Computing 66, 269-287 (2001) .
Computing

(© Springer-Verlag 2001

Printed in Austria

Approximating Local Averages of Fluid Velocities:
The Stokes Problem

V. John', Magdeburg, and W. J. Layton?, Pittsburgh

Received December 3, 1999; revised October 16, 2000
Abstract

As a first step to developing mathematical support for finite element approximation to the large eddies
in fluid motion we consider herein the Stokes problem. We show that the local average of the usual
approximate flow field u” over radius & provides a very accurate approximation to the flow structures
of O(9) or greater. The extra accuracy appears for quadratic or higher velocity elements and degrades
to the usual finite element accuracy as the averaging radius 6 — /4 (the local meshwidth). We give both
a priori and a posteriori error estimates incorporating this effect.
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1. Introduction

The fundamental question in large eddy simulation (LES) is to approximate local
averages of a fluids velocity at much less cost and at much greater accuracy than
the velocity itself can be approximated. The usual approach is to average the
equations of motion, address closure, find approximate boundary conditions and
then solve numerically the resulting continuum approximation, e.g. see [2, 8, 10].
This approach is highly developed in engineering practice; it leads to nontrivial
problems of understanding the modelling error and the model’s consistency near
boundaries.

We consider the question of approximating local, spacial averages of fluid’s
velocity. This question is already interesting for the Stokes problem. The
approach we consider is that of direct approximation followed by postprocessing.
This approach exploits the often oscillatory nature of finite element errors. The
idea is that local averaging can possibly eliminate leading order errors.

Consider the solution of the Stokes problem, given by: finding
u:QC R = RYd=2,3) and p : Q — R satisfying
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—Au+Vp=f in Q
V.-u=0 in Q
u=0 on 0Q (1)

/pdx:O.
Q

The wusual finite element approximation to the Stokes problem is a pair
(", p") € (X", M"), where (X" M") are velocity-pressure finite element spaces,
X" C X = H}(Q), M" € M := L(Q), satisfying:
(V" W) — (", V v = (£,v") Vv e x, )
(¢"V-u")=0, Vq'eM,

where (-,-) denotes the L*(Q) inner product. The question we consider is the
extent to which the “large eddies™ or large structures of u" approximate those of u.
To formulate this mathematically, let g(-) be a mollifer or approximate identity.
Specifically, g : R? — R is a non-negative, Cg° function, with

0<g<1g0) =1, g6 =g(-x). and [ gde=1.

Define gs(x) = 6 ?g(x/d) and let gs * / denote the usual convolution of gs with f,

(05 21)0) = [ gt =0)f )iy

Since (g5 +*u)(x) represents an average of u about the point x of radius O(9),
u; := g5+ u can be thought of as a representation of the solution scales or eddies
of size O(d) or larger. One plausible procedure (we do not examine) to approxi-
mate these larger eddies is to calculate the approximate solution uw” in, e.g., a
hierarchical or wavelet basis and then project it into the appropriate subspace
representing scales of size O(J) or larger. We consider herein the other plausible
alternative procedure of calculating u" and then postprocessing by local averaging
with gs: approximate the “larger eddies” by gs*u”. This is precisely the moti-
vation behind the field of LES for high Reynolds number flow. One distinction is
that in LES phenomenological models are constructed for gs*u which are then
approximated exactly by a numerical method. Herein, we approximate the exact

flow equations and then approximate gs * u by simply calculating gs * u”.

Our ultimate goal is to provide mathematical support for this method for the time
dependent (nonlinear) Navier—Stokes equations. This report is a small first step in
this direction. We consider only the linear Stokes problem in a region with smooth
boundary, and assume the finite element space to be conforming. A complete
analysis, even for the Stokes problem, would thus require further incorporation of
the effects of using isoparametric elements into the analysis.
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2. Convergence of Large Eddies

In large eddy simulation, ¢ is interpreted as a local length scale and u = gs *u as
the eddies in the flow of size greater or equal ((d). The fluctuations, or small
eddies, are defined in the usual way as ' = u — u. The main result of this section is
that the large eddies in the approximate solution converge to those of the true
solution at a much higher rate than the small eddies. The proof is by duality,
exploiting (1) the fact the that convolution is a bounded linear operator, (2) the
smoothing properties of gs; and (3) the shift theorem for the Stokes problem in a
smooth region. The approach of using duality has earlier been used in a posteriori
error estimation of solution functionals, e.g. see Johnson and his co-workers [9],
and Becker and Rannacher [5, 6].

