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Higher-order finite element discretizations in a
benchmark problem for incompressible flows
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Otto-�on-Guericke-Uni�ersität Magdeburg, Institut für Analysis und Numerik, Magdeburg, Germany

SUMMARY

We present a numerical study of several finite element discretizations applied to a benchmark problem
for the two-dimensional steady state incompressible Navier–Stokes equations defined in Schäfer and
Turek (The benchmark problem ‘Flow around a cylinder’. In Flow Simulation with High-Performance
Computers II. Notes on Numerical Fluid Mechanics, vol. 52, Hirschel EH (ed.). Vieweg: Wiesbaden, 1996;
547–566). The discretizations are compared with respect to the accuracy of the computed benchmark
parameters. Higher-order isoparametric finite element discretizations turned out to be by far the most
accurate. The discrete systems obtained with higher-order discretizations are solved with a modified
coupled multigrid method whose behaviour within the benchmark problem is also studied numerically.
Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Navier–Stokes equations are a fundamental model in fluid dynamics. There exist a lot of
codes that solve these equations numerically. In these codes, many different discretization
techniques as well as solvers are implemented. Benchmark problems describing real flow
phenomena are important for the evaluation of such codes. A systematic study and compari-
son of these different discretization and solvers was started within the DFG high priority
program ‘Flow Simulation with High-Performance Computers’ [1]. In this program, bench-
mark problems for the steady state and the time dependent Navier–Stokes equations were
defined. These benchmark problems describe laminar flows around obstacles, i.e. types of
flows that can be found in applications. A number of research codes as well as industrial codes
solved these benchmark problems. The evaluation of the results brought inside into the
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capabilities of some discretizations and solvers. But a number of questions could not be
answered definitely. One of these questions concerns the use of higher-order discretizations [1,
p. 565, point 7]: The use of higher than second order discretizations in space appears promising
with respect to the accuracy, but there remains the question of how to sol�e efficiently the
resulting algebraic problems . . . . The results pro�ided for this benchmark are too sparse to allow
a definite answer. In fact, even a second-order discretization was used only in one code. With
this code, accurate results were obtained with a relative small number of degrees of freedom.

Higher-order finite element discretizations for the incompressible Navier–Stokes equations
are studied analytically, e.g. in [2]. Optimal order error estimates in norms of Sobolev spaces
can be proven under certain conditions, especially under the assumption that the solution of
the continuous problem is sufficiently smooth. However, this assumption will often not be
fulfilled in practice. But on the other hand, norms of Sobolev spaces are in general not of
practical interest. Quantities of interest in applications are e.g. mean values of the velocity, and
drag or lift coefficients at obstacles. Systematic investigations of the accuracy of different
discretizations with respect to such quantities seem to be rare. It is also not known how a
missing global regularity of the solution affects the accuracy of higher-order discretizations for
local quantities as drag or lift coefficients.

This paper presents a numerical study for several finite element discretizations applied in the
benchmark problem ‘Flow around a cylinder’. The benchmark parameters are the drag and lift
coefficient at the cylinder and the difference of the pressure between the front and the back of
the cylinder. The numerical studies show that higher-order isoparametric finite element
discretizations show the best accuracy with respect to the benchmark parameters despite the
missing smoothness of the solution of the continuous problem.

The discrete problems obtained with higher-order discretizations are solved by a modified
coupled multigrid method with Vanka-type smoothers. The modification consists in using
stabilized low-order finite element discretizations on the coarser multigrid levels. This solver is
described in detail and its behaviour within the benchmark problem is studied for the
higher-order finite element discretizations.

2. THE BENCHMARK PROBLEM

This section describes shortly the two-dimensional benchmark problem for the incompressible
Navier–Stokes equations defined in [1].

