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SUMMARY

The paper studies numerically the slip with friction boundary condition in the time-dependent incom-
pressible Navier–Stokes equations. Numerical tests on two- and three-dimensional channel �ows across
a step using this boundary condition on the bottom wall are performed. The in�uence of the friction
parameter on the �ow �eld is studied and the results are explained according to the physics of the �ow.
Due to the stretching and tilting of vortices, the three-dimensional results di�er in many respects from
the two-dimensional ones. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical solution of the Navier–Stokes equations with no-slip boundary conditions has
been studied exhaustively (see References [1–3]). The term no-slip pertains to the fact that
the �uid adheres to the boundary of the �ow domain. The no-slip condition is widely accepted
as a correct boundary condition for moderate �uid velocities and stresses. Its acceptance, as
Day [4] and LeRoux [5] state, is due to:

• comparisons between experimental and theoretical solutions of �ow problems with small
�uid velocities;

• direct observations of �uids with moderate velocities near surfaces, and more recently
• comparisons between numerical simulations and experimental results of a large array of
�ow problems, but again only for moderate velocities.
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714 V. JOHN AND A. LIAKOS

Another argument in favour of the no-slip condition (compared to the partial slip laws) is
its mathematical convenience (e.g. validity of the Poincar�e–Friedrichs’ inequality).
Naturally, there are exceptions to the no-slip rule. Investigations of slip �ow were �rst

presented by Kundt and Warburg [6], who found that the discharge of gas from a tube at
low density was larger than that calculated for the same pressure di�erence assuming laminar
�ow. These experiments led Maxwell to determine the boundary conditions at the wall from
a consideration of the interaction of gas molecules with the surface of a solid body [7]. He
found that the tangential velocity at the surface was small but �nite and that slip �ow could
occur. Finally, Petro� [8] suggested that slipping occurs at very high speeds with a substance
that is a good lubricant.
Another example, where the imposition of the no-slip boundary condition might be inap-

propriate, is high Reynolds number �ow. As the Reynolds number increases, the stress in the
system becomes higher. Once it surpasses a given value, the �uid slips along the boundary.
Slip is the physical mechanism with which the �uid relieves the stress. Thus, we expect that,
for higher Reynolds numbers, the �ow at the boundary satis�es a slip with friction condition.
The numerical simulation of high Reynolds number �ows requires the use of a turbulence
model. Currently, one of the most promising approaches for modelling turbulence is large
eddy simulation (LES). The LES seeks to compute the large eddies of a turbulent �ow accu-
rately while the in�uence of the small �ow structures onto the large ones is modelled. Galdi
and Layton [9] propose to apply slip with friction and no penetration boundary conditions
for the large eddies. Such boundary conditions are more suitable than no-slip boundary con-
ditions to describe phenomena which can be observed in nature, e.g. the main vortices of a
hurricane do not stick at the boundary therefore the no-slip law is not satis�ed. These vortices
move on the boundary (slip), losing energy while moving (friction), and do not penetrate the
boundary.
Navier [10] proposed a partial slip boundary condition which admits linear friction. Specif-

ically, slip occurs in the opposite direction as the resistive force the wall exerts on the �uid;
in addition, there is a linear resistance to slip. If the friction coe�cient is a function of the
thermodynamic variables (in particular if �=∞ in (1) below, except at low pressures), then
the slip with linear friction boundary condition can even account for adherence [11].
The condition of no slipping at the boundary has been dropped by Duhem [12, 13] and

later by Oseen [14]. In particular, Duhem’s boundary conditions (in channel �ow
with one part of the boundary moving with a constant velocity) allow for adherence when the
coe�cient of friction was larger than a constant times the velocity of the wall, and slipping
in the opposite case. A theory of resistance based upon the idea of kinematic viscosity and
thermal conductivity which vary with the velocity was �rst proposed by Noaillon [15].
His boundary condition implies adherence for low tangential stresses and high
pressures and reduces to the slip with friction boundary conditions for the opposite
extremes.
The time-dependent Navier–Stokes equations with Navier’s slip boundary conditions has

been studied analytically by Clopeau et al. [16], and Coron [17]. The former have exhibited
existence of the regular solutions for the 2-D Navier–Stokes equations with smooth compatible
data. The latter have exhibited existence of solutions for the ‘controlled’ 2-D, time-dependent
Navier–Stokes equations with Navier’s slip law on a part of the boundary. That is, given
initial data, test whether there exist solutions to the Navier–Stokes equations which, for a
�xed time, are ‘arbitrarily’ close to a given �ow �eld.
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SLIP WITH FRICTION BOUNDARY CONDITION 715

