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Abstract

An unwelcome feature of the popular streamline upwind/Petrov–Galerkin (SUPG) stabilization of convection-dominated convec-
tion–diffusion equations is the presence of spurious oscillations at layers. A review and a comparison of the most methods which have
been proposed to remove or, at least, to diminish these oscillations without leading to excessive smearing of the layers are given in Part I,
[V. John, P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A
review, Comput. Methods Appl. Mech. Engrg. 196 (2007) 2197–2215]. In the present paper, the most promising of these SOLD methods
are investigated in more detail for P 1 and Q1 finite elements. In particular, the dependence of the results on the mesh, the data of the
problems and parameters of the methods are studied analytically and numerically. Furthermore, the numerical solution of the nonlinear
discrete problems is discussed and the capability of adaptively refined grids for reducing spurious oscillations is examined. Our conclu-
sion is that, also for simple problems, any of the SOLD methods generally provides solutions with non-negligible spurious oscillations.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is a continuation of [26], in the following
cited as Part I, which was devoted to a review and a com-
parison of finite element techniques developed to diminish
spurious oscillations in discrete solutions of convection-
dominated problems. Like in Part I, we consider the steady
scalar convection–diffusion equation

�eDuþ b � ru ¼ f in X; u ¼ ub on oX: ð1Þ

We assume that X is a bounded domain in R2 with a polyg-
onal boundary oX, e > 0 is the constant diffusivity,
b 2 W 1;1ðXÞ2 is a given convective field, f 2 L2ðXÞ is an
0045-7825/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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outer source of u, and ub 2 H 1=2ðoXÞ represents the Dirich-
let boundary condition. In our numerical tests we shall also
consider less regular functions ub.

A popular finite element discretization technique for (1)
is the streamline upwind/Petrov–Galerkin (SUPG) method
which is frequently used because of its stability properties
and higher-order accuracy. Since, in the convection-domi-
nated regime, the SUPG solutions typically contain oscilla-
tions in layer regions, various stabilizing terms have been
proposed to be added to the SUPG discretization in order
to obtain discrete solutions in which the local oscillations
are suppressed. In Part I, we called such techniques spuri-

ous oscillations at layers diminishing (SOLD) methods.
Part I presented a review of most SOLD methods

published in the literature, discussed their derivation, pro-
posed some alternative choices of parameters in the meth-
ods and categorized them. Some numerical studies gave a
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first impression of the behavior of the SOLD methods.
These numerical tests were performed in a two-dimensional
domain using the conforming P 1 finite element and it was
observed that there are large differences between the SOLD
methods. In some cases, the SOLD methods were able to
significantly improve the SUPG solution and to provide a
discrete solution with negligible spurious oscillations and
without an excessive smearing of layers. However, it was
not possible to identify a method which could be preferred
in all the test cases. There are some methods which never
produced good results since they either do not suppress
the oscillations sufficiently or they are very diffusive and
smear the layers considerably.

The aim of the present paper is to perform deeper inves-
tigations of those SOLD methods which gave acceptable
results in Part I. We shall formulate the SOLD methods
in the two-dimensional case and for conforming linear
and bilinear finite elements. Formulations valid also in
the three-dimensional case and for more general finite ele-
ment spaces can be found in Part I. We do not consider the
Mizukami–Hughes method [35,33] investigated in Part I
since its applicability is rather limited. We shall investigate
how strongly the methods depend on the computational
mesh and the data of the problem. For methods containing
parameters, we shall seek their optimal values and study
the dependence of the results on the parameters. Since most
of the SOLD methods are nonlinear, we shall also address
algorithms for computing the discrete solution. Finally, the
question will be studied whether adaptively refined grids
help to suppress the spurious oscillations in SUPG
solutions.

Our investigations will be performed on academic test
examples whose solutions possess characteristic features
of solutions of convection–diffusion equations. These aca-
demic problems allow to study the SOLD methods analyt-
ically, at least in the limit e! 0þ. The analysis enables us
to identify clearly those methods which can be expected to
suppress the spurious oscillations and to study the depen-
dence of the results on parameters in some of the methods.

The analysis presented in this paper will include the con-
sideration of moderately anisotropic grids. Using such
grids might not be reasonable for the considered examples
since these grids are not adapted to the layers of the solu-
tion. Our motivation for looking at moderately anisotropic
grids comes from applications. First, the meshing of com-
plicated domains leads easily to anisotropic elements with
moderate aspect ratio. Second, convection–diffusion equa-
tions are often just a part of a coupled system of equations,
like in the k � e turbulence model [36] or in the simulation
of precipitation processes [29]. For such problems, an
adaptation of the grid is performed rather with respect to
other equations in the system, for instance with respect to
the Navier–Stokes equations in the mentioned examples.
Thus, one has to face the situation that the grids might
be not particularly well adapted with respect to the convec-
tion–diffusion equation but the SOLD methods still should
provide satisfactory results.
The paper is organized in the following way. In the next
section, we formulate the usual Galerkin discretization of
(1) and introduce the SUPG method. In Section 3, the
SOLD methods investigated in this paper are briefly
reviewed. Then, in Section 4, we shall investigate the
properties of the SOLD methods for three model problems.
Section 5 is devoted to the computation of the discrete
solution and, in Section 6, the usefulness of adaptively
refined grids for the suppression of spurious oscillations
is studied. Finally, Section 7 presents our conclusions.

Throughout the paper, we use the standard notations
P 1, Q1, L2ðXÞ, H 1ðXÞ ¼ W 1;2ðXÞ, etc. for the usual function
spaces, see, e.g., Ciarlet [9]. The inner product in the space
L2ðXÞ or L2ðXÞ2 will be denoted by ð�; �Þ. For a vector
a 2 R2, the symbol |a| stands for its Euclidean norm.
2. The Galerkin method and the SUPG method

To define a finite element discretization of (1), we intro-
duce a triangulation Th of the domain X consisting of a
finite number of open elements K. We shall assume that
all elements of Th are either triangles or convex quadrilat-
erals. The discretization parameter h in the notation Th is a
positive real number satisfying diamðKÞ 6 h for any
K 2Th. We assume that X ¼

S
K2Th

K and that the clo-
sures of any two different elements of Th are either disjoint
or possess either a common vertex or a common edge.

We introduce the finite element space

V h ¼ fv 2 H 1
0ðXÞ; vjK 2 RðKÞ 8K 2Thg;

where RðKÞ ¼ P 1ðKÞ if K is a triangle and RðKÞ ¼ Q1ðKÞ if
K is a rectangle. If K is a general convex quadrilateral, then
RðKÞ is defined by transforming the space Q1ðð0; 1Þ

2Þ onto
K by means of a bilinear one-to-one mapping, see, e.g.,
Ciarlet [9]. Finally, let ubh 2 H 1ðXÞ be a function whose
trace approximates the boundary condition ub. Then the
usual Galerkin finite element discretization of the convec-
tion–diffusion equation (1) reads:

Find uh 2 H 1ðXÞ such that uh � ubh 2 V h and

aðuh; vhÞ ¼ ðf ; vhÞ 8vh 2 V h;

where

aðu; vÞ ¼ eðru;rvÞ þ ðb � ru; vÞ:

It is well known that this discretization is inappropriate
if convection dominates diffusion since then the discrete
solution is usually globally polluted by spurious oscilla-
tions. An improvement can be achieved by adding a stabil-
ization term to the Galerkin discretization. One of the most
efficient procedures of this type is the streamline upwind/
Petrov–Galerkin (SUPG) method developed by Brooks
and Hughes [3]. To formulate this method, we define the
residual

RhðuÞ ¼ �eDhuþ b � ru� f ;
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where Dh is the Laplace operator defined elementwise, i.e.,
ðDhvÞjK ¼ DðvjKÞ for any K 2Th and any piecewise smooth
function v. Then the SUPG method reads:

Find uh 2 H 1ðXÞ such that uh � ubh 2 V h and

aðuh; vhÞ þ ðRhðuhÞ; sb � rvhÞ ¼ ðf ; vhÞ 8vh 2 V h; ð2Þ

where s 2 L1ðXÞ is a nonnegative stabilization parameter.
The choice of s may dramatically influence the accuracy
of the discrete solution and therefore it has been a subject
of an extensive research over the last three decades, see,
e.g., the review in Part I. Unfortunately, a general optimal
definition of s is still not known. In our computations, we
define s, on any element K 2Th, by the formula

sjK ¼
hK

2jbj coth PeK �
1

PeK

� �
with PeK ¼

jbjhK

2e
; ð3Þ

where hK is the element diameter in the direction of the
convection vector b. We refer to Part I for various justifica-
tions of this formula and for a precise definition of hK . If
convection strongly dominates diffusion in X and hence
the local Péclet numbers PeK are very large, the parameter
s is basically given by

sjK ¼
hK

2jbj 8K 2Th: ð4Þ

Note that, generally, the parameters hK , PeK and sjK are
functions of the points x 2 K.

