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Abstract

This paper studies the error in, the efficient implementation of and time stepping methods for a variational multiscale method (VMS)
for solving convection-dominated problems. The VMS studied uses a fine mesh C0 finite element space Xh to approximate the concen-
tration and a coarse mesh discontinuous vector finite element space LH for the large scales of the flux in the two scale discretization. Our
tests show that these choices lead to an efficient VMS whose complexity is further reduced if a (locally) L2-orthogonal basis for LH is
used. A fully implicit and a semi-implicit treatment of the terms which link effects across scales are tested and compared. The semi-impli-
cit VMS was much more efficient. The observed global accuracy of the most straightforward VMS implementation was much better than
the artificial diffusion stabilization and comparable to a streamline-diffusion finite element method in our tests.
� 2005 Elsevier B.V. All rights reserved.
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1. The variational multiscale method

We consider a time-dependent scalar convection–diffusion equation

ut � eDuþ b � ruþ cu ¼ f in ð0; T � � X;

u ¼ 0 on ½0; T � � oX;

uð0; xÞ ¼ u0ðxÞ in X.

ð1Þ

Here, X � Rd , d 2 {2,3}, is a bounded polyhedral domain. The functions b 2 (L1(0,T; L1(X)))d, c 2 L1(0,T; L1(X)) with
c(x, t) P 0, f 2 L2(0, T; L2(X)), u0ðxÞ 2 H 1

0ðXÞ and the constant e > 0 are given. The use of homogeneous Dirichlet bound-
ary conditions is only for convenience of presentation. Non-homogeneous Dirichlet boundary conditions are considered in
the numerical studies. In these studies, only the case c(x, t) = 0 will be considered. Let X ¼ H 1

0ðXÞ and let ( Æ , Æ ) denote the
L2(X)-inner product. The variational solution of (1) is a strongly differentiable map: u : [0, T]! X satisfying
u(0,x) = u0(x) 2 X and

ðut; vÞ þ aðu; vÞ ¼ ðf ; vÞ 8v 2 X ; ð2Þ
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where

aðu; vÞ ¼ ðeru;rvÞ þ ðb � ruþ cu; vÞ.
We consider the case that e is small compared to kbkðL1ð0;T ;L1ðXÞÞÞd . The convection–diffusion equation (1) above occurs in
many practical problems in which the diffusion coefficient is very small compared to the velocity field b which drives the
convection, precisely the case which is most difficult to solve accurately. The solution then contains many scales composed
of a complex collection of boundary and interior layers. Usual (centered) finite element methods typically produce approx-
imate solutions with large, non-physical oscillations unless either the mesh width h is globally small with respect to the dif-
fusion coefficient e or enough is known about the exact solution to generate Shishkin-like meshes which are locally small
with respect to e in all transition regions in a very precise sense [30]. Thus, various stabilizations have proven to be essential
computational tools. Recently, Hughes et al. [13,11] have developed the variational multiscale method (VMS) which is
motivated by the inherent multiscale structure of the solution of (1). We consider in this paper a method which arose from
related considerations [26] and is, in fact, a VMS. The method (3) below introduces global stabilization and then anti-dif-
fuses these effects on the large scales of the solution. Thus, effective stabilization is retained only on the smallest resolved
scales (in which the non-physical oscillations occur).

Let THðXÞ be a conforming triangulation of X and let ThðXÞ be a refinement of TH ðXÞ or ThðXÞ ¼TH ðXÞ. The finite
element approximation of the solution of (2) is sought in the conforming finite element space Xh � X. Let LH denote a vec-
tor-valued finite element subspace of (L2(X))d. The discretization we study adds additional diffusion acting on all discrete
scales and then anti-diffuses on the scales resolvable on TH ðXÞ as follows: find uh : [0, T]! Xh, gH : [0,T]! LH satisfying

ðuh
t ; v

hÞ þ aðuh; vhÞ þ ðeaddruh;rvhÞ � ðeaddgH ;rvhÞ ¼ ðf ; vhÞ 8vh 2 X h;

ðgH �ruh; lH Þ ¼ 0 8lH 2 LH .
ð3Þ

Here, eadd is a non-negative function depending on the mesh size h. This method is similar to the orthogonal subscale
stabilization method proposed in [4]. The main difference consists in the functions which are projected. In contrast to
(3), the method from [4] projects b Æ $uh.