To the knowledge of the authors, there are only few numerical studies of the slip with
friction boundary condition. Therefore, a systematic study of the e�ects of this boundary
condition in well-de�ned test problems is essential. We have chosen to use the �ow across a
step since recirculation of a �ow is a very natural situation. Applications of the study herein
include ‘wind engineering and many �uid devices, such as weirs, gas turbines, turbo machines
and combustion ducts’ [18]. More motivation for the choice of this test problem is given at the
beginning of Section 3. Our plan is to study the in�uence of the friction on the reattachment
points (in 2-D) and isolines (in 3-D) of recirculating vortices behind the step for three types
of �ows:

• stationary �ows;
• time-dependent laminar �ows; and
• turbulent �ows.

The studies for the stationary �ow can be found in Reference [19]. Their results are sum-
marized in the description of the test problems, Remarks 1 and 2. The current work con-
tains the study of time-dependent laminar �ows. The motivation for choosing this type of
�ows as the second step in our study comes from the fact that such �ow problems can
be discretized by a Galerkin �nite element method for the Navier–Stokes equations. This
will not be possible for turbulent �ows since a direct numerical simulation (DNS) by a
Galerkin �nite element discretization seeks to simulate the behaviour of all persisting scales.
The smallest scales in turbulent �ows, the so-called Kolmogorov scales, are much smaller
than the grid size which can be a�orded on present day computers, e.g. see Reference
[20]. Thus, the small scales cannot even be represented on such meshes. However, these
scales are important for the physics of turbulent �ows (energy cascade). It is necessary to
model the in�uence of the unresolved scales onto the resolved ones, which implies using
a turbulence model. In this situation, the evolution of the reattachment points (lines) will
not only depend on the friction but most probably also on the turbulence model which is
used. The results for time-dependent laminar �ows may help to distinguish between both
in�uences.
The paper is organized as follows. Section 2 introduces the Navier–Stokes equations with

slip with friction boundary conditions and contains comments on their discretization. The test
problems are described in Section 3. Section 4 contains the numerical results for the 2-D �ow
across a step and Section 5 for the 3-D �ow across a step. The most important conclusions
from the numerical studies are summarized in Section 6.

2. THE NAVIER–STOKES EQUATIONS WITH SLIP WITH FRICTION
BOUNDARY CONDITIONS

Let �⊂Rd, d=2; 3, be a bounded domain with boundary @�=�diri ∪�sf ∪�out such that all
three parts of the boundary are mutually disjoint. The outward pointing unit normal vector
on @� is denoted by n. It is assumed that n exists almost everywhere on @�. Throughout
this paper, matrix vector notations are used, i.e. a vector v is always a column vector and the
corresponding row vector is denoted by vT.
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716 V. JOHN AND A. LIAKOS

We consider the incompressible Navier–Stokes equations in dimensionless form

@u
@t

− 2Re−1∇ ·D(u) + (u · ∇)u+∇p= 0 in (0; T ]×�

∇ · u=0 in [0; T ]×�
u(0; ·) = u0 in �

u= g in [0; T ]×�diri
S(u; p)n= 0 in [0; T ]×�out

u · n=0 in [0; T ]×�sf
u · �k + �−1nTS(u; p)�k =0 in [0; T ]×�sf

(1)

where 16k6d − 1: The unknown quantities are the velocity u and the pressure p. The
Reynolds number Re, the initial velocity u0, the �nal time T and the Dirichlet boundary
conditions g on �diri are prescribed. On �out, an out�ow or do-nothing boundary condition is
given. Here, S(u; p) is the stress tensor

S(u; p)=2Re−1D(u)− pI
where I is the unit tensor and D(u) the velocity deformation tensor

D(u)= ∇u+∇uT
2

On �sf , slip with linear friction and no penetration boundary conditions are applied. The
friction is given by the non-negative function �. In our computations, � will be piecewise
constant. The tangential vectors �k , 16k6d−1, are chosen such that {n; �1} in two dimensions
and {n; �1; �2} in three dimensions build an orthonormal basis. The limit �→ 0 leads to free-
slip boundary conditions and in the limit �→ ∞, the no-slip boundary condition is recovered.
The value of the friction coe�cient � in model situations where wall laws for the velocity
have been applied is studied in Reference [21].
The Navier–Stokes equations (1) are discretized in the following way:

1. Discretization of (1) in time. In the 2-dimensional simulations, the fractional-step
�-scheme and in the 3-dimensional simulations, the Crank–Nicolson scheme are applied.
Both are second-order implicit time stepping schemes. The time discretization leads in
each discrete time step to a non-linear system of equations.