An alternative to the SUPG method is the Galerkin/
least-squares method introduced by Hughes et al. [21] or
its modification proposed by Franca et al. [16]. A similar
stabilization can also be obtained using the subgrid scale
method of Hughes [20]. In addition, for transient problems,
stabilization terms of the discussed type also result by
applying the characteristic Galerkin method of Douglas
and Russell [15] or the Taylor–Galerkin method of Donéa
[14]. See also Codina [11] for a comparison of these meth-
ods. However, all these methods are identical to the SUPG
method (up to the choice of the stabilization parameter) if
problem (1) has constant coefficients and is discretized
using linear triangular or bilinear rectangular finite ele-
ments. Since this will be the case in all the model problems
discussed in this paper, we confine ourselves to the SUPG
method in the following.

3. Spurious oscillations at layers diminishing methods

Because the SUPG method is not monotone, a discrete
solution satisfying (2) usually still contains spurious oscilla-
tions. Although these oscillations are localized in narrow
regions along sharp layers, they are often not negligible
and they are not permissible in many applications. A pos-
sible remedy is to add a suitable artificial diffusion term to
the SUPG method. In Part I, methods of this type are
called spurious oscillations at layers diminishing (SOLD)
methods. Here, we describe these methods only very briefly
and refer to the review in Part I for details. To make sim-
ilarities and differences between the methods better visible,
we shall formulate the methods in a slightly different way
than in Part I.

There are three basic classes of SOLD methods: meth-
ods adding isotropic artificial diffusion, methods adding
crosswind artificial diffusion, and methods where the addi-
tional artificial diffusion stems from an edge stabilization.
The amount of the artificial diffusion in these methods typ-
ically depends on the unknown discrete solution uh. Thus,
the resulting methods are nonlinear (although the original
problem (1) is linear).

The methods of the first class add the isotropic artificial
diffusion term

ð~eruh;rvhÞ ð5Þ

to the left-hand side of the SUPG discretization (2). The
parameter ~e is nonnegative and usually depends on uh.
For the first time, a SOLD term which can be written in
the form (5) was introduced by Hughes et al. [22]. Further
approaches were proposed by Tezduyar and Park [38] and
Galeão and do Carmo [17]. According to the criteria and
tests in Part I (and according to further numerical experi-
ments we have performed in [24,25]), one of the best
choices of ~e in (5) is to set

~e ¼ max 0;
sjbjjRhðuhÞj
jruhj

� s
jRhðuhÞj2

jruhj2

( )
; ð6Þ

as proposed by do Carmo and Galeão [8], abbreviated with
dCG91 in Part I. Here and in the following, we always as-
sume that ~e ¼ 0 if the denominator of a formula defining ~e
vanishes. Almeida and Silva [1] suggested to multiply the
negative term in (6) by

fh ¼ max 1;
b � ruh

RhðuhÞ

� �
;

which is method AS97 in Part I. However, in our tests, we
often observed no significant differences to the results ob-
tained with (6). Another ~e, motivated by assumptions
needed for theoretical investigations, can be found in
Knopp et al. [34]. Further modifications of the above ap-
proaches were proposed by do Carmo and Galeão [8]
and do Carmo and Alvarez [7], who introduced rather
complicated definitions of ~e which should suppress the
addition of the artificial diffusion in regions where the solu-
tion of (1) is smooth. The SOLD term (5) was also used by
Johnson [30], who proposed to set

~ejK ¼ maxf0;C½diamðKÞ�2jRhðuhÞj � eg 8K 2Th; ð7Þ

where C is a nonnegative parameter (method J90 in
Part I).

Johnson et al. [32] modified the SUPG discretization (2)
by adding artificial diffusion in the crosswind direction
only. This corresponds to the additional term

ð~eb? � ruh; b
? � rvhÞ with b? ¼ ð�b2; b1Þ

jbj ð8Þ
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on the left-hand side of (2). In [32], the parameter ~e was de-
fined by

~ejK ¼ maxf0; jbjh3=2
K � eg 8K 2Th ð9Þ

so that the resulting method (JSW87 in Part I) is linear but
non-consistent and hence it is restricted to finite elements
of first order of accuracy. Moreover, the numerical tests
from Part I show that this method is very diffusive.

Codina [10] proposed to define ~e in (8), for any K 2Th,
by

~ejK ¼ max 0;C
diamðKÞjRhðuhÞj

2jruhj
� e
jRhðuhÞj
jb � ruhj

� �
; ð10Þ

where C is a suitable constant, and he recommended to set
C � 0:7 for (bi)linear finite elements. This is method C93 in
Part I. For f 6¼ 0, we observed that, in some cases, this
choice of ~e does not lead to a reduction of the oscillations
(see the discussion to Example 1 in the next section). There-
fore, in Part I, we replaced (10) by

~ejK ¼ max 0;C
diamðKÞjRhðuhÞj

2jruhj
� e

� �
; ð11Þ

called method KLR02_3 in Part I. Here, we shall also call
this method modified method of Codina. If f ¼ 0 and
Dhuh ¼ 0, it is equivalent to the original method (10).
A modification of (10), leading to properties convenient
for theoretical investigations, was proposed by Knopp
et al. [34].

For triangulations consisting of weakly acute triangles,
Burman and Ern [4] proposed to use (8) with ~e defined,
on any K 2Th, by

~ejK ¼
sjbjjRhðuhÞj
jruhj

jbjjruhj
jbjjruhj þ jRhðuhÞj

� jbjjruhj þ jRhðuhÞj þ tan aK jbjjb? � ruhj
jRhðuhÞj þ tan aK jbjjb? � ruhj

: ð12Þ

The parameter aK is equal to p=2� bK where bK is the larg-
est angle of K. If bK ¼ p=2, it is recommended in [4] to set
aK ¼ p=6. To improve the convergence of the nonlinear
iterations, we replaced in Part I jRhðuhÞj by jRhðuhÞjreg with
jxjreg � x tanhðx=2Þ as proposed already in [4]. The resulting
method was called BE02_1.

In Part I, we also introduced a simplification of (12),
called BE02_2, defined by

~e ¼ sjbjjRhðuhÞj
jruhj

jbjjruhj
jbjjruhj þ jRhðuhÞj

; ð13Þ

which adds less artificial diffusion than (12). In (13), we do
not apply any regularization of the absolute values. We call
this method modified method of Burman and Ern. Based on
the evaluation of the numerical studies in Part I and
[24,25], in our opinion, this method and the modified meth-
od of Codina are the best methods among the methods
adding crosswind artificial diffusion.

It is also possible to add both isotropic and crosswind
artificial diffusion terms to the left-hand side of (2). Denot-
ing the parameters in (5) and (8) by ~eiso and ~ecross, respec-
tively, Codina and Soto [12] proposed to set

~eiso ¼ maxf0;~edc � sjbj2g; ~ecross ¼ ~edc � ~eiso;

where ~edc is defined by a formula similar to (11). However,
in the numerical tests we have performed up to now, we
have not observed an advantage in using this approach in-
stead of (8) with ~e given by (11).

There are some similarities between the definitions of ~e
in (6), (7) and (10)–(13). Particularly, the presence of a term
of the type hjRhðuhÞj=jruhj seems to be important. Indeed,
if convection is strongly dominant (and hence (4) approxi-
mately holds), we have in (6), (12) and (13)

sjbjjRhðuhÞj
jruhj

� hK jRhðuhÞj
2jruhj

: ð14Þ
Remark 1. The recently published YZb scheme for scalar
convection–diffusion equations [2], originally proposed by
Tezduyar [37] for compressible flows, gives for b ¼ 1
exactly the parameter (14) if, in contrast to [2], in the
definition of the local element length the convection is used
instead of the gradient of the solution. Using the latter
replaces hK by the element size orthogonal to the convec-
tion, see the discussion of this choice in Section 4.