First, we summarize standard properties of convolution operators, e.g. see [13].
Throughout this paper it is assumed that functions from Lz(Q)d are extended by
zero outside Q if they are convolved. As 6 — 0, gsxf—f for fe L2(Q)d,
gs*f € Cgo([REd)d and there holds (Young’s inequality)

llga * £l < Cllgsl: [Ifl], 3)

where || -|| is the L?>-norm and | - ||, the Sobolev W*?(R?) norm. The norm
lgs]l 1 of gs is easily calculated by a scaling argument to be bounded by:

gsllyes < 6 llglhyes < CO7. (4)
Since g(x) = g(—x), we have
(g($*f7v):(f7gé*v) vaveLz(Q)' (5)

Let f € H}(R?) and denote an arbitrary first order weak derivative by 9,f, |«| = 1.
Then (g5 * O,f,v) = —(gs * f, Oyv) Vv € H} (R?), from which follows

0u(gs* f) = gs* Ouf . (6)

The velocity pressure finite element spaces (X", M") C (X, M) are assumed to
satisfy the usual inf-sup condition for the stability of the discrete pressure:

h V- Vh
inf sup%2ﬂ’>07
grem yicxn [l ||| VVE]

as well as an approximation assumption, typical of piecewise polynomial finite
element spaces of degree (k,k—1): for any ueXn(H'(Q)? and
p €MnNHNQ):

IN

inf {[lu—v"| +2]V(u—v")[} < CH ullyy,,
viexh

A

: h k
Aot lp—q"ll < Ch||pl-
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See for example, Gunzburger [12] for examples of such finite element spaces
(Xt M.

Propeosition 1. Suppose 0Q is smooth enough and let 0 < h < 0 be given. Then, there
is a constant C, independent of (u,p), h and 6 such that

h k—1
losu=goswl <C(5) AT =)+ lp =)

h k—1
<c(3) e lulkes + ol

Proof: Let w(x)ELZ(Q)d be given and consider the problem of finding
(¢, (=) € (X, M) satisfying the following Stokes problem:

—Ap+V(=4) = gsxy inQ
Vg =0 in Q (7)
¢ =0 on 0Q.

It is known that (¢, /) exists uniquely in (X, M) and satisfies (since 9Q is smooth)

||¢||k+1 + ||AH1¢ < Cllgs * lﬁ”kﬂ < by (3)
< CE)|gsllye il < C57 . (8)

The variational representation of (7) is to find (¢, 1) € (X, M) satisfying:

Vo, VV) + (4, V-v) = (q,V - ¢) = (95 % ¥,V),¥(v,q) € (X, M). )
Settingv=e=u—u" and g = p — p" gives:

(95 €)= (g5 % ) = (Ve, V) — (p— ',V - ) + (4, V -e).

The error e = u — u” satisfies the usual Galerkin orthogonality condition: for all
(v".q") € (X", M")

(Vevvvh)_(p_phav'vh)+(qhav'e):0' (10)
Thus, for all (v!,¢") € (X", M"):

(95 % e, 9) = (Ve,V(p —v")) = (p =P\ V- (¢ =V')) + (2~ 4",V -¢)
< (IVell + llp = 2" DIV =¥ + 1|4 = " Vell.

Picking (v",¢") to be the best approximation of (¢, 1) in (X", M") gives:

(95 * &, 9) < CR (1 pllypr + 121D NVell + CRMlpllyp llp = P"]-
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Using the regularity estimate (8) gives

(gs * e, )
[l

and the result follows by taking the supremum over € LZ(Q)d. O

h k—1
SCh(5> (IVell + lIp — 1),

Remark 1. The smoothness of the boundary needed is that 9Q is C** for some
o,0 < a < 1. If the boundary is less smooth then the global convergence rate is
correspondingly diminished.

3. An A Posteriori Error Estimator for Larger Eddies
Using the Discrete Solution

A posteriori error estimators are a standard tool in modern codes for the solution
of partial differential equations. They have the tasks of estimating the global error
in a given norm to serve as a stopping criterion for the iterative solution of the
equation and to estimate local errors to provide information for the adaptive mesh
refinement. With the pioneering work of Babuska and Rheinboldt [3], rigorous
analysis of a posteriori error estimators started. During the last decades, funda-
mental approaches for analyzing a posteriori error estimators were developed. e.g.
for residual based error estimators by Verfiirth [17] and Johnson et al. [9] or for
error estimates which are based on the solution of local problems by Bank and
Weiser [4] and Ainsworth and Oden [1]. These techniques can be applied to derive a
posteriori error estimators in different norms for the Stokes equations.