We consider the stationary incompressible Navier–Stokes equations

−��u+ (u·�)u+�p=0 in �

� ·u=0 in �

u=g on �� (1)

with �=10−3 m2 s−1 and � is the channel shown in Figure 1. The parabolic inflow and
outflow profile
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Figure 1. Domain of the benchmark problem.

u(0, y)=u(2.2, y)=0.41−2(1.2y(0.41−y), 0), 0�y�0.41

is prescribed. No-slip conditions are imposed at the other boundaries. Using the mean value of
the inflow velocity U=0.2 m s−1 and the diameter of the cylinder L=0.1 m as characteristic
quantities of the flow, its Reynolds number is Re=20. The density of the fluid is given by
�=1 kg m−3. An analytical representation of the solution of (1) and its exact regularity are
unknown. However, due to the non-convex domain �, it is unlikely that (u, p) is regular
enough such that standard error estimates for higher-order finite element discretizations hold,
e.g. the pressure has a singularity at the front of the cylinder, see Figure 2.

The benchmark parameters are the drag coefficient cd at the cylinder, the lift coefficient cl

and the difference of the pressure between the front and the back of the cylinder

�p=p(0.15, 0.2)−p(0.25, 0.2)

The definition of cd and cl is as follows:

Figure 2. Velocity (left) and pressure (right) at the cylinder.
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cd=
2

�LU2

�
S

�
��

�ut s

�n
ny−pnx

�
dS, cl= −

2
�LU2

�
S

�
��

�ut s

�n
nx+pny

�
dS (2)

Here, n= (nx, ny)T is the normal vector on S directing into �, tS= (ny, −nx)T the tangential
vector and ut s

the tangential velocity.
We have applied in our numerical tests a different computation of these values. This

computation starts with choosing an arbitrary function vd� (H1(�))2 with (vd)�S= (1, 0)T and vd

vanishes on all other boundaries. H1(�) is the usual Sobolev space of order one. The
momentum equation in (1) is multiplied with this function and integrated over �. One readily
verifies that integration by parts and inserting the parameters of the flow yield

cd= −500
�

�
[��u: �vd+ (u ·�)u ·vd−p(� ·vd)] dx (3)

Similarly, one obtains with vl� (H1(�))2, (vl)�S= (0, 1)T and vl vanishes on the other boundaries

cl= −500
�

�
[��u: �vl+ (u ·�)u ·vl−p(� ·vl)] dx (4)

In this way, the computation of a line integral on S can be replaced by the computation of
volume integrals. Since S is a circular boundary, it is in general approximated in numerical
computations by a discrete boundary Sh. Then, the evaluation of (2) is performed on Sh instead
of S and it is not clear how much the boundary approximation influences the computed
coefficients. We think that in the volume integral formulations (3) and (4) this influence is less
than in (2).

Because vd and vl are up to the boundary conditions arbitrary functions, we can use in the
actual computations a finite element function with appropriate boundary conditions. In order
to keep the number of integral evaluations in (3) and (4) at a minimum, the functions vd and
vl should have a small support. We used finite element functions of the same order as for the
velocity which have the value (1, 0) (or (0, 1)) in all finite element nodes on Sh and vanish in
all other modes, see Figure 3 for two examples. Therefore, one has to compute the integrals
only in one layer of mesh cells around the cylinder, the shaded mesh cells in Figure 3. From
[3] we have the experience that for a non-conforming finite element discretization also a
non-conforming finite element function, which does in general not belong to (H1(�))2, can be
used for computing cd and cl with (3) and (4), respectively.

3. THE DISCRETE EQUATIONS

3.1. The linearization

The Navier–Stokes equations (1) are linearized by a fixed-point iteration. Given a current
iterate (un, pn), in each iteration step, a linear problem of the form

��un+1+ (un ·�)un+1+�pn+1=0 in �
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Figure 3. Choice of vd and vl for Q1
rot velocity (left) and P2 velocity (right).

� ·un+1=0 in �

un+1=g on ��

has to be solved. This boundary value problem is in general convection dominated and is often
called the Oseen equation.

3.2. The finite element spaces used in the tests

In this section, we want to introduce the finite element spaces that were used in the tests.
Let Th denote a decomposition of � into triangles or quadrilaterals and hK the diameter of

the mesh cell K. Let L2(�) be the Lebesgue space of square integrable functions over the
domain � with the inner product (�, w)=�� �w dx and the norm ��� ��0= (�, �)1/2. The space
H1(�) is equipped with the seminorm �� �1= (��, ��)1/2.

