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SUMMARY

Projection-based variational multiscale (VMS) methods, within the framework of an inf–sup stable second
order finite element method for the Navier–Stokes equations, are studied in simulations of the turbulent
channel flow problem at Re� = 180. For comparison, the Smagorinsky large eddy simulation (LES) model
with van Driest damping is included into the study. The simulations are performed on very coarse grids. The
VMS methods give often considerably better results. For second order statistics, however, the differences
to the reference values are sometimes rather large. The dependency of the results on parameters in the
eddy viscosity model is much weaker for the VMS methods than for the Smagorinsky LES model with
van Driest damping. It is shown that one uniform refinement of the coarse grids allows an underresolved
direct numerical simulations (DNS). Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Turbulent incompressible flows occur in many processes in nature and industry. The accurate
simulation of such flows is, however, still a major challenge. Due to the limited resolution of
discretizations for the underlying incompressible Navier–Stokes equations, it is not possible to
resolve (and thus to simulate) all scales of a turbulent flow [1]. The unresolved scales are important
for the turbulent character of the flow and their influence onto the resolved scales has to be taken
into account by means of a turbulence model. There are many approaches for turbulence modelling,
for instance, k–� models, classical large eddy simulation (LES) models, Navier–Stokes-�-models,
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408 V. JOHN AND M. ROLAND

approximate deconvolution models or variational multiscale (VMS) models. We will study in this
paper a class of VMS models at the benchmark problem of the turbulent channel flow at Re� = 180
and compare the results with a classical LES model.

Classical LES methods are currently one of the most popular approaches for the simulation of
incompressible turbulent flows. A classical LES method starts by decomposing the flow field into
large (resolved) scales and small (unresolved) scales. A characteristic feature of these methods is
the definition of the large scales by an average in space, using a convolution with an appropriate
filter function or a so-called differential filter (which is an approximation of a convolution operator).
The aim of classical LES methods consists in simulating accurately only the large scales of the
flow field, thereby modelling the influence of the small scales onto the large ones with the help
of a turbulence model, see the monographs [2–4] for details. Widely used classical LES models
are Smagorinsky-type models [5], for instance, the dynamic Smagorinsky model by Germano
et al. [6] and Lilly [7].

A more recently proposed alternative approach for incompressible turbulent flow simulations
are VMS methods. Their development is based on general ideas for the simulation of multiscale
phenomena from [8, 9]. The first presentation of a VMS approach for turbulent flows can be found
in [10]. The basis of a VMS method for incompressible flows is a decomposition of the flow field
into three scales; resolved large scales; resolved small scales; and unresolved small scales [11].
Similar to classical LES models, the goal of a VMS method consists in simulating all resolved
scales, or at least the large scales, accurately. However, an essential difference to classical LES
methods consists in the way of defining the scales. In VMS methods, the scales are defined by
projections into appropriate subspaces of the space in which the variational formulation of the
problem is given. Another essential difference consists in the way of applying the turbulence model
which models the influence of the unresolved scales. Whereas in the classical LES approach, the
turbulence model is applied directly to all resolved scales, a VMS method applies it directly only to
the resolved small scales. By the coupling of scales, there is an indirect influence of the turbulence
model to the resolved large scales as well. A VMS method tries to restrict in this way the direct
application of the turbulence model to the scales where it is needed. This is similar to the goal
of the dynamic Smagorinsky LES model by Germano and Lilly, which dynamically adjusts a
factor in the Smagorinsky model to control the influence of this model in the simulations. For an
introduction to VMS models and their relations and differences to classical LES models, we refer
to the survey papers [12, 13].

Since presenting the idea of using the VMS approach for turbulent flow simulations in [10],
a number of numerical studies have been published applying methods of this kind. Among the
first ones are [14, 15] using Fourier spectral methods for the simulation of homogeneous isotropic
turbulence and turbulent channel flows (at Re� ∈ {180, 395}), respectively. The study [15] was
later complemented by [16] for Re� = 590 and by [17], which studies the dependency of the re-
sults on the separation of scales in terms of wave numbers. In [18], the so-called planar VMS
method was applied to turbulent channel flow simulations at Re� ∈ {180, 590}. In the planar VMS
method, a Fourier–Galerkin method was used in streamwise and spanwise direction, like in the
Fourier spectral method, whereas a finite volume discretization was applied in wall normal di-
rection. The scale separation of the VMS approach has been performed only in planes orthog-
onal to the wall normal direction. The same authors also developed the local VMS method
which is based on a discontinuous Galerkin discretization. Turbulent channel flow simulations
with this method can be found, for instance, in [19] (Re� = 100) and [20] (Re� ∈ {100, 395}).
In [21, 22], a VMS method for a second order, energy conserving finite volume method is
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presented. This method defines the large scales by restricting the discrete functions to the next
coarser grid and prolongating the coarse functions appropriately back to the fine grid. Turbulent
channel flow computations are presented for Re� ∈ {180, 590}. For further applications of the VMS
idea in the simulation of turbulent flows, we refer to [23, 24].

Numerical studies of VMS methods which include a comparison with the classical dynamic
Smagorinsky LES model, for instance, in [14, 15, 18, 22, 24], show that the VMS methods give in
general better results.