In this section we show that it is possible to develop a residual based a posteriori
error estimator for ||gs * u — g5 * u||. Because the estimator in Proposition 2 reflects
the increased accuracy in the larger scales exhibited in the a priori estimate in
Proposition 1, it shows that it is possible and advantageous to seek the larger eddies
adaptively. Indeed, the estimate (12) suggests (due to the weighting of the individual
terms in (12) that the larger the solution scale one seeks (the larger ¢ is taken), the
sooner a prearranged error tolerance is achieved. Naturally, a different mesh
distribution would also result from using (12) instead of a typical energy norm or
L?-norm estimator since the individual terms in the local error estimator are scaled
differently. A numerical study of some a posteriori error estimators for convection—
diffusion equations, [15], showed that a L?>-norm estimator produced often the most
appropriate refined meshes. In contrast to estimators for stronger norms, it did not
stick only to the strongest singularity of the solution (e.g. exponential layers) and
thus did not fail to refine at other singularities (e.g. parabolic layers).

To develop the error estimator, we must introduce a bit more notation. Let TT"(Q)
denote a division of Q into mesh cells {7: T € TT"(Q)}. If T € T*(Q), Ay will
denote the diameter of 7, (-, ), the L?(T) inner product with norm || - || and [],;
the jump of the indicated quantity across 07 (being the difference of the inner and
outer traces.) To be precise, the jump [v;]; of a function v, across a face E is
defined by
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limo{vh(x + tflE) — vh(x — tﬁE)} E ¢ o0Q

L t—+

[on)p = { tim {~on(x — the)) EcC o0
t—+

where ng is a normal unit vector on E and x € E. If E C 9Q, we choose the outer
normal, otherwise ng has an arbitrary but fixed orientation. With that, every face
E which separates two neighbouring cells 77 and 75 is associated with a uniquely
oriented normal fig (for definiteness from 7; to 7). Further, @(7) will denote the
union of the elements whose boundary touches 07. A type of angle condition is
implicitly assumed in the condition that for all w € H*(Q)

Z HWHS,(I)(T) < C”WHS,Q’
Tell"(Q)

where || - [|, 57 is the H*(®(T)) norm. Finally, it is assumed that (X", M") pos-
sesses an interpolation operator R of Clément type, [7], such that interpolation
error estimates of the type

IV=Ry,(Mllor < CHF Wi o) YVEX,
V—Ry,(V|;r < CihT|V|2,Eu(T) VveX, (11)
V=R lloe < Gl Wl YV ELX,
lg = R, (@)llo.r < Cirlal, oy VaeM,

with m € {0, 1} are valid. Here, @(E) denotes the union of all mesh cells whose
boundary has a common point with E. See Verfiirth [17] for more details con-
cerning the mathematical framework of residual based a posteriori error esti-
mation.

Proposition 2. Let (", p") be the usual Galerkin approximation to the solution (u, p)
of the Stokes problem in Q C RY(d = 2,3). Suppose 0Q is smooth enough and
0 > 0. Then, there is a constant C such that

12
losu-gswi<cf S a2

Tel’(Q)
B\ %2 )
—of > (&) e
Teln(Q)
By \ %2 ,
H(%) B
By \ %2 , V2
+<5> h3T||[Vuh'ﬁ—Phﬁ]aT||aT} ; (12)

where, for each mesh cell T in TI"(Q),
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rh|T =f— (—Auh + Vph)|T

is the strong local residual on T.

Proof: The proof is by a duality argument similar in spirit to the proof of
Proposition 1. Let ¢ € (L*(Q))” be given. Noting that

llgs * e|| = sup (95 xe.V) = sup (.95 < §)
yer2(Q) |W|| yer2(Q) ||lﬁ|| ’

consider the dual problem (7). Setting v=e=u—u" and ¢=p—p" in the
variational formulation (9) of (7) gives:

(915 * l//7e) = (vevvd)) - (piphav ' d)) + (/“ﬂv ' e)'
Using Galerkin orthogonality (10) in this last equation gives:
(g5 x¥,e) = (Ve,V(p—V)) = (p=p"\ V- (¢ =V)) + (2 —¢",V -e),

for any v' € X" and ¢" € M". Consider the right hand side of the above. Inte-
gration by parts, mesh cell by mesh cell, and collecting the boundary integral
terms into jump integrals, gives:

@epe)= 3 [(—Aw VYt (V-2 d— V),

Tell"(Q)

