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The paper presents an approach for simulating a precipitation process which is described by a
population balance system consisting of the incompressible Navier--Stokes equations, nonlinear
convection--diffusion--reaction equations and a transport equation for the particle size distribution
(PSD). The Navier--Stokes equations and the convection--diffusion--reaction equations are discretized
implicitly in time and with finite element methods in space. Two stabilization techniques for the
convection--diffusion--reaction equations are investigated. An explicit temporal discretization and an up-
wind finite difference method are used for discretizing the equation of the PSD. Simulations of the calcium
carbonate precipitation in a cavity are presented which study the influence of the flow field on the PSD
at the outflow. It is shown that variations of the positions of the inlets change the volume fraction of the
PSD at the center of the outlet. The corresponding medians of the volume fraction differ up to a factor
of about three. In addition, it is demonstrated that the use of the two different stabilized finite element
methods for the convection--diffusion--reaction equations leads to completely different numerical results.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Many industrial chemical processes deal with the production of
particulate products using wet chemistry. In particular, precipita-
tions are widely used to produce particles with prescribed proper-
ties. The numerical simulation of precipitation processes is of high
interest in order to obtain a better understanding of these processes,
to improve their control and finally to optimize them.

Precipitation processes are modeled by population bal-
ance systems consisting of equations describing the flow field
(Navier--Stokes equations), equations for the chemical reaction
(convection--diffusion--reaction equations) and an equation for the
particle size distribution (PSD, transport equation). Besides the cou-
pling of these equations, the main difficulty in simulations is that
the PSD depends not only on time and space but also on properties
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of the particles (internal coordinates). Consequently, the equation
for the PSD is given in a higher dimensional domain than the other
equations.

There are several approaches for circumventing this dimensional
curse of the PSD equation. The assumption of an ideal mixing of
all substances leads to the independence of the PSD of the space
variables, see for instance Heineken et al. (2007). The method
of moments (MOM) and improved versions like QMOM or DQ-
MOM (Marchisio and Fox, 2005) replace the equation of the PSD
by a coupled system of equations given in the same dimension
as the other equations. However, instead of the PSD, only the
first few moments of the PSD are computed. The reconstruction
of a function from a finite number of its moments is a severely
ill-posed problem and a recent review (John et al., 2007) shows
that reliable algorithms for solving this problem are in general not
available.

We think that in future the simulation of the coupled population
balance system will become necessary for obtaining reliable results.
First efforts in this direction can be found in (Kulikov et al., 2005,
2007; Schwarzer et al., 2006; Gradl et al., 2007). Also our work is
directed towards the efficient solution of these systems and first
steps are presented here.
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A precipitation process considers a chemical reaction of the form

A + B −→ C ↓ +D

in a liquid phase where the initially dissolved product C starts to
precipitate if its local concentration exceeds the saturation concen-
tration. Of primary interest in applications is the PSD of the solid
phase of the product C.

This paper describes a numerical approach for the simulation of
a population balance system which models the calcium carbonate
precipitation in a cavity with the following modeling assumptions:

• the background flow is two-dimensional, incompressible and lam-
inar;

• the chemical reaction is isothermal;
• the PSD depends on one internal coordinate, namely the size of the

particles;
• the particles, resp. the PSD, do not affect the flow field since their

concentration is small;
• the particles follow the streamlines of the flow field because of

their small size; and
• nucleation and growth of particles, which are the most important

phenomena governing the process of particle precipitation, are in-
cluded into the model; agglomeration and breakage of particles are
neglected.

From these assumptions, it follows that the flow field can be simu-
lated independently of the chemical reaction and the precipitation
process.

There are many different numerical methods for solving the
individual equations in the coupled population balance system.
However, which methods should be used is not clear and there are
many open questions concerning the efficient application of pos-
sible candidates in the coupled system. Simplifying assumptions,
like the consideration of a two-dimensional laminar flow, should
facilitate the assessment of numerical methods.

This paper presents simulations of population balance sys-
tems describing calcium carbonate precipitations in a cavity. The
discretization of the equations in these systems is based mainly on
implicit time stepping schemes and finite element methods. Two
standard stabilization techniques will be explored in the finite ele-
ment discretization of the convection--diffusion--reaction equations.
One of them leads generally to smeared solutions without spurious
oscillations, whereas the other one is less smearing but exhibits
spurious oscillations in the solutions.