The parameters of a VMS method in the context of finite element methods (FEMs) are finite
element spaces which define a scale separation and the turbulence model acting directly on the
resolved small scales. Concerning the turbulence model, almost all simulations which can be found
in the literature so far use Smagorinsky-type models, often the standard Smagorinsky model [5],
see Section 3 for details. With respect to the spaces for the scale separation, there are principally
different realizations. The first one utilizes separate finite element spaces for the large scales and
for the resolved small scales. It requires the solution of equations for the resolved small scales.
For the large scales, standard finite element spaces are used. On the one hand, the finite element
spaces for the resolved small scales have to have in some sense a better resolution than the finite
element spaces for the large scales. On the other hand, the solution of the equations for the resolved
small scales should be not too expensive. For these reasons, it is proposed to use bubble functions
for the resolved small scales, which leads to a localization of the small-scale problems. This
so-called bubble VMS method has been studied, for instance, in [25, 26]. A second realization
of a VMS method uses a standard finite element space for all resolved scales and an additional
finite element space for the large space, see [27] and Section 3 for detailed descriptions. This
so-called projection-based VMS method will be used in the numerical simulations presented in
this paper. The VMS method of [21, 22], which is based on a finite volume method, has a similar
spirit like the two-level version of the projection-based finite element VMS method, which was
shortly mentioned in [27] and presented in detail (for convection–diffusion equations) in [28]. For
a detailed description of bubble and projection-based VMS methods, we refer to [29]. A third way
of achieving a scale separation in finite element VMS methods was used in [30]. This method
exploits the hierarchy of hierarchical basis functions for velocity and pressure: ansatz functions up
to a certain polynomial degree represent the large scales and the ansatz functions of higher degree
the resolved small scales.

A natural framework of VMS methods are finite element methods since they are based on a
variational formulation of the underlying equation. Finite element methods have so far been widely
used in the simulation of laminar flows. It has been shown that in particular higher order finite
element methods (at least second order velocity and first order pressure) lead to quite accurate
results, for instance, in [31, 32] for flows around a cylinder. Thus, it seems naturally to apply finite
element discretizations also in the turbulent regime. However, finite element methods have been
used far less than Fourier spectral methods, finite difference methods (FDMs) or finite volume
methods (FVMs) for the simulation of turbulent flows. This might have several reasons. The other
methods are traditionally popular in the engineering community and most of the simulations have
been performed by scientist having an engineering background. Another reason might be the higher
complexity of implementing finite element methods. There are only very few examples for the
application of higher order finite element methods in turbulent flow simulations, like [19, 20, 27].
In fact, to our best knowledge, the current paper presents the first study of a turbulent channel
flow which uses inf–sup stable second order finite elements for the velocity and first order finite
elements for the pressure. It will be shown that for the turbulent channel flow with Re� = 180 good
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results for the mean velocity profile are obtained even on very coarse grids with roughly 17 000
and 29 000 degrees of freedom (d.o.f.). The results for second order statistics are less accurate,
however, in view of the coarseness of the grids often still satisfactory.

For the coarse grids, the application of a turbulence model becomes necessary. A question of
interest to explore is up to which fineness of the meshes turbulence models are needed. It will
be shown that refining these coarse grids once and obtaining thus 116 000 and 232 000 d.o.f.,
respectively, the application of the Galerkin finite element discretization is already possible, which
can be interpreted as an underresolved direct numerical simulation (DNS) or as a Monotone
integrated LES (MILES) approach.

The paper is organized as follows. In Section 2, the turbulent channel flow problem, the dis-
cretizations, the grids and the computation of the statistics of interest are explained in detail. The
computations on the coarse grids are presented in Section 3. This section contains also a detailed
description of the used turbulence models. Section 4 briefly presents the results for the Galerkin
finite element method on the finer grids. The results of the computational studies are summarized
in Section 5.

2. SET-UP OF THE NUMERICAL SIMULATIONS

2.1. The turbulent channel flow at Re� = 180

The turbulent channel flow is governed by the (non-dimensionalized) incompressible Navier–Stokes
equations

�u
�t

− 2∇ · (Re−1
� D(u)) + (u · ∇)u + ∇ p = f in (0, T ] × �

∇ · u= 0 in [0, T ] × �

(1)

where

�= (−2�, 2�) × (0, 2H) × (− 2
3�, 2

3�)

D(u) = (∇u+ ∇uT)/2 being the velocity deformation tensor, H = 1 being the channel half width
and Re� = 180 being the Reynolds number based on the channel half width, the kinematic viscosity
� of the fluid and the shear or friction velocity u�, see [1] for the definition of u�. The dimensions
of the channel are standard ones for this Reynolds number [1, 33]. There are periodic conditions
in the streamwise x- and the spanwise z-direction for the velocity u on the boundary and no-slip
conditions for the solid walls at y = 0 and 2.

The definition of an initial condition in our simulations is based on the discrete mean velocity
profile UDNS

mean(y) from the data file chan180.means provided in [33]. The discrete mean velocity
profile is interpolated linearly, giving UDNS,lin

mean (y), and noise is added in the same form as in [22]
u1(0; x, y, z) =UDNS,lin

mean (y) + 0.1Ubulk�

u2(0; x, y, z) = 0.1Ubulk�

u3(0; x, y, z) = 0.1Ubulk�

(2)
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The bulk velocity is computed by

Ubulk = 1

H

∫ H

0
UDNS,spline
mean (y) dy = 15.6803 (3)

where UDNS,spline
mean (y) is a cubic spline interpolation of UDNS

mean(y). The noise is given by a random
function � with values in [−1, 1]. This function, in C+ +-notation

�= 2 rand()

RAND MAX()
− 1∈ [−1, 1]

is called for each degree of freedom and each component of the velocity. Altogether, the initial
velocity field (2) is obtained by disturbing the linearly interpolated mean velocity profileUDNS,lin

mean (y)
by a random velocity fluctuation of up to 10% of the bulk velocity Ubulk either in negative or
positive direction.

Since the flow is incompressible, the bulk velocity should be constant during the simulations.
However, finite element functions are in general only discretely divergence free. Thus, a finite
element discretization will not lead automatically to a conservation of the bulk velocity. We
account for the difference of the computed bulk velocity and (3) by a dynamic adjustment of
the right-hand side of the Navier–Stokes equations. The flow is driven by a pressure gradient.
Let Ubulk,sim(tn) be the bulk velocity of the computed solution at time tn . Then, we define the
right-hand side of the Navier–Stokes equations (1) at tn+1 by

f=

⎛
⎜⎜⎝
1

0

0

⎞
⎟⎟⎠+ 1

�tn

⎛
⎜⎜⎝
Ubulk −Ubulk,sim(tn)

0

0

⎞
⎟⎟⎠ (4)

where �tn is the length of the time step. That means, if Ubulk,sim(tn)<Ubulk, the flow will be
accelerated which leads to an increase in the bulk velocity of the computed solution. In the case
Ubulk,sim(tn)>Ubulk, the mean speed of the flow will be slowed down below 1 andUbulk,sim becomes
smaller.