=)y =5 [ (o)
1 .
—I—E/aT[Vuh iy (¢ — vh)ds} :

where, on 0T, n denotes the outward unit normal to 7. This can be rewritten more
compactly using the local residual r* as

(Grt o= 3 [(qus )y — (V2 g,

Tell"(Q)
1 1
- —/ "or (¢ — V") - fids +—/ (Vu" - f],, - (¢ — vP)ds|.
2 Jor 2 Jor
Thus, picking (v, ¢") to be Clément interpolants of (¢, 1), gives:

A

(95 x,e) < C Z [hl}H||fh||T||¢||k+1,au(T) + IS IV -1 o)

el (Q)

k+1/2 ~ N
it Vu.n1ar||m||¢||k+1,@m] (13)
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Motivated by the regularity result (8), apply a weighted Cauchy inequality to (13)
gives:

(g5 ¥ he) < c{ SN R g ks 2D |7
Tell"(Q)

1/2
PG00 [T A phﬁ]3T|?)T} [vl]-

Dividing by ||y/|| and taking the supremum over y € L2(Q)? yields the claimed
result. [

In general, f is not a polynomial and accordingly r” likewise. Replacing f by a
polynomial, e.g. which represents an appropriate quadrature rule, causes an
additional higher order term in the a posteriori error estimate (12), cf.
Proposition 4.

Numerical Illustration. We consider the driven cavity problem for d =2, i.e.
Q=1(0,1)% f=0, u=(1.0)" for y =1 and no slip boundary conditions on the
other parts of the boundary. Since the boundary values for the driven cavity are
not an H'/2(9Q)-function, the solution is not an H'(Q)-function. Although the
solution of the driven cavity problem is not smooth, the behavior of the above
estimator can be illustrated well with this example. The choice of different values
of ¢ will result in different final adaptive meshes for a preset error tolerance. This
tolerance is achieved the sooner the larger 0 is. In addition, the application of the
a posteriori error estimator (12) yields a different sequence of adaptively refined
meshes than the use of the standard L%-error estimator, which has the same form
like n; with £ = 1. This is because the local estimates in 7, are weighted by an
additional factor of %7 in comparison to the L>-error estimator. Thus, it can be
expected that large mesh cells are refined earlier using 7, since their local error
estimates are weighted by a large factor. Also note that because this estimator has
the same form as other residual based estimators, it is easy to implement in an
existing code.

In the numerical test, we have used the Taylor-Hood finite element, i.e. k = 2, an
initial grid consisting of eight triangles, and the stopping criterion

1/2
{ > nzr} < 0.01.

Tell"(Q)

The results of the numerical tests correspond to the expectations, see Fig. 1. The
final mesh for ¢ = 0.60(0.45,0.30,0.15) possesses 7443(10450,14263,20373) de-
grees of freedom whereas the mesh obtained with the standard L?-error estimator
has 86752 degrees of freedom. Note that, away from the singularities at the upper
corners, the mesh for the large eddies is coarser than that for the standard L?-error
estimator with the same tolerance, compare Figs. 1 and 2.
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Figure 1. Final adaptive meshes for ¢ = 0.60,0.45,0.30,0.15

2V Vi

Y, Va

Figure 2. Final adaptive mesh for standard L?-error estimator

We have simply picked the above termination condition to test the concept of the
estimator. However, in practical applications, an order of magnitude estimate for
the constant C in (12) must be also calculated to give meaning to this condition.
This is typically done with the help of approximate solutions of the dual problem,
[5, 6]. This difficulty is common to the type of estimators we are studying.
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4. An A Posteriori Error Estimator for Larger Eddies Using Averages
of the Discrete Solution

This section considers an a posteriori error estimator for ||gs * u — g5 * u”|| which
uses averages of the discrete solution. This estimator requires the use of inter-
polation operators 1;/(-),)(-), If(-) which map a continuous function to some
piecewise polynomial approximation (on the given mesh I1"(Q)) of fixed degree,
e.g. representing a quadrature rule. We assume in addition that the image of 7/(-),
is a continuous function and the image of I;’(') is in L3(Q). These operators are
somewhat arbitrary although a term in the estimates appears which represents the
accuracy of their operations. Naturally, we would wish such terms to be of higher
order and choose them accordingly.