The second equation of (3) states that gH ¼ P Hruh where P H is the L2-orthogonal projection into LH. Consider the case
that eadd is a non-negative constant. Then, the second equation of (3) gives

ðeaddðI � P HÞruh; P HrvhÞ ¼ eaddððI � P H Þruh; P HrvhÞ ¼ 0

since P Hrvh 2 LH . Now (3) can be reformulated as follows: find uh : [0, T]! Xh satisfying

ðuh
t ; v

hÞ þ aðuh; vhÞ þ ðeaddðI � P HÞruh; ðI � P H ÞrvhÞ ¼ ðf ; vhÞ ð4Þ
for all vh 2 Xh. Since LH represents the large scales of the gradients, ðI � P H Þruh clearly represents the small fluctuations of
$uh. Thus, the method (4) introduces additional diffusion acting directly only on the fluctuating components of $uh. In the
case that eadd is a constant, a straightforward computation, using the orthogonality of the second equation of (3), gives

ðeaddðI � P HÞruh; ðI � P HÞrvhÞ ¼ ðeaddruh;rvhÞ � ðeaddruh;rvhÞ;
where ruh ¼ P Hruh. Then (4) can be rewritten in the form

ðuh
t ; v

hÞ þ aðuh; vhÞ þ ðeaddruh;rvhÞ � ðeaddruh;rvhÞ ¼ ðf ; vhÞ 8vh 2 X h. ð5Þ
This paper studies algorithmic aspects of the two formulations (3) and (5). In both, the large scale space LH must be chosen.
If Xh is a higher order finite element space on a given mesh, one approach is to define the large scale space using lower order
finite elements on the same mesh. The implementation of this choice was discussed in [18]. For low order elements, which
are the only elements available in many codes, the only option is to define the large scale space LH on a coarse mesh leading
to a two-level discretization, considered herein. Low order elements are also the most common choice for diffusion-trans-
port problems in geophysics because of the very large scales of the problems studied. The goal of this paper is to study
efficient implementations of the two-level VMS idea and to delineate pros and cons of different time stepping methods
for multiscale discretizations.

Theoretical studies of this method began in [26] and were continued in [10,18,21–25,29]. We note that it is inspired by both
physical ideas in turbulence modeling and algorithmic ideas developed for simulation of non-Newtonian fluids, [5]. It can also be
thought of as a finite element realization of the method of spectral viscosity, e.g., see Maday and Tadmor [28] or Chen et al. [2].

Based on ideas developed in [13,9], multiscale discretizations have recently attracted attention for the simulation of tur-
bulent flows [11,12,15,6–8]. The VMS idea is to use a variationally consistent discretization for the large scales and to sta-
bilize directly only small scales. Since small and large scales are coupled, the stabilization acts indirectly also on the large
scales. The stabilization accounts for the effects of the unresolved solution scales upon the smallest resolved scales in the
approximate solution and its choice must be based on physical ideas in turbulence modeling. Within the framework of
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finite element methods, this approach was tested, e.g., in [7,8]. In these studies, standard finite element spaces were used for
the large scale velocity/pressure and bubble functions to model the small scales. The implementation of this approach is
straightforward because the bubble functions vanish on every face of the mesh cells, so their contribution to the global
stiffness matrix can be eliminated by static condensation. On the other hand, this choice imposes a constraint for compu-
tational convenience rather than physical fidelity on the small scales that they must vanish on all mesh cell boundaries.
Thus, we consider herein a more complex model for fluctuations. With extra complexity, the question of its computational
difficulty and implementation becomes more important.

2. Algorithmic aspects

We will start by considering the formulation (3) of the VMS. As discretization in time, an implicit h-scheme is applied.
This leads in the discrete time tk to the following fully discrete equations:

ðuh
k ; v

hÞ þ h1Dtk ððeþ eaddÞruh
k ;rvhÞ þ ðb � ruh

k þ cuh
k ; v

hÞ � ðeaddgH
k ;rvhÞ

� �
¼ ðuh

k�1; v
hÞ � h2Dtk ððeþ eaddÞruh

k�1;rvhÞ þ ðb � ruh
k�1 þ cuh

k�1; v
hÞ � ðeaddgH

k�1;rvhÞ
� �

þ h3Dtkðfk�1; vhÞ þ h4Dtkðfk; vhÞ 8vh 2 V h

ðgH
k �ruh

k ; l
HÞ ¼ 0 8lH 2 LH . ð6Þ

Here, Dtk = tk � tk�1. Different choices of the parameters h1, . . . ,h4 give different time stepping schemes, see Table 1. The
parameters in the fractional-step h-scheme are given by

h ¼ 1�
ffiffiffi
2
p

2
; ~h ¼ 1� 2h; s ¼

~h
1� h

; g ¼ 1� s.