If the dynamic adjustment of the driving force (4) were not applied, we could observe increase as
well as decrease in the bulk velocity of the computed solution, depending on the turbulence model.
Using (4), the bulk velocity still showed some oscillations but it stayed always close (differences
in general far less than 1%) to the value given in (3).

2.2. The discretization

Here, we will restrict ourselves to the description of the discretization of the Navier–Stokes
equations (1). The treatment of additional terms in the turbulence models is presented in Section 3.

Standard notations for Lebesgue and Sobolev spaces are used. Let (·, ·) denote the inner product
in (L2(�))d , d�1. The space V is defined by

V ={v∈ (H1(�))3 : v= 0 on y = 0 and y = 2}
and the space Q = L2

0(�), the space of all functions from L2(�) with integral mean value zero.
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Our approach of discretizing (1) is as follows:

1. Discretize (1) by the Crank–Nicolson scheme in time. This gives for the discrete time tn the
system

un + 1
2�tn[−2∇ · (Re−1

� D(un)) + (un · ∇)un] + �tn∇ pn

= un−1 + 1
2 �tnfn + 1

2 �tnfn−1 − 1
2 �tn[−2∇ · (Re−1

� D(un−1))

+ (un−1 · ∇)un−1]
(5)

∇ · un = 0

where �tn is the length of the time step from tn−1 to tn and un =u(tn), etc. Note that there
is an inconsistency in the temporal discretization of the pressure, see [3] for a discussion of
this issue.

2. Transform (5) into a variational form: find (un, pn) ∈ V × Q such that

(un, v) + 1
2 �tn[(2Re−1

� D(un), D(v)) + ((un · ∇)un, v)] − �tn(pn, ∇ · v)
= (un−1, v) + 1

2�tn(fn, v) + 1
2�tn(fn−1, v) − 1

2�tn[(Re−1
� D(un−1), D(v))

+((un−1 · ∇)un−1, v)]
(6)

(∇ · un, q)= 0

for all (v, q)∈ V × Q.
3. Solve (6) by a fixed point iteration: given u(0)

n =un−1, solve the linear system (Oseen system):
find (u(k)

n , p(k)
n ) ∈ V × Q

(u(k)
n , v) + 1

2�tn[(2Re−1
� D(u(k)

n ), D(v)) + ((u(k−1)
n · ∇)u(k)

n , v)] − �tn(p
(k)
n , ∇ · v)

= (un−1, v) + 1
2�tn(fn, v) + 1

2�tn(fn−1, v) − 1
2�tn[(Re−1

� D(un−1), D(v))

+ ((un−1 · ∇)un−1, v)]
(7)

(∇ · un, q)= 0

for all (v, q)∈ V × Q, k = 0, 1, . . .
4. Discretize (7) by the Q2/Pdisc

1 finite element method, i.e. the velocity is approximated
by a piecewise triquadratic continuous function and the pressure by a piecewise linear
discontinuous function.

We would like to present some motivations for choosing this way of discretizing (1). The
Crank–Nicolson scheme is well known to be an accurate and efficient temporal discretization of
the incompressible Navier–Stokes equations, see [34–36]. Likewise, the Q2/Pdisc

1 finite element
discretization is known to be among the best performing finite elements for incompressible flows,
see in particular [37] and our own experiences in [3, 31, 35, 38]. Note that finite element methods
for the physically correct deformation tensor formulation are considerably more expensive than
for the gradient formulation (Re�∇u,∇v), cf. the discussion of this topic in [3]. The linearization
by a fixed point iteration was shown to be more efficient than using a Newton method in [35].
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Figure 1. Distributions of the degrees of freedom in wall normal direction, level 2, left: y ∈ [0, 1], right:
zoom near the wall; from top to bottom: Grid 0, l0= 2; Grid 1, l0= 2; Grid 0, l0= 4; Grid 1, l0= 4.

The Crank–Nicolson scheme was applied with an equidistant time step of �t = 0.002 (�t+ := u�
Re��t = 0.36, where the value u� = 1 of the statistically steady state has been used). This is
considerably smaller than the Kolmogorov time scale and it fits into the range of the time step
proposed in [39].

Simulations on two different grids were performed in our numerical studies. The grids were
obtained by uniform refinement from a coarsest grid (level 0) using a subdivision of the hexahedral
mesh cells into eight smaller mesh cells. In the periodic directions (x and z), the grid spacings are
uniform. The coarsest grid in streamwise and spanwise direction is a 2× 2 uniform grid. In the
wall normal direction, one has to use non-uniform grids which become finer towards the walls.
We will study two different grids, which describe the distribution of the grid points in wall normal
direction as follows:

Grid 0:

yi = 1 + tanh(�(2i/Ny − 1))

tanh(�)
, i = 0, . . . , Ny

with � = 2.75, see [39]; also [19, 40] for turbulent channel flows with different Reynolds numbers
where also different stretching factors � have been used;

Grid 1:

yi = 1 − cos

(
i�

Ny

)
, i = 0, . . . , Ny

see [21, 22].
Here, Ny is the number of mesh cell layers in wall normal direction. Consequently, the number

of grid points in y-direction, including the points on the boundaries, is Ny + 1. Concerning the
coarsest grid, we will study grids with two layers (denoted by l0= 2) and with four layers (l0= 4).
After each uniform refinement step, the points of the new grid are translated into wall normal
direction such that the prescribed distribution is attained. Since the velocity is approximated with
the Q2 finite element, there are 2Ny +1 layers of d.o.f. in y direction, including the boundary. Note
that due to the definition of the Q2 finite element, the layers of d.o.f. between the grid points do not
obey the prescribed distribution but they are located half way between the grid points, see Figure 1.
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Table I. Information on the grids used in the computations.

