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SUMMARY

A population balance system that models the synthesis of urea is studied in this paper. The equations for the
flow field, the mass and the energy balances are given in a three-dimensional domain, while the equation for
the particle size distribution is given in a four-dimensional domain. This problem is convection-dominated
and aggregation-driven. Both features require the application of appropriate numerical methods. This paper
presents a numerical approach for simulating the population balance system, which is based on finite ele-
ment schemes, a finite difference method and a modern method to evaluate convolution integrals that appear
in the aggregation term. Two experiments are considered and the numerical results are compared with exper-
imental data. Unknown parameters in the aggregation kernel have to be calibrated. For appropriately chosen
parameters, good agreements are achieved of the experimental data and the numerical results computed with
the proposed method. A detailed study of the computational results reveals the influence of different parts of
the aggregation kernel. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many species in chemical or pharmaceutical processes are produced in particulate form. Rather
than the behaviour of each individual particle, averaged properties of the particles are of interest in
applications. Such averages can be described by particle size distributions (PSDs) and the behaviour
of PSDs can be modelled by population balance systems. Population balance systems describe, for
example, the nucleation, growth, aggregation, breakage and transport of particles. These are cou-
pled systems consisting of, namely, the Navier–Stokes equations, equations for mass and energy
balances and for the PSD. Whereas the flow field, concentrations of dissolved species and tempera-
ture depend on time and space, the PSD depends also on properties of the particles — the so-called
internal coordinates. Altogether, a population balance system contains equations that are defined in
domains with different dimensions.

In applications, the domain for the flow field, etc., is three-dimensional and the domain for the
PSD is at least four-dimensional. Of course, the accurate and efficient simulation of such population
balance systems poses a great challenge. There are still only few approaches for the simulation of
the equation for the PSD in the higher-dimensional domain [1–4]. Currently, more widely used are
several proposals for model simplification, which replace the higher-dimensional equation for the
PSD by a system of equations in three dimensions. The most popular approaches in this direction
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SIMULATION OF AN AGGREGATION-DRIVEN POPULATION BALANCE SYSTEM 1647

are the quadrature method of moments [5] and the direct quadrature method of moments [6]. These
methods approximate the first moments of the PSD. However, the reconstruction of a PSD from a
finite number of its moments is a severely ill-posed problem [7, 8].

In our opinion, an accurate simulation of population balance systems requires the treatment of the
coupled problem in three and four dimensions. It was already shown in [9, 10] that even with this
approach, the use of different numerical methods might lead to considerable differences in computed
outputs of interest. For this reason, it is important to simulate problems that allow the comparison
of the computed results with experimental data.

This paper considers a laboratory experiment [11], a synthesis of urea particles, for which mea-
surement data are available. A model for this process is provided, which takes into account the
transport, the growth and the aggregation of urea particles. From the point of view of chemical engi-
neering, it is clear that the behaviour of the particles is driven by aggregation. Hence, the aggregation
kernel is of utmost importance in the model. This kernel consists of two parts, one describing aggre-
gation by Brownian motion and the other one describing shear-induced aggregation. A main goal of
the numerical simulations was the calibration of two unknown model parameters in this kernel by
comparing numerical results with the experimental data.

An important aspect for reliable comparisons is the use of accurate numerical methods. Thus, the
flow field will be simulated by a higher-order FEM, the equations for the concentration of dissolved
urea and for the temperature by one of the most accurate stable FEMs [12], and the aggregation inte-
grals are computed by a modern approach from [13–15]. Only the convective part of the equation
for the PSD is discretised, for efficiency reasons, with a rather simple scheme, which, however, has
proven to give very similar results to more complicated schemes in the presence of laminar flow
fields [10]. With these methods, parameters for the aggregation kernel could be identified for two
experimental setups, which give results that agree well with the experimental data. The reasons for
the differences of the optimal parameters between both examples are discussed. Detailed studies of
the PSD for different nodes of the grid at the outlet highlight the impact of the individual terms of
the aggregation kernel.

The paper is organised as follows. Section 2 introduces the population balance system, which
models the urea synthesis. The numerical methods used in the simulations of the flow field, tem-
perature, concentration and convective part of the equation for the PSD, and the method used for
computing the aggregation term are presented in Section 3. Then, Section 4 describes the incorpo-
ration of the experimental data into the simulations. The main part of the paper is Section 5, which
contains the numerical studies, the comparisons with the experimental data and a discussion of the
results. A summary and an outlook are given in Section 6.