The third class of SOLD methods is based on so-called
edge stabilizations, which add the termX
K2Th

Z
oK

WKðuhÞsign
ouh

otoK

� �
ovh

otoK
dr ð15Þ

to the left-hand side of (2), toK being a tangent vector to the
boundary oK of K. Various choices of the nonnegative
function WK were proposed by Burman and Hansbo [6]
and Burman and Ern [5]. To make the convergence of
the nonlinear iterative process possible, the sign operator
is regularized by replacing it by the hyperbolic tangent as
recommended in [6]. Our numerical tests in Part I and in
[27] indicate that some SOLD methods based on edge sta-
bilizations work comparatively well on unstructured grids
with acute triangles, but still away from being perfect. In
general, these methods lead to a more pronounced
smearing of layers in comparison with the best methods
of the previous two classes. The best edge stabilization
method in the numerical studies of Part I is defined by
WKðuhÞ ¼ cjðRhðuhÞjKÞj, where c is a nonnegative parameter.
This method was called BE05_2 in Part I. We shall see in
the next section that the parameter c should be propor-
tional to the area jKj of the respective element K, i.e.,
cjK ¼ CjKj with some C P 0. Then (15) can be written in
the form

X
K2Th

jKj
Z

oK
C

RhðuhÞjK
�� ��

ouh
otoK

��� ���
ouh

otoK

ovh

otoK
dr; ð16Þ

which has a similar structure like many of the SOLD terms
discussed above.
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4. Properties of SOLD methods for model problems

In this section, we shall investigate the properties of the
SOLD methods described in the previous section by apply-
ing them to three model problems whose solutions possess
characteristic features of solutions of (1), in particular, par-
abolic and exponential boundary layers and interior layers.
The goal of these investigations consists in understanding
why the methods work well or not. All numerical results
have been double-checked by computing them with two
different codes, one of them was MooNMD, [28].

In all model problems, we shall consider (1) with

X ¼ ð0; 1Þ2 and e ¼ 10�8: ð17Þ
Moreover, we shall confine ourselves to the two types of
triangulations depicted in Fig. 1. To characterize these tri-
angulations, we shall use the notion ‘N 1 � N 2 mesh’ where
N 1 and N 2 are the numbers of vertices in the horizontal and
vertical directions, respectively. The corresponding mesh
widths will be denoted by h1 and h2, i.e., h1 ¼ 1=ðN 1 � 1Þ
and h2 ¼ 1=ðN 2 � 1Þ.

Example 1 (Solution with parabolic and exponential bound-

ary layers). We consider the convection–diffusion equation
(1) with (17) and
b ¼ ð1; 0ÞT; f ¼ 1; ub ¼ 0:

The solution uðx; yÞ of this problem, see Fig. 2a, possesses
an exponential boundary layer at x ¼ 1 and parabolic
(characteristic) boundary layers at y ¼ 0 and y ¼ 1.
Outside the layers, the solution uðx; yÞ is very close to x.
Fig. 1. Triangulations used in Section 4.
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Fig. 2. Example 1: (a) solution u and (b) discrete solution uh obtained us
This test problem was used, e.g., by Mizukami and Hughes
[35].

For this special example, the stabilization parameter s
given in (3) is optimal along lines y ¼ const: outside the
parabolic layers. Therefore, for both the P 1 and Q1 finite
elements, the SUPG method gives a nodally exact solution
outside the parabolic layers. However, there are strong
oscillations at the parabolic layers, see Fig. 2b, which
shows a SUPG solution for the Q1 finite element. For the
P 1 finite element, the solution is similar. To measure the
quality of a discrete solution uh at the parabolic layers,
we define the values

osc :¼ max
y2½0;1�

uhð0:5; yÞ � uhð0:5; 0:5Þf g; ð18Þ

smear :¼ max
y2½h2;1�h2�

uhð0:5; 0:5Þ � uhð0:5; yÞf g; ð19Þ

see also Part I. The first value measures the oscillations at
the parabolic layers. In the case that the oscillations are
suppressed to the most part, the second value measures
the smearing of these layers.

To investigate the optimality of the definitions of ~e pre-
sented in the previous section, we introduce a parameter g
such that, for any K 2Th,

~ejK ¼ g
diamðKÞjRhðuhÞj

2jruhj
if ruh 6¼ 0: ð20Þ

This ansatz is based on the similarities between the SOLD
methods discussed at the end of Section 3. The relation (20)
can be satisfied provided that ~e ¼ 0 if RhðuhÞ ¼ 0, which is
true in all the cases except for (9). Of course, g generally de-
pends on uh, Th and the data of (1). Nevertheless, we can
also consider ~e defined by (20) with a constant value of g,
which resembles the first term of (10) and (11). Fig. 3 shows
how the value of g influences the oscillations and smearing
along the line x ¼ 0:5 in a discrete solution of Example 1
defined using the crosswind artificial diffusion term (8).
We observe that there is a clear optimal value of g which,
however, depends on the used triangulation. We also see
that the optimal values of g are nearly the same for
both the P 1 and Q1 finite elements. Using (20) together with
the isotropic artificial diffusion term (5), the curves and the
optimal values of g are very similar to those in Fig. 3.
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ing the SUPG method with the Q1 finite element on a 21� 21 mesh.
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Fig. 3. Example 1, discretization with a crosswind SOLD term given by (8) and (20), dependence of the measures for oscillations (j P 1, N Q1) and
smearing (h P 1, 4 Q1) defined by (18) and (19), respectively, on the parameter g: (a) 65� 33 mesh; (b) 65� 65 mesh; (c) 33� 65 mesh.
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The optimal values of g from Fig. 3 correspond to dis-
crete solutions which are nodally exact along the line
x ¼ 0:5. We would like to derive now an analytic expres-
sion for the optimal value of g by requiring that the discrete
solution be nodally exact outside the exponential boundary
layer. For simplicity, we shall consider the case e! 0þ so
that the nodally exact discrete solution satisfies uhðx; yÞ ¼ x
for ðx; yÞ 2 ½0; 1� h1� � ½h2; 1� h2�, where h1 and h2 are
defined in Fig. 1. By the definition of the SOLD methods,
we have, for any vh 2 V h,

ðRhðuhÞ; vh þ sb � rvhÞ þ ð~eruh;rvhÞ ¼ 0 ð21Þ

or

ðRhðuhÞ; vh þ sb � rvhÞ þ ð~eb? � ruh; b
? � rvhÞ ¼ 0: ð22Þ

In what follows, we shall assume that supp vh �
½0; 1� h1� � ½0; 1�. Then it is easy to verify that, for both
the P 1 and Q1 finite elements, the nodally exact discrete
solution satisfies ðRhðuhÞ; sb � rvhÞ ¼ 0 provided that s is
independent of x (for the P 1 finite element, this is true even
for any s 2 L1ðXÞ and it follows from the fact that, for any
K 2Th, either RhðuhÞjK ¼ 0 or b � rvhjK ¼ 0 – see below).
Therefore, the optimal value of g is independent of the
choice of s. It also shows that the SUPG method alone is
not able to provide an oscillation-free solution.

Let us consider the P 1 finite element. Then for elements
K lying in ½0; 1� h1� � ½h2; 1� h2� or having exactly one
vertex at the boundary y ¼ 0 or y ¼ 1, we have
b � ruhjK ¼ 1 and hence RhðuhÞjK ¼ 0. Thus, the only ele-
ments K in ½0; 1� h1� � ½0; 1� which may lead to non-van-
ishing parameters ~ejK are elements with two vertices at
y ¼ 0 or y ¼ 1. If K is such an element, we may assume that
the vertex of K not lying on y ¼ 0 or y ¼ 1 has the coordi-
nates ðih1; h2Þ or ðih1; 1� h2Þ with i 2 f1; . . . ;N 1 � 3g since
the two elements which have all three vertices on the
boundary of ½0; 1� h1� � ½0; 1� do not have to be consid-
ered. Then ruhjK ¼ ð0;	ih1=h2Þ and, consequently, for
any g, we get ð~eruh;rvhÞ ¼ ð~eb? � ruh; b

? � rvhÞ so that
we do not have to distinguish between (21) and (22). If vh

equals 1 at the interior vertex of K and vanishes at all other
vertices of the triangulation, the conditions (21) and (22)
reduce to
ðRhðuhÞ; vhÞK þ ð~eruh;rvhÞK ¼ 0;

where ð�; �ÞK denotes the inner product in L2ðKÞ or L2ðKÞ2.
Since ðruh � rvhÞjK ¼ ih1=h2

2 and RhðuhÞjK ¼ �f ¼ �1, we
deduce that the optimal value of ~e is

~eoptjK ¼
h2

2

3ih1

and that the optimal value of g is

gopt ¼
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h1

h2

� �2
s : ð23Þ

This formula is in a very good agreement with the optimal
values of g observed in Fig. 3. Note also that gopt does not
depend on K and it depends on the used triangulation only
through the aspect ratio of the elements of the triangula-
tion defined by

m :¼ h1

h2

: ð24Þ

The graphs in Fig. 3 indicate that a SOLD term of the
form (5) or (8) can be expected to lead to an oscillation-free
solution only if, on any element K � ½0; 1� h1� � ½0; 1� with
two vertices at y ¼ 0 or y ¼ 1, the value of ~e corresponding
to the nodally exact discrete solution uh is at least ~eopt.
Inserting uh into the formulas (6), (7) and (10)–(13) from
Section 3, we obtain the following relations between ~e
and ~eopt (we drop the notation for restriction to K):

ð6Þ : ~e ¼ 3

2
m� 1

i

� �
~eopt;