Level l0 Cells Ny Vel. d.o.f. Press. d.o.f. Grid 0, y+
min Grid 1, y+

min

2 2 512 8 15 104 2048 2.1480 6.8508
2 4 1024 16 25 344 4096 0.7244 1.7293
3 2 4096 16 101 376 16 384 0.7244 1.7293
3 4 8112 32 199 680 32 768 0.3012 0.4386

Let y+ =Re�y = 180y, y ∈ [0, 1], be the distance from the wall measured in wall units (or viscous
lengths). The distributions of the d.o.f. in wall normal direction for our numerical simulations on
level 2 are presented in Figure 1. It can be seen that the hyperbolic tangent function (Grid 0) places
the d.o.f. with a higher density closer to the wall than the cosine function (Grid 1).

Information concerning the grids are given in Table I: the number of mesh cells, the number
of d.o.f., the distance of the d.o.f. next to the walls y+

min and the number Ny of mesh cell layers
are given. It is hard to compare the fineness of the grids to resolutions of completely different
discretizations like Fourier–Galerkin methods. Information on the number of d.o.f. are given for
the discontinuous Galerkin methods used in [19]. Level 2 of our grids has in both cases fewer d.o.f.
than the grids in [19], whereas the number of d.o.f. on level 3 has the same order of magnitude
like in [19].
2.3. Statistics of interest

We will use the reference data for the turbulent channel flow at Re� = 180 which can be found in
the data files belonging to the DNS simulations from [33].

Let 〈·〉s denote the spatial averaging over the directions of homogeneity. Since uniform grids
are used in streamwise and spanwise direction, the spatial averaging can be performed by the
arithmetic mean. Let uh(t, x, y, z) be the computed flow field. Then, the spatial mean velocity at
time tn in the plane y = const. is computed by

Uh(tn, y) := 〈uh(tn, x, y, z)〉s = 1

Nx Nz

Nx∑
i=1

Nz∑
j=1

uh(tn, xi , y, z j )

where Nx (Nz) is the number of d.o.f. in the streamwise (spanwise) direction in the plane y = const.
This is done for all planes y = const. which contain velocity d.o.f. in wall normal direction, see
Figure 1.

The average in time will be denoted by 〈·〉t . Since equidistant time steps will be used in the
computations, the arithmetic mean is again applied. Thus, the mean velocity profile is given by

Uh
mean(y) := 〈〈uh(tn, x, y, z)〉s〉t = 1

Nt + 1

Nt∑
n=0

Uh(tn, y)

We will present results for the first component Uh
mean(y) of U

h
mean(y).

The simulated friction velocity uh� is defined as the average of the computed friction velocities
at both walls, where the friction velocity at each wall is approximated by a one-sided difference

uh� := 1

2

(
Uh
mean(y

+
min)

y+
min

− Uh
mean(2 − y+

min)

2 − y+
min

)
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Second order statistics of interest in turbulent channel flows are the off-diagonal Reynolds
stresses and the root mean square (rms) turbulence intensities. Unfortunately, the definition of
the averaged Reynolds stresses does not seem to be unique in the literature. Denoting by u
the streamwise velocity component and by v the wall normal component, the Reynolds stress
R12 = Ruv = Rxy can be defined by

R12 := 〈〈uv〉s〉t − 〈〈u〉s〉t 〈〈v〉s〉t (8)

or alternatively by

R̃12 := 〈〈uv〉s〉t − 〈〈u〉s〈v〉s〉t = 〈〈uv〉s − 〈u〉s〈v〉s〉t (9)

The form (8) can be found, for instance, in [41] for theoretical considerations and in [21, 22, 42]
for computations. Formula (9) was used, for instance, in [15], where in particular

〈〈(uh − 〈uh〉s)2〉s〉1/2t = 〈〈uhuh − 2〈uh〉suh + 〈uh〉s〈uh〉s〉s〉1/2t

= 〈〈uhuh〉s − 2〈uh〉s〈uh〉s + 〈uh〉s〈uh〉s〉1/2t

= (R̃
h
11)

1/2

was considered. The definitions (8) and (9) are in general not identical. Spatial and temporal
averaging can be interchanged in (8) whereas this is not possible in (9). It is not clear which form,
(8) or (9), was used to compute the reference data in [33].

The computation of the statistics in the numerical studies presented below follows [41]. The
off-diagonal Reynolds stresses of the DNS from [33] can be approximated by

RDNS
i j ≈ Rh

i j + 〈〈Ah
i j 〉s〉t , i, j = 1, 2, 3, i �= j

where the approach (8) is used to compute Rh
i j and Ah

i j stands for the modelled subgrid scale

stresses. A normalization with (uh� )
2 was used to compute the off-diagonal Reynolds stresses

presented below

R
h,∗
i j := Rh

i j + 〈〈Ah
i j 〉s〉t

(uh� )
2

, i, j = 1, 2, 3, i �= j (10)

Concerning the diagonal stresses, their deviation from isotropy can be approximated by [41]

RDNS
i i − 1

3

3∑
j=1

RDNS
j j ≈ Rh

ii + 〈〈Ah
ii 〉s〉t − 1

3

3∑
j=1

(Rh
j j + 〈〈Ah

j j 〉s〉t ), i = 1, 2, 3

Then, the rms turbulence intensities given for the simulations below are computed with a normal-
ization with uh� , for instance

uh,∗
rms :=

∣∣∣Rh
11 + 〈〈Ah

11〉s〉t − 1
3

∑3
j=1 (Rh

j j + 〈〈Ah
j j 〉s〉t )

∣∣∣1/2
uh�

(11)
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The form of the subgrid scale model Ah for the different models used in the computations, together
with remarks for evaluating Ah , is given in Section 3.