2. THE POPULATION BALANCE MODEL OF THE UREA SYNTHESIS

The studied urea population is modelled by a system of equations describing the flow field (veloc-
ity, pressure), the energy balance (temperature), the mass balance (concentration) and the PSD. The
experimental setups, which were the basis of the numerical simulations, led to steady-state flow
fields.

The flow field obeys the incompressible Navier–Stokes equations

���uC � ..u � r/u/Crp D �g in �,

r � uD 0 in �,
(1)

where�D .0, 210/�.0, 1/�.0, 1/
�
cm3

�
is the flow domain, u Œm=s� is the fluid velocity, p ŒPa� is

the pressure, �D 789
�
kg=m3

�
is the density of ethanol, �D 1.074�10�3 Œkg=.m s/� is the dynamic

viscosity of ethanol (both at 298K) and g Œm=s2� is the gravitational acceleration. In the experiments,
the suspension is sufficiently dilute, the size of the particles is sufficiently small and the temperature
gradient is also small enough such that the influence of all these aspects on the flow field can be
neglected. The Navier–Stokes equations (1) has to be closed with boundary conditions. The bound-
ary � of� is the union of the inlet boundary �in D ¹0 cmº� .1=3 cm, 2=3 cm/� .1=3 cm, 2=3 cm/,
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the outlet boundary �out D ¹210 cmº � .0 cm, 1 cm/ � .0 cm, 1 cm/ and the walls �wall D
�n.�in[�out/. The unit outer normal vector on the boundary is denoted by n� . The exact conditions
at the inlet �in are not known, only the flow rates at the inlet. A simple approach would be the appli-
cation of plug flows (constant velocities) at the inlet that matches the given flow rates. However,
this approach leads to jumps in the boundary condition. This is certainly not correct because no-slip
boundary conditions hold at the boundaries of the supply to the flow domain. For this reason, an
inlet boundary condition of the form

u.x/D Uin.‰.� , 	/, 0, 0/T , x 2 �in, (2)

was used, where the profile‰.� , 	/ of this condition is the solution of the two-dimensional Poisson’s
equation

��‰ D 1 in�in, ‰ D 0 on@�in.

The parameter Uin was chosen to match the experimental inflow rates (Section 4). The boundary
condition at the outlet �out is the standard do-nothing condition

.�r.u/� pI/ � n� D 0, x 2 �out, (3)

which is often used in numerical simulations [16]. A boundary condition at the outlet is not known
from the experiments. In particular, it is unclear how good this unknown boundary condition cor-
responds to (3). For this reason, the length of the computational domain was chosen larger than
the length of the experimental domain (210 cm instead of 200 cm) such that a possible slight
incorrectness of the outflow boundary condition (3) does not possess an influence on the compu-
tational results in the region that corresponds to the outlet of the experimental domain. At all other
boundaries (the walls), the no-slip condition

u.x/D 0, x 2 �wall, (4)

was applied.
The mass balance of the system is given by

@c

@t
�D�cC u � rcC

3�dkVG.c,T /

mmol

Z Lmax

Lmin

L2f dLD�
�dkVL

3
minBnuc

mmol
in.0, te/��. (5)

In (5), c Œmol=m3� is the concentration of urea in the suspension, D D 1.35 � 10�9
�
m2=s

�
is

the diffusion coefficient of urea in ethanol, �d D 1323
�
kg=m3

�
is the density of urea (dispersed

phase), kV D 
=6 Œ�� is the scaling factor from diameters to volume (where it is assumed that all
particles are balls), G.c,T / Œm=s� is the growth rate given below in (8), T ŒK� is the temperature,
mmol D 60.06 � 10�3 Œkg=mol� is the molar mass of urea, Bnuc D 108 Œ1=.m3 s/� is a constant
nucleation rate and te Œs� is a final time. The diameter of the particles is denoted by L Œm�, where
Lmin is the smallest diameter (nuclei size) and Lmax is an upper bound for the largest diameter. The
PSD is f

�
1=m4

�
. The last term on the left-hand side of (5) models the decrease of dissolved urea

because of the growth of particles, and the term on the right-hand side describes the consumption
of dissolved urea because of the nucleation of particles. Equation (5) has to be equipped with initial
and boundary conditions. The boundary condition is given by8<