We denote by Vh the finite element space for the velocity and by Qh the finite element space
for the pressure. Only such pairs of finite element spaces were involved in the study which fulfil
the inf–sup or Babuška–Brezzi stability condition, i.e. there exists a constant ��0 indepen-
dent of the triangulation such that

inf
qh�Qh

sup
vh�Vh

(� ·vh, qh)
�vh �1��qh ��0

�� (6)

Condition (6) guarantees the unique solvability of the discrete systems.
First, we consider quadrilateral finite elements. Let (−1, 1)2 be the reference square K� , and

FK the mapping from K� to an arbitrary quadrilateral K. In general, FK is a bilinear mapping.
Let Qk(K� ) and Pk(K� ) be the following sets of polynomials on K�
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Qk(K� )�
�

q̂(x̂1, x̂2)= �
k

i, j=0

aijx̂1
i x̂2

j�, Pk(K� )�
�

p̂(x̂1, x̂2)= �
0� i+ j�k

aijx̂1
i x̂2

j�
Then, we define

Qk(K)�{q= q̂ � FK
−1: q̂�Qk(K� )}, Pk(K)�{p= p̂ � FK

−1: p̂�Pk(K� )}

and

Qk�{��H1(�): � �K�Qk(K)}, k�1

Q0�{��L2(�): � �K�Q0(K)}

Pk
disc�{��L2(�): � �K�Pk(K)}, k�0

In addition, let Q1
rot be the space of non-conforming, mean value oriented, rotated piecewise

bilinears defined in [4,5]. We used in our computations the following pairs of quadrilateral
finite elements, which fulfil (6):

� Q1
rot/Q0, Q2/P1

disc, Q2/Q1, Q3/P2
disc, Q3/Q2

As usual, the facts that the velocity is a vector valued function and the finite element space of
the pressure is intersected with L0

2(�) are not indicated in these notations. L0
2(�) denotes the

space of functions q�L2(�) with �� q dx=0.
Now we describe the triangular finite elements we have used. Let us denote for k�1 by Pk,

the space of continuous piecewise polynomials of degree k, by P0, the space of piecewise
constant functions, and by P1

nc, the space of non-conforming piecewise linears that are
continuous at the midpoint of each edge. The reference triangle has the vertices (0, 0), (1, 0)
and (0, 1). The following pairs of triangular finite element spaces were involved in our studies:

� P1
nc/P0, P2/P1, P3/P2

Since � has the non-polygonal boundary part S, the use of isoparametric finite elements seems
to be promising. We applied in our studies isoparametric finite element approximations for the
Q2/P1

disc, Q2/Q1, P2/P1 and P3/P2 discretizations.
For more detailed descriptions of the finite element spaces and for references to original

papers, see e.g. [6,7].

3.3. The discretizations

We define

a(v, w)= �
K�Th

�
K

�v: �w dx, b(u, v, w)= �
K�Th

�
K

(u ·�)v ·w dx,

c(q, v)= �
K�Th

�
K

q(� ·v) dx
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The standard Galerkin discretization of (5) reads as follows:
Given uh

n, find (uh
n+1, ph

n+1)�Vh×Qh satisfying �(vh, qh)�Vh×Qh.

�a(uh
n+1, vh)+b(uh

n, uh
n+1, vh)−c(ph

n+1, vh)=0

c(qh, uh
n+1)=0 (7)

Since (5) is, in general, a convection-dominated equation, the application of stabilization
techniques with respect to the convective term may be useful for some discretizations.

As one stabilization technique, we applied the streamline diffusion finite element method
(SDFEM) which was introduced in [8,9] and analyzed for Navier–Stokes equations, e.g. in
[10,11]. The weak formulation reads as follows:

Given uh
n, find (uh

n+1, ph
n+1)�Vh×Qh satisfying �(vh, qh)�Vh×Qh

�a(uh
n+1, vh)+b(uh

n, uh
n+1, vh)−c(ph

n+1, vh)

+ �
K�Th

�K
�

K

(��uh
n+1+ (uh

n ·�)uh
n+1+�ph

n+1)((uh
n ·�)vh) dx=0

c(qh, uh
n+1)=0 (8)

We used the streamline diffusion parameter �K=hK
2 .