The numerical investigations study the influence of different in-
flow positions on the PSD at the outflow. In addition, it will be
demonstrated that the two finite element stabilization techniques of
the convection--diffusion--reaction equations lead to very different
results in the simulation of the precipitation process.

2. The population balance system for the precipitation process

Incompressible flows are governed by the incompressible
Navier--Stokes equations

�ũ
�t̃

− ��ũ + (ũ · ∇)ũ + 1
�

∇p̃ = 0 in (0, T̃] × �̃,

∇ · ũ = 0 in [0, T̃] × �̃,

where ũ [m/s] denotes the fluid velocity, p̃ [kg/(ms2)] the pressure,
� [m2/s] and � [kg/m3] the kinematic viscosity and the density, re-
spectively, �̃ is the flow domain and T̃ is the final time.

Let c̃i [kmol/m3], i ∈ {A,B,C}, denote the concentration of the
dissolved substances A, B and C, respectively. The behavior of

the reactants A and B can be described by a system of scalar
convection--diffusion--reaction equations for c̃i, i ∈ {A,B},
�c̃i
�t̃

− Di�c̃i + ũ · ∇ c̃i + r̃chem(c̃A, c̃B) = 0 in (0, T̃] × �̃.

Here, Di [m
2/s] denotes the diffusion coefficient of A and B. The rate

of the chemical reaction r̃chem(c̃A, c̃B) [kmol/(m3 s)] is given by

r̃chem(c̃A, c̃B) = kRc̃Ac̃B,

with the rate constant kR [m3/(kmol s)]. The equation of the product
C has the form

�c̃C
�t̃

− DC�c̃C + ũ · ∇ c̃C − r̃chem(c̃A, c̃B)

+ r̃nuc(c̃C) + r̃g(c̃C , f̃ ) = 0 in (0, T̃] × �̃,

with the diffusion coefficient DC [m2/s]. The rate of decrease of c̃C
due to the nucleation r̃nuc(c̃C) [kmol/(m3 s)] is given by

r̃nuc(c̃C) = Cnucd̃3p,0B̃nuc(c̃C),

where Cnuc [kmol/m3] denotes amodel nucleation constant, d̃p,0 [m]
the smallest particle diameter (the nuclei size) and the nucleation
rate B̃nuc(c̃C) [1/(m

3s)] is modeled by (Ramkrishna, 2000)

B̃nuc(c̃C) =

⎧⎪⎨
⎪⎩knuc

(
c̃C−csatC,∞ exp

(
C2
d̃p,0

))5
if c̃C > csatC,∞ exp

(
C2
d̃p,0

)
,

0 else.

Here, knuc [(1/(m3 s))/(kmol/m3)5] is the nucleation constant,
csatC,∞ [kmol/m3] is the saturation concentration of the product C and
C2 [m] is a model constant. The rate of decrease of c̃C due to the
growth of the particles r̃g(c̃C , f̃ ) [kmol/(m3 s)] is expressed by

r̃g(c̃C , f̃ ) = CG

∫ d̃p,max

d̃p,0
G̃(c̃C)d̃

2
pf̃ d(d̃p),

where CG [kmol/m3] denotes a model growth constant, d̃p,max [m]
is an upper bound for the particle diameter, d̃p [m] is the particle
diameter and f̃ (t̃, x̃, d̃p) [1/m4] is the PSD. The growth rate G̃(c̃C) [m/s]
is considered to be independent of the size of the particles and,
similar as in Heineken et al. (2007), it is given by

G̃(c̃C) = kG(c̃C − csatC,∞),

where kG [m4/(kmol s)] is the growth rate constant.
The concentration of the substance D is not simulated since it is

not of interest for the precipitation process.
Finally, the equation for the PSD is given by