:
c.t , x/D csat.Tin/, x 2 �in,

D
@c

@n�
D 0, x 2 �out [ �wall,

(6)

with the saturation concentration

csat.T /D
35.364C 1.305.T � 273.15/

mmol

�
mol

m3

�
. (7)
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With this boundary condition, (5) is solved, without the coupling terms to the PSD, until a steady
state is reached. This steady state is used as initial condition c.0, x/. The growth rate is given by

G.c,T /D

8<
:kg

�
c � csat.T /

csat.T /

�g
, if c > csat.T /,

0, else,
(8)

with the growth rate constant kg D 10
�7 Œm=s� and the growth rate power g D 0.5 Œ��.

Next, the energy balance is modelled by

���T C �cp

�
@T

@t
C u � rT

�
C 3�hcryst�

dkVG.c,T /
Z Lmax

Lmin

L2f dL

D ��hcryst�
dkVL

3
minBnuc in .0, te/��, (9)

where cp D 2441.3 ŒJ=.kg K/� is the specific heat capacity of ethanol, � D 0.167 ŒJ=.K m s/� is its
thermal conductivity and �hcryst D 2.1645 � 105ŒJ=kg� is the heat of solution (enthalpy change of
solution). The boundary conditions are known from the experiments8̂̂̂

<
ˆ̂̂:
T .t , x/D Tin, x 2 �in,

�
@T

@n�
D 0, x 2 �out,

T .t , x/D Twall, x 2 �wall,

(10)

with Tin D 301.15 ŒK� and Twall D 291.15 ŒK�. Hence, the suspension is cooled at the wall. As an
initial condition, a fully developed temperature field was chosen, on the basis of the solution of a
steady-state equation without the coupling terms to the PSD.

Last, the behaviour of the PSD has to be modelled. Currently, only a model is available that
is based on the idealisation that the particles are of spherical shape, such that they can be pre-
scribed completely by their diameter. In practice, the particles are rather needle-shaped. With this
idealisation, the equation for the PSD is given by

@f

@t
CG.c,T /

@f

@L
C u � rf D ACCA�, (11)

where AC is the source of the aggregation model and A� is its sink. For modelling the aggregation,
the volume of the urea particles is considered. It is assumed that the volume is proportional to the
cube of the diameter V D kVL

3, with kV > 0. This means, all particles are assumed to be of the
same shape, namely, balls or cubes. Then, the PSD with respect to the volume is given by

fV .V /D fV .kVL
3/D

f .L/

kV

1

3L2

�
1

m6

�
. (12)

The source term describes the amount of particles of volume V , which are created by the aggregation
of two particles with volume V 0 and V � V 0, V 0 2 .0,V /. This is given by

AC,V D
1

2

Z V

0

�agg.V � V
0,V 0/fV .V � V

0/fV .V
0/ dV 0. (13)

The factor 1=2 arises because there are two realisations of this event: the first particle has volume
V 0, the second has volume V � V 0, and vice versa. The sink term describes the amount of particles
of volume V that vanish because they are consumed by aggregations with other particles of volume
V 0 2 .0,Vmax/

A�,V D�

Z Vmax

0

�agg.V ,V 0/fV .V /fV .V
0/ dV 0 D�fV .V /

Z Vmax

0

�agg.V ,V 0/fV .V
0/ dV 0. (14)
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The sum of AC,V and A�,V gives the change of particles of volume V because of the aggregation.
The change with respect to the diameter is then obtained by

ACCA� D 3kV .AC,V CA�,V / L
2,

using (12), the change with respect. The aggregation kernel is the product of two factors

�agg.V ,V 0/D pcol.V ,V 0/peff.V ,V 0/

�
m3

s

�
.

The first factor gives the probability of the collision of particles with volume V and V 0. The
efficiency of the collisions, that is, the amount of collisions that actually lead to aggregations, is
described by the second factor. Because of the lack of models, this factor is chosen to be constant.
This constant can be included into scaling factors for the individual terms of the following kernel
(see [17, 18]),

�agg.V ,V 0/DCbr
2kBT

3�

�
3
p
V C

3
p
V 0
	� 1

3
p
V
C

1
3
p
V 0

�

C
Csh

kV

p
2ru W ru

�
3
p
V C

3
p
V 0
	3 �m3

s

�
, (15)

where kB D 1.3806504 10�23 ŒJ=K� is the Boltzmann constant and Cbr,Csh are constants that have
to be calibrated on the basis of the experimental data.