Given a d-simplex T € IT"(Q) and (u”,p") € (X", M"). We define the local esti-
mator

M7 = hEllIf (g5 + ") + AL (g5 * w") = VI (g5 + 1)o7

2
+h2T||v']£(g5 *“h)Ho,T (14)
+ ) mllIVIgs <) - B — I (gs PR IG
ECOTEA£0Q

where f” is a fixed degree piecewise polynomial approximation to f. We shall show
in Proposition 3 that 7, provides a local lower bound to the local error in the
larger eddies, modulo a consistency error term which depends on the order of
approximation of /{!(-). This lower bound is proved using a scaling argument and
depends on choosing the approximation to gs*u to be piecewise polynomial
(hence I/'(gs x u")) but not on Galerkin orthogonality. Proposition 4 proves, using
duality, that (3, ﬁzT)l/ 2 provides an upper bound to the global error
lgs * u — I"(gs * u")|| modulo an extra term arising at the boundary Q.

4.1. The Local Lower Bound

In addition to the assumptions of the previous section, we suppose inverse esti-
mates hold of the form

0,7 < Chp' V"], 7o VT ell"(Q),V |, € P(T), |
S Ny < Chg' S gy VT CoE)Y | eP(T). (1)
Tew(E) TCw(E)

Here, P(T) is the space of polynomials on mesh cell 7 with degree not greater
than &k and w(E) is the union of the two mesh cells sharing the common face £. In
addition, let o(7T) be the union of all mesh cells having a common face with 7.

Proposition 3. Let (u,p) be the solution of the Stokes problem (1). Given a shape
regular family of triangulations Hh(Q) and fixed polynomial degrees for t" and the
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interpolation operators I}(-), If(-) and I!(-). Then for all pairs of functions
(v, q") € (X", M"), the local a posteriori error bound

i < Clllgs *w = 1395 * V")l or) + hrllgs * p = 1) (g5 * ") lg.or)
+ 1715 £ = 17 (g5 % £)lo ()] (16)

holds.

Proof: Each term of 7, will be estimated separately from above by the local error
with the use of suitable cut-off functions.

Cut-off functions are a standard tool for proving local a posteriori error estimates,
see e.g. [17, 18, 14]. Let T € I1"(Q) be an arbitrary cell and E C 9T a (d — 1)-
dimensional face. We denote by Az the linear function which is zero on E and 1 in
the corner of T opposite to E. We define a cell bubble function for T by

gar 4t 2
By = [(d +1) )vEI} , inT,
1

=

0, otherwise,

where E;, i =1,...,d + 1 are the faces of T.

The edge/face bubble function of an edge (in R?) or a face (in R?) is constructed as
follows. Let E be the common face of the cells 7} and 75>. The other faces of 77 and
T, are Ey,...,E; and E .y 1,. .., Ey, respectively. The simplex 7 is reflected on E
with the images E7,...,Ej of Ey, ..., E;. In the same way, we obtain £}, ..., E3,
by reflecting 7> on E, see Fig. 3 for a 2d sketch. We define

[T
Jin
it

O
QO
/ S
I
%"Z‘lﬁ'o:'0:"‘:'0,

Figure 3. Cut-off function Bg



280 V. John and W. J. Layton

d
(dZdH/LE)E) on T,
1
ld 2
<d2d [1 /5., 2, ) on T,
—1
0 otherwise.

The cut-off functions By and Bg have the following properties, see [17, 18, 14]:

Br € C](Q>,BE S CI(Q),O <Br<1,0<Bg<C

Br =0o0n 0T,VBr =0 on IT, (17)
Br =0 on dw(E),VBg =0 on dw(E),

Br, B are polynomials in each mesh cell 7 € T1"(Q).

The upper bound of Br depends on the smallest aspect ratio of the mesh cells of
o(E). Thus, it is bounded independently of w(E) for a shape regular family of
triangulations.

In the following, we will need uniform norm equivalences of weighted L>-norms in
finite dimensional spaces. The proofs of the following estimates use the equiva-
lence of norms in finite dimensional spaces, the boundedness of the cut-off
functions and scaling arguments

lello.r < C(v,0Br)y, v € PUT), (18)
1015, < C(v,0BE)g, Vv € P(E), (19)
[oBrllor < lollor, Vv e P(T), (20)
[0BEll.e) < Cllvllowe), Vv with vl € P(T:), T; C w(E), (21)

see Lemma 3.3 in[17]. The constantsin (18) and (19) depend on & but not on A7 or k.

i) estimate of the first term in (14): Denote by rr := I}'(gs * ") + AL (gs * VM) —
V1) (g5 * ¢"). Using (18), we obtain

lerll3 7 < Cllgs * £ + ALl (g5 +¥") = VI!(g5 % ¢"),rrBr);
+ (I (g5 * ") — g5 * £,1B1) ).