We consider for convenience of presentation the two-dimensional case. The same ideas can be applied in a straightforward
way to three-dimensional convection–diffusion equations. The finite element spaces are equipped with bases

X h ¼ spanf/h
i g; i ¼ 1; . . . ;N X ; LH ¼ span

wH
i

0

 !
;

0

wH
i

� �( )
; i ¼ 1; . . . ;NL; ð7Þ

where NX is the dimension of Xh and NL is the dimension of one component of LH, i.e., dim(LH) = 2NL. Then, the algebraic
representation of (6) looks as follows:

A

uk

gk;1

gk;2

0
B@

1
CA ¼ M þ h1DtkA h1DtkB1 h1DtkB2

C1 D 0

C2 0 D

0
@

1
A uk

gk;1

gk;2

0
B@

1
CA

¼
h3Dtkfk�1 þ h4Dtkfk

0

0

0
@

1
Aþ M � h2DtkA �h2DtkB1 �h2DtkB2

0 0 0

0 0 0

0
@

1
A uk�1

gk�1;1

gk�1;2

0
B@

1
CA; ð8Þ

where

M ¼ ð/h
j ;/

h
i Þi;j¼1;...;NX

;

A ¼ ðððeþ eaddÞr/h
j ;r/h

i Þ þ ðb � r/h
j þ c/h

j ;/
h
i ÞÞi;j¼1;...;NX

;

B1 ¼ �ðeaddw
H
j ; ð/

h
i ÞxÞi¼1;...;NX ;j¼1;...;NL

;

B2 ¼ �ðeaddw
H
j ; ð/

h
i ÞyÞi¼1;...;NX ;j¼1;...;NL

;

C1 ¼ �ðwH
i ; ð/

h
j ÞxÞi¼1;...;NL;j¼1;...;NX

;

C2 ¼ �ðwH
i ; ð/

h
j ÞyÞi¼1;...;NL ;j¼1;...;NX

;

D ¼ ðwH
j ;w

H
i Þi;j¼1;...;NL

.

Table 1
Implicit h-schemes

h1 h2 h3 h4 tk�1 tk Dtk

Backward Euler 1 0 0 1 tn�1 tn Dtn

Crank–Nicolson 0.5 0.5 0.5 0.5 tn�1 tn Dtn

Fractional-step

Step 1 sh gh gh sh tn�1 tn�1 + hDtn hDtn

Step 2 g~h s~h s~h g~h tn�1 + hDtn tn � hDtn
~hDtn

Step 3 sh gh gh sh tn � hDtn tn hDtn
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Note, the blocks B1, B2 have to be scaled in the same way in (8) as the block A since the additional diffusion eadd has to be
the same in all of these blocks.

The matrix blocks M, A and D are sparse since they are build from inner products with finite element functions from
only one space. Thus, the sparsity of these blocks is a standard property. However, the sparsity of the matrix blocks B1, B2,
C1, C2 depends heavily on the choice of LH. An inner product defining an entry of these matrices does not vanish if the
intersection of the support of the two factors has a positive measure

measðsuppðwH
i Þ \ suppð/h

j ÞÞ > 0; wH
i 2 LH ; /h

j 2 X h.

The number of non-zero entries connected to the basis function wH
i becomes the smaller, the smaller the support of wH

i is.
The smallest possible support is one mesh cell on THðXÞ. This can be realized if LH is a discontinuous finite element space.

The fully implicit VMS introduces 2NL additional equations for the unknowns gk,1, gk,2. A way to avoid this problem is
to use a semi-implicit version of (6) as

ðuh
k ; v

hÞ þ h1Dtk ððeþ eaddÞruh
k ;rvhÞ þ ðb � ruh

k þ cuh
k ; v

hÞ
� �

¼ ðuh
k�1; v

hÞ � h2Dtk ððeþ eaddÞruh
k�1;rvhÞ þ ðb � ruh

k�1 þ cuh
k�1; v

hÞ
� �

þ DtkðeaddgH
k�1;rvhÞ

þ h3Dtkðfk�1; vhÞ þ h4Dtkðfk; vhÞ 8vh 2 V h

ðgH
k�1; l

H Þ ¼ ðruh
k�1; l

H Þ 8lH 2 LH . ð9Þ

In this semi-implicit version, the subtraction of the additional diffusion in the large scales is treated explicitly.
Note, scheme (9) might provide still a stabilization even in the case that the projection gH

k�1 is equal to ruh
k�1. Then, on

the right-hand side there is the term ð1� h2ÞDtkðeaddruh
k�1;rvhÞ and on the left-hand side, we have h1Dtkðeaddruh

k ;rvhÞ.
These two terms are in general not the same and they are additional terms in comparison to the Galerkin finite element
discretization. For example, in the Crank–Nicolson scheme, which will be used in the numerical studies, collecting terms
(on the left-hand side) gives 0:5Dtkðeaddrðuh

k � uh
k�1Þ;rvhÞ. If the time step is sufficiently small, there are only small changes

in the solution from time k � 1 to k and rðuh
k � uh

k�1Þ represents small scales. In this way, one obtains a second small scale
stabilization by the explicit treatment of the projection term.