A second stabilization scheme which is involved in our study is an upwind discretization
which was investigated in [5,12] for non-conforming finite element spaces of lowest order. This
type of stabilization is used only in connection with the finite element spaces Q1

rot/Q0 and
P1

nc/P0. The upwind finite element discretization of (5) reads as follows:
Given uh

n, find (uh
n+1, ph

n+1)�Vh×Qh satisfying �(vh, qh)�Vh×Qh

�a(uh
n+1, vh)+b� (uh

n, uh
n+1, vh)−c(ph

n+1, vh)=0

c(qh, uh
n+1)=0 (9)

where, see Figure 4

b� (u, v, w)= �
N

i=1

�
j��i

�
�ij

(u ·nij)(1−�ij(u))(v(Bj)−v(Bi)) ·w(Bi) ds

Here, N is the number of degrees of freedom of the velocity, �i is the set of all indices for
which the nodes Bi and Bj belong to the same mesh cell, �ij is the edge to node Bj of the dual
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Figure 4. Dual domains for computing the upwind discretization, P1
nc velocity (left), Q1

rot velocity (right).

mesh cell around node Bi (shaded in Figure 4) and nij is the outward directing normal at �ij.
Let

t=
1
2�

�
�ij

u ·nij ds

then the weighting function is defined by

�ij(u)=�(t)=

�
�
�
�
�

1+2t
2+2t

if t�0

1
2−2t

if t�0

The upwind method with this weighting function is called Samarskij upwind. A simpler upwind
discretization, the so-called sharp upwind discretization produced very inaccurate results. This
was already observed in [1, p. 565, point 5].

All integrals are evaluated by a transformation to the reference element and the application
of a quadrature rule on the reference element. This quadrature rule is exact for all polynomials
that occur in the bi- and trilinear forms for a given pair of finite element spaces. Thus, integrals
on mesh cells that have an affine transformation to the reference element are computed exactly.
If the transformation from the reference element to a mesh cell is bilinear or isoparametric, there
is a quadrature error due to the non-polynomial inverse reference transformation.

4. THE MULTIGRID SOLVER

We applied a (strongly) coupled multigrid method for the solution of the discrete Oseen
problems. The evaluation of the benchmark computations [1, p. 564, point 2], showed that

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 885–903
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coupled multigrid methods are among the best classes of solvers known so far for this type of
equations. The algebraic form of the discrete Oseen equations looks as follows:

A
�u

p
�

=
�A B

C 0
��u

p
�

=
�f

g
�

(10)

We applied the coupled multigrid method with local smoothers, so-called Vanka-type
smoothers [13]. The behaviour of these methods has been studied numerically for non-
conforming finite element spaces of first-order in a number of papers [14–17]. In these studies,
they behaved superior to several other classes of solvers.

Vanka-type smoothers can be considered as block Gauss–Seidel methods. Let Vh and Qh be
the set of velocity and pressure degrees of freedom (d.o.f.) respectively. These sets are
decomposed into

Vh= 	
J

j=1

Vhj, Qh= 	
J

j=1

Qhj (11)

The subsets are not required to be disjoint.
Let Aj be the block of the matrix A which is connected with the degrees of freedom of

Whj=Vhj�Qhj, i.e. the intersection of the rows and columns of A with the global indices
belonging to Whj

Aj=
�Aj Bj

Cj 0
�

�R
dim(Whj )×dim(Whj )

In addition, we define

Dj=
�diag(Aj) Bj

Cj 0
�

�R
dim(Whj )×dim(Whj )

Similarly, we denote by ( · )j the restriction of a vector on the rows corresponding to the
degrees of freedom in Whj. The diagonal Vanka smoother updates the velocity and pressure
values connected to Whj by