Substituting f = —Au + Vp, using (6), integrating two times by parts, using (17),
the Cauchy—Schwarz inequality, the inverse inequality (15), and (20) give

Irzllo.r < Clhz*llgs * w = 1i(g5 * V") lo.r + h7'llgs  p — 1, (g5 * 4" lo.r
+llgs * £ = 1 (g5 * ) llo 7]
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ii) estimate of the second term in (14): Using (18), V -u = 0, (6), integration by
parts, and (17), we obtain

IV - 1295 V') 15,7 < C(V - (i(gs + V") — g5+ ), V - (g5 % v")Br) ]
= Cl(gs *u —1y(gs * V"), V(V - Ii(g5 * V")Br))].
The Cauchy—Schwarz inequality, the inverse estimate (15) and (20) give

IV - 13 (gs V") lo.7 < Chz'llgs +w = 1i(g5 +¥") o r-

iii) estimate of the third term in (14): Define rg:= [VI'(gs+ V") fig—
I;’(g(; *q")ig]; and let r$Br be a polynomial continuation of rzBz to w(E) with

c 1/2
7Bl wie) < Chy*lIeBello 5. (22)

For details of constructing such a continuation see [18]. Since rBg is defined to be
a polynomial, it is continuously differentiable. Using the face bubble function Bg,
(19), the continuity of V(gs=*u), gs * p,14:Bg, (17), and integration by parts give

Irello e < € > [(Vigsxu—1i(gs "), V§BE)) 7 — (9o +p — 195 * 4"),
TCw(E)

V- (6:Be)) 7 + (Algs u—1(g5 V")) = V(g5 * p) + 1}(95 * ¢")),16Be) ).

Each term will be estimated separately. The first term is integrated by parts once
more. The boundary integral on the inner face £ vanishes since all terms are
continuous functions. We obtain

> (V(gs * u=1(gs * V")), V(¥;BE));

TCw(E)

= > (g5 x u—1IM(gs * V"), A(¥;B)) ;.
TCw(E)

The Cauchy-Schwarz inequality, the inverse inequality (15), shape regularity of
the triangulation, (21), and (22) yield

D (Vigs * u—1Ii(gs * v"), V(¥Be))ll
TCw(E)
3/2

< Chy " llgs * w—1y(g5 * V')llo e Ivello -
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Similarly, we obtain for the second term

Z —(gs * P_Ij;(gé +q"),V - (tzBE));

TCw(E)

—1/2
< Chy'Pllgs * p—1"(g5 * 4")lo.wip el -

We can write the third term, using (6) and f = —Au + Vp, in the form

7 (I (gs * £") = ALl (gs * V') + VINgs * ¢"),¥Br);

TCw(E)
+ (If (g5 * 1) — g5 * £,05BE);.

This can be estimated using the Cauchy—Schwarz inequality, (22), (21), estimate
i) for [[[f(gs * ') + ALl (gs * ¥") — VI4(gs * ¢")lo- and the shape regularity of
the triangulation. Combining all estimates proves the proposition. []

Remark 2. (1) Since (v",¢") may be any element of (X", M"), the given error
estimate is also true for approximate solutions of the discrete system.

(2) The extra term may be estimated

llgs * f_lfh(ga‘ * fh)”o,w(r) < llgs = (f— fh)”o,w(r) + llgs * f _[fh(gé * fh)HO,w(T)'

Thus, if the approximation f” to f and the polynomial approximation It (gs + £ my
to gs * f are accurate enough, this extra term is of higher order. The second goal
can be achieved by using an appropriate interpolation formula. A careful in-
spection of the proof shows that f needs to be only a polynomial of fixed degree.
For this reason the first goal can be achieved by choosing a sufficiently high
polynomial degree for f" in computing the local estimator (14).

(3) Estimates for ||gs * u—gs * vh||07w<T) and ||gs * p—gs * qh||0,w(r) can be
obtained by using the triangle inequality in (16). Then, we obtain the extra terms

”g() * Vh 711}11(g¢) * Vh)”O,(u(T) and hTHg(> * qh 711}9'(95 * qh)HO,w(T)

which are of higher order if 7(-) and If,’(~) are accurate enough.

4.2. The Global Upper Error Bound

The global upper error bound will be proved via duality, first used in a posteriori
error estimation by Johnson and his co-workers, see e.g. [9].