The algebraic form of the second equation of the coupled system (9) is

D 0

0 D

� �
gk�1;1

gk�1;2

 !
¼ �

C1uk�1

C2uk�1

� �
. ð10Þ

If the mass matrix D of LH is diagonal, that means iff the basis functions of LH are L2-orthogonal, the solution of this
system is very simple. This property can be achieved easily for discontinuous finite element spaces, e.g., by using a basis
consisting of Legendre polynomials. Inserting the solution of (10) into the first equation of (8) gives

ðM þ h1DtkAÞuk ¼ h3Dtkfk�1 þ h4Dtkfk þ ðM � h2DtkAÞuk�1 þ DtkB1D�1C1uk�1 þ DtkB2D�1C2uk�1. ð11Þ
Note, the matrix A includes an additional diffusion in the diffusive term. Thus, the operator on the left-hand side of (11) is
stable if the amount of additional diffusion is sufficiently large. In addition, many standard solvers and preconditioners
work well for such problems. The only difference to the simple artificial diffusion stabilization of a convection–diffusion
equation consists in the last two terms on the right-hand side of (11).

The summary of the algorithmic aspects of using the VMS (3) is as follows:

• the additional matrix blocks B1, B2, C1, C2 and D are needed, at least one dimension of these blocks is NL,
• the sparsest structure of B1, B2, C1, C2 is achieved if LH is a discontinuous finite element space,
• the fully implicit approach (8) requires the additional vectors gk,1, gk,2,
• the algebraic system (8) possesses 2NL additional equations,
• the semi-implicit approach (11) can be implemented easily if the basis functions of LH are L2-orthogonal,
• the system matrix of (11) corresponds to a stable operator.

Now, we will consider the formulation (5) of the VMS. The application of an implicit h-scheme leads in each discrete time
to a scalar equation of the form

ðuh
k ; v

hÞ þ h1Dtk ððeþ eaddÞruh
k ;rvhÞ þ ðb � ruh

k þ cuh
k ; v

hÞ � ðeaddruh
k ;rvhÞ

h i
¼ ðuh

k�1; v
hÞ � h2Dtk ððeþ eaddÞruh

k�1;rvhÞ þ ðb � ruh
k�1 þ cuh

k�1; v
hÞ � ðeaddruh

k�1;rvhÞ
h i

þ h3Dtkðfk�1; vhÞ þ h4Dtkðfk; vhÞ 8vh 2 V h. ð12Þ
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In this equation, the large scales gH are eliminated. But the term ðeaddruh
k ;rvhÞ couples the variables of Xh across the mesh

cells of the coarse triangulation TH ðXÞ. Let /h
i , /h

j be two basis functions of Xh. Since suppð/h
i Þ � suppðr/h

i Þ, the term

ðeaddr/h
j ;r/h

i Þ does not vanish if

meas supp r/h
i

� �
\ suppðr/h

j Þ
� �

> 0. ð13Þ

To minimize the number of non-vanishing terms of this form, the support of the projections has to be minimized. This is
achieved by using a discontinuous finite element space for LH. The algebraic representation of (12) is

ðM þ h1DtkðAþ BÞÞuk ¼ h3Dtkfk�1 þ h4Dtkfk þ ðM � h2DtkðAþ BÞÞuk�1. ð14Þ
This can be derived also from (8) by solving for gk,1, gk,2 which shows that

B ¼ �B1D�1C1 � B2D�1C2.

However, the matrix B in (14) is not given in this product form but it is assembled directly by evaluating terms of the form

ðBÞij ¼ eaddr/h
j ;r/h

i

� �
. ð15Þ

This can be done in the following way:

1. Compute in a pre-processing step the matrix structure of B by checking (13).

2. If (B)ij is a member of this matrix structure, then compute r/h
i , and r/h

j . Taking the basis (7) and using the ansatz

r/h
i ¼

XNL

j¼1

/jw
H
j ;

one gets for the evaluation of r/h
iXNL

j¼1

ðwH
j ;w

H
k Þ/j ¼ ðr/h

i ;w
H
k Þ; k ¼ 1; . . . ;NL. ð16Þ

The coefficients /j can be easily computed if the system matrix is diagonal, i.e., if the basis functions of LH are L2-
orthogonal. But even if LH is solely a discontinuous finite element space, (16) decouples in a number of small problems
which can be solved in parallel.