ð7Þ : ~e ¼ 3im Ch2ð1þ m2Þ � e
h2

� �
~eopt;

ð9Þ : ~e ¼ 3im2
ffiffiffiffiffi
h1

p
� e

h1

� �
~eopt;

ð10Þ : ~e ¼ 0 since b � ruh ¼ 0;

ð11Þ : ~e ¼ C
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p
� 3ime

h2

� �
~eopt;

ð12Þ : ~e ¼ 3im2

2ð1þ imÞ

ffiffiffi
3
p
þ imð1þ

ffiffiffi
3
p
Þffiffiffi

3
p
þ im

~eopt;
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ð13Þ : ~e ¼ 3im2

2ð1þ imÞ~eopt:

These relations have to be understood in the way that a
right-hand side is replaced by zero if it is negative. As
we see, ~e of the original method by Codina defined by
(10) cannot be expected to lead to an oscillation-free
discrete solution since, for the nodally exact discrete solu-
tion, we have ~e ¼ 0 on any element in ½0; 1� h1� � ½0; 1�.
On the other hand, using C ¼ gopt in the modified method
of Codina with ~e given by (11), we have ~e � ~eopt (provided
that the e-dependent term can be neglected) and hence we
obtain nearly the nodally exact solution. The methods
with ~e defined by (7) and (9) do not seem to be practical
since the ratio ~e=~eopt decreases when refining the mesh
while keeping the aspect ratio fixed. The remaining three
definitions of ~e, i.e., (6), (12) and (13), enable to satisfy
the condition ~e P ~eopt for sufficiently large aspect ratios,
in particular, for m P 5=3, m P 0:9 and m P ð1þ

ffiffiffi
7
p
Þ=3,

respectively.
In the quadrilateral case, it is not possible to derive sim-

ple formulas for ~eopt and gopt, but the results in Fig. 3 sug-
gest that the optimal values of g do not differ much from
(23). Therefore, conditions for obtaining an oscillation-free
solution can be derived by requiring that the parameters ~e
in (5) and (8) satisfy

~ejK P gopt

diamðKÞjRhðuhÞj
2jruhj

¼ h2

3

jRhðuhÞj
jruhj

8K 2Th ð25Þ

for any function uh. The resulting relations also apply to
the P 1 finite element but are less sharp than above. It is
obvious that, for the method of do Carmo and Galeão
and for the modified method of Burman and Ern, i.e., for
~e given by (6) or (13), respectively, the inequality (25)
may hold only if

sjbj > h2

3
; ð26Þ

which is equivalent to m > 2=3. If m 6 2=3, we have to ex-
pect spurious oscillations in the discrete solution as it is
demonstrated in Fig. 4. The inequality (26) suggests to de-
fine s in (6) and (13) using the element diameter h?K in the
direction orthogonal to the convection vector b instead of
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Fig. 4. Example 1, discrete solutions on 41� 21 meshes: (a) P 1 finite element, is
artificial diffusion given by (13).
using hK . For instance, in the convection-dominated case,
we can use the formula

sjK ¼
h?K
2jbj 8K 2Th; ð27Þ

which in fact removes the spurious oscillations visible in
Fig. 4. For ~e given by (12), the necessary condition ob-
tained from (25) is weaker than (26) but, for a 41� 21
mesh, we get a similar discrete solution as in Fig. 4 (slightly
better for the P 1 finite element and slightly worse for the Q1

finite element). On the other hand, if we use ~e given by (11),
spurious oscillations should not appear for C > 2=3 > gopt,
which is particularly satisfied by the value C � 0:7 recom-
mended in [10]. However, for certain triangulations, the
layers can be smeared as Fig. 3 indicates.

As we already showed, ~e defined by (10) is not appropri-
ate in case of the P 1 finite element. The situation is different
for the Q1 finite element for which similar results can be
obtained as with (11) provided that the term (8) is evalu-
ated using a quadrature formula with nodes which are
not ‘too near’ to the boundary of X.

Finally, let us mention a further drawback of ~e defined
by (7). If the functions f and ub in (1) are multiplied by a
constant a, then the solution u changes to au. For the
SOLD methods defined using the terms (5) and (8), this
property is valid if and only if the value of ~e does not
change after replacing uh, f by auh, af , respectively. This
is true for most of the definitions of ~e mentioned in Section
3, however not for the formula (7). Let us assume that, for
a given mesh, the parameter C in (7) is defined in such a
way that the corresponding discrete solution is a good
approximation to the solution of Example 1. Now, replac-
ing f ¼ 1 by f ¼ a, we typically obtain with (7) either an
oscillatory solution (if jaj < 1) or a solution excessively
smearing the layers (if jaj > 1). This shows that the for-
mula (7) cannot be expected to lead to a qualitatively cor-
rect discrete solution unless C depends on uh or the data of
problem (1). This was probably also recognized by John-
son [31] who proposed to set C ¼ b=maxXjuhj in (7) where
b is a constant. However, a constant value of b allows to
remove spurious oscillations only at the price of a signifi-
cant smearing of the layers and hence the method does
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not attain the quality of the best SOLD methods (see also
Part I).

For the edge stabilization term (16) and both the P 1 and
Q1 finite elements, it is easy to derive that the function
uhðx; yÞ ¼ x satisfies the respective discrete problem for
e! 0þ and test functions vh 2 V h with supp vh �
½0; 1� h1� � ½0; 1� if C ¼ 1=6. However, in practice, the
discrete solution is slightly worse at the parabolic boundary
layers due to the regularization of the sign operator.
Moreover, in contrast to the modified method of Codina,
the discrete solution is significantly smeared along the
exponential boundary layer. A sharp approximation of this
layer requires to set C ¼ 0 in this region.

To summarize the discussion to Example 1, among the
SOLD methods adding the isotropic diffusion term (5) or
the crosswind diffusion term (8), the only SOLD method
which gives satisfactory results seems to be the modified
method of Codina defined by (8) and (11), but only with
an appropriately chosen constant C. The edge stabilization
(16) enables to compute a satisfactory solution if the
parameter C is layer-adapted.

Example 2 (Solution with interior layer and exponential

boundary layers). We consider the convection–diffusion
equation (1) with (17) and

b ¼ ðcosð�p=3Þ; sinð�p=3ÞÞT; f ¼ 0;

ubðx; yÞ ¼
0 for x ¼ 1 or y 6 0:7;

1 else:

�

The solution, see Fig. 5a, possesses an interior (characteris-
tic) layer in the direction of the convection starting at
(0, 0.7). On the boundary x ¼ 1 and on the right part of
the boundary y ¼ 0, exponential layers are developed. This
example was used, e.g., by Hughes et al. [22].

The position of spurious oscillations in the solutions
obtained with the SUPG method depends on h1 and h2.
If the mesh is constructed such that

h1b2 þ h2b1 < 0; ð28Þ
then, for both the P 1 and Q1 finite elements, the SUPG
solution contains oscillations along the interior layer and
along the boundary layer at x ¼ 1. However, there are no
oscillations along the boundary layer at y ¼ 0 and this
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Fig. 5. Example 2: (a) solution u and (b) discrete solution uh obtained us
layer is not smeared. This is illustrated in Fig. 5b which
shows a SUPG solution for the P 1 finite element. For the
Q1 finite element the discrete solution is very similar. If
h1b2 þ h2b1 > 0, then the SUPG solution contains oscilla-
tions along the interior layer and along the boundary layer
at y ¼ 0 but no oscillations and no smearing occur along
the boundary layer at x ¼ 1. For shortness of presentation,
we shall consider only the case (28) in the following.

For a nodally exact solution, the SUPG term will not
vanish in Example 2 (in contrast to Example 1). Thus,
for obtaining a nodally exact solution with a SOLD
method, the choice of the SUPG parameter s will be of
importance, too. The chosen parameter has to ensure that
there is no smearing of layers since smeared layers cannot
be corrected with SOLD methods. With the approach pre-
sented in Section 2, the SUPG parameter in Example 2 will
be the same on each element. We found that the choice (3)
is optimal in the class of globally constant parameters in
the sense that any larger value leads to a smearing of the
layer at y ¼ 0 and any smaller value results in spurious
oscillations at this layer and increases the oscillations at
x ¼ 1.