To construct an appropriate dual problem, we define a second piecewise poly-
nomial interpolation of g5 * u”. Let x;,i = 1,...,N be the nodal points of the
finite element space X”, then
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IMgs » u")(x;) x€Q
Ih h = ul\Yo i i
!}o‘*u(gé *u )(X,) {gé " u(x,-) x; € 0Q.

That means, I}!(gs * u") and I , (g5 * u") are different only in nodal points on
the boundary, where I/ (g5 * u") takes the (unknown) values g, * u(x;) which

are in general different from I#(g  u*)(x;).

Consider the continuous dual problem of (1) with the error
gs * u—1I' (g5 * u") as right hand side

—Ap —Vi=g; * u—lg’ﬁ*u(g(; xu') in Q

V-p=0 1inQ, (23)
=0 on 0Q.

We assume the solution (¢, 4) of (23) to be H>-regular

(p,2) € (H*(Q) N Hy(Q)! x (H'(Q) NL5(Q)) (24)
and stable
ol + 141, < Cligs * w=1' (95 * u")]]. (25)

Define a function fg’ via the Riesz representation theorem by

(VL (g5 * u"), YV = (I0(gs + P"),V V) + (¢", V- I0 (g5 * u"))

= (tgvvh)v v (Vhaqh) € (thMh)' (26)

Note, in general, that (I .u(gs * u"), Ii(gs + p) & (X", M) s.incellgb_*u(g(; * ul')
might not vanish on 9Q. However, we assume that the approximation of gs * u”
is continuous and consists of piecewise polynomials of some fixed degree &, and
the approximation of gs * p" consists of piecewise polynomials of degree k — 1

and is normalized such that I}(g; * p") € L5(Q).

The following propositions gives an estimate of the global L?-error of the averages
of u and u’.

Proposition 4. Let Q a bounded domain with Lipschitz boundary, (u,p) be the
solution of the Stokes problem (1) with

ue H(Q) nHN Q)Y pe H(Q)NL(Q)

and (u", p") be the finite element solution of (2). Assume the solution (¢, ) of the
dual problem (23) is H?-regular and depends stable on the right hand side, i.e., (24)
and (25) hold. Then, for a shape regular family of triangulations, the following
global error estimate is valid
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lgs * u—1Il(gs = u")|| < C

12
( > ﬁ%) s+ - 2]
Q)

Tern’(
{15 (gs * u") =I5 (g5 * uh)||1
+10] llgs * u—I(g5 = u")| ™!

with

0= / (VQD ‘Mo + )Lﬁg)g)(gg * U — Igs*u(gﬁ * uh))ds.
0Q

Proof: The dual problem (23) is tested with (g5 * u— Ié’;é*“(g& * uh),
—(gs * p— ]1171(\% * p)) in Q. Integration by parts gives

lgs w12 o (go u")
= (V. Vgo = VI (g5 0) + (1, V - (g9 + ) = V- (I (g5 +u)))

gs*u

— (V9,95 %p—1)(g5%p")) — 0. (27)

The next step in the proof is the construction of an approximate Galerkin
orthogonality. To this end, (u,p) are continued to R? such that

ue H (R, p e H'(RY).
This continuation is possible ([11, Theorem 1.2.10]) and ensures that convolution
and second order differentiation for u as well as first order differentiation for p
commute. Now, f is continued such that
gs * (—Au+ Vp) = gs xf in R
This equation and the corresponding mass balance is tested with

(V" ¢") € (X", M") in R? where these functions are continued by zero outside Q.
One obtains

(gts * fa Vh)R“’ = (_V : (g5 * vu)7vh)Rd + (V(g() *p)7vh)[R’1 + (gﬁ * (v : u)7qh)[R{‘1'

From the definition of v", ¢" follows that the bilinear forms can be restricted to Q.
Integration by parts gives

(g5 * £.¥")q = (go * VU, VV" ) — (g5 % 0,V - V') + (g5 % (V- 1), ¢")g.  (28)

Integrals on OQ vanish since v/ vanishes on 9Q. Subtracting (28) and (26) gives the
approximate Galerkin orthogonality: V(v", ¢") € (X", M™)



Approximating Local Averages of Fluid Velocities: The Stokes Problem 285

0= (g5 % Vu— VI (g5 +u"), VW) = (g5 % p = I}(g5 % p), V - V)

gs*u

+(g()*(v ) ' [g;*u(gé*uh)vqh> - (gé*fiféhavh)'

Note, in order to construct this approximate Galerkin orthogonality from (28)
and (26), the discrete velocity in (26) must fulfil the same boundary conditions as
gs * u, at least up to quadrature errors. That is the reason why f (f’ is defined by
1" (g5 *u") and not by (g * u").