�f̃
�t̃

+ ũ · ∇ f̃ + G̃(c̃C)
�f̃

�d̃p
= 0

in (0, T̃] × �̃ × (d̃p,0, d̃p,max).
We reformulate the population balance system in dimensionless

form, which will be the basis of the numerical simulations. Intro-
ducing the dimensionless variables

u = ũ
u∞

, p = p̃
p∞

, t = t̃
t∞

, xi = x̃i
l∞

(i = 1, 2),

and setting the time and pressure scales to

t∞ = l∞
u∞

, p∞ = �u2∞,
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one obtains the Navier--Stokes equations in dimensionless form

�u
�t

− 1
Re

�u + (u · ∇)u + ∇p = 0 in (0, T] × �, (1)

∇ · u = 0 in [0, T] × �, (2)

where Re = u∞l∞/� is the Reynolds number and T = T̃/t∞.
Defining the dimensionless concentrations by ci= c̃i/c∞, i ∈ {A,B},

leads to the dimensionless equations for the reactants A and B

�ci
�t

− Di
u∞l∞

�ci + u · ∇ci + kR
l∞c∞
u∞

cAcB = 0, (3)

defined in (0, T] × �.
With the dimensionless variables

cC = c̃C
cC,∞

, f = f̃
f∞

, dp = d̃p
dp,∞

and the scales

cC,∞ = csatC,∞ exp

(
C2
d̃p,0

)
, dp,∞ = d̃p,max,

f∞ = u∞
CGkGd

3
p,∞l∞

,

the dimensionless equation for the concentration of the dissolved
product C is obtained. One gets

�cC
�t

− DC
u∞l∞

�cC + u · ∇cC − �chemcAcB

+ �nuc max{0, (cC − 1)5} +
⎛
⎝cC −

csatC,∞
cC,∞

⎞
⎠∫ 1

dp,min
d2pfd(dp) = 0

(4)

in (0, T] × �, with the constants

�chem = kR
c2∞l∞

cC,∞u∞
, dp,min = d̃p,0

dp,∞
,

�nuc = Cnucd̃3p,0knuc
l∞c4C,∞
u∞

.

Finally, the equation for the dimensionless PSD is given by

�f
�t

+ u · ∇f + G(cC)
l∞
dp,∞

�f
�dp

= 0 (5)

in (0, T] × � × (dp,min, 1) with

G(cC) = kGcC,∞
u∞

⎛
⎝cC −

csatC,∞
cC,∞

⎞
⎠ .

3. The numerical solution algorithms

The Navier--Stokes equations (1), (2) and system (3), (4) mod-
eling the chemical reaction were discretized in time with the
Crank--Nicolson scheme. This implicit temporal discretization was
applied with an equidistant time step �t. In each discrete time tk,
first the Navier--Stokes equations (1) and (2) were solved. After the
temporal discretization, one gets the following nonlinear system

uk + �t
2

(
− 1
Re

�uk + (uk · ∇)uk

)
+ ∇pk

= uk−1 − �t
2

(
− 1
Re

�uk−1 + (uk−1 · ∇)uk−1

)
in �,

∇ · uk = 0 in �.

This system was linearized with a simple fixed point iteration. Let
u(0)k = uk−1, compute u(i)k , i = 1, 2, . . . , by solving

u(i)k + �t
2

(
− 1
Re

�u(i)k + (u(i−1)
k · ∇)u(i)k

)
+ ∇p(i)k

= uk−1 − �t
2

(
− 1
Re

�uk−1 + (uk−1 · ∇)uk−1

)
in �, (6)

∇ · u(i)k = 0 in �. (7)

For discretizing the linear saddle point problems (6) and (7) in space,
the inf--sup stable Q2/P

disc
1 finite element method (Matthies and

Tobiska, 2002) was used, i.e. the velocity field is approximated with
continuous, piecewise biquadratic functions and the pressure with
discontinuous, linear functions. The fixed point iteration in tk was
stopped if the residual was sufficiently small. The combination of
the Crank--Nicolson scheme, the simple fixed point iteration and the
Q2/P

disc
1 finite element method has been proven to be an efficient

and accurate way of simulating laminar flows (John, 2004, 2006).
After having computed the flow field in tk, the coupled system

of Eqs. (3) for cA and cB was solved. This nonlinear system was also
linearized with a simple fixed point iteration. Using the current ap-
proximation of cB in Eq. (3), a new approximation of cA was com-
puted, which in turn was used to compute a new approximation
of cB. Thus, the fixed point iteration in tk looks as follows. Given

c(0)B,k = cB,k−1, solve

c(i)A,k + �t
2

(
− DA
u∞l∞

�c(i)A,k + uk · ∇c(i)A,k + kR
l∞c∞
u∞

c(i−1)
B,k c(i)A,k

)