2. Variational formulation and linearization. The non-linear system of equations is refor-
mulated as a variational problem which is linearized by a �xed point iteration.

3. Discretization of the linear systems in space. The linear system of equations arising in
each step of the �xed point iteration is discretized by a �nite element discretization using
the Q2=Pdisc1 pair of �nite element spaces, i.e. the velocity is approximated by continuous
piecewise biquadratics in 2-D (triquadratics in 3-D) and the pressure by discontinuous
linears. This conforming pair of �nite element spaces ful�lls the inf–sup or Babu�ska–
Brezzi stability condition. It is currently considered among the most stable and best
performing elements for �nite element discretizations of Navier–Stokes equations, e.g.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:713–731
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see References [22, 23] or the studies in References [24, 25]. The implementation of the
slip with friction boundary condition into a �nite element code is described in detail in
Reference [19].

The computations were performed with the code MooNMD [26, 27].

3. THE TEST PROBLEMS

The forward–backward step is one of many test problems used in computational studies.
The most popular of these is the driven cavity problem. This problem is de�ned on a square.
On all walls except the top, the no-slip condition is imposed strongly, while for the top wall
the tangential component of the velocity is set to be a constant. One of the challenges posed
by the driven cavity problem is the presence of non-physical singularities at the corners of
the domain. However, the driven cavity problem has one major drawback in that it has no
physical realization. Another commonly used test problem is the backward-facing step. In
that regard, the work of Armaly et al. [28] stands out. The backward-facing step is a less
challenging test problem since certain characteristics, i.e. the reattachment length, scale with
the Reynolds number (see Reference [29]). As Gunzburger [2, p. 236] states, the forward-
facing step and the full step are better test problems for computational studies since they
are geometrically simple and do not scale with the Reynolds number. Concerning numerical
studies of 2-D �ows across a full step, stationary �ows are investigated, e.g. in References
[30–32]. In the 3-D regime, a closely related problem to the �ow across a full step is the
�ow past a wall-mounted cube. The �ow �elds in both examples possess common features.
Turbulent �ows past a wall-mounted cube have been simulated, e.g. in References [33–35].
The Reynolds number in the dimensionless Navier–Stokes equations for the full step is

de�ned by the free-stream velocity, the height of the step and the kinematic viscosity of the
�uid.

3.1. The two-dimensional �ow across a step

The domain of the 2-D �ow across a full step that was used in our computations is presented
in Figure 1. It is the same domain as in Reference [32]. On �diri, the in�ow boundary condition
u=(1; 0)T is prescribed. On the top wall, a free-slip boundary condition is given (�→ 0 in
(1)). Slip with friction and no penetration boundary conditions are prescribed on all lower

Γout

(friction)

 Γsf (free slip)

Γsf

Γdiri 10

1
1

5

40

(0,0)

Figure 1. Two-dimensional channel with a step.
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walls with the same friction parameter �. The �ow leaves the domain by an out�ow boundary
condition on the right side of the channel.
We are interested in studying the evolution of the reattachment points of the recirculating

vortices which develop behind the step. The end of the step is at the position x=6. Since
the tangential velocity on the bottom boundary does not vanish due to the slip with friction
boundary condition, the reattachment point is given by the change of the sign of the tangential
velocity. Left of the reattachment point, the tangential velocity is negative because of the
recirculation of the vortex and right of the reattachment point it is positive.
We consider the �ow across a full step for Re=500 in the time interval [0; 100]. This

interval was discretized with equidistant time steps of length 0:1. As initial condition, an
impulsive start was used, i.e. the initial discrete velocity was chosen to be zero on all degrees
of freedom (d.o.f.) which are not on the in�ow boundary. The d.o.f. on �diri were given by
the in�ow boundary condition. Thus, the �ow needs a while for developing its characteristics
and we will present results for times t¿10.
The initial grid (level 0) presented in Figure 2 was used to generate the computational grids

employed in the numerical studies. The horizontal grid lines are placed at y∈ {1; 2:5; 5} and the
vertical grid lines at x∈ {5=3; 10=3; 5; 6; 7:785; 10:25; 14:5; 18:75; 23; 27:25; 31:5; 35:75}. A grid
re�nement is achieved by dividing each rectangle into four equal sized smaller rectangles.
We will present computational results on levels 3, 4 and 5. The resulting d.o.f. are given in
Table I.