gs*u

Choosing v/ = Ryi¢ =: ¢" and ¢" = Ryn /. =: " to be the Clément interpolants of
(@, ) and subtracting the approximate Galerkin orthogonality from (27), we
obtain

llgs +u—1" (g5 *u")|> = (V(g *u) — VI gs +u"), V(e — "))
+ (A=A (gsxw) = V- (I(gs +u"))

(%*P D(gs "),V - (¢ — ¢"))
(VIy (g5 u") = Vi (95 + "), V(o — ¢"))
(V- (I"(gs xu")) =V - (I" (g5 xu")), 2 — )
(

gs*u

+
+
—+ gé*f fg, ) 0.

The fourth and the fifth term are nonzero only on mesh cells which have a nodal
point on the boundary 9Q. The estimate of these terms proceeds by applying the
Cauchy—Schwarz inequality and the interpolation estimates (11)

(Vi (gs xu") = VI (g5 "),V (p — "))
+ (V- (Il (gs xu") =V - (11 (gs xu")), 2 — A7)

gsxu

<c ¥ (hrnvzh 9o+ W) = VI (g5 50yl
T,TNOQAD

RV - (s + ) — V- (0 (g5 % uh>>|o_f|m.,f)-

Since both interpolants are discrete functions, we can apply an inverse inequality.
Using once more the Cauchy—Schwarz inequality and the stability of the dual
problem (25) concludes the estimate of these terms.

The sixth term is estimated with the Cauchy—Schwarz inequality and the stability
of the dual problem (25).

The estimate of the first three terms proceeds with integration by parts. The
boundary integrals on 9Q vanish since ¢ — ¢" = 0 on Q. We obtain:
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2
lgs +w =I5, (g5 * u") |

<y [@5 « (—Au+ Vp) — (—Al(gs + ") + V(g5 = )0 — o)y
Tell"(Q)

+(gs%x(V-u)—V -If(g(; *uh),/l—)nh)T

+ ) (=VUHgs + ") - B+ Iigs P g, @ — ")
ECOT.EZ0Q

+ ClMi(gs = u") =10 (g5 = ") llgs xu—1I (g5 u")]|
+ Cligs * f— || llgs *xu—1) (g5 = u")|| +10].

Using now —Au+Vp =1 V-u=0 in each mesh cell, the Cauchy-Schwarz
inequality, the interpolation estimates (11), and the stability of the dual pro-
blem (25), give an estimate for ||g5*u—(5é*u(g5*uh)||. The estimate for

lgs * u — I (gs x u")|| follows by the triangle inequality. [J

Remark 3. (1) The function f is continued in some unknown way outside Q in the
proof of Proposition 4. By the damping property of the Gaussian filter, this
continuation practically does not influence gs * f outside a ¢-neighbourhood of
0Q. Thus, in a subdomain Qy C Q with dist(9Q, 9Qy) > 9, the function gs * f is
the right hand side of the Stokes equation with averaged continuous solution
(u,p). Similarly, the function f# is the right hand side of the Stokes equation with a
polynomial approximation of the averaged discrete solution (u”,p"). If the dif-
ference of the continuous and the discrete solution is small, then the difference of
their averages is small, too, e.g. see Proposition 1. Thus, the extra term
llgs = £ — ig||0790 can be expected to be of higher order. On the other hand, f is
computable and g; * f can be approximated by a sufficiently accurate polynomial
in Q such that ||g * f — f]|o o, can be computed up to terms of higher order.

(2) The question of estimating the term ||}/ (gs * u") — I!' (g5 * u")| is still open.
The appearance of this term is closely connected to the commutation error in the
derivation of the space averaged Stokes equations in bounded domains and the
unresolved problem of appropriate boundary conditions for these equations, e.g.
see the discussion in [10]. As a initial step, for certain common flow geometries,

approximate boundary conditions can be assigned [10, 16].

As pointed out, the first two extra terms have their greatest impact near the
boundary 0Q. It is not clear if these terms are only caused by the technique to
prove the estimate and vanish with the application of different (new) techniques or
if the error estimator

1/2

> o

Tel’"(Q)

only controls the error away from the boundary.
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The boundary integral 0 on 0Q measures the error of approximating the

inhomogeneous Dirichlet boundary conditions of gs * u by the polynomial

]h
g

.u(gs * u"). The difference g5 * u — Ié’&*u(g(; * u) vanishes in all nodal points of

on the boundary. Thus |f] can be assumed to be small for sufficiently high

finite element degree k of X".
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