Let RMKM
i i denote the reference data of [33]. We compare the rms turbulence intensities, for

instance, uh,∗
rms, to

|RMKM
11 − 1

3 (R
MKM
11 + RMKM

22 + RMKM
33 )|1/2

This approach follows [42]. Note that other comparisons can be found in the literature as well.
For instance, in [15], the term 〈〈(uh − 〈uh〉s)2〉s〉1/2t (plus influence of the turbulence model) is
compared to (RMKM

11 )1/2.
Since the turbulent channel flow is statistically symmetric at y = 1, only the averaged values on

half the channel are given below. These are computed by averaging the values obtained on both
halves of the channel.

Starting with the initial condition (2), the turbulent channel flows were simulated with each
method in the time interval [0, 20] s (t+ ∈ [0, 3600]) to obtain a fully developed flow field which
can be considered to be independent of the initial condition. We checked with other initial conditions
(perturbed laminar flow profile) that the initial simulation time of 20 s was sufficient for achieving
this goal. The mean velocity profiles were almost indistinguishable. The differences in the second
order statistics were somewhat larger, however, neither the form of the curves, nor the magnitude
of the values changed considerably. With the results at t = 20 s, the simulations were started anew
for computing the time averages. The length of the time interval for computing the time averages
was also 20 s.

The simulations were performed with the code MooNMD [43].

3. SIMULATIONS ON COARSE GRIDS WITH THE APPLICATION OF
TURBULENCE MODELS

3.1. The turbulence models

In this section, the simulation of the turbulent channel flow at Re� = 180 is considered on grids
which are too coarse to allow the application of the Galerkin finite element method. The coarse
grids described in Section 2 are refined twice to obtain these grids (level 2). The corresponding
number of d.o.f. are given in Table I. The Galerkin finite element method blows up in final times
on these grids. Thus, the application of a turbulence model becomes necessary. The following
turbulence models are studied:

• the Smagorinsky LES model [5] with van Driest damping [44] (SvD), see also [1];
• the fully implicit projection-based VMS method with piecewise constant large-scale tensors
(VMS P0), see [27];

• the fully implicit projection-based VMS method with discontinuous piecewise linear tensors
(VMS P1), see [27].

It was shown in [21, 22] that on grids which allow the application of a Galerkin method (underre-
solved or coarse DNS), this method outperforms in general the methods with turbulence models.
Thus, it is important to use grids which are sufficiently coarse to make the use of turbulence
models meaningful.
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The traditional Smagorinsky LES model introduces the additional term

(�T D(uh), D(vh)), �T =Cs�
2
K ‖D(uh)‖F (12)

into the Galerkin finite element method of the Navier–Stokes equations. In (12), Cs is a user-chosen
constant, K denotes a mesh cell, �K is a parameter explained below and ‖ · ‖F is the Frobenius
norm of a tensor. Usually, �K = chK is chosen where c∈ [1, 2] depends on the discretization (order
of the finite element method, for Q2, we use c= 1) and hK is a measure of the cell width. The
grids we are using consist of anisotropic mesh cells near the wall. The possible measures range
from the shortest edge to the diameter of the mesh cells. Which is an appropriate one will be
studied below, see Section 3.2.

Another characteristic feature of the Smagorinsky LES model is the production of too much
energy dissipation near the walls. This issue will be addressed by the so-called van Driest damping,
i.e. the introduction of a damping factor in the viscous sublayer region (y+<5). Instead of the
turbulent viscosity (12)

�T =Cs�
2
K ‖D(uh)‖F

(
1 − exp

(−y+

A

))2

, y+<5 (13)

is used with A= 26 and the same constant Cs as in (12). The terms of the Smagorinsky model
with van Driest damping (12), (13) were treated implicitly in our computations. The model of
the subgrid-scale stresses, which is needed to compute the Reynolds stresses (10) and the rms
turbulence intensities (11), has the form Ah = − �T D(uh).

The projection-based VMS method has the following form (continuous in time): find uh :[0, T ]
→V h, ph :(0, T ]→Qh and GH :[0, T ] → LH satisfying(

�uh

�t
, vh

)
+ (2Re−1

� D(uh), D(vh)) + ((uh · ∇)uh, vh) − (ph, ∇ · vh)

+(�T (D(uh) − GH ), D(vh))= (f, vh) for all vh ∈ V h (14)

(qh,∇ · uh) = 0 for all qh ∈ Qh

(D(uh) − GH , LH ) = 0 for all LH ∈ LH

Here, V h × Qh is a standard, inf–sup stable pair of finite element spaces, in our simulations
V h = Q2, Qh = Pdisc

1 . The tensor-valued space LH represents the large scales of the velocity
deformation tensor. They are defined in the third equation of (14) by an L2-projection. The choice
of LH controls the scale separation: the larger LH becomes, the smaller becomes the part of the
resolved small scales among all resolved scales. Since higher order finite elements were used for
velocity and pressure, LH can be defined on the same grid as V h × Qh with low order polynomials.
We used in the simulations LH = P0 (piecewise constant tensors) and LH = Pdisc

1 (piecewise
linear but discontinuous tensors). The resulting methods will be called VMS P0 and VMS P1,
respectively.

In comparison to the variational form of the Navier–Stokes equations, there is one additional
term in the momentum equation of (14), the most right one on the left-hand side. The difference
D(uh) − GH represents small scales since GH are large scales of D(uh). Thus, this term adds
the additional turbulent viscosity �T to the small scales of the flow field. This is exactly one of
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the basic ideas of VMS methods. For the turbulent viscosity �T , we use the Smagorinsky model
given in (12).