Remark 1
Numerical studies of the slip with friction boundary conditions for a stationary 2-D �ow
across a step and a constant in�ow pro�le were performed for Re=50 and 100, see Reference
[19]. In both cases, the position of the reattachment point of the recirculating vortex moved
farther downstream with decreasing friction. There was a wide range of the friction parameter
(�¿10) where the reattachment points di�ered very little from the reattachment point obtained
with the no-slip boundary condition. For this boundary condition, the positions were around

Figure 2. Two-dimensional channel with a step, coarsest grid (level 0).

Table I. Degrees of freedom for the two-dimensional
�ow across a step.

Velocity Pressure

Level 3 26 690 9 792
Level 4 105 602 39 168
Level 5 420 098 156 672
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x=14:25 for Re=50 and x=20 for Re=100. For small friction, �61, a rapid movement of
the position of the reattachment point towards the out�ow boundary was observed.

3.2. The three-dimensional �ow across a step

The numerical studies for the 3-D �ow across a full step were performed for Re=200 and
�nal time T =50. The time interval was divided in equidistant time steps of length 0:25. The
initial condition was the �ow �eld of the stationary Navier–Stokes equations with Re=10.
The domain as well as the boundary conditions in these tests are given in Figure 3.

We applied free-slip boundary conditions at the upper wall and no-slip boundary condi-
tions on the left and right wall. On the lower walls, slip with friction and no penetration
boundary conditions were prescribed. The constant in�ow pro�le u=(1; 0; 0)T was used in
the computations.
The initial grid is generated by the so-called sandwich grid technique. The grid presented

in Figure 2 can be seen on the left and the right wall of the domain; in between there are
�ve equal sized layers of mesh cells leading to an initial grid consisting of hexahedra. A grid
re�nement is performed by dividing each hexahedron into eight equal sized hexahedra. The
computational results presented in this paper have been computed on level 2 (419 307 velocity
d.o.f., 65 280 pressure d.o.f.) and on level 3 (3 765 075 velocity d.o.f., 522 240 pressure d.o.f.).

Remark 2
In Reference [19], numerical studies for a stationary 3-D �ow across a step with Re=20
and slip with friction boundary conditions can be found. The recirculating vortex de�nes a
reattachment line. The reattachment line moved closer to the step with increasing friction.
Almost the same results were obtained for applying no-slip boundary conditions and for
�¿0:5. For smaller friction (�60:1), the reattachment line moves considerably towards the
out�ow. The reattachment lines were found to be symmetric for z=5.

z

x

y

 
upper wall: Γsf (free slip)
lateral walls: no-slip
lower walls: Γsf (friction)

10

10
1 1

5

40

(0,0,0) 

Γdiri

Γout

Figure 3. Three-dimensional channel with a step.
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4. TWO-DIMENSIONAL FLOW ACROSS A STEP AT Re=500

The numerical studies were performed on the grid levels 3, 4 and 5. For the coarser grids,
only a few results are presented (Table II) whereas the results on the �ner grids are shown
in more detail (Table II, Figures 4–9). The friction parameter � is successively set to lower
values, thereby decreasing the friction on the lower part of the boundary. The values of �
that were tested where �∈ {10; 1; 0:5; 0:25; 0:1; 0:05; 0:01; 0:005; 0:001; 0:0001}. For brevity, the
results for �∈ {10; 0:5; 0:25; 0:0001} are not shown explicitly. The results for �=10 agree
quantitatively and qualitatively with the results for �=1, the results for �∈ {0:5; 0:25} look
similar to the results for �∈ {1; 0:1} and the results for �=0:0001 agree with the results for
�=0:001.
For �∈ {1; : : : ; 0:05}, we observe that the �ow is periodic: vortices are formed behind the

step and then shed during regular time intervals. The lengths of the periods on di�erent levels
of the grid re�nement, averaged in the time interval [10; 100], are given in Table II. The �ow
is reminiscent of the top half of the �ow of a viscous �uid past a cylinder. At �rst sight,
and for the aforementioned values of �, the �ow seems to exhibit the same quantitative and
qualitative behaviour. However, for all grids which were involved in our numerical studies,
as the friction parameter decreases, the length of the period shows a small increase, see
Table II.