Let us first investigate the quality of the approximation
of the interior layer. For simplicity, we shall confine our-
selves to the P 1 finite element unless stated otherwise. To
measure the oscillations of a discrete solution uh at the inte-
rior layer, we define the value

oscint :¼ max max
ðx;yÞ2G

uhðx; yÞ � 1; min
ðx;yÞ2G

uhðx; yÞ
����

����
� �

; ð29Þ

where ðx; yÞ are the nodes in G :¼ ½0; 0:5� � ½0:25; 1�. Let us
again consider SOLD methods defined using the term (5)
or (8) with ~e given by (20). Numerical tests show that the
value of oscint is a non-increasing function of g on a given
mesh. Given an integer m, we define

gm :¼ minfg 2 Rþ0 ; oscintðgÞ 6 10�mg:

This value depends on the aspect ratio m defined in (24). In
view of (28), we have m >

ffiffiffi
3
p

=3. Fig. 6 presents the depen-
dence of g2, g3 and g4 on the aspect ratio for both the iso-
tropic and the crosswind artificial diffusion and for
h1 ¼ 1=64. Of course, h2 and consequently the number of
degrees of freedom is different for different aspect ratios.
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ing the SUPG method with the P 1 finite element on a 31� 31 mesh.
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Fig. 6. Example 2, dependence of g2, g3 and g4 on m (from bottom to top) for the P 1 finite element and meshes with h1 ¼ 1=64: (a) isotropic artificial
diffusion (5) and (b) crosswind artificial diffusion (8).
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We checked with several values for h1 that the results pre-
sented in Fig. 6 depend only on m. Thus, one would get the
same results for a fixed number of degrees of freedom with
varying h1 and h2. Fig. 6 shows that the smallest value of g
assuring that oscillations will not exceed a given tolerance
increases with increasing aspect ratio. Qualitatively, the re-
sults for the Q1 finite element are the same as for the P 1 fi-
nite element: increasing aspect ratios require increasing
parameters g to suppress the oscillations below given
thresholds.

For small e, formula (20) for ~e is the main part of the
method of Codina given by (8) and (10). Particularly, the
results in Fig. 6 show that, in contrast to Example 1,
the recommended value C � 0:7 does not generally lead
to sufficiently small spurious oscillations.

Now let us turn our attention to the method of do Car-
mo and Galeão given by (5) and (6) and the modified
method of Burman and Ern given by (8) and (13). Compar-
ing the formulas (6) and (13) with (20), one finds, using (4),
that for obtaining comparable results as for ~e defined by
(20) with a given value of g, the condition

g 6
hK

diamðKÞ ¼
2ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ m2
p ð30Þ

should be satisfied. The investigations of Example 1 sug-
gested to define s in (6) and (13) by (27). Since an interior
layer is a characteristic layer, it is natural to ask whether
this modification is reasonable also in the present example.
Then, instead of (30), we obtain the condition

g 6
h?K

diamðKÞ ¼
2m

ð
ffiffiffi
3
p
þ mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p : ð31Þ

Fig. 7 compares the curves g2 ¼ g2ðmÞ for both the isotro-
pic and the crosswind artificial diffusion with the func-
tions on the right-hand sides of (30) and (31). Values
of the right-hand sides of (30) and (31) below the curves
of g2ðmÞ indicate that the values of (6) and (13) are too
small to suppress the oscillations at the interior layer be-
low the value 10�2. Thus, Fig. 7 shows that the method
of do Carmo and Galeão and the modified method of
Burman and Ern will generally lead to non-negligible
spurious oscillations at the interior layer of Example 2.
Replacing hK by h?K in the definition of s used in (6)
and (13), oscillations of size at least 10�2 should appear
for any aspect ratio and they should be mostly even lar-
ger than for s defined using hK . Thus, in contrast to
Example 1, s in (6) and (13) should be defined rather
using hK for small aspect ratios (mK 1:5) and using even
a measure larger than hK , for instance diamðKÞ, for lar-
ger aspect ratios.

Next, the usefulness of the curves presented in Fig. 7
will be demonstrated. Considering, e.g., m ¼ 2, one expec-
tation is that the method of Codina given by (8) and (10)
with C ¼ 0:7, whose parameter ~e corresponds to the solid
lines, leads to a solution with small spurious oscillations
at the interior layer (less than 10�2). In contrast, the
methods of do Carmo and Galeão, (5) and (6), and of
Burman and Ern, (8) and (13), whose parameters corre-
spond to the dash-dot line, should produce solutions with
larger oscillations at the interior layer. Fig. 8 shows
numerical examples which confirm both expectations.
For the methods (5), (6) and (8), (13), the results obtained
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Fig. 8. Example 2, discrete solution uh obtained on 21� 41 meshes using (a) the method of do Carmo and Galeão and the Q1 finite element and (b) the
method of Codina with C ¼ 0:7 and the P 1 finite element.
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with both the P 1 and the Q1 finite elements are similar. In
particular, these solutions possess non-negligible spurious
oscillations at the beginning of the interior layer. Consid-
ering the method of Codina and the Q1 finite element, the
violation of the discrete maximum principle at the begin-
ning of the interior layer is larger and mainly in form of
undershoots. For the method of Burman and Ern given
by (8) and (12), the results are similar as for the method
of Codina but slightly worse with respect to the spurious
oscillations.

As pointed out above, the results of a SOLD method
depend not only on the definition of ~e but also on the def-
inition of s in the SUPG term. In addition, we explained
that the formula (3) is optimal with respect to the bound-
ary layer at y ¼ 0. Neglecting for the moment the quality
of the solution at this boundary layer, one can ask
whether increasing s can help to reduce the spurious oscil-
lations at the characteristic layer. However, the expecta-
tions are rather low because, in case of a characteristic
layer, the influence of the choice of s is usually weak since
the SUPG method stabilizes in the streamline direction
which is nearly perpendicular to the direction in which
oscillations appear. Fig. 9 shows a comparison of g4 for
both the isotropic and the crosswind artificial diffusion
and for two choices of s. One choice of s is the same as
before and the other one is given by the formula (3) where
hK is replaced by diamðKÞ. The use of the element diam-
eter in the definition of s is quite common in practice. It
can be seen that increasing the amount of the streamline
diffusion provided by the SUPG method requires to intro-
duce more crosswind diffusion by the SOLD term if larger
aspect ratios are used to reduce the oscillations at the
characteristic layer below 10�4. In summary, generally,
the spurious oscillations at the interior layer present in
the solution of a SOLD method cannot be expected to
become smaller if higher values of the SUPG parameter
s are used.

Let us now consider the boundary layers. One can
observe in Fig. 8 that the boundary layer at y ¼ 0 is
slightly smeared and that oscillations appear along the
boundary layer at x ¼ 1. The smearing is not surprising
since the SUPG solution approximates the boundary layer
at y ¼ 0 nodally exactly for e! 0þ. Thus, along the
boundary layer at y ¼ 0, the optimal choice of ~e in a
SOLD term is ~e ¼ 0, i.e., gopt ¼ 0 in (20). To investigate
the optimality of ~e for the boundary layer at x ¼ 1 with
y 2 ½h2; 1�, let us again consider e! 0þ and ~e given by
(20). The optimal solution has the values uh ¼ 1 at the
nodes with x ¼ 1� h1. A straightforward computation
reveals that the value of g for obtaining this optimal solu-
tion is

gopt ¼
h1b2 þ h2b1

diamðKÞb2

for the isotropic artificial diffusion (5) and

gopt ¼
ðh1b2 þ h2b1Þjbj2

diamðKÞb3
2

for the crosswind artificial diffusion (8). These formulas
hold for both the P 1 and the Q1 finite elements. One
can see that the optimal choice of g depends not only
on the aspect ratio of the elements of the triangulation
but also on the direction of the convection vector b.
The most important conclusion is that different values
of g should be used in different regions of the computa-
tional domain.
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To find a universal formula for the optimal value of g is
very difficult or even impossible. This will be demonstrated
by studying a limit case of Example 2 where the limit is
approached in two different ways. First, consider the limit
case b1 ! 0þ and b2 ! �1, jbj ¼ 1. Then, for both SOLD
terms (5) and (8), we get

gopt ¼
h1

diamðKÞ along the boundary x ¼ 1 if b ¼ ð0;�1Þ:

On the other hand, consider b ¼ ð0;�1Þ, the boundary
conditions of Example 2 and a constant right-hand side
f > 0 of (1). The optimal solution on the mesh line at
x ¼ 1� h1 has the form uðx; yÞ ¼ f ð1� yÞ þ 1 (away from
the lower boundary). Now, using the considerations lead-
ing to (23) gives

gopt ¼
2h1

3diamðKÞ along the boundary x ¼ 1 if b ¼ ð0;�1Þ

ð32Þ
independently of the choice of f. In particular, (32) holds
for f ! 0þ and hence we obtained two different limit val-
ues of gopt.

For the edge stabilization term (16) and both the P 1 and
Q1 finite elements, one can show similarly as above that the
optimal value of the parameter C at x ¼ 1 is

Copt ¼
h1b2 þ h2b1

4h1b2

:

For b ¼ ð0;�1Þ, the limit values of the optimal C at x ¼ 1
are 1/6 for Example 1 and 1/4 for Example 2 and hence
they also differ by the factor 2/3. Choosing C ¼ Copt in
Example 2 still leads to oscillations at the interior layer.
These can be suppressed by increasing the value of C in this
region. This shows once again that different values of the
parameter should be used in different regions of the compu-
tational domain to obtain a globally satisfactory solution.