Of course, the van Driest damping could have been used easily for the VMS methods. However,
in our opinion, a potential advantage of the VMS approach is that simple models for the influence
of the unresolved scales can be applied since these models act directly only on a part of the resolved
scales and the importance of the model is reduced in this way. A constant Smagorinsky model
was used in the first numerical simulations of turbulent flows with VMS methods [14, 15] and a
dynamic model, for instance, in [45] (without comparison to the constant Smagorinsky model)
and in [17]. In [17], it was shown that the constant Smagorinsky model within the VMS methods
led to highly accurate results for appropriate scale separations (in terms of wave numbers of a
Fourier spectral method) but the dynamic model was less sensitive to the chosen scale partition.
Both models within a two-level VMS method based on a second order finite volume method were
compared in turbulent channel flow problems in [22]. It turned out that the use of the constant
coefficient Smagorinsky model (without van Driest damping) led to better results than the dynamic
model with even less computational effort. Similar observations are reported for turbulent flow
simulations in a diffuser [46]. Moreover, for a VMS method based on a finite volume discretization
applied to compressible flows, [24], it was found that the dynamic computation of the Smagorinsky
parameter does not improve the results obtained by considering a constant parameter. In view of
these experiences, the use of a dynamic model in the VMS methods seems not to be promising at
the moment, at least not for second order discretizations.

The additional term in the momentum equation in (14) is treated implicitly. For details of the
algorithm, we refer to [27]. For computing the Reynolds stresses (10) and the rms turbulence
intensities (11), the model of the subgrid-scale stresses has the form Ah = − �T (D(uh) − GH )

for the projection-based VMS method.
The choice of the constant Cs is the main issue in Smagorinsky-type models. The traditional

value for turbulent channel flows is Cs = 0.01 [47]. However, it is known, [48], that a good value
depends on the actual type of the mesh, the refinement level of the mesh and most probably
also on the underlying discretization. The numerical studies in [48] show that even the dynamic
Smagorinsky model often does not give good values for Cs (which is for this model a function in
space and time). To study the influence of the value of Cs for the different models, besides the
traditional value, we will present also results for Cs ∈ {0.001, 0.005}.

The quantities (10) and (11) were computed in all positions where the velocity possesses
d.o.f. These d.o.f. are located in particular at faces of the mesh cells. However, D(uh) and GH

are discontinuous finite element functions. For computing Ah , these functions are mapped to
continuous functions by computing a local weighted average. Let (x, y, z) be the position of a
velocity degree of freedom and 	 be the union of all mesh cells where this degree of freedom
belongs to. Then

D̃(uh)(x, y, z) := ∑
K ∈	

1

|K | D(uh)|K (x, y, z)

where |K | is the volume of the mesh cell K and |K denotes the restriction of the finite element
function to K . An analogous formula is used for GH . In this way, one obtains the continuous Q2

finite element functions D̃(uh) and G̃
H

and these functions are used to compute Ah in the SvD
and in the VMS methods. Note that the issue of smoothing the derivatives of the velocity arises
from the low regularity of standard finite element functions.
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Figure 2. Mean velocity profile obtained with hK being the diameter of the mesh cells, hK = 3
√
hxhyhz

and hK being the shortest edge of the mesh cells.

3.2. Simulations with different measures for the width of a mesh cell

The parameter �K of the Smagorinsky LES model with van Driest damping (12)–(13) as well as
of the projection-based VMS methods (14) involves a measure hK of the size of the mesh cells.
Figure 2 presents some representative results which are obtained with:

• hK being the diameter of the mesh cells (longest distance between two points of the mesh
cells);

• hK = 3
√
hxhyhz , where hx , hy, hz are the sizes of the edges of the mesh cells in the coordinate

directions (geometric mean);
• hK being the shortest edge.

The use of the geometric mean can be found in the literature [18, 21, 22, 42]. Figure 2 presents
mean velocity profiles Uh

mean for the SvD on Grid 1, level 2, l0= 4, Cs = 0.005 and the projection-
based VMS P1 on Grid 0, level 2, l0= 4, Cs = 0.005. The results where hK is chosen to be the
shortest edge are the best ones for both models. The curves for the VMS method with hK being
the geometric mean and hK being the shortest edge are almost indistinguishable. For the SvD, the
result becomes considerably worse for hK being the geometric mean. If hK is chosen to be the
diameter, very bad results are obtained for both methods.

In the remainder of the paper, we will only present results which are obtained with hK chosen
to be the shortest edge of the mesh cells.

3.3. Simulations on grids with an initial subdivision into two layers

The results of the simulations on the grids where the initial grid consists of two mesh cell layers,
l0= 2, and which were refined twice are presented in Figures 3–7.
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Figure 3. Simulations on the grids with an initial subdivision in y-direction into two layers, level 2,
computed mean velocity profiles, Grid 0 (left) and Grid 1 (right).
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Figure 4. Simulations on the grids with an initial subdivision in y-direction into two layers, level 2,
differences to the reference mean velocity profile, Grid 0 (left) and Grid 1 (right).

The results for the streamwise mean velocity, Figures 3 and 4, are much better for the VMS
methods, in particular for VMS P1, than for the SvD method. The best results have been obtained
with VMS P1 and Cs = 0.005. Even on these very coarse grids, the mean velocity profile is rather
close to the reference one. Among the VMS methods, only the results for VMS P0 with Cs = 0.01
are unsatisfactory. The mean velocity profiles computed with the SvD method tend towards the
profile for a laminar flow.

The computed rms turbulent intensities uh,∗
rms are shown in Figure 5. We present only results

for uh,∗
rms since the evaluation of the results for v

h,∗
rms and w

h,∗
rms would be very similar. The curves

obtained with the VMS methods (save VMS P0, Cs = 0.01, Grid 1) have in principle the correct
form but the values are overpredicted. This overprediction is somewhat smaller on Grid 0. The
curves computed with the SvD method do not possess the correct form. In addition, there is a
heavy underprediction of the values at the wall for Cs = 0.01.
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Figure 5. Simulations on the grids with an initial subdivision in y-direction into two layers, level 2, uh,∗
rms,

Grid 0 (left) and Grid 1 (right).
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Figure 6. Simulations on the grids with an initial subdivision in y-direction into two layers, level 2, R
h,∗
12 ,

Grid 0 (left) and Grid 1 (right).