�u
p
�

j

�
�u

p
�

j

+Dj
−1��f

g
�

−A
�u

p
��

j

The full Vanka smoother computes new velocity and pressure values by

�u
p
�

j

�
�u

p
�

j

+Aj
−1��f

g
�

−A
�u

p
��

j
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We have applied two types of Vanka smoothers with respect to the decomposition (11). The
first type is called mesh cell oriented. For this type of smoother, J is the number of mesh cells
and Whj are the degrees of freedom which are connected to the mesh cell j. This approach
works only for finite element spaces with discontinuous discrete pressure. In the pressure node
oriented Vanka smoother, J is the global number of pressure degrees of freedom, dim Qhj=1
for all j, and Vhj is the set of velocity degrees of freedom which are connected to the pressure
degree of freedom of Qhj in the matrix C. Obviously, for a piecewise constant discrete pressure,
the mesh cell oriented and the pressure node oriented Vanka smoother are equivalent. The
linear systems with the diagonal pressure node oriented Vanka smoother can be solved very
fast by applying two inner vector products whereas for the systems with the other Vanka
smoothers the Gaussian algorithm with pivoting is used in our tests.

The prolongation in the multigrid method is based on so-called nodal functionals. On each
mesh cell K there exists a local finite element basis {� i

K} and a dual basis {Ni
K} of nodal

functionals such that

Ni
K(� j

K)=�ij

where �ij is the Kronecker delta. Let {�j : j�J} be the basis of the finite element space. The
indices j are called nodes or global degrees of freedom. Let Ij be the set of all pairs (K, i ) of
local degrees of freedom, which forms a global degree of freedom, see Figure 5. Then, the
global nodal functional of a piecewise given function � is defined as a weighted average of the
local nodal functionals

Nj(�)�
1

�Ij �
�

(K,i)�Ij

Ni
K(�)

Let Vl be the finite element space on multigrid level l and Vl+1 the finite element space on the
next finer level l+1. The prolongation of �l�Vl into Vl+1 is given via

�l+1= �
dim(Vl+1)

i=1

Ni(�l)�i

Figure 5. Node j with cell wise contributions (Km, im), Ij= �m=1
4 (Km, im).
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where {�i} is the basis of Vl+1. Note, it is not necessary that the spaces Vl and Vl+1 are based
on the same finite element. This fact is exploited in the modified multigrid method described
below. Analytical properties of this prolongation operator are studied in [18].

It was impossible for some discretizations to solve the linear system (10) with the (standard)
approach of using on all multigrid levels the same discretization. The multigrid solver showed
the best efficiency for the first-order non-conforming finite element discretizations with
Samarskij upwind. For this reason, we used a modified multigrid approach, see Figure 6. Let
L be the finest level of the geometric grid hierarchy. Then, the finest level of the multigrid
hierarchy is L+1. The multigrid levels L and L+1 are connected both to the geometric level
L. The discretization in the study is applied on the multigrid level L+1, whereas on all other
levels a lowest-order non-conforming discretization with Samarskij upwind stabilization is
used. Sensible parameters in this approach are the damping factor for the smoother on
multigrid level L+1 and the damping factor of the prolongation from level L to L+1.

5. NUMERICAL STUDIES

In this section, we present the numerical results with respect to the accuracy of the computed
benchmark parameters and the behaviour of the coupled multigrid solver for the different
discretizations.

The initial grids presented in Figure 7 are used in the numerical tests. The quadrilateral grid
consists of 208 mesh cells and the triangular grid of 388. Both initial grids posses fine mesh
cells around the cylinder. Such a priori adapted grids have been proven to lead to accurate

Figure 6. The modified multigrid approach for higher-order discretizations.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 885–903
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Figure 7. Coarsest grids for the benchmark problem.

solutions, see [1, p. 565, point 9]. Also, a posteriori adaptively refined grids that are based on
error estimators for the benchmark parameters are highly refined at the cylinder, see [19,20].

All computations were carried out with the code MooNMD2.2 [21].