Table II. Averaged length of the period of the vortex shedding.

� 10 1 0.5 0.25 0.1 0.05

Level 3 13.75 13.83 13.90 14.04 14.31 14.35
Level 4 13.81 13.86 13.90 13.98 14.24 14.47
Level 5 13.77 13.82 13.86 13.94 14.27 14.51
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Figure 4. Two-dimensional �ow across a step at Re=500, �=1, evolution of reattachment points and
streamlines at t=50 and 100 s, level 5.
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Figure 5. Two-dimensional �ow across a step at Re=500, �=0:1, evolution of reattachment points
and streamlines at t=50 and 100 s, level 5.
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Figure 6. Two-dimensional �ow across a step at Re=500, �=0:05, evolution of reattachment points
and streamlines at t=50 and 100 s, level 5.

For �=1, it can be observed that the vortex separates from the lower boundary at x
around 20 and starts to attach a little bit farther downstream again. This is the reason of the
discontinuity of the curves in Figure 4.
For �=0:01, vortex shedding can still be observed with two major changes occurring. First,

the reattachment point moves at a much slower rate; second, the vortices behind the step
are signi�cantly larger in size. For �60:005, the �ow abruptly ceases to be periodic (at least
for the given time interval). The reattachment point continues to move downstream, however,
there is no vortex shedding observed.
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Figure 7. Two-dimensional �ow across a step at Re=500, �=0:01, evolution of reattachment points
and streamlines at t=50 and 100 s, level 5.
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Figure 8. Two-dimensional �ow across a step at Re=500, �=0:005, evolution of reattachment points
and streamlines at t=50 and 100 s, level 5.

In order to explain the variations in the shedding of vortices, we must �rst concentrate on
the reasons of boundary layer separation. Since the boundary condition on the upper part of
the boundary is free slip, vorticity and viscous forces are con�ned to a thin boundary layer on
the lower part of the boundary. There, the second component of the velocity u=(u; v) is very
small such that its role in the momentum equation can be neglected and the �rst momentum
equation reduces to

Du
Dt
:= ut − 2Re−1

(
@2u
@x2

+
1
2
@2u
@y2

)
+ u

@u
@x
= − @p

@x
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Figure 9. Two-dimensional �ow across a step at Re=500, �=0:001, evolution of reattachment points
and streamlines at t=50 and 100 s, level 5.

where Du=Dt is the substantive derivative. Assuming for simplicity that at y=0 the �uid is
inviscid, which is justi�ed for large Re, the above equation reduces to

ut + u
@u
@x
= − @p

@x

The above equation could also be derived by Bernoulli’s streamline theorem. Clearly, any
increase in u results in a decrease in p and vice versa.
Getting back to our problem, we see that the �uid has to speed up to go past the step

thus the tangential component of the velocity on top of the step is large. Consequently, the
pressure must be small. In addition, the pressure is large at the stagnation points directly in
front and behind the step where the velocity is small. The increase in pressure in the direction
of the �ow (adverse pressure gradient) causes reversed �ow close to the boundary where the
�uid moves slower due to the boundary condition; in turn, this leads to the separation of the
boundary layer.
The reason why vortices are being shed up to a certain coe�cient of friction is due to

two critical factors; the vorticity (i.e. circulation) behind the step and the friction itself. The
primary cause of vorticity behind the step is friction. The kinetic energy loss due to friction
is recovered in the rotational kinetic energy of the eddy behind the step. Once the vorticity
achieves a critical value, the eddy ‘rolls’ downstream, much in the same fashion as a ball
being swept by the current. Friction here works as the force that helps the vortex move
downstream; the �uid in the vortex cannot slip past the wall thus the eddy ‘rolls’ downstream
on the bottom of the channel. When the friction coe�cient is lowered, the �uid can slip,
and thus the eddy can remain behind the step longer. This is clearly seen in our numerical
simulations since with lower friction coe�cients, the reattachment point moves slower. In
addition, as the eddy remains behind the step longer, more vorticity is fed into the eddy thus
the eddy becomes larger and ‘rolls’ downstream with lower speed. Naturally, the mechanism
of formation of vortices via the detachment of boundary layers continues so another vortex
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724 V. JOHN AND A. LIAKOS

will form and the cycle will continue. Finally, there is no eddy dissipation observed as the
kinematic viscosity is very low.