The first term in (15) is Brownian-motion-generated. It is important for small particles because
in this case the last factor becomes large. The second term is shear-induced [19] and it becomes
important if both particles are large.

The initial condition is given by

f .0, x,L/D 0 in �� .Lmin,Lmax/,

that is, there are no particles in the flow domain. Boundary conditions are necessary at the closure
of the inflow boundaries

f .t , x,L/D

8<
:
fin.t , x,L/, x 2 �in

Bnuc

G.c,T /
, at LD Lmin, ifG.c,T / > 0.

The PSD at �in is given by experimental data (see Section 4).
Numerical simulations are based on dimensionless equations. For their derivation, the following

reference quantities were used: a reference velocity u1Œm=s�, a reference length scale l1Œm�, a ref-
erence concentration c1 Œmol=m3�, a reference temperature T1ŒK�, a reference value for the PSD
f1Œ1=m4� and a reference diameter of the particles L1Œm�. The reference pressure was defined by
p1 D �u21 ŒPa� and the reference time by t1 D l1=u1 Œs�. The derivation of the dimensionless
equations with these reference values proceeds in a standard way.

3. THE NUMERICAL METHODS

A sketch of the couplings in the considered population balance system is presented in Figure 1. All
spatial discretisations were performed on a hexahedral grid. The flow field, the initial temperature
distribution and the initial concentration were computed in a preprocessing step.

The computation of the flow field requires only a discretisation in space. For this purpose, the
inf-sup stable Q2=P

disc
1 finite element was used. This finite element is a popular choice [20] as it

combines a high accuracy and the possibility of solving the arising saddle point problems efficiently
[21, 22].

The equations for concentration, temperature and PSD form a coupled system. This system was
solved iteratively, where a step of the iteration started with solving the equation for the temper-
ature, followed by solving the equation for the concentration and finished with the equation for
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Figure 1. Couplings of the equations in the population balance system for the urea synthesis.

the PSD. Different discretisations were used for the equations defined on the three-dimensional
domain � (concentration, temperature) and the equation for the PSD, which is given on a four-
dimensional domain.

The temperature and the concentration are governed by convection-dominated equations. These
equations were discretised in time with the Crank–Nicolson scheme. In space, a stabilised FEM,
based on theQ1 finite element, was applied. For stabilisation, the linear finite element flux-corrected
transport (FEM-FCT) scheme was used [12]. This scheme has been proven to be among the best per-
forming stabilised FEMs for time-dependent convection-dominated scalar equations in [23, 24]. In
particular, it does not lead to undershoots and overshoots of the computed solutions.

Equation (11) for the PSD is a linear convection-dominated integro partial differential equation
that is defined for each discrete time in a four-dimensional domain. In [10], several schemes were
explored for solving this kind of equation. It was found that for laminar flow fields, simple and
inexpensive schemes give similar results for quantities of interest compared with more accurate and
expensive schemes. In particular, finite element schemes are rather expensive because of the costs
for assembling the matrices (the number of quadrature points scales exponentially with the dimen-
sion). On the basis of our experience, a forward Euler upwind finite difference method was applied
for the discretisation of (11).

In the discretisation of the individual equations of the coupled system, always the latest values of
the other unknowns were used to evaluate the coupling terms. The iteration for solving the coupled
system was stopped if the sum of the Euclidean norms of the residual vectors for concentration and
temperature was below a prescribed tolerance.

Much more small particles were contained in the fluid than large particles. Therefore, it is natural
to use a grid for the PSD, with respect to the volume of the particles, which is refined towards the
smallest particles. For the algorithm, which is used for evaluating the aggregation integrals, it is
essential that this local refinement is not arbitrary but that the locally refined grid can be decom-
posed into uniform grids at each level as it is illustrated in Figure 2. The ansatz space S for the PSD
was chosen to consist of piecewise linear functions.

Note that both terms in the considered aggregation kernel have separable structure, that is, the
aggregation kernel can be written in the form

�agg.V ,V 0/D
kX
iD1

ai .V /bi .V
0/.