5.1. The accuracy of the discretizations

The computed drag coefficients and pressure differences are compared with reference values
obtained with a high-order spectral method [22, p. 74]

cd,ref=5.57953523384, �pref=0.11752016697

These reference values coincide quite well with extrapolations of computed values in our study.
For the lift coefficient, however, we used

cl,ref=0.010618937712

as reference value which differs a little bit from the value 0.010618948146 given in [22]. We
have obtained cl,ref by extrapolating the results of the isoparametric P3/P2 finite element
discretization.

The errors of the computed values to these reference values are presented graphically in
Figures 8–10. These plots contain also the asymptotics for second- and fourth-order conver-
gence. The different pairs of finite element spaces are plotted by different line styles. The
different discretizations are distinguished by different markers:

+ , Galerkin discretization, isoparametric finite elements;
�, Galerkin discretization, polygonal boundary approximation;
*, SDFEM discretization, polygonal boundary approximation;

�, Samarskij upwind discretization, polygonal boundary approximation.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 885–903
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Figure 8. Errors of the computed drag coefficients to cd,ref (+ , isoparametric Galerkin; �, polygonal
Galerkin; *, polygonal SDFEM; �, polygonal Samarskij).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 885–903
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Figure 9. Errors of the computed lift coefficients to cl,ref (+ , isoparametric Galerkin; �, polygonal
Galerkin; *, polygonal SDFEM; �, polygonal Samarskij).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 885–903
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Figure 10. Errors of the computed pressure difference to �pref (+ , isoparametric Galerkin; �, polygonal
Galerkin; *, polygonal SDFEM; �, polygonal Samarskij).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 885–903
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For discontinuous discrete pressure, �p was computed by averaged values at the front and
the back of the cylinder, respectively. If possible, the discrete non-linear systems were solved
on each level up to an Euclidean norm of the residual of 10−15. However, this stopping
criterion could often not be reached for the discretizations on quadrilateral grids. The
quadrature errors mentioned in Section 3.3 may cause that the conservation of mass in the
discrete equations is violated somewhat. In these computations, we relaxed the stopping
criterion to 10−12, which was always reached.

By far the most accurate results are obtained with second- and third-order isoparametric
finite element discretizations. The better quality of the boundary approximation improves the
accuracy of the computed benchmark values very much in comparison to the polygonal
approximation of S. Second- and third-order discretizations with polygonal discrete boundary
give similar results. The main error comes from the crude boundary approximation. The use
of the streamline–diffusion stabilization influences the results only marginally. The used grids
seem to be already in the asymptotic regime such that the effect of the streamline-diffusion
stabilization is negligible. By far the most inaccurate results are obtained with the lowest-order
non-conforming discretizations.

The numerical results provide some additional observations which are also noteworthy. For
instance, only the isoparametric P3/P2 finite element discretization shows a higher than
second-order convergence for �p, see Figure 10. Also, the accuracy of the computed values on
quadrilateral and triangular grids for a similar number of degrees of freedom is not much
different. Thus, from our tests there is no reason to prefer one of these grid types from the
point of view of accuracy.

The numerical results suggest that each benchmark parameter has a well-defined order of
convergence which depends on the discretization. However, to our knowledge there are no
rigorous analytical convergence proofs available in the literature.

5.2. The beha�iour of the modified coupled multigrid method

Table I illustrates the behaviour of the modified coupled multigrid method for the higher-order
discretizations. The initial guess for the non-linear iteration was the interpolated solution from
the previous level and the iteration was stopped for an Euclidean norm of the residual less than
10−10. For the solution of the linear saddle point problems (10), at most 10 multigrid cycles
were applied or this iteration was stopped after a reduction of the norm of the residual by the
factor 10. The systems on the coarsest grid were solved approximately by 100 iterations with
the smoother. We found that a moderate damping of the smoother on the multigrid level L+1
as well as for the prolongation from level L to L+1 was sufficient for the multigrid method
applied to discretizations with discontinuous pressure. Both damping factors were set to 0.8 in
the computations presented in Table I. In the computations with continuous pressure, both
damping factors are set to 0.4. This stronger damping was often necessary in order to achieve
the convergence of the solver. Since the behaviour for a certain pair of finite element spaces
was quite similar with respect to all discretizations, only the results for the most accurate
discretization are given. The W(2, 2)-, W(3, 3)- and W(4, 4)-cycles were tested for the combi-
nations of pairs of finite element spaces and Vanka-type smoothers and the best result (fastest
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Table I. The behaviour of the modified coupled multigrid method (fixed point iterations/multigrid cycles
and computing time).