= cA,k−1 − �t
2

(
− DA
u∞l∞

�cA,k−1 + uk−1 · ∇cA,k−1

+kR
l∞c∞
u∞

cA,k−1cB,k−1

)
in �,

c(i)B,k + �t
2

(
− DB
u∞l∞

�c(i)B,k + uk · ∇c(i)B,k + kR
l∞c∞
u∞

c(i)A,kc
(i)
B,k

)

= cB,k−1 − �t
2

(
− DB
u∞l∞

�cB,k−1 + uk−1 · ∇cB,k−1

+kR
l∞c∞
u∞

cA,k−1cB,k−1

)
in �,

i=1, 2, . . . . This iteration was stopped if the residual of the nonlinear
system was sufficiently small.

After the computation of cA and cB, the concentration of the re-
actant C can be computed by solving Eq. (4). The nucleation term
was treated explicitly, using cC from the previous discrete time. Sim-
ilarly, for evaluating the integral term in Eq. (4), we used cC and the
PSD f from the previous time step. Thus, cC can be computed in tk
by solving the linear equation

cC,k + �t
2

(
− DC
u∞l∞

�cC,k + uk · ∇cC,k

)

= cC,k−1 − �t
2

(
− DC
u∞l∞

�cC,k−1 + uk−1 · ∇cC,k−1

)

+ �t
2

⎡
⎣�chem(cA,k−1cB,k−1 + cA,kcB,k)

− �nuc(max{0, (cC,k−1 − 1)5} + max{0, (cC,k−2 − 1)5})

−
⎛
⎝
⎛
⎝cC,k−1 −

csatC,∞
cC,∞

⎞
⎠∫ 1

dp,min
d2pfk−1d(dp)

+
⎛
⎝cC,k−2 −

csatC,∞
cC,∞

⎞
⎠∫ 1

dp,min
d2pfk−2d(dp)

⎞
⎠
⎤
⎦ in �,

with cC,−1 = f−1 := 0.
The (linearized) equations for the concentrations were dis-

cretized in space with the Q1 finite element, i.e. the concentrations
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were approximated by continuous and piecewise bilinear functions.
Since these equations are convection- and reaction-dominated, the
application of a stabilized method is necessary. Using the standard
Galerkin finite element method leads to numerical solutions which
are globally polluted by large spurious oscillations. We investi-
gated in the simulations two different stabilization techniques---the
Samarskij upwinding scheme (Tabata, 1977) and the streamline-
upwind Petrov--Galerkin (SUPG) stabilization (Hughes and Brooks,
1979; Roos et al., 1996). The latter one is one of the most popular
stabilization schemes and its stabilization parameters were chosen
in our simulations as proposed in Lube and Rapin (2006).

The Samarskij upwinding scheme treats the convective term
similar to a finite difference or finite volume upwind method. This
scheme applied to steady--state convection--diffusion equations is
a monotone linear stabilization and hence restricted to first order
accuracy. From the monotonicity follows that the solutions do not
exhibit spurious oscillations. However, due to its low order, the
solutions tend to be smeared. The Samarskij upwinding scheme
may loose its monotonicity if it is applied to time-dependent
convection--diffusion--reaction equations, as in the simulation of
precipitation processes, depending on the size of the reactive term,
the length of the time step and the numerical quadrature for eval-
uating the mass matrix. However, it still shows the tendency to
smear the numerical solutions.

