Then, other types of
finite volume schemes are used, e.g., schemes of upwind type.
Applying the standard upwind technique to (12) yields the upwind
finite volume scheme

G1
ðf hi;j� f hi�1;jÞ

ΔL1;i
þG2

ðf hi;j� f hi;j�1Þ
ΔL2;j

¼
Cnuc;δij

ΔL1;iΔL2;j
; ð13Þ

for G1Z0 and G2Z0. Now, one can observe that the left-hand side of
(13) coincides with the upwind finite difference discretization of the

convective term with respect to the internal coordinates of the left-
hand side in (7). This correlation provides the link between applying a
finite difference method for discretizing the left-hand side of (7) and a
finite volume method for discretizing the right-hand side of (7): the
right-hand side of the finite volume discretization (11) has to be
multiplied with the scaling factor 1=ðΔL1;iΔL2;jÞ to become the
correctly scaled right-hand side for a discretization with a finite
difference operator on the left-hand side.

The last important component of the numerical method is the
solution of the nonlinear coupled system consisting of the equa-
tions for temperature, concentration, and PSD. This system is
solved iteratively with a fixed point iteration where one iteration
consists of three steps:

� solve the equation for temperature with the currently available
approximations of the concentration and the PSD;

� solve the equation for concentration with the approximation of
the temperature computed in the first step and the currently
available approximation of the PSD;

� solve the equation for PSD with the approximations of the
temperature and concentration computed in the first two steps.

The iteration for solving the coupled system is stopped if the sum
of the Euclidean norms of the residual vectors for concentration
and temperature is below a prescribed tolerance.

The main topic of the numerical studies will be the finite
difference discretization for the left-hand side of (7). On the one
hand, a popular low order method is used, which consists of the
forward Euler discretization for the temporal derivative and the
simple upwind discretization for the derivatives with respect to
the external and internal coordinates. This first order approach has

Fig. 12. Inflow rate ~V r ¼ 30 ml=min: (logarithm of the) PSD at ð200; ~x2 ; ~x3Þ cm, nodes on the line between the corner and the center, FWE-UPW-FDM. Note that
at A′¼ ð200;1=12;1=12Þ cm and B′¼ ð200;2=12;2=12Þ cm there is no notable amount of particles predicted. (a) O¼ ð200;1=2;1=2Þ cm, ~tmax ¼ 240 s,
(b) E′¼ ð200;5=12;5=12Þ cm, ~tmax ¼ 251 s, (c) D′¼ ð200;4=12;4=12Þ cm, ~tmax ¼ 291 s, (d) C′¼ ð200;3=12;3=12Þ cm, ~tmax ¼ 300 s.
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been applied in our work so far (John et al., 2009; John and Roland,
2010; Hackbusch et al., 2012). For sufficiently small time steps, this
method is monotone, i.e., the numerical solution does not possess
spurious oscillations, like negative values for the PSD. A detailed
description of this method can be found in John and Roland (2010).
The second discretization studied in this report is a total variation
diminishing (TVD) Runge–Kutta method for the temporal deriva-
tive in combination with an essentially non-oscillatory (ENO)
scheme for the derivatives with respect to external and internal
coordinates (Harten et al., 1987; Shu, 2009). This discretization is
of third order. It is, as the name already suggests, only essentially
monotone. Thus, small spurious oscillations might sometimes
occur, as seen, e.g., in the numerical studies of John and Novo
(2012). In this paper, one can find a detailed description of this
method. To the best of our knowledge, this method has not been
used in the direct discretization of bi-variate population balance
systems so far.

5. Numerical studies

The numerical studies consider two numerical methods for
simulating the population balance system from Section 3. These
methods differ only in one component, namely the discretization
of the left-hand side of the PSD Eq. (7), where a forward Euler
scheme with an upwind finite difference discretization (FWE-
UPW-FDM) and a TVD Runge–Kutta method combined with an
ENO finite difference discretization (RK-ENO-FDM) are used. The
main focus is on the differences in accuracy of the computed
results. In a first study, a flow field with inflow rate 30 ml/min will
be considered. After having evaluated the results for this

configuration in detail, results obtained for a configuration with
inflow rate 90 ml/min will be discussed briefly. For simplicity of
notation, the whole numerical methods for simulating the popula-
tion balance system are abbreviated by FWE-UPW-FDM and RK-
ENO-FDM, respectively.

The flow domain is long compared with its thickness and there
is a preferred direction of the flow, which enables the use of a
priori adapted and an anisotropic grid of 132�12�12 cells, see
Hackbusch et al. (2012) for details. For the internal coordinates, a
uniform mesh was used with 25 nodes with respect to the smaller
length of the particles, ~L1, and 81 nodes with respect to the larger
length of the particles, ~L2. The corresponding numbers of degrees
of freedom for simulating the population balance system are given
in Table 1.