The above discussion supports our conclusion to
Example 1 that the best SOLD methods are the modified
method of Codina and the edge stabilization (16), however,
only if the parameter C is chosen appropriately, i.e., layer-
adapted. Nevertheless, one generally cannot expect that the
discrete solutions will be without any spurious oscillations.

Example 3 (Solution with two interior layers). We consider
the convection–diffusion equation (1) with (17) and
 0  0.2  0.4  0.6  0.8  1x  0
 0.2

 0.4
 0.6

 0.8
 1

y
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Fig. 10. Example 3: (a) solution u and (b) discrete solution uh obtained u
b ¼ ð1; 0ÞT; ub ¼ 0;

f ðx; yÞ ¼ 16ð1� 2xÞ for ðx; yÞ 2 ½0:25; 0:75�2;
0 else:

(

The solution, see Fig. 10a, possesses two interior (charac-
teristic) layers at ð0:25; 0:75Þ � f0:25g and
ð0:25; 0:75Þ � f0:75g. In ð0:25; 0:75Þ2, the solution uðx; yÞ
is very close to the quadratic function ð4x� 1Þð3� 4xÞ.
This example was first considered by John and Knobloch
[25].

This is an example of a problem for which all the SOLD
methods mentioned in Section 3 fail. Note that, in contrast
to Example 2, the data of Example 3 satisfy the require-
ments for defining the standard weak formulation of (1).
Moreover, the solution of Example 3 belongs to H 2ðXÞ,
cf. Grisvard [18].

As expected, the SUPG solution of Example 3 possesses
spurious oscillations along the interior layers, see Fig. 10b.
To visualize both undershoots and overshoots, we present
the SUPG solution at an angle for which the plane z ¼ 0
reduces to a line. Applying the modified method of Codina
with C ¼ 0:7, the spurious oscillations present in the SUPG
solution are significantly suppressed, however, the solution
is wrong in the region ð0:75; 1Þ � ð0; 1Þ, see Fig. 11. Very
similar results are obtained for any of the SOLD methods
mentioned in Section 3 and for both the P 1 and Q1 finite
elements.

Note that, in view of the discontinuous right-hand side f,
the SOLD methods should be implemented using quadra-
ture formulas whose nodes do not lie on the edges of the
triangulations. However, such nodes cannot be avoided
when evaluating the edge stabilization term (16), which
complicates the implementation of this method.

To measure the spurious oscillations of a discrete solu-
tion uh to Example 3, we define the values

min :¼� min
0:46x60:6

uhðx;yÞ; diff :¼max
xP0:8

uhðx;yÞ�min
xP0:8

uhðx;yÞ;

ð33Þ

where y 2 ½0; 1� and min uh and max uh are computed using
values of uh at the vertices of Th. Tables 1 and 2 show the
values of min and diff, respectively, for the P 1 finite element,
most of the SOLD methods discussed above and several
meshes. The abbreviations denoting the methods can be
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sing the SUPG method with the P 1 finite element on a 33� 33 mesh.
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Fig. 11. Example 3, discrete solution uh obtained on a 33� 33 mesh using the modified method of Codina with C ¼ 0:7 and the P 1 finite element: (a) view
as in Fig. 10a and (b) view as in Fig. 10b.

Table 1
Example 3, values of min defined in (33) obtained for the P 1 finite element
using the methods from Sections 2 and 3

Method Mesh

17� 17 33� 33 65� 65 129� 129

SUPG 1.31e�1 1.33e�1 1.34e�1 1.34e�1
dCG91 2.37e�2 1.27e�2 2.42e�3 n.c.
KLR02_3, C ¼ 0:4714 1.93e�2 1.88e�2 1.22e�2 6.85e�3
KLR02_3, C ¼ 0:7 8.52e�3 1.38e�3 2.65e�4 n.c.
BE02_1 1.37e�2 9.33e�3 n.c. n.c.
BE02_2 1.85e�2 7.74e�3 1.20e�3 n.c.
BE05_2, C ¼ 1=6 1.06e�2 6.77e�3 3.98e�3 2.04e�3
BE05_2, C ¼ 0:4 2.79e�3 1.59e�3 8.24e�4 n.c.

Table 2
Example 3, values of diff defined in (33) obtained for the P 1 finite element
using the methods from Sections 2 and 3

Method Mesh

17� 17 33� 33 65� 65 129� 129

SUPG 3.30e�3 9.52e�5 3.83e�5 1.53e�4
dCG91 2.62e�1 2.95e�1 2.81e�1 n.c.
KLR02_3, C ¼ 0:4714 2.88e�1 3.24e�1 3.37e�1 3.37e�1
KLR02_3, C ¼ 0:7 2.82e�1 2.74e�1 2.42e�1 n.c.
BE02_1 3.77e�1 4.36e�1 n.c. n.c.
BE02_2 2.78e�1 2.94e�1 2.76e�1 n.c.
BE05_2, C ¼ 1=6 2.76e�1 3.05e�1 3.25e�1 3.36e�1
BE05_2, C ¼ 0:4 2.53e�1 2.56e�1 2.43e�1 n.c.
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found in Section 3 and are the same as in Part I. The abbre-
viation nc means that the nonlinear iterative process did not
converge, see the next section. This happens mainly for the
finest mesh. Generally, the convergence of the nonlinear
iterations deteriorates if the mesh becomes finer or the
parameter C in (11) or (16) increases. We consider two val-
ues of C for each method. First, since interior layers are
characteristic layers, we use the optimal values of C found
in the investigations of Example 1. For (11), we further
use the value C ¼ 0:7 recommended in [10]. For (16), the va-
lue C ¼ 0:4 corresponds to the choice of C in Part I. Table 1
shows that all the SOLD methods significantly reduce the
undershoots along the interior layers present in the SUPG
solution (the same holds for overshoots). For the consid-
ered meshes, the maximal undershoots of the SUPG meth-
od are not influenced by the size of the mesh width. In
contrast to this, for all the SOLD methods, the undershoots
become smaller if the mesh is refined. The undershoots also
decrease if the parameter C in (11) or (16) increases. How-
ever, for larger values of C, the smearing of the discrete
solution is more pronounced and, as we mentioned, the con-
vergence of the nonlinear iterative process deteriorates.

Table 2 shows that the wrong part of the discrete solu-
tion in ð0:8; 1Þ � ð0; 1Þ is of comparable magnitude for all
the SOLD methods and does not improve significantly if
the mesh is refined or C is increased (both in the range
where the nonlinear iterative schemes converge). There-
fore, we conclude that, using the SOLD methods
described in Section 3, it is not feasible to obtain a qual-
itatively correct approximation of the solution to Example
3. An open question is whether appropriately defined
non-constant parameters in the modified method of Codi-
na (11) or the edge stabilization (16) might lead to satis-
factory solutions.

5. The solution of the nonlinear discrete problems

The discrete SOLD problems can be written in the form

ahðuh; uh; vhÞ ¼ hf ; vhi 8vh 2 V h;

where ahðuh; �; �Þ is a bilinear form and the first argument of
ah enters the definition of ah through the parameter ~e or the
respective term in (16). Thus, it is straightforward to com-
pute the discrete solution by means of the following itera-
tive scheme. Given an approximation uk

h of the solution
of the SOLD system, compute ~ukþ1

h by solving

~ukþ1
h : ahðuk

h; ~ukþ1
h ; vhÞ ¼ hf ; vhi 8vh 2 V h: ð34Þ

The next iterate is defined as

ukþ1
h :¼ uk

h þ xkþ1ð~ukþ1
h � uk

hÞ

with the damping factor xkþ1 > 0.
As initial iterate u0

h, we use the solution obtained with
the SUPG method. Thus, apart from the spurious oscilla-
tions, the initial iterate coincides already rather well with
the solution wished to be obtained with the SOLD
methods.

Our experiences are that an appropriate choice of the
damping factors fxkg is often essential for the convergence
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of the iterative process and the number of iterations.
Appropriate damping factors depend on the SOLD
scheme, the problem and its data, the grid and the choice
of parameters in parameter-dependent SOLD schemes
and these damping factors might be very different. Since
it is not practicable in applications that the user should find
every time an appropriate damping factor, it is necessary to
use a strategy for an automatic and dynamic choice of this
factor.

The dynamic choice of the damping factor which we
used in our computations is illustrated with the pseudo
code in Fig. 12. Our approach contains a number of
parameters, whose values for the results presented in this
section are given on lines 1–2. These values seemed reason-
able choices in our opinion and we did not try to optimize
them for the examples considered in this paper. Our strat-
egy for the dynamic choice of the damping factor is based
on the following principles:


 There is an upper bound xmax for the damping factor.
The upper bound is adjusted dynamically in the course
of the iterative process. Initially, we set xmax ¼ 1, i.e.,
no damping.