L+1 d.o.f.FE space (discretization) Cycle Smoother Iterations Time

5 588 160 W(3, 3) Cell, fullQ2/P1
disc (isoparametric) 5/11 554

W(4, 4) Cell, diag 5/22 1141
W(3, 3) Node, full 5/11 952

Q2/Q1 (isoparametric) 5 482 272 W(2, 2) Node, full 6/44 5612

P2/P1 (isoparametric) 5 449 856 W(2, 2) Node, full 7/55 4338
W(4, 4) Node, diag 8/64 3251

4 321 312Q3/P2
disc (Galerkin) W(2, 2) Cell, full 10/39 891

W(2, 2) Cell, diag 10/50 1038
W(2, 2) Node, full 9/35 2819

Q3/Q2 (Galerkin) 4 295 296 W(2, 2) Node, full 8/67 16 578

4 275 456 W(3, 3) Node, fullP3/P2 (isoparametric) 5/29 4359
W(3, 3) Node, diag 8/65 3043

computation time) is reported in Table I. The computations were carried out on a HP
workstation with PA-8500 processor (440 MHz, 1760 Mflop s−1 peak performance).

In Table I, we give the number of fixed-point iterations, the total number of multigrid cycles,
and the computing times in seconds for the solution of the discrete Navier–Stokes equations.
The results show that the modified multigrid method works most efficient for finite element
spaces with discontinuous pressure. The best behaviour can be observed for the combination
of the Q2/P1

disc finite element space and the full mesh cell oriented Vanka smoother. The
multigrid method with the diagonal pressure node oriented Vanka smoother did not converge
for these pairs of finite element spaces.

As mentioned in Section 4, only pressure node oriented Vanka smoothers are used for finite
element spaces with continuous pressure. It can be seen from Table I that the modified
multigrid method behaved differently for discretizations on triangular and quadrilateral
meshes. It had no problems to converge for the P2/P1 and P3/P2 pairs of finite element spaces.
The diagonal pressure node oriented Vanka smoother was more efficient than its full
counterpart. The most difficulties in the solution of the discrete problems were encountered for
the higher-order finite element spaces with continuous pressure on quadrilateral grids. The
modified multigrid method with the diagonal pressure node oriented Vanka smoother did not
converge in these cases. The loss of information in replacing Aj by Dj is apparently too large
here. Also the computation times with the full pressure node oriented Vanka smoother are
large in comparison to the other pairs of finite element spaces.

The results given in Table I provide some insight into the behaviour of the modified coupled
multigrid method. The study of this method applied in the solution of high Reynolds number
flows, flows in more complex domains and time dependent flows will be the subject of a
forthcoming study.
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5.3. Conclusions

We want to summarize the most important conclusions of the numerical tests within the
benchmark problem ‘Flow around a cylinder’:

� By far the most accurate benchmark parameters are obtained with isoparametric higher-
order discretizations although the solution of the continuous problem is not of higher
regularity.

� There could be obtained more accurate results with all higher-order discretizations in less
computing time and with less memory than with the low-order non-conforming
discretizations.

� The importance of the low-order discretizations lies in the possibility of constructing
modified multigrid solvers for higher-order discretizations as described in Section 4.

� The modified coupled multigrid method worked best for higher-order finite element spaces
with discontinuous discrete pressure.

� The isoparametric Q2/P1
disc discretization proved to be best concerning both the accuracy of

the discrete solution and the efficient solvability of the discrete systems. Among the
discretizations on triangular grids, the isoparametric P2/P1 and the isoparametric P3/P2

discretization worked equally well.
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