To highlight the differences of the results obtained with both
methods, the PSD was studied at different locations in the channel.
To this end, three cut planes are chosen, one close to the inlet at
~x1 ¼ 17:5 cm, one more downstream at ~x1 ¼ 49 cm, and the last
one close to the outlet at ~x1 ¼ 200 cm, see Fig. 3.

5.1. Inflow rate 30 ml/min

In the first numerical study, a flow rate of ~V r ¼ 30 ml=min at
the inlet was considered. The stationary flow field at the inlet of
the channel is shown in Fig. 4. Based on the mean velocity at the
inlet (4.5 cm/s), the kinematic viscosity of the fluid, and the height
of the channel (0.01 m), the Reynolds number of the flow is
Re� 348.

At the beginning of the process, in the time interval
~t injA ½0;10� s, seed particles are injected into the channel, see
Fig. 2 for the initial PSD. It turns out that almost all particles had

Fig. 13. Inflow rate ~V r ¼ 30 ml=min: (logarithm of the) PSD at ð200; ~x2; ~x3Þ cm, nodes on the line between the corner and the center, RK-ENO-FDM. Note that
at A′¼ ð200;1=12;1=12Þ cm and B′¼ ð200;2=12;2=12Þ cm there is no notable amount of particles predicted. (a) O¼ ð200;1=2;1=2Þ cm, ~tmax ¼ 240 s, (b)
E′¼ ð200;5=12;5=12Þ cm, ~tmax ¼ 251 s, (c) D′¼ ð200;4=12;4=12Þ cm, ~tmax ¼ 291 s, (d) C′¼ ð200;3=12;3=12Þ cm, ~tmax ¼ 300 s.
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left the domain after ~t ¼ 300 s, such that the simulations are
performed in the (dimensionless) time interval ½0;300�.

First, an appropriate time step has to be found. If the time step
is too large, instabilities have to be expected because explicit time-
stepping schemes are applied. If the time step is too small, then
the simulation is inefficient. In addition, from our experience, we
expected that for sufficiently small time steps the discretization
error with respect to the external and internal coordinates
dominates, and therefore a further decrease of the time step does
not lead to an increase of the accuracy of the results. To find
possible instabilities, the PSD in the center of the channel at the
plane close to the inlet, at ð ~x1; ~x2; ~x3Þ ¼ ð17:5;1=2;1=2Þ cm, is
studied, see Fig. 5. Up to this point, there is more or less only a
transport of the initial PSD. In particular, one does not expect
values that are much larger than the maximal value of the initial
PSD, which is 1013. It can be seen in Fig. 5, upper pictures, that
such values are computed for Δt ¼ 0:2 (both schemes) and
Δt ¼ 0:15 (RK-ENO-FDM). The lower pictures of Fig. 5 reveal that
for both schemes the results for Δtr0:1 are very similar. From
Fig. 6, it can be observed that this statement holds true also for the
other cut planes. Therefore, Δt ¼ 0:1 satisfies the conditions for an
appropriate length of the time step and only results obtained with
this length will be presented in the detailed discussion.

For a detailed evaluation of the computational results, the
temporal evolution of the PSD was studied not only at the center
of the cut planes shown in Fig. 3, but also at other points situated
in these planes. These points are sketched in Fig. 7. There is one set
of points reaching from the center of the channel to the center of a
lateral wall and another set, where the points reach from the
center to the corner of two lateral walls. Due to the different
velocities in all these points, a different evolution of the PSD can
be expected.

To keep the presentation of the results concise, only the
evolution of the maximal value of the PSD in these points in the
first and last cut plane will be presented, see Figs. 8 and 9. It can be
seen that the largest maximal values are predicted in the center of
the channel, i.e., the bulk of particles follows the flow very well.
The further the point of observation is away from the center, the
smaller the maximal value of the PSD becomes. This general
qualitative behavior is predicted by both the studied schemes,
FWE-UPW-FDM and RK-ENO-FDM. However, the height of the
peaks (highest amount of particles that can be observed at the
point at a certain time) and the time interval where the curve is
clearly larger than zero (time interval where a notable number of
particles can be observed at the point) often differ considerably
between both methods. One can observe that the differences in
the numerical results are the larger, the further the cut plane is
away from the inlet, i.e., the longer the particles needed to reach
the cut plane. Always, the method FWE-UPW-FDM gives results
with smaller peaks and larger time intervals in which particles can
be observed. Already close to the inlet, at the plane ~x ¼ 17:5 cm,
notable differences can be seen. At the outlet, the differences are
very large. As an example, at the center of the channel
ð ~x1; ~x2; ~x3Þ ¼ ð200;1=2;1=2Þ cm, the method FWE-UPW-FDM pre-
dicts a notable amount of particles in the time interval ½190;290� s,
whereas RK-ENO-FDM shows this event in ½215;265� s, thus the
lengths of the respective time intervals are 100 s and 50 s. More-
over, the maximal amount of particles computed by RK-ENO-FDM
is almost four times larger than the prediction of FWE-UPW-FDM.