The computed off-diagonal Reynolds stresses R
h,∗
12 are presented in Figure 6. In particular for

Grid 1, the influence of the model Ah in computing the Reynolds stress at the wall for the VMS
methods can be seen. Again, the VMS methods overpredict the absolute values quite a lot. A
correct form of the curve is obtained only on Grid 0 for all methods with Cs = 0.005 (also the
SvD method). The coarse near wall resolution of Grid 1 leads to peaks which are too far away
from the wall.

Note that in comparable simulations (second order FVMs) from [21, 22] on a much finer grid
(323 = 32 768 grid cells), the second order statistics (turbulent kinetic energy) also show rather
large differences to the reference curve. Thus, the use of second order spatial discretizations, which
have much lower order than, for instance, spectral methods, might be an important reason for the
considerable differences.
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Figure 7. Simulations on the grids with an initial subdivision in y-direction into two layers, level 2,
parameter study for the VMS methods, Grid 0, difference to the mean velocity profile (left), uh,∗

rms (right).

A parameter study for Cs in the VMS methods reveals that the results are best for Cs = 0.005,
Figure 7. The choice of Cs has a greater impact on the results of VMS P0 than on the results of
VMS P1. The great impact of Cs in the SvD method can be observed already in Figures 3–6.

Concerning the two distributions of the grid points in y-direction, the results on Grid 0 are in
general better. This can be observed in particular for the second order statistics in Figures 5 and 6.

In summary, much better results are obtained on these very coarse grids with the VMS methods
(VMS P0, Cs = 0.005; VMS P1, Cs ∈ {0.005, 0.01}) than with the SvD method. The mean stream-
wise velocities are predicted quite well and the curves for the second order statistics are predicted
qualitatively correctly (the off-diagonal Reynolds stress only Grid 0). However, the (absolute)
values of the second order statistics are considerably overpredicted.

3.4. Simulations on grids with an initial subdivision into four layers

The results on the finer grids, which possess four mesh cell layers in y-direction on level 0, l0= 4,
and which are refined twice, are presented in Figures 8–12.

The SvD method with Cs = 0.01 gives poor results. Even the streamwise mean velocity profile
is very badly captured. Concerning the VMS methods, the mean velocity profiles with Cs = 0.01
are somewhat better on both grids than with Cs = 0.005, see also Figure 11. The differences to
the reference profile on Grid 1 are slightly smaller than on Grid 0.

The values for the rms turbulent intensities uh,∗
rms are too large for the VMS methods, Figure 9.

These methods give better results with Cs = 0.01 than with Cs = 0.005. The SvD method with
Cs = 0.005 computes similar results to the VMS methods. The evaluation of the results for v

h,∗
rms

and w
h,∗
rms (not shown here) is quite similar.

Similar observations as for uh,∗
rms can be made for R

h,∗
12 , Figure 10. The computed (absolute)

values of the VMS methods are too large. Again, better results are obtained with Cs = 0.01. The
SvD method with Cs = 0.005 behaves similarly to VMS P0 with Cs = 0.01.

A parameter study for the turbulence models, Figures 11 and 12, shows that choosing even
smaller values than 0.005 worsens the results. However, the qualitative form of the curves for
the VMS methods is correct for all parameters. This is in contrast to the SvD method with
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Figure 8. Simulations on the grids with an initial subdivision in y-direction into four layers, level 2,
differences to the reference mean velocity profile, Grid 0 (left) and Grid 1 (right).
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Figure 9. Simulations on the grids with an initial subdivision in y-direction into four layers, level 2, uh,∗
rms,

Grid 0 (left) and Grid 1 (right).

Cs = 0.01. It can be clearly observed that the choice of the parameter Cs has a much smaller
influence in the VMS methods than in the SvD method. This reflects the philosophy of VMS
methods—to apply a turbulence model only to scales where it is necessary and not to all scales.
Thus, a variation of the parameters will affect much fewer scales directly and hence change the
solution less.

Altogether, VMS P0 and VMS P1 with Cs = 0.01 and SvD with Cs = 0.005 give the best results
in our numerical studies with an initial subdivision into four layers. The results of VMS P0 and
VMS P1 with Cs = 0.005 are slightly worse whereas SvD with Cs = 0.01 gives completely wrong
results. The results on Grid 1 are slightly better than on Grid 0.

3.5. Computational costs

The computing times of a number of simulations are given in Table II. A preconditioned flexible
GMRES method with a multiple discretization multi-level preconditioner was used as solver, see
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Figure 10. Simulations on the grids with an initial subdivision in y-direction into four layers, level 2,
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Figure 11. Simulations on the grids with an initial subdivision in y-direction into four layers, level 2,
Grid 1, difference to the mean velocity profile, SvD (left), VMS methods (right).

[31, 35] for details. Roughly two-third of the computing time was spend for solving the non-linear
systems and approximately one-third for assembling the matrices. The absolute computing times
depend on the computer and the stopping criteria for the iterations. We would like to concentrate
the evaluation on the comparison of the different methods and grids.

It can be seen that SvD was always the fastest method. The computations with VMS P0 were
somewhat slower and the computations with VMS P1 took again somewhat more time. This
corresponds to the observations in [27]. The computing times of VMS P0 were 7–33% longer than
of SvD, however, the results are sometimes considerably better. We do not report computing times
with l0= 4, Cs = 0.01, since the results obtained with SvD were so different to the other results
that a comparison of the computing times is meaningless.