The SUPG stabilization approach adds a diffusion term to the stan-
dard finite element formulation which introduces additional diffu-
sion in streamline direction in a consistent manner. The advantage
of using the SUPG stabilization is its higher order accuracy based
on superconvergence properties on rectangular meshes. However,
its most important drawback is the presence of spurious oscillations
at layers of the solutions. An universally applicable higher order
method without spurious oscillations does not seem to exist (John
and Knobloch, 2007, 2008). In the simulations presented in this pa-
per, undershoots (negative concentrations) were just cut. Overshoots
of cA and cB were also cut, since the maximal values of these con-
centrations are known by the prescribed inflow concentrations. In
contrast, the maximal concentration of C is known only approxi-
mately to be somewhat larger than 1. Without cutting overshoots in
cC , there were simulations in which the overshoots accumulated and
these accumulations finally led to a blow-up of the simulations. We
found that cutting the overshoots in cC at 6cC,∞ (≈ 1.1 in our simu-
lations) stabilized most of the simulations. This cut-off was applied
for all results presented in Section 4.

The equation of the PSD (5) was discretized in time with the
forward Euler scheme. Since this equation is convection-dominated,
also a stabilized spatial discretization has to be applied. We used the
first order sharp upwind finite difference scheme (Roos et al., 1996).
The use of this explicit upwind scheme does not require the solution
of a linear system of equations for computing the PSD fk in tk since
it leads to a diagonal system matrix.

4. Numerical simulations

4.1. Setup of the simulations

The population balance system was simulated in the cavity � =
(0, 1)2, see Fig. 1. The size of the inlets is 1/32 and the size of the
outlet 1/16. The center of the outlet is situated at (0.5, 0). We studied
different positions of the inlets, see Fig. 2.

For the Navier--Stokes equations (1) and (2), parabolic inflow
profiles with an integral mean value of 1 (maximal value of 1.5) were
applied. Outflow boundary conditions were used at the outlet. The
concentrations of the reactants A at the left inlet and B at the right
inlet were set to 1 for all times. Neumann boundary conditions for
these concentrations were used on all other parts of the boundary.

movement
of the wall

inflow of
substance 1

inflow of
substance 2

outflow

Fig. 1. Cavity with inlets and outlets.

For the substance C, Neumann boundary conditions were applied on
the whole boundary. The boundary condition of the PSD with respect
to the smallest internal coordinate was

f (t, x1, x2, dp,min) = Bnuc(cC)
f∞u∞G(cC)

,

if G(cC) >0. Here,

Bnuc(cC) = knucc5C,∞ max{0, (cC − 1)5}.

Besides the opposite inflows, the mixing of the reactants A and B
was stimulated by the movement of the upper wall with the velocity
udrive=(u1,drive/u∞, 0)T, where we present simulations for u1,drive=
u∞.

The initial velocity fields were fully developed flows, computed
in a preprocessing step. They are presented in Fig. 2. Initially, the
concentrations were zero in �. The inflow of the reactants started
at t = 0. The initial condition of the PSD was also zero.

In the numerical simulations, the calcium carbonate precipitation

CaCl2 + Na2CO3 −→ CaCO3 ↓ +2NaCl

has been considered. The physical and chemical parameters of this
process are given by (Tavare and Garside, 1995; Dawe and Zhang,
1996; Chakraborty and Bhatia, 1996; Verdoes et al., 1992):

• � = 10−6 m2/s;
• � = 1kg/m3;
• kG = 10−7 m4/(kmol s);
• knuc = 1024 (1/(m3 s))/(kmol/m3)5;
• kR = 10m3/(kmol s);
• csatC,∞ = 1.37 × 10−4 kmol/m3;

• C2 = 7.2 × 10−9 m;
• CG = 45.98kmol/m3;
• Cnuc = 15.33kmol/m3;
• DA = DB = DC = 1.5 × 10−9 m2/s;
• d̃p,0 = 10−9 m; and

• d̃p,max = 10−3 m.

The following reference quantities have been used to derive the di-
mensionless equations:

• l∞ = 1m;
• u∞ = 10−3 m/s;
• t∞ = 103 s;
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Fig. 2. Fully developed velocity fields for different positions of the inlets.

• c∞ = 1kmol/m3;
• cC,∞ = 0.183502kmol/m3;
• dp,∞ = 10−3 m; and
• f∞ = 2.17486 × 1011 1/m4.

The Reynolds number of the flow was Re = 1000. Considering the
equations for computing ci, i ∈ {A,B}, and setting the characteristic
source in these equations to be kRc∞, then the Damköhler number
of the problem is given by

Da = kRc∞l∞
u∞

= 104.