Comprehensive illustrations of the PSD in the different points
are provided in Figs. 10–13. For brevity, the presentation is
restricted to the plane close to the outlet because the results at
the outlet are of most interest. Details with respect to the other cut
planes can be found in Suciu (2013). For each picture, the time
instance is chosen where the maximal value of the PSD is
obtained. It can be clearly observed that the results obtained with

RK-ENO-FDM are much less smeared than the results computed
with FWE-UPW-FDM. In addition, the maximal values of the PSDs
are larger for RK-ENO-FDM. The smearing introduced by FWE-
UPW-FDM results even in the fact that a notable amount of
particles has already left the domain of computation for the
internal coordinates at the end of the channel. In addition, there
is also a certain amount of particles which are physically wrong
since for them holds ~L14 ~L2. For both methods, the results in the
points close to the center of the channel are almost identical to the
results in the center itself. Only the maximal value of the PSD is
taken a little bit earlier at the center. Toward the walls, the amount
of particles becomes smaller, to be negligible close to the walls. In
the point C′, see Figs. 12 and 13, the results are qualitatively
different. The pictures in Figs. 10–13 also allow to distinguish
between the part of the PSD that originates from the inlet seed and
the part which comes from the nucleation. Also for the latter part,
the smearing introduced by FWE-UPW-FDM is clearly visible.

Differences in the numerical results can be seen also in other
quantities of the population balance system. The final concentra-
tion fields computed with FWE-UPW-FDM and RK-ENO-FDM are
depicted in Fig. 14. On the whole, both fields look similar, but they
are actually different in detail. A clear difference can be seen in the
middle of the channel, at ~x1 � 100 cm, toward the walls, where the
concentration obtained with FWE-UPW-FDM is much smaller than
the concentration computed by RK-ENO-FDM. Even more striking,
the same situation can be observed at the end of the channel. The
smaller values for FWE-UPW-FDM at the end of the channel arise
from the fact that due to the smearing of this method larger
particles are produced. For creating larger particles, more of the
dissolved species has to be consumed, leading finally to smaller
values for the concentration.

5.2. Inflow rate 90 ml/min

A second study was performed with the inflow rate of
~V r ¼ 90 ml=min. For brevity, only a few results will be presented in
this report, for a detailed evaluation of this study it is referred to Suciu
(2013).

The inflow rate ~V r ¼ 90 ml=min leads to a stationary flow field
with Reynolds number Re� 1044. Since the flow is considerably faster
than in the study from Section 5.1, the residence time of the particles
is shorter. Consequently, there will be less time to achieve large
particles by nucleation and growth compared with the study from
Section 5.1.

It can be seen in the numerical simulations that after ~t ¼ 150 s
almost all particles had left the domain. Using the same methodology
as in Section 5.1, it is found thatΔt ¼ 0:025 is an appropriate length of
the time step in this study, which is used in the simulations.

The evolution of the maximal value of the PSD for different nodes
at the outlet is depicted in Fig. 15. Again, one can observe clear

Fig. 14. Inflow rate ~V r ¼ 30 ml=min: final concentration field (~t ¼ 300 s) with FWE-
UPW-FDM and RK-ENO-FDM, domain scaled by factor 40 in y- and z-direction.
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differences between the results obtained with FWE-UPW-FDM and
with RK-ENO-FDM. For instance, considering the center of the channel,
FWE-UPW-FDM predicts a notable amount of particles in the time
interval ½60;100� s, whereas RK-ENO-FDM predicts the same event in
½70;90� s. The maximal amount of particles predicted by RK-ENO-FDM
is almost twice as large as the prediction by FWE-UPW-FDM. Having a
look at the PSD in the center of the outlet, Fig. 16, the much stronger
smearing of FWE-UPW-FDM compared with RK-ENO-FDM can be
observed well. Altogether, both methods give results which differ
considerably in important properties. But the differences are smaller
than for the study in Section 5.1. The same trend can be observed also
for all other results. We think that the shorter residence time of the
particles in the channel is the reason for the smaller differences.

5.3. Discussion and further aspects of the simulations

In this section, two direct discretizations of a bi-variate popula-
tion balance system were studied, which differ only in the
discretization of the differential operator in the equation for the
PSD. Since the solutions in the considered examples are smooth, it
can be expected that the third order method RK-ENO-FDM gives
more accurate results than the first order method FWE-UPW-FDM.
For the time steps which were chosen to be appropriate, difficul-
ties with spurious oscillations, which might generally arise in
using RK-ENO-FDM, did not occur.