 There is a lower bound xmin for the damping factor.

This bound is fixed. We used in the computations pre-
sented in this paper xmin ¼ 0:01. Note that very small
damping factors lead in general to a very large number
of iterations and thus to inefficient schemes.

 The iterate ukþ1

h is accepted if the norm jRhðukþ1
h Þj of its

residual

hRhðukþ1
h Þ; vhi :¼ ahðukþ1

h ; ukþ1
h ; vhÞ � hf ; vhi; vh 2 V h;
Fig. 12. Dynamic choice of the damping factor.
is smaller than jRhðuk
hÞj or if x is not allowed to decrease

any more, see the pseudo code presented in Fig. 12, lines
10–14. If jRhðukþ1

h Þj < jRhðuk
hÞj and if there was no rejec-

tion of an iterate ukþ1
h for a larger value of x before, the

maximal damping factor will be increased, see line l2,
and then the damping factor will be increased, too, see
line l3.

 If the proposal for the iterate ukþ1

h is not accepted, x will
be decreased, see line 16. In addition, if in the step k þ 1
an iterate is rejected the first time, xmax will be decreased
too, see lines 17–20. Now, a new proposal for ukþ1

h is
computed with the new value of the damping factor.
The acceptance or rejection of this new proposal is
checked the same way as for the former damping factor.

The main features of this approach are as follows:


 The damping factor decreases in general if the residual
increases.

 The decrease of the damping factor stops at the thresh-

old xmin so that also a non-monotone sequence with
respect to the norm of the residual can be computed.

 The damping factor as well as the maximal damping

parameter increase if the residual decreases to improve
the efficiency of the nonlinear iteration scheme. Thus,
a strong damping, which might be necessary only at
the beginning of the iterative process, influences the
damping factor at the end of the process only slightly.

In the simulations presented in this paper, the linear sys-
tems were solved by a sparse direct solver (UMFPACK,
[13]). Since the costs for solving the linear systems are
always the same, this leads to a fair comparison of the costs
of the iterative process for all SOLD schemes by simply
giving the number of nonlinear iterations.

In practice, it suffices to solve the linear systems only
approximately by a few steps of an iterative method with-
out affecting the convergence of the nonlinear iterative
method much. This approach might be faster, depending
on the iterative linear system solver. However, different
numbers of iterations for solving the linear systems are in
general necessary for different SOLD schemes, which
makes it harder to perform a fair comparison.

Below, our experiences with respect to the solution of
the nonlinear discrete problems corresponding to the exam-
ples of Section 4 are reported. Tables with characteristic
results are presented, where besides the dynamic approach
for computing the damping factor also numbers of itera-
tions with fixed factors are given. The computations were
carried out for the P 1 and the Q1 finite elements on
65� 65, 33� 65 and 65� 33 meshes. The iterative pro-
cesses were stopped if the l2-norm of the residual vector
was smaller than 10�8 or after 100,000 iterations (n.c. = not
convergent in the tables). Again, the abbreviations of the
SOLD methods given in Section 3 are used.

The numbers of iterations generally depend on the
quadrature formula used and this dependence is stronger



Table 5
Example 2, number of iterations for solving the nonlinear SOLD
problems, 65� 65 mesh, P 1 finite element

Method x ¼ 0:25 x ¼ 0:5 x ¼ 0:75 x ¼ 1 Dynamic

dCG91 160 n.c. n.c. n.c. 340
KLR02_3, C ¼ 0:7 194 n.c. n.c. n.c. 408
BE02_1 n.c. n.c. n.c. n.c. 389
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for the Q1 finite element than for the P 1 finite element. All
results in this paper were computed using Gaussian quad-
rature formulas of order 5 (with 7 nodes in case of triangles
and 9 nodes in case of rectangles). Of course, for Examples
1 and 2 discretized using the P 1 finite element, the results
are independent of the used quadrature formula since all
integrands are constant or linear.

We would like to emphasize that analytical results con-
cerning the existence and uniqueness of solutions to the
nonlinear discrete problems are not available. Thus, it can-
not be excluded that a failure of all used damping strategies
has its reason in the non-existence of the solution of the
nonlinear discrete problem.

Example 1. The nonlinear discrete problems on the
65� 65 and the 65� 33 meshes could be usually solved
without damping, see Table 3. Apart from dCG91 and
BE05_2 with C ¼ 0:4, the iterative schemes converged in
only few iterations. Solving the problems on the 33� 65
mesh required for some SOLD methods considerable
damping, see Table 4 for the Q1 finite element. For the
P 1 finite element, the convergence was mostly even worse
than in Table 4 and dCG91 did not converge at all. Except
the latter case, the dynamic choice of the damping factor
was always successful, but often more iterations were
needed than with the best fixed damping factor, cf. also the
last row in Table 3. In these computations, the dynamic
approach proposes many damping factors close to xmin

because the norm of the residual is slightly oscillating,
before finally convergence is achieved. Note that the
numbers of iterations for the optimal constant in
KLR02_3 are very small on both meshes.
Table 3
Example 1, number of iterations for solving the nonlinear SOLD
problems, 65� 65 mesh, P 1 finite element

Method x ¼ 0:25 x ¼ 0:5 x ¼ 0:75 x ¼ 1 Dynamic

dCG91 472 236 161 169 169
KLR02_3,

C ¼ 0:4714
71 32 18 9 9

KLR02_3, C ¼ 0:7 108 50 32 22 22
BE02_1 76 36 24 28 28
BE02_2 92 44 27 19 19
BE05_2, C ¼ 1=6 164 78 50 29 29
BE05_2, C ¼ 0:4 1010 506 345 n.c. 10943

Table 4
Example 1, number of iterations for solving the nonlinear SOLD
problems, 33� 65 mesh, Q1 finite element

Method x ¼ 0:25 x ¼ 0:5 x ¼ 0:75 x ¼ 1 Dynamic

dCG91 394 n.c. n.c. n.c. 935
KLR02_3,

C ¼ 0:2981
73 33 20 13 13

KLR02_3, C ¼ 0:7 119 64 63 157 66
BE02_1 235 173 218 n.c. 339
BE02_2 213 380 n.c. n.c. 353
BE05_2, C ¼ 1=6 78 36 23 72 72
BE05_2, C ¼ 0:4 n.c. n.c. n.c. n.c. n.c.
Example 2. The nonlinear discrete SOLD problems in this
example were harder to solve than for Example 1, in partic-
ular for the P 1 finite element. Even on the equidistant mesh,
strong damping was necessary, see Table 5. The dynamic
choice of the damping factor always led to the convergence
of the iterative process on this mesh. Using the P 1 finite ele-
ment on the 65� 33 mesh, the nonlinear problems could be
solved only for KLR02_3 and BE05_2 with sufficiently
small parameters. The solution of the discrete problems
with the Q1 finite element was much easier on all grids,
see Table 6 for representative results.

Example 3. Using the equidistant 65� 65 mesh with the P 1

and Q1 finite element, the discrete equations could be
solved without damping for most of the SOLD methods,
see Table 7. Only for BE02_1 and BE05_2 with C ¼ 0:4,
it was not possible to solve them at all, see also Tables 1
and 2. These tables show also that the solution of the non-
linear problems for the P 1 finite element on the next finer
equidistant grid became more difficult. We could obtain
convergence only for the parameter-dependent SOLD
schemes with sufficiently small parameters. For the P 1 finite
element on the 33� 65 mesh, the iterative processes was
BE02_2 210 n.c. n.c. n.c. 412
BE05_2, C ¼ 0:4 362 n.c. n.c. n.c. 536

Table 6
Example 2, number of iterations for solving the nonlinear SOLD
problems, 65� 65 mesh, Q1 finite element

Method x ¼ 0:25 x ¼ 0:5 x ¼ 0:75 x ¼ 1 Dynamic

dCG91 67 36 29 33 33
KLR02_3, C ¼ 0:7 102 58 51 60 60
BE02_1 213 275 n.c. n.c. 203
BE02_2 84 47 39 45 45
BE05_2, C ¼ 0:4 689 n.c. n.c. n.c. 7520

Table 7
Example 3, number of iterations for solving the nonlinear SOLD
problems, 65� 65 mesh, P 1 finite element

Method x ¼ 0:25 x ¼ 0:5 x ¼ 0:75 x ¼ 1 Dynamic

dCG91 158 86 59 49 49
KLR02_3,

C ¼ 0:4714
157 74 46 33 33

KLR02_3, C ¼ 0:7 199 115 89 115 110
BE02_1 n.c. n.c. n.c. n.c. n.c.
BE02_2 178 93 65 62 62
BE05_2, C ¼ 1=6 173 83 53 37 37
BE05_2, C ¼ 0:4 n.c. n.c. n.c. n.c. n.c.