5. THREE-DIMENSIONAL FLOW ACROSS A STEP AT Re=200

Results of the numerical simulations are shown in Figures 10–14. For the friction parameter
�, we used the values �∈ {10; 1; 0:1; 0:01; 0:001}. The results for �=0:1 are not presented

Figure 10. Three-dimensional �ow across a step at Re=200, isolines on the bottom of the channel
y=0; x¿6 (left) and on the centre plane z=5 of the �rst velocity component (right) for the times

t=10; 20; 30; 40 and 50 s (top to bottom) and the friction parameter �=10, level 3.
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Figure 11. Three-dimensional �ow across a step at Re=200, isolines on the bottom of the channel
y=0; x¿6 (left) and on the centre plane z=5 of the �rst velocity component (right) for the times

t=10; 20; 30; 40 and 50 s (top to bottom) and the friction parameter �=1, level 3.

since they agree quantitatively and qualitatively with the results for �=1. We will see that
the results of the 3-D �ow across a full step di�er in many respects from the results of the
2-D �ow across a full step, Section 4, since the physics of the �ow is di�erent.
In Figures 10–14, we present isolines of the �rst velocity component on the bottom of the

channel immediately after the step, without including the step. The isolines range from −1
(backward �ow, dark regions) to 2 (forward �ow, light regions) and their distance is 0:2. The
colour for the value 0 can be observed best in Figure 10 since, for this friction parameter,
the �uid almost sticks to the bottom of the channel. Beside the bottom of the channel, we

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:713–731
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Figure 12. Three-dimensional �ow across a step at Re=200, isolines on the bottom of the channel
y=0; x¿6 (left) and on the centre plane z=5 of the �rst velocity component (right) for the times

t=10; 20; 30; 40 and 50 s (top to bottom) and the friction parameter �=0:01, level 3.

present also the isolines of the �rst velocity component in the central cut plane z=5. In the
evaluation of the results in this plane, we are interested in the vortices which are near the
bottom behind the step.
Again, we will study the results on the �nest computational grid in detail, Figures 10–13,

and present only a few results on the coarser grid, Figure 14. Figure 14 shows that at the
�nal time t=50 s we get qualitative agreement between the results obtained on the coarse
and �ne grids.
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Figure 13. Three-dimensional �ow across a step at Re=200, isolines on the bottom of the channel
y=0; x¿6 (left) and on the centre plane z=5 of the �rst velocity component (right) for the times

t=10; 20; 30; 40 and 50 s (top to bottom) and the friction parameter �=0:001, level 3.

There are major di�erences between the �ow for �=10 and the �ows for the remaining
choices for �. Let us �rst concentrate on the bottom of the channel. Note that for �=10 the
isolines correspond to u=0 so we can refer to them as reattachment curves. The reattach-
ment curves remain for the most part stationary with only the parts near the left and right
walls stretching and detaching. For lower values of �, the morphology of the �ow changes
dramatically. While for �=10, the reattachment curves are isolated along the lateral walls,
for �¡10, the isolines on the bottom of the channel spread all across the bottom boundary.
Looking at averages of the isolines corresponding to u=0, we note that the period of vortex
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Figure 14. Three-dimensional �ow across a step at Re=200, isolines on the bottom of the channel
y=0; x¿6 (left) and on the centre plane z=5 of the �rst velocity component (right) for the time

t=50 s, friction parameter �=10; �=1; �=0:01; �=0:001 (top to bottom), level 2.