Both methods predicted that the bulk of the particles follows
the flow field very well, i.e., most of the particles stay in the center

Fig. 16. Inflow rate ~V r ¼ 90 ml=min: (logarithm of the) PSD at ð200;1=2;1=2Þ cm, ~tmax ¼ 79 s, FWE-UPW-FDM (left), RK-ENO-FDM (right).

Fig. 15. Inflow rate ~V r ¼ 90 ml=min: maximal value of PSD at different nodes ð200; ~x2; ~x3Þ cm, FWE-UPW-FDM (left), RK-ENO-FDM (right). Note the different scaling of the y-
axes. Maximal values of PSD in the nodes close to the wall (corner) are negligible (magenta, cyan curves). (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)
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of the channel and much less particles can be found closer to the
walls. In all simulations, the computed PSDs at the outlet allow to
distinguish clearly the contributions coming from the seed at the
inlet and coming from the nucleation. Apart from these general
agreements, there are considerable differences between the
results computed with FWE-UPW-FDM and RK-ENO-FDM. The
solutions computed with RK-ENO-FDM are considerably less
smeared compared with the solutions obtained using FWE-UPW-
FDM. A notable amount of particles at the outlet is predicted by
RK-ENO-FDM in time intervals that are only half as long as the
time intervals predicted by FWE-UPW-FDM. In addition, the
maximal value of the PSD was two to four times larger for RK-
ENO-FDM. Altogether, these results are quantitatively much dif-
ferent. The numerical studies show also that the differences
between the results obtained with the two methods become
larger the longer the residence time of the particles is.

The simulations were performed with the code MOONMD John and
Matthies (2004) on HP BL2x220c computers with 2933MHz Xeon
processors. Simulating one time step for FWE-UPW-FDM took around
30 s, including the calculation of all data for evaluating the numerical
simulations. Themethod RK-ENO-FDM had higher computational cost,
in our simulations of around a factor of five.

Simplifications in the considered model include the flow field
to be steady-state and the particles to follow the flow (Stokes
number equal to zero). If these simplifications are not appropriate,
one has to solve a momentum balance equation for the continuous
or the dispersed phase, which of course will have an impact on the
computational cost. So far we have no experience for bi-variate
population balance systems concerning this issue. For uni-variate
population balance equations, coupled to a momentum balance for
the continuous phase, we could observe in John and Roland (2010)
(laminar flow) and in John and Roland (2010) (turbulent flow) that
the solution time for the population balance equation with FWE-
UPW-FDM was negligible compared with the simulation time for
the flow field. Depending of course on the concrete situation (flow
field, Stokes number, discretization of the momentum balance
equation, etc.), we think that the situation might be different for
bi-variate population balance systems. Based on the computing
times reported above and on the computing times for a flow field
in recent simulations of droplet size distributions with the same
code (Bordás et al., 2013), we expect that the computational cost
for simulating the population balance equation will not be
negligible compared with the cost for the flow simulation. The
study of this question is a topic for further research.

6. Summary and outlook

This report presented numerical studies of two methods for
simulating a bi-variate population balance system, modeling
growth and nucleation of particles. Both methods differed only
in the discretization of the differential operator of the population
balance equation, where both discretizations belonged to the class
of direct discretizations (discrete methods). One method applied a
monotone first order discretization (FWE-UPW-FDM) whereas the
other one used an essentially non-oscillatory third order discreti-
zation (RK-ENO-FDM). The main goal of the simulations consisted
in studying the accuracy of the numerical results. It turned out
that important quantities of interest, like the maximal value of the
PSD at the outlet or the time interval in which a notable amount of
particles passed the outlet, were predicted much differently by
both methods. It was discussed in Section 5.3 that the results
computed with the higher order method can be considered to be
more accurate.

As discussed in the introduction, the choice of a numerical
method for a simulation should depend on the goal of that

simulation. From the results presented in this report, we draw
the conclusion to use as accurate methods as affordable if, e.g., the
detailed study of a population balance system is of interest. For
such purposes, it is more beneficial to get an accurate solution
after a longer (but affordable) computing time than to obtain an
inaccurate solution in a short time.

Of course, also the efficiency of accurate (higher order) meth-
ods has to be studied and improved. From the point of view of
implementation, parallelization might help considerably. With
respect to population balance systems, the potential of other
approaches, like moment-based methods or operator-splitting
schemes, has to be studied for computing similarly or even more
accurate solutions in a more efficient way than the used direct
discretizations. To the best of our knowledge, the investigation of
this topic is widely open and we plan to pursue it in our
future work.
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