Table 8
Example 3, number of iterations for solving the nonlinear SOLD
problems, 33� 65 mesh, Q1 finite element

Method x ¼ 0:25 x ¼ 0:5 x ¼ 0:75 x ¼ 1 Dynamic

dCG91 475 n.c. n.c. n.c. 599
KLR02_3,

C ¼ 0:2981
123 58 36 25 25

KLR02_3, C ¼ 0:7 247 168 n.c. n.c. 345
BE02_1 332 974 n.c. n.c. 461
BE02_2 317 432 n.c. n.c. 381
BE05_2, C ¼ 1=6 150 72 46 33 33
BE05_2, C ¼ 0:4 565 277 184 146 1640
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not convergent for dCG91, BE02_2 and KLR02_3 with
C ¼ 0:7. The results for the Q1 finite element and the
33� 65 mesh are presented in Table 8. Again, the need
of damping can be observed as well as the successfulness
of the dynamic approach (however, on the expense of
somewhat more iterations than for the best fixed damping
factors). On 65� 33 meshes, the only method which did
not converge at all was BE05_2 with C ¼ 0:4.

Remark 2. The numerical studies show that even for the
academic test problems considered in this paper, it was
sometimes difficult to solve the nonlinear SOLD problems.
Considering more challenging problems, like the one
defined by Hemker [19], the difficulties in the solution of
the nonlinear problems became even greater. For instance,
convergence for KLR02_3 on reasonably structured grids
could be achieved only for rather small constants C.

Remark 3. Another possibility for solving the nonlinear
discrete problems is to apply Newton’s method. However,
it is rather difficult to implement since one deals with non-
smooth operators. Therefore, usually it is convenient to use
some simplified version of Newton’s method. In any case, a
good initial approximation is typically needed. Hence a
general strategy is first to apply the iterative scheme given
above and then to switch to Newton’s method, possibly
by performing several special iterations assuring a smooth
transition between the two iterative processes. An appro-
priate switching point or transition strategy depend on
the solved problem, the SOLD scheme, the grid, etc. If
the norm of the residual increases after switching to New-
ton’s method, it is advisable to return to the original itera-
tive process without employing the results of the Newton
iterations and to try to switch to Newton’s method at a
later stage of the iterative process. Applying this alternative
strategy instead of the iterative scheme studied in this
paper, the numbers of iterations change of course but the
ranking of the methods basically remains the same. This
can be explained by our observation that the methods with
a large number of iterations in Tables 3–8 usually show a
slow rate of convergence from the beginning of the iterative
process. Thus, these methods also require a large number
of iterations for obtaining a good initial approximation
for Newton’s method.
Our experiences concerning the solution of the nonlinear
SOLD problems can be summarized as follows:


 Generally, it was easier to solve the problems for the Q1

finite element than for the P 1 finite element.

 The larger the constant in the SOLD methods KLR02_3

and BE05_2, the more iterations were needed. If the
constant became too large (size depended on the prob-
lem, the grid, etc.), the iterative process did not solve
the nonlinear problem any more.

 It was often easier to solve the problems arising from the

SOLD method BE02_2 than those coming from
BE02_1.

 Solving the problems obtained with the edge stabiliza-

tion BE05_2 required in general somewhat more itera-
tions than solving the problems coming from
KLR02_3, if in both SOLD methods reasonable con-
stants with respect to the reduction of the spurious oscil-
lations have been chosen. Moreover, the convergence of
BE05_2 was much more sensitive to the choice of the
parameter C than it was for the method KLR02_3.

 If the nonlinear discrete problems could be solved at all,

the dynamic choice of the damping factor was generally
among the successful approaches. If damping was neces-
sary, the dynamic approach needed often more itera-
tions than an appropriately chosen fixed damping
factor.

6. Numerical results obtained with adaptive methods

In several discussions with our colleagues about Part I,
the question arose whether the application of adaptive meth-
ods is useful for the reduction of spurious oscillations. In this
section, we shall study this question for the SUPG method
and adaptive grids obtained with two residual-based error
estimators, which are typically used in applications.

There are different ways of defining criteria for a fair
comparison of the results obtained with adaptive methods
and with SOLD schemes. One possible criterion is to
require that the number of degrees of freedom is roughly
the same. A different one might be that the computing
times are similar. Since the solution of the nonlinear dis-
crete problems of the SOLD methods often is rather
time-consuming (because of the large number of itera-
tions), it is possible to solve the linear problems on adap-
tive meshes with much more degrees of freedom in the
same time. Both criteria might be of interest and thus, we
will present results on adaptive meshes starting with a
few thousand degrees of freedom up to more than
100,000 degrees of freedom.

Computational studies for Example 2 will be presented.
As starting grid for the adaptive refinement, we used the
triangular grid from Fig. 1 with h1 ¼ h2 ¼ 1=16 (289
degrees of freedom). The control of the adaptive refinement
process was performed analogously to the way described in
Section 4 of [23]. The oscillations at the interior layer were
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Fig. 13. Example 2, oscillations on adaptively refined grids: (a) interior layer; (b) exponential layer.

Fig. 14. Example 2, adaptive grids with more than 100,000 degrees of freedom: (a) L2-error estimator; (b) H1-seminorm error estimator.
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measured with oscint defined in (29) and the oscillations at
the exponential boundary layer with

oscexp :¼ max
xP0:7
ðmaxf0; uhðx; yÞ � 1gÞ:

We will present results for residual-based error estimators
in the H1-semi norm and the L2-norm, see [39]. For a de-
tailed description of these estimators and their implementa-
tion, we refer to [23]. The gradient indicator and a residual-
based error estimator in the energy norm considered in [23]
failed to refine the region of the interior layer. This coin-
cides with their behavior observed in Examples 6.4 and
6.5 of [23].

The computational results for oscint and oscexp are pre-
sented in Fig. 13 and the final grids for both error estima-
tors in Fig. 14. The meshes match the expectations on the
error estimators since the regions of all layers are refined
and a deeper refinement occurs at the exponential bound-
ary layers. The graphs in Fig. 13 show that the adaptive
refinement of the layer regions neither reduces the spurious
oscillations at the interior layer nor at the boundary layers.
The adaptively refined meshes are still too coarse in these
regions to resolve the layers and to suppress the
oscillations.

This section showed exemplarily that a suppression of
spurious oscillations cannot be achieved with adaptively
refined grids whose elements do not resolve the layers.

7. Conclusions

This paper studied in detail SOLD methods which were
identified in Part I as the best ones. In particular, the lim-
its of the available methods were demonstrated. Analytical
and numerical studies showed that SOLD methods with-
out user-chosen parameters are in general not able to
remove the spurious oscillations of the solution obtained
with the SUPG discretization. For the two studied meth-
ods involving a parameter, the modified method of Codi-
na (8), (11) and the edge stabilization (16), values of the
parameter could be derived in two examples such that
the spurious oscillations were almost removed. It turned
out that a spatially constant choice of the parameters
was not sufficient in general and that the optimal param-
eters depended on the data of the problem and on the
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grid. In addition, an example was presented for which
none of the investigated methods provided a qualitatively
correct discrete solution.

The iterative solution of the nonlinear discrete problems
was also studied. The number of iterations or the conver-
gence of the iterative process depended again on the prob-
lem, the grid and the parameters of the SOLD methods. In
particular, the convergence of the nonlinear iterative pro-
cess for the edge stabilization (16) proved to be rather sen-
sitive to this parameter. It could be observed that the
convergence is often strongly influenced by the choice of
an appropriate damping factor and a strategy was pro-
posed for an automatic and dynamic computation of this
factor.

Finally, it was demonstrated that adaptive grid refine-
ment generally does not lead to a suppression of the spuri-
ous oscillations of the solutions computed with the SUPG
discretization.

Considering the reduction of the spurious oscillations,
the sharpness of the layers and the computational overhead
for solving the nonlinear discrete problem, the SOLD
methods involving parameters, i.e., the modified method
of Codina (8), (11) and the edge stabilization method
(16), seem to be the only reasonably promising approaches
among the studied SOLD methods. However, the appro-
priate definition of the generally non-constant parameters
in these methods will represent a great difficulty in more
complicated problems and in applications. Future research
should develop an a posteriori algorithm for an automatic
choice of these parameters.

The current situation can be summarized as follows: it is
in general completely open how to obtain oscillation-free
solutions using the considered classes of methods.
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Gómez, P. Quintela, P. Salgado (Eds.), Numerical Mathematics and
Advanced Applications, Proceedings of ENUMATH 2005, Springer-
Verlag, Berlin, 2006, pp. 336–344.

[25] V. John, P. Knobloch, A computational comparison of methods
diminishing spurious oscillations in finite element solutions of
convection–diffusion equations, in: J. Chleboun, K. Segeth, T.
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