Vmin Vmax

l = 0
l = 1

l = 2
l = 3

Figure 2. Decomposition of the locally refined grid for the PSD.
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Then, the integral term A.V / becomes

A.V /D AC.V /CA�.V /D

D
1

2

Z V

0

�agg.V � V
0,V 0/fV .V � V

0/fV .V
0/ dV 0 � fV .V /

Z 1
0

�agg.V ,V 0/fV .V
0/ dV 0

D

kX
iD1

"
1

2

Z V

0

ai .V � V
0/bi .V

0/fV .V � V
0/fV .V

0/dV 0

� fV .V /ai .V /

Z 1
0

bi .V
0/fV .V

0/ dV 0
�

.

The evaluation of the sink term is not difficult because only one-dimensional integrals have to be
computed. The source term in this formulation is the sum of convolutions 'i � i , where 'i D aif
and  i D bif . The functions ai .V / and bi .V / were approximated by piecewise constants on the
same grid as fV .V /. Legendre polynomials were used as an orthonormal basis of S . Thanks to
some known facts about Legendre polynomials, the convolution can be computed with the com-
plexity O.n logn/, where n is the number of grid points. In essence, it turns out that some discrete
convolutions have to be computed, which can be easily performed using the fast Fourier transform
(FFT ). For details of the rather involved algorithm, the reader is referred to [13–15].

The exact convolution !exact D
Pk
iD1 'i �  i does not belong to the ansatz space S . In the

simulations, the L2 projection !comp of !exact into the ansatz space was used. An issue in using
an approximation of !exact might be mass conservation. However, because !exact � !comp is L2

orthogonal to all piecewise linear functions, one obtains for all intervals ŒVi ,ViC1�

massi .!exact/D

Z ViC1

Vi

V 0!exact.V
0/ dV 0 D

Z ViC1

Vi

V 0!comp.V
0/ dV 0 Dmassi .!comp/,

that is, the mass (volume) is locally preserved. The only change in total mass that might occur comes
from the fact that the support of the convolution is larger than the support of the convolved functions.
In the case of aggregation, only non-negative contributions will be neglected by not considering the
complete support of the convolution such that the mass will always decrease. This might be crucial
for long time simulations. To avoid the decrease of mass, a correction to the aggregation term is
computed as follows:

A.V / WD A.V /�mass.A.V //
2

V 2max � V
2

min

,

where Vmin and Vmax are the smallest and largest volumes of the particles, respectively. Then,
although the local mass conservation is violated, the total mass of the computed aggregation term is
zero, which is in accordance with the modelling of this term.

A different correction would be the L2 projection of A.V / into the space of mass-conserved
functions ¹B.V / W

R Vmax
Vmin

V 0B.V 0/ dV 0 D 0º, which has the form

A.V / WD A.V /�mass.A.V //
3V

V 3max � V
3

min

.

Because of the factor V in the correction part, mainly the values A.V / for large volumes will be
affected. For the aggregation term, these values will increase to compensate the loss of mass because
of cutting the support of the convolution. We could observe that this might result in unnaturally large
values for the aggregation term and then for the PSD, in the last interval for the internal coordinate.
The same happened with the strategy proposed in [14], which applies a correction only in the last
interval. Hence, we do not recommend these approaches.
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4. THE EXPERIMENTAL DATA AND THEIR INCORPORATION INTO THE SIMULATIONS

The experiments that will be considered are described in [11]. Data for space-time-averaged nor-
malised volume fractions are provided, which were obtained by measurements using a microscope
with a flow-through cell.

In the experiments, the flow rate at the inlet Vr Œml=min�D Vr=60 Œcm3=s� was prescribed. This
data has to be matched by the flow rate of the used boundary condition at the inlet (2)

Uin

Z
�in

.‰.� , 	/, 0, 0/T d�d	

�
cm3

s

�
.

It follows that

Uin D
Vr

60
R
�in
.‰.� , 	/, 0, 0/T d�d	

,

where the integral in the denominator can be approximated by numerical quadrature.
The boundary conditions for the temperature are provided from the experiments as given in (10).

Also, the inlet condition of the concentration is controlled as given in (6).
Concerning the inlet condition of the PSD, particles were injected into the channel only in the

time interval Œ0, tinj� s with tinj D 5 s. From the experiments, a space–time-averaged inlet condition
is provided, such that a boundary condition of the form

fin.t , x,L/D

²
finj.L/ for t 2 Œ0, tinj� s, x 2 �in,
0 else,

can be applied.
The particles were contained in a solution with volume Vinj Œm3�, which was injected into the

domain in Œ0, tinj�, that is

Vinj D

Z tinj

0

Vr dt D
tinjVr

60 � 106
Œm3�.