3. Compute the inner product (15).

The dimension of B is NX · NX. In comparison to the matrix blocks M and A, the block B creates a substantial fill-in.
The problem of having this substantial fill-in does not arise if a semi-implicit version of (12) is used

ðuh
k ; v

hÞ þ h1Dtk ððeþ eaddÞruh
k ;rvhÞ þ ðb � ruh

k þ cuh
k ; v

hÞ
� �

¼ ðuh
k�1; v

hÞ � h2Dtk ððeþ eaddÞruh
k�1;rvhÞ þ ðb � ruh

k�1 þ cuh
k�1; v

hÞ
� �

þ Dtkðeaddruh
k�1;rvhÞ þ h3Dtkðfk�1; vhÞ þ h4Dtkðfk; vhÞ 8vh 2 V h. ð17Þ

To evaluate the term ðeaddruh
k�1;rvhÞ on the right-hand side, one can use the same approach as for computing the entries of

B. The algebraic form of the semi-implicit system is like (11). Here, the additional terms on the right-hand side of (11) are
not computed by matrix–vector products but by computing the explicit projection of the finite element function and the
appropriate inner products. Additional matrices are not necessary. Which of the two approaches should be preferred de-
pends certainly on the code where the method will be implemented. The approach of assembling the matrix blocks B1, B2,
C1, C2 and the computing of the matrix–vector products as in (11) requires more memory and the evaluation of

ðeaddruh
k�1;rvhÞ in (17) needs the implementation of a routine like those, which was described for assembling (15). Based

on the data structures in our code, we preferred to implement the first approach.
The algorithmic aspects for the VMS of form (5) are summarized as follows:

• for the fully implicit approach (14), the additional matrix B of dimension NX · NX is needed, this matrix is considerably
less sparse than the other blocks,

• the sparsest structure of B is achieved if LH is a discontinuous finite element space,
• the fully implicit approach (14) does not generate additional equations,
• matrix–vector products with the system matrix become considerably more expensive due to the additional fill-in of the

matrix B,



V. John et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 4594–4603 4599
• if LH is a discontinuous finite element space, the computation of the projections decouples in a number of small systems
which can be solved in parallel,

• for an easy computation of the projections, it is also advantageous if the basis functions of LH are L2-orthogonal.

The attractive semi-implicit strategy (9) and (17) has been studied in [1]. In [1], the method (17) was proven to be uncon-
ditionally stable. Concurrently, this method and stability results were obtained in a different context and to a different end
by Johnston and Liu in [20]. A second order generalization is considered in [20]. Although a fully satisfactory stability
proof for the second order extension is still open, preliminary analysis and computations in [20] look promising.

The finite element error in the energy norm for this semi-discrete VMS was analyzed in [10] for convection–diffusion
equations and in [17] for the Navier–Stokes equations. Let e = u � uh, one will obtain an optimal order of convergence
for krekL2ð0;T ;L2Þ if the coarse space LH is sufficiently fine and if u is sufficiently smooth. Denote by h and H the mesh widths
for the fine and the coarse mesh, respectively, the fineness condition on L reads h � Hb with b 6 2. Beyond this, many theo-
retical problems are still open for (5).

3. Numerical studies

This section presents numerical studies comparing the fully implicit approach (6) and the semi-implicit approach (9).
The algebraic representations of these approaches are given in (8) and (11), respectively. As mentioned above, the imple-
mentation of (6) and (9) seems to us easier than of (12) and (17). In addition, the basis equation (5) of (12) and (17) is
equivalent to the VMS (3) only in the case of constant eadd.

The numerical studies were carried out with the code MooNMD [16,19]. The finite element space Xh consists of contin-
uous piecewise linear or bilinear functions, i.e., Xh = P1 on a triangular mesh ThðXÞ and Xh = Q1 on a quadrilateral mesh
ThðXÞ. For the finite element space LH on TH ðXÞ, we have used the simplest choice, namely piecewise constant functions.
Note, this choice satisfies all conditions on LH given in Section 2. For the additional diffusion, numerical tests with
eadd = ch were performed. Below, the studies with c = 0.1 are presented. We found that for larger values of c, with
c 6 1, the results are qualitatively the same. On the one hand, the errors increased slightly, but on the other hand, the
orders of convergence are similar and the computing times became shorter. If c was chosen to be too small, the additional
viscosity was not sufficient to stabilize the method. The necessary size of c for the additional viscosity to work properly was
dependent on, e.g., the level of the grid hierarchy where the space LH was defined.