The time stepping schemes were applied with an equidistant time
step of length �t=0.0025. The velocity field and the concentrations
were computed on a 64 × 64 grid consisting of squares. The num-
ber of degrees of freedom was 33282 for the velocity, 12288 for the
pressure and 4225 for each concentration. For the internal coordi-
nate, a non-equidistant grid consisting of 128 layers was used. The
grid points were distributed accordingly to the formula

1 + (1 − dp,min)
tanh(2.75(i/128 − 1))

tanh(2.75)
,

i = 0, . . . , 128. That means, the grid became finer for small particle
sizes. The number of nodes for computing the PSD was 545025.

4.2. Study of different inlet positions

For the driving velocity at the upper wall (u1,drive/u∞, 0)T=(1, 0)T,
different positions of the inlets were studied: at the lower part of the
lateral walls (y ∈ (8/32, 9/32)), at the middle part (y ∈ (15/32, 16/32))
and at the upper part (y ∈ (22/32, 23/32)). Instantaneous velocity
fields for the different situations are presented in Fig. 2. In all flows,
a large center vortex and small vortices at the left upper and the
right lower corner can be observed.

In the evaluation of the process, the PSD at the center of the
outflow (0.5, 0) was considered. For the representation of the PSD in
this point, we used the volume fraction q3 defined by

q3(t̃, d̃p) :=
d̃3pf̃ (t̃, 0.5l∞, 0, d̃p)∫ d̃p,max

d̃p,0
d̃3pf̃ (t̃, 0.5l∞, 0, d̃p)dd̃p

.

The cumulative volume fraction is given by

Q3(t̃, d̃p) :=
∫ d̃

d̃p,0
q3(t̃, d̃p)dd̃p.
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Fig. 3. Volume fractions q3(50000, d̃p) and medians of the volume fraction for the different positions of the inlets from Fig. 2.

With Q3(t̃, d̃p), the median of the volume fraction d̃p,50(t̃) is defined

to be the particle size for which Q3(t̃, d̃p) takes the value 0.5:

d̃p,50(t̃) := {d̃p : Q3(t̃, d̃p) = 0.5}.

The studies with respect to the different inlet positions were
carried out with the SUPG finite element stabilization of the
convection--diffusion--reaction equations. Fig. 3 shows q3(50000, d̃p)
for the different flow situations from Fig. 2, together with the
corresponding medians of the volume fraction. The temporal devel-
opment of the medians of the volume fraction is presented in Fig. 4.

Two classes of results can be distinguished from Figs. 3 and 4. In
the first class, the maximal value of the volume fraction is around
105 or less and the median of the volume fraction is about 10−5. To
this class belong all results obtained with the left inlet at the lower
part of the wall. In addition, a result of this class was obtained in the
simulation with the left inlet at the upper part of the wall and the

right inlet at the middle part of the wall. The second class of results
showsmaximal values of the volume fraction which are considerably
larger than 105 and the corresponding medians are considerably less
than 10−5. In particular, all simulations with the left inlet at the
middle part of the boundary led to results of this class.

The median of the volume fraction is related to the average size
of the particles and this size is related to the average residence time
of the particles in the domain. As can be seen in Fig. 5, the dissolved
CaCO3 is situated mostly between the right inlet and the outlet. This
is the region were particles nucleate and grow. A large residence
time means that the particles do not leave the domain immediately
after their nucleation but they pass the outlet, stay in the domain
and follow the flow field, for instance along the large center vortex
or the small vortex in the right lower corner, and get the opportunity
to grow further after reaching again the region between the right
inlet and the outlet. This behavior seems to be supported by placing
the left inlet at the lower part of the wall.
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Fig. 4. Temporal development of the medians of the volume fraction for the different positions of the inlets from Fig. 2.

The highest peak of the volume fraction and its smallest median
was obtained for the left inlet at the upper part and the right inlet at
the lower part of the wall. Placing the inlets vice versa, namely the
left one at the lower part and the right one at the upper part, led to
the largest median of the volume fraction, which is about three times
larger than the smallest one. Remarkable is also a small second peak
of the volume fraction at particle size 4 × 105 m in the simulation
with the left inlet in the middle part and the right inlet at the upper
part of the wall.