Concerning the two grids, the computations on Grid 1 were in general faster. The reason is that
the mesh cells close to the boundary possess a much higher aspect ratio on Grid 0 and our solver

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:407–429
DOI: 10.1002/fld



PROJECTION-BASED FINITE ELEMENT VARIATIONAL MULTISCALE METHODS 425

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

y+ y+

u r
m

s
h,

*

0

1

2

3

4

5

u r
m

s
h,

*

Reference
SvD, Cs=0.001

SvD, Cs=0.005

SvD, Cs=0.01

Reference
VMS P0, Cs=0.01
VMS P0, Cs=0.005 
VMS P0, Cs=0.001 
VMS P1, Cs=0.01 
VMS P1, Cs=0.005 
VMS P1, Cs=0.001

Figure 12. Simulations on the grids with an initial subdivision in y-direction into four layers, level 2,
Grid 1, uh,∗

rms, SvD (left), VMS methods (right).

Table II. Computing times in seconds, in parentheses: percentage to computing time with SvD.

Parameters SvD VMS P0 VMS P1

l0= 2, Cs = 0.005, Grid 0 166 698 (100) 221 995 (133) 230 680 (138)
l0= 2, Cs = 0.01, Grid 1 128 112 (100) 144 559 (112) 156 352 (122)
l0= 4, Cs = 0.005, Grid 0 576 729 (100) 732 632 (127) 934 427 (162)
l0= 4, Cs = 0.005, Grid 1 557 518 (100) 597 509 (107) 643 438 (115)

looses some efficiency on grids with high aspect ratios. Doubling the initial subdivision of the
domain from l0= 2 to l0= 4, which roughly doubles the number of d.o.f., leads to an increase
in the computing times with a factor 3–4. However, also here has to be noted that the results for
l0= 2 and 4 are rather different since on the grids obtained with l0= 4 more details of the flow
field are simulated. This of course requires additional computational efforts.

Altogether, the better results of the VMS methods need somewhat higher computational costs.
The reduction of these costs is an important topic for future research.

4. GALERKIN FINITE ELEMENT METHOD ON FINER GRIDS

This section studies the question of whether the use of turbulence models is still necessary for
grids finer than those used in Section 3. It will be shown that refining those grids once, it is
possible to apply even the Galerkin finite element method for the simulation of the turbulent
channel flow at Re� = 180. That means, no additional stabilization or modelling terms are used.
Note that this property is studied in the present paper for the Q2/Pdisc

1 finite element. Other finite
element methods might need different refinement levels for the Galerkin method to be applicable.
The usage of the Galerkin finite element method on a rather coarse mesh can be interpreted as an
underresolved DNS or as a so-called MILES method. In a MILES method, the numerical diffusion
takes the role of a turbulence model.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:407–429
DOI: 10.1002/fld



426 V. JOHN AND M. ROLAND

0 20 40 60 80 100 120 140 160 180
y+

0 20 40 60 80 100 120 140 160 180
y+

Reference
Galerkin, l0=2, grid 0
Galerkin, l0=2, grid 1
Galerkin, l0=4, grid 0
Galerkin, l0=4, grid 1

Reference
Galerkin, l0=2, grid 0
Galerkin, l0=2, grid 1
Galerkin, l0=4, grid 0
Galerkin, l0=4, grid 1

−1

−0.5

0

0.5

1

−2

−1.5

−1

−0.5

0

R
12h,

*

U
m

ea
n

:d
iff

er
en

ce
 to

 r
ef

er
en

ce
h

Figure 13. Galerkin finite element method on level 3, difference to the reference mean
velocity profile (left) and R

h,∗
12 (right).
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Figure 14. Galerkin finite element method on level 3, uh,∗
rms (left) and v

h,∗
rms (right).

The results on the different grids are presented in Figures 13 and 14. The corresponding numbers
of d.o.f. on level 3 are given in Table I. Concerning the mean velocity profile, the curves lie almost
on top of each other such that we present only the differences to the reference profile. These
differences are somewhat smaller than for the simulations with turbulence models on level 2.
Using an initial subdivision into two layers, l0= 2, leads close to the boundary, y+�5 and in
y+ ∈ [20, 40] to slightly smaller differences than using an initial subdivision into four layers,
l0= 4. The results for the Reynolds stress R

h,∗
12 are still quite far away from the reference curve.

On the coarser grids, l0= 2, the results are somewhat oscillatory. The rms turbulence intensities
uh,∗
rms and v

h,∗
rms are presented in Figure 14. The curves are closer to the reference curves than for

the simulations with the turbulence models on level 2. Some oscillations can be observed towards
the centre of the channel, in particular for the computations on Grid 1. The results obtained on
Grid 0 are altogether slightly better.

In summary, the results for the mean velocity profile are satisfactory. The results for the second
order statistics are not so good. However, one should keep in mind that on the one hand the grids are
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still rather coarse. On the other hand, comparable simulations (second order spatial discretization)
in [21, 22] show also rather large differences to the reference curves for second order statistics
(turbulent kinetic energy).

5. SUMMARY

Simulations of turbulent channel flows at Re� = 180 using projection-based finite element VMS
methods and inf–sup stable, second/first order finite elements for the velocity/pressure were
presented in this paper. The results obtained with projection-based VMS methods are compared to
the Smagorinsky LES model with van Driest damping. The simulations were performed on very
coarse meshes. The projection-based VMS methods gave in general good approximations of the
mean velocity profile and good qualitative approximations of second order statistics. Quantitatively,
the (absolute) values for the second order statistics are in general overpredicted. It could clearly
be observed that the VMS methods are less sensitive to the choice of the parameter in the eddy
viscosity model than the Smagorinsky LES with van Driest damping. It was demonstrated that
refining the coarse grids once removes the need of using a turbulence model.

Further studies will be performed for turbulent channel flows at higher Reynolds numbers which
will include also other approaches of VMS methods for finite element discretizations.
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