The efficiency of the solver for the algebraic systems is crucial for the efficiency of the whole numerical simulation. We
applied a flexible GMRES method [31], with a multigrid method as preconditioner. In the case of the scalar system (11), the
preconditioner is a geometric multigrid method. We used the F(1, 1)-cycle, ILUb with b = 1 as smoother and the coarse grid
system was solved directly by Gaussian elimination. Note, the ILU-decomposition has to be computed only once in the
initial time step.

For the coupled system (8), an algebraic multigrid method was applied as preconditioner. Here, the W(2,2)-cycle was
used, ILUb with b = 1 as smoother and also as coarse grid solver. The algebraic multigrid method, which is described in
[27], belongs to the class of aggregation methods, i.e., the unknowns of the coarse grid are defined by an appropriate clus-
tering of the unknowns of the fine grid. A constant prolongation is applied and the restriction is defined to be the adjoint
operator. The coarse grids and coarse grid matrices of the algebraic multigrid have to be constructed before the iterative
solution of the linear system can start. For equi-distant time-steps, this has to be done only once at the first discrete time
since the matrices are the same for all discrete times. The diagonal entry aH

ii of the coarse grid matrix is the sum of all cou-
plings of the fine grid nodes which are forming cluster i. The off diagonal entry aH

ij , i 5 j, is the sum of all fine grid entries
ah

kl, k 5 l, where node k belongs to cluster i and node l to cluster j.
The numerical studies were performed for (1) with the prescribed solution

uðt; xÞ ¼ t2 cosðx1x2
2Þ; ð18Þ

with x = (x1,x2), e = 10�8, b = (2,�1)T, c = 1, X = (0, 1)2 and T = 10. The non-homogeneous Dirichlet boundary condi-
tions and the right-hand side f were chosen such that u(t,x) fulfills (1). We decided to use as prescribed solution (18), be-
cause the Crank–Nicolson scheme is an exact time integrator in this case and all errors are due to the discretization in space
and the stabilization of the convective term. The Crank–Nicolson scheme was applied with an equi-distant time step of
length Dtn = 0.125.

The initial quadrilateral grid, level 0, consists of four squares with edge length 0.5. As usual, the size of a mesh cell is the
longest distance between two of its vertices and the mesh size is the maximum of the sizes of the mesh cells. Accordingly,
the mesh size is h0 ¼

ffiffiffi
2
p

2�1. The initial triangular grid was obtained from the initial quadrilateral grid by dividing the
squares using the diagonals from the left lower corner to the right upper corner. The initial grids were refined uniformly.

The computations have been carried out on a PC with Intel Pentium 4 Processor, with 3 GHz.
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In the first numerical study, a fixed fine mesh ThðXÞ is considered and the coarse mesh TH ðXÞ is varied. The compu-
tations were performed on a quadrilateral mesh. The fine mesh is given by refinement level 6 of the initial grid such that
h6 ¼

ffiffiffi
2
p

2�7. The number of degrees of freedom (d.o.f.) on this mesh is 16,641 (including Dirichlet nodes). The coarse mesh
is varied between level L = 1 and L = 6 giving H ¼

ffiffiffi
2
p

2�ðLþ1Þ. The results are presented in Table 2.
In order to provide an impression on the accuracy of the computed results with the VMS, the results obtained with the

simple artificial diffusion stabilization and the Streamline-Diffusion FEM (SDFEM) are also presented. In the artificial dif-
fusion stabilization, the same parameter eadd was used as in the VMS. The SDFEM has in each discrete time the form, see
[14,3]: find uh

k 2 X h such that for all vh 2 Xh

ðuh
k ;v

hÞþ
X

K2Th

sKðuh
k ;b �rvhÞKþh1Dtk ðeruh

k ;rvhÞþðb �ruh
kþ cuh

k ;v
hÞþ

X
K2Th

sKðb �ruh
kþcuh

k ;b �rvhÞK

" #

¼ðuh
k�1;v

hÞþ
X

K2Th

sKðuh
k�1;b �rvhÞK�h2Dtk ðeruh

k�1;rvhÞþðb �ruh
k�1þ cuh

k�1;v
hÞþ

X
K2Th

sKðb �ruh
k�1þcuh

k�1;b �rvhÞK

" #

þh3Dtkðfk�1;vhÞþh3Dtk

X
K2Th

sKðfk�1;b �rvhÞKþh4Dtkðfk;vhÞþh4Dtk

X
K2Th

sKðfk;b �rvhÞK .

Here, ( Æ , Æ )K denotes the inner product in L2(K) where K is a mesh cell. The parameter sK is computed as follows:

sK ¼
aKhK

2kbk2

; PeK ¼
kbk2hK

2e
; aK ¼ cothðPeKÞ �

1

PeK
.