The nucleation of particles started shortly after the first contact
of CaCl2 and Na2CO3. Depending on the positions of the inlets, the
starting time of the nucleation was between 2700 and 4900 s. Then,
in all cases, an oscillatory behavior of d̃p,50(t̃) can be observed, see

Fig. 4. After a while, the oscillations ceased and the value of d̃p,50(t̃)
stayed more or less at the same level, generally showing a slight
increase. However, there are simulations where some oscillations of
d̃p,50(t̃) can be observed also for later times.

The simulations have been performed on a computer with Intel(R)
Xeon(R) X5355 processor with 2.66GHz. The computation of the

20000 time steps to reach T̃ = 50000 took between 123300 and
134700 s.

In this first step of our work, we are not yet able to explain all
observations in the numerical simulations. Further simulations and
the evaluation ofmore quantities will be necessary to obtain a deeper
insight in the precipitation process. The future studies will include
also the use of other numerical methods and different grids in order
to improve the understanding of the effect of the numerical methods
on the computed results.

4.3. Study of different finite element stabilizations of the
convection--diffusion--reaction equations

The difference of using the Samarskij upwind scheme and
the SUPG method in stabilizing the finite element method of the
convection--diffusion--reaction equations can be clearly seen in
Fig. 5 for the situation that both inlets are in the middle part of their
wall. The smearing of the Samarskij scheme as well as the spurious
oscillations of the SUPG scheme are evident.
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Fig. 5. Concentrations of the dissolved species CaCl2, Na2CO3, CaCO3 (left to right) at t̃ = 50000, top Samarskij upwind stabilization, bottom SUPG stabilization.

Fig. 6. Volume fraction q3(50000, d̃p) and temporal development of the median of the volume fraction for the simulation with the Samarskij upwind stabilization.

Fig. 6 shows that the smeared solutions of the Samarskij upwind-
ing scheme possess a great impact on the volume fraction and its
median. The maximal value of the volume fraction is around seven
times smaller and the median of the volume fraction is about 16
times larger for the simulationwith the Samarskij upwinding scheme
compared to the SUPG stabilization. In addition, the nucleation of
the particles started much later, at around 10400 s. Then, a continu-
ous (linear) increase can be observed which means that the average
size of the particles at the outlet becomes larger and larger. Contin-
uing this simulation, the size will certainly exceed d̃p,max, leading to
unphysical results and a useless numerical solution.

The results with the SUPG stabilization correspond much better
to our expectations with respect to the average particle size and the
distribution of the dissolved species in the domain. However, they are
still far from being satisfactory because of the spurious oscillations.

5. Conclusion and outlook

The paper presented a numerical approach for simulating the
calcium carbonate precipitation in a two-dimensional cavity. The
influence of the positions of the inlets on the volume fraction and on

the median of the volume fraction in the center of the outflow were
studied. It was shown that the positions have a considerable impact
on both quantities. Such effects can be observed only if all equations
of the population balance system are simulated without strongly
simplifying assumptions like ideal mixing. In a second study, it was
demonstrated that the use of the Samarskij upwind finite element
stabilization for the convection--diffusion--reaction equations led to
completely smeared and useless results.

There will be more than one direction in our future research on
the simulation of precipitation processes. The implementation of the
numerical solution algorithm to three variables in space is, of course,
among them. Turbulent flows, which will occur in applications, will
be simulated with the variational multiscale method (John and Kaya,
2005; John and Roland, 2007; John and Kindl, 2008; Bazilevs et al.,
2007). A great challenge will be the reduction of the spurious os-
cillations in the numerical solution for the equations describing the
chemical reactions. For instance, schemes presented in John and
Knobloch (2007, 2008) will be extended to time-dependent prob-
lems. We will also investigate the benefit of algebraic flux correction
schemes developed in Kuzmin andMöller (2005) and Kuzmin (2007).
A third option is to explore the potential of the recently developed
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stabilization based on local projections (Matthies et al., 2007). Con-
cerning the equation for the PSD, implicit temporal discretizations
will be used in the future in order to increase the stability and ac-
curacy of the results.

After having identified reliable and accurate numerical schemes,
issues like optimal operation and control of precipitation processes
can be investigated.
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