It follows that the total number of particles that were injected is given by

Z
Vinj

Z Lmax

Lmin

finj.L/ dL dxD Vinj

Z Lmax

Lmin

finj.L/ dLD
Z Lmax

Lmin

tinjVr

6 � 107
finj.L/ dL. (16)

The experiments provide the distribution of the number of particles per diameter fL,seed.L/ Œ1=m�
in Vinj. This number was identical in all experiments (see Figure 3 for a presentation of this curve).

Figure 3. fL,seed.L/ at the inlet (left) and the normalised volume fraction of the PSD at the inlet (right).
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Integration of fL,seed.L/ gives the total number of particles, that is, to obtain the same total number
of particles as given in (16)

fL,seed.L/D
tinjVr

6 � 107
finj.L/ H) finj.L/D

6 � 107

tinjVr
fL,seed.L/ L 2 ŒLmin,Lmax�,

should hold. This expression gives the required value for the boundary condition of the PSD at the
inlet of the domain.

The experiments provide space–time-averaged evaluations of the volume fraction of the PSD. Let
x 2�, then the volume fraction is defined by

q3.t , x,L/D
L3f .t , x,L/R Lmax

Lmin
L3f .t , x,L/ dL

.

The normalised volume fraction of the inlet condition for the PSD is given in Figure 3. Similarly
derived profiles are provided at the outlet of the experimental domain (x D 200 cm) for different
flow rates. These profiles will be used in the comparison with the numerical results.

5. NUMERICAL STUDIES

5.1. The general setup

Experimental data were available for two setups differing in the flow rate at the inlet. Both setups
will be considered in the numerical studies. An important goal was the calibration of the unknown
model parameters in the aggregation kernel (15) in such a way that a good agreement to the experi-
mental data was obtained. This data consists of a space–time-averaged normalised volume fraction
at the outlet. A second important aspect of the numerical studies was the investigation of the PSD
at different points at the outlet. It will be shown that, for example, the PSD in the centre of the
channel possesses a considerably different form compared with the PSDs in points that are closer to
the walls.

In the numerical simulations, the following reference values were used

l1 D 0.01 m, u1 D 0.01
m

s
, T1 D 1 K, c1 D 1000

mol

m3
,

L1 D 5 � 10
�3 m, f1 D 10

13 1

m4
, Lmin D 2.5 10�6 m, Lmax D 5 � 10

�3 m.

The flow domain is very long compared with its thickness and there is a preferred direction of
the flow. This enables the use of an a priori adapted grid with anisotropic grid cells (see Figure 4).
In this figure, the y- and ´-coordinates are scaled for a better presentation. The aspect ratio (ratio
of largest edge and smallest edge) of the mesh cells is small at the inlet to resolve the recirculation
zone. It becomes larger towards the outlet. At the end of the flow domain, the mesh cells have an
aspect ratio of 30.

The Q2=Qdisc
1 discretisation of the stationary Navier–Stokes equations (1)–(4) led to 496 875

velocity DOFs and to 76 032 pressure DOFs on the grid presented in Figure 4. As mentioned
already, for both flow rates from the experiments, the Navier–Stokes equations have to be solved
only once in a preprocessing step.

The number of DOFs for the concentration of dissolved urea and for the temperature on the grid
from Figure 4 was 22 477.

Especially small particles were injected into the fluid (see Figure 3). For this reason, the grid for
the internal coordinate is locally refined for small diameters. As explained in Section 3, the com-
putation of the aggregation integrals is based on a grid with respect to the mass of the particles,
which has to possess certain properties. This issue was taken into account in the construction of the
grid with respect to the diameter (see Figure 5 for both grids). The grid with respect to the mass is
piecewise equidistant. It possesses 94 nodes, which leads to 2 112 838 DOFs for the PSD.
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Figure 4. The computational grid, flow domain not to scale (scaled up by factor 40 in y- and ´-direction).

Figure 5. The grid with respect to the internal coordinate, diameter (top) and mass (bottom).

As noted in Section 2, the initial temperature and the initial concentration were computed in a
preprocessing step. The time step was set to be�t D 0.1 s. Because of the somewhat explosive start
at the beginning of the simulations, a smaller length of the time step was applied in Œ0, 10� s. All
simulations were performed with the code MOONMD [25].