Here, hK is the size of the mesh cell K and kbk2 is the Euclidean norm of b.
Let e = u � uh. The results presented in Table 2 show that the semi-implicit approach (9) is much more efficient than the

fully implicit one (6). For the fully implicit approach, we were not able to solve the linear systems of equations in the cases
L 2 {5,6}. The stabilization which is introduced by the VMS is not sufficient. In contrast, the semi-implicit approach still
works well for L 2 {5, 6}. This results from the extra stabilization inherited in this approach, see the paragraph after (9).
Since there is no stabilization coming directly from the projection for L = 6, the extra stabilization by itself is sufficient in
the considered example. The accuracy of the results with both approaches is practically the same for L 6 4. The results
become more accurate the finer the coarse grid becomes. Even for a very coarse space LH, the results with the VMS are
considerably more accurate than the results with the artificial diffusion stabilization. If LH is defined on finer and finer
grids, the results become more and more accurate. Finally, if the coarse space is defined on the same grid as the fine space,
L = 6, the results are nearly as accurate as for the SDFEM. Here we like to emphasize that a very simple model for eadd has
been used. The accuracy of the VMS can be certainly improved by applying more sophisticated models. An important
observation is that the use of finer coarse grids TH ðXÞ and the corresponding increase of degrees of freedom in LH prac-
tically does not lead to an increase in the computing times for the semi-implicit approach (9). The computational overhead
of this method, four matrix–vector products and multiplication with the diagonal matrix D�1, is small in comparison to the
time needed for solving the linear system.
Table 2
Results for a fixed fine mesh and varying coarse mesh

Method L D.o.f. LH kekL1ð0;T ;L2Þ kekL2ð0;T ;L2Þ krekL2ð0;T ;L2Þ Time

(6) 1 32 1.078e�2 1.520e�2 1.637e+0 184.4
2 128 5.927e�3 8.365e�3 1.227e+0 181.9
3 512 3.316e�3 4.679e�3 9.141e�1 183.0
4 2048 2.099e�3 2.960e�3 7.349e�1 373.1

(9) 1 32 1.076e�2 1.518e�2 1.621e+0 103.5
2 128 5.960e�3 8.425e�3 1.214e+0 103.2
3 512 3.381e�3 4.800e�3 9.050e�1 103.1
4 2048 2.191e�3 3.130e�3 7.281e�1 102.8
5 8192 1.762e�3 2.531e�3 6.604e�1 103.0
6 32,768 7.052e�4 1.094e�3 3.526e�1 103.1

Art. diff. 1.806e�1 2.538e�1 5.490e+0 56.3
SDFEM 5.213e�4 7.344e�4 3.414e�1 89.2



V. John et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 4594–4603 4601
The second numerical test studies the convergence of the errors if the ratio of the fine mesh width h and the coarse mesh
width H is kept (nearly) constant. We tested the scalings h � Hb, b 2 {5/4, 3/2,7/4,2}. The scaling h � H2 was proposed in
[26] for the steady state equations. This scaling is the limit case for an optimal order of convergence of krekL2ð0;T ;L2Þ, see the

discussion of finite element error estimates at the end of Section 2. Neglecting for simplicity the factor
ffiffiffi
2
p

in the mesh
widths, then h = 2�(l+1) and H = 2�(L+1). Let l be given, one obtains L = b�1(l + 1) � 1. Since this number is in general
not an integer, we used in the computations the nearest integer to b�1(l + 1) � 1 as value for L. The computations were
performed on triangular grids with piecewise linear finite elements. The coarsest grid (level 0) consisted of 8 triangles.
The degrees of freedom for the spaces Xh and LH are given in Table 3.

In Tables 4–7, errors in several norms are presented. The orders of convergence are given with respect to h. They were
computed using the values on the two finest levels.

The numerical results show that one obtains first order of convergence for krekL2ð0;T ;L2Þ if b 2 {5/4,3/2,7/4}. For the
limit value b = 2, a first order of convergence is not yet reached. A second order convergence for kekL1ð0;T ;L2Þ and

kekL2ð0;T ;L2Þ cannot be observed. These observations correspond to the available analytical results, see the end of Section
2. For the SDFEM, we found for this example first order convergence in krekL2ð0;T ;L2Þ and second order in kekL2ð0;T ;L2Þ.
Table 3
Degrees of freedom on the triangular grids

Level Xh LH

0 16
1 25 64
2 81 256
3 289 1024
4 1089 4096
5 4225 16,384
6 16,641 65,536
7 66,049 262,144
8 263,169
9 1,050,625

Table 4
Results for a fixed ratio h � H5/4 of the fine mesh width and the coarse mesh width