shedding is increasing slightly. In addition, for �¡1, we observe, as expected, a range of
boundary velocities. Speci�cally, for �=0:001, the eddy behind the step seems to be get-
ting stronger, based on the dark colouring of the regions inside the isolines. Finally, we see
a resemblance to 2-D �ow in the sense that the eddy behind the step persists for longer
times and is larger in size since the dark regions become larger. We note that for �=10 a
slight di�erence can be observed between the results on the coarse and the �ne grid. On the
coarse grid, there are additional reattachment lines in the centre of the channel besides the
characteristic reattachment lines at the lateral walls.
Turning our attention to the centre plane view of the channel, we note that for all � there

is a large eddy which forms behind the step, which contains smaller eddies that seem to move
within it and ‘coalesce’ into larger eddies, see time 30, 40 and 50s. The �ows for �=10 and
1 seem similar. Comparing the centre plane view with the bottom wall view, we observe that
the recirculating eddies seem to glide along the bottom boundary since there is no trace of
these eddies along the bottom wall, i.e. there is no isoline where the �rst velocity component
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is zero (reattachment line). In all cases, the �ow looks quite di�erent from the 2-D �ows
presented in Section 4.
The explanation of the results is based upon the vorticity transport equation for incom-

pressible �ow (obtained by taking the curl of the Navier–Stokes equations):

@�
@t
+ (u · ∇)�=(� · ∇)u+ Re−1	� (2)

where �=∇ × u is the vorticity, and u=(u; v; w) is the �uid velocity. Equation (2) tells us
that the rate of change of the vorticity as it moves along with the �uid is dependent on two
factors: the stretching and tilting of vortex �laments due to velocity gradients, (� · ∇)u, and
the di�usion of vorticity due to the viscosity of the �uid, Re−1	�. Di�usion of vorticity
a�ects primarily the small eddies (see Reference [36, Section 34]). This is readily observed
in the �gures for �¡10, where small eddies are di�used into the �ow. In comparison to
the smooth �ow �elds in the 2-D simulations, all 3-D �ow �elds contain signi�cantly more
eddies. The �ow �elds in 3-D are much more complex despite the low Reynolds number.
For �=10, vorticity is produced at the left=right corners right after the step as the �ow

proceeds. There, and in contrast with the rest of the �ow, the �uid is in contact with 3
surfaces (lateral wall, step wall and bottom wall) where the friction coe�cient is high. As
the production of vorticity at the corners (6; 0; 0) and (6; 0; 10) is higher than at any other
point behind the step, the vortex �lament stretches there more than in any other location. In
addition, the velocity gradients, speci�cally @u=@z at or near the bottom, are not su�cient to
force the vortex to tilt and stretch along the z-direction. Once the vortex reaches a certain size
or when a critical value of the circulation is achieved, the vortex, with the aid of friction rolls
along the lateral and lower walls. For all friction parameters, the leading edge of the vortex
behind the step, other than at the left=right corners, is observed in general at z=5 since the
velocity obtains a maximum there. Decreasing the friction coe�cient allows the velocity at
the bottom wall to increase. Production of vorticity still occurs at the lateral walls, with the
di�erence that now the component @u=@z of the velocity gradient dominates which stretches
and tilts the vortex. This is exactly what is observed in our results.
Turning our attention once more to the central plane view of the channel, we note that the

cease of ‘gliding’ of the eddies behind the step is caused by the thinning of the boundary
layer due to the decrease of friction. This has a dual e�ect: not only that for large values of �
all eddies must glide along the boundary but also that the period of eddy shedding is smaller.
For lower values of � we observe the same phenomenon as in the 2-D case: because of lack
of friction, all the vorticity generated moves toward the out�ow with a slower pace. As a
result, the eddy behind the step becomes stronger, however, without signi�cant changes in
size on the plane of view. However, if we combine the perspective of the bottom wall view,
we see that the recirculating eddy tilts and stretches as predicted by the vorticity transport
equation.

6. SUMMARY

Numerical results for the time-dependent 2-D and 3-D �ow of a Newtonian �uid over a
full step with slip with friction boundary conditions and Reynolds numbers 500 and 200,
respectively, were presented. In both cases, recirculating eddies formed behind the step which
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were periodically shed with decreasing period as the coe�cient of friction �→ 0. In the 2-D
case and as the friction coe�cient was decreased, the size of the recirculating eddy increased
and the periodic shedding ceased as � reached a critical value. While the �ow in the 3-D
case had common characteristics with the 2-D �ow (periodic vortex shedding), it was more
complicated and o�ered more insight into the motion of vortices.
As exhibited by the vorticity transport equation, (2), vortices are not only subject to trans-

lations (as in the 2-D case). They di�use into the �ow and stretch and tilt according to
velocity gradients which change on the boundary when the coe�cient of friction is altered.
Centre plane views in combination with bottom wall views of all �ows exhibit this motion.
All numerical simulations are in agreement with the physics of the �ow.
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