It was checked that with smaller time steps the results practically do not change. For the sake of
brevity, these studies are not included here.

5.2. Experiment with flow rate Vr D 30 ml/min

First, an experiment was studied that was conducted with a flow rate of Vr D 30 ml/min. The
Reynolds number, on the basis of the integral mean velocity at the inlet U D 4.5 cm/s, the diameter
of the channel L D 1 cm and the kinematic viscosity of ethanol  D �=� D 1.3612 10�6 m2=s, is
given by Re � 331. The stationary flow field at the inlet of the channel is shown in Figure 6.

Figure 6. Experiment with flow rate Vr D 30 ml/min; cut of the stationary velocity field at the inlet of
the channel.
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On the basis of the residence time of the particles, the data at the outlet of the experimental domain
at x D 200 cm were studied in the interval Œ200, 300� s. For each grid point at the outlet, the PSD
was added and then a time average was computed. After this, a spatial averaging was calculated
and from this the normalised volume fraction for these space–time-averaged values was derived.
This normalised volume fraction was utilised for the calibration of the unknown parameters Cbr

and Csh in the aggregation kernel (15). Results for different values of the parameters are presented
in Figure 7. Comparing the experimental data at the outlet with those at the inlet, Figure 3, one
can observe that the curve of the normalised volume fraction moves to the right. The increase of
the number of larger particles because of aggregation and growth is clearly visible. A rather good
agreement of the experimental and the numerical data could be obtained with Cbr ' 2 � 105 and
Csh ' 0.01.

For these parameters, the PSD at the outlet was studied in more detail. Figure 8 presents the time-
averaged PSD, which left the domain at different nodes in the outlet plane, and Figure 9 shows the
corresponding normalised volume fractions. Nodes on a line between the wall and the centre of the
channel, which is parallel to the plane ´D 0, and nodes on a line between a corner of the outlet and
the centre of the channel were considered. First, it can be seen that the most particles could be found
in the centre of the channel, that is, the bulk of the particles followed the flow very well. The closer
the node is to the wall, the less particles were observed. In particular, the number of particles in the
nodes with a distance less or equal than 1=6 cm to one of the walls was negligible (green and cyan
curves).

The distribution of the particles with respect to the diameter was very different for different nodes.
In the centre of the channel, most of the small particles were observed but only very few large par-
ticles. The majority of the large particles could be found in regions that are 1=4 � 1=3 cm away
from the centre of the channel. This different behaviour can be seen also well in the normalised

Figure 7. Flow rate Vr D 30 ml/min; space–time-averaged normalised volume fraction at the outlet for
different parameters Cbr and Csh.

Figure 8. Flow rate Vr D 30 ml/min; time-averaged PSD at the outlet for different nodes, Cbr D 2 � 10
5 and

Csh D 0.01.
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Figure 9. Flow rate Vr D 30 ml/min; time-averaged normalised volume fraction at the outlet for different
nodes, Cbr D 2 � 10

5 and Csh D 0.01.

volume fractions in Figure 9. The results for the individual nodes illustrate in a good way the effect
of the different parts of the aggregation kernel (15). In the centre of the channel, the shear of the
flow field was comparatively small. For this reason, the second term in (15), which is of importance
for the aggregation of large particles, did not possess much impact. Away from the centre, the shear
was larger. Hence, the second term of (15) became dominant in the kernel and larger particles were
generated by the aggregation.

5.3. Experiment with flow rate Vr D 90 ml/min

A second experiment was conducted with the flow rate Vr D 90 ml/min. Also, this flow rate led to a
stationary flow field (Figure 10), with Re � 992 based on the same reference values as for the first
example.

Because the flow is considerably faster for Vr D 90 ml/min than in the first experiment, the resi-
dence time of the particles is shorter. In particular, there will be less time to build large particles by
aggregation and growth compared with the first experiment.

Numerical results for space–time-averaged normalised volume fractions at the outlet are pre-
sented in Figure 11. Time-averaging of the PSD was performed in [60–110] s. Again, it was possible
to calibrate the parameters in the aggregation kernel in such a way that a good agreement with the
experimental data could be obtained. Appropriate parameters are Cbr ' 3 � 105 and Csh ' 0.004.
These parameters differ somewhat from the parameters obtained for the first example, but they are
of the same order of magnitude.

More detailed studies of the PSD at the outlet are presented in Figures 12 and 13. The principal
behaviour