L l kekL1ð0;T ;L2Þ kekL2ð0;T ;L2Þ krekL2ð0;T ;L2Þ

1 2 5.225e�1 7.335e�1 1.619e+1
2 3 1.554e�1 2.185e�1 9.432e+0
3 4 4.443e�2 6.254e�2 5.241e+0
4 5 1.218e�2 1.719e�2 2.771e+0
5 6 3.250e�3 4.611e�3 1.422e+0
5 7 7.358e�4 1.062e�3 5.221e�1
6 8 2.046e�4 3.038e�4 2.623e�1
7 9 6.262e�5 9.767e�5 1.316e�1

Order 1.708 1.637 0.995

Table 5
Results for a fixed ratio h � H3/2 of the fine mesh width and the coarse mesh width

L l kekL1ð0;T ;L2Þ kekL2ð0;T ;L2Þ krekL2ð0;T ;L2Þ

1 2 5.225e�1 7.335e�1 1.619e+1
2 3 1.554e�1 2.185e�1 9.432e+0
2 4 3.901e�2 5.506e�2 3.957e+0
3 5 1.046e�2 1.481e�2 2.038e+0
4 6 2.762e�3 3.934e�3 1.035e+0
4 7 9.844e�4 1.409e�3 5.613e�1
5 8 2.655e�4 3.878e�4 2.820e�1
6 9 7.683e�5 1.168e�4 1.415e�1

Order 1.789 1.731 0.995



Table 7
Results for a fixed ratio h � H2 of the fine mesh width and the coarse mesh width

L l kekL1ð0;T ;L2Þ kekL2ð0;T ;L2Þ krekL2ð0;T ;L2Þ

0 1 1.696e+0 2.380e+0 2.708e+1
1 3 1.407e�1 1.983e�1 7.507e+0
2 5 1.426e�2 2.015e�2 2.188e+0
3 7 1.614e�3 2.292e�3 6.794e�1
4 9 1.980e�4 2.846e�4 2.224e�1

Order 1.514 1.505 0.806

Table 6
Results for a fixed ratio h � H7/4 of the fine mesh width and the coarse mesh width

L l kekL1ð0;T ;L2Þ kekL2ð0;T ;L2Þ krekL2ð0;T ;L2Þ

1 3 1.407e�1 1.983e�1 7.507e+0
2 4 3.901e�2 5.506e�2 3.957e+0
2 5 1.426e�2 2.015e�2 2.188e+0
3 6 3.748e�3 5.318e�3 1.113e+0
4 7 9.844e�4 1.409e�3 5.613e�1
4 8 4.246e�4 6.096e�4 3.422e�1
5 9 1.157e�4 1.700e�4 1.718e�1

Order 1.876 1.842 0.994
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4. Summary

The paper studied a two-level variational multiscale method for convection–diffusion equations. This method possesses
two parameters: an additional diffusion eadd and a vector-valued coarse finite element space LH. The two main topics of the
study were the conditions on LH which are necessary for an efficient implementation of the method and the treatment of the
additional terms of the VMS within the temporal discretization. It was shown that an efficient implementation of the VMS
can be achieved if LH consists of discontinuous finite element functions and if the basis of LH is L2-orthogonal. In this case,
the additional matrices possess a very sparse structure and the inversion of the mass matrix of LH, which is needed in the
semi-implicit approach, can be done easily. Numerical tests at a model problem showed that a semi-implicit temporal dis-
cretization, which treats the subtraction of the additional diffusion from the large scales explicitly, is much more efficient
than a fully implicit discretization. The computing times in the semi-implicit VMS practically did not depend on the dimen-
sion of the coarse space LH since the computational overhead is small in comparison to the time which is needed to solve
the linear system. This property will be shared by other temporal discretizations which treat the last term on the left-hand
side of (3) explicitly. A comparison of this method with the SDFEM showed a similar order of convergence in several
norms for appropriate scalings of the fine and the coarse mesh.

An extension of the two-level method to the Navier–Stokes equations requires similar algorithmic considerations as for
scalar convection–diffusion equations. Based on the results obtained in this paper, discontinuous finite elements for the
space LH and the semi-implicit approach should be used. For the Navier–Stokes equations, an additional viscosity has
to be chosen based on physical ideas in turbulence modeling. This will lead to non-linear models, e.g., the Smagorinsky
model [32].

A one-level variant of the VMS presented in this paper applied in the simulation of turbulent flows can be found in [18].
Using higher order finite elements for the velocity, the coarse scale space LH was defined on the same grid using low order
polynomials. The implementation of the two-level variant for the Navier–Stokes equations and its comparison with the
variant presented in [18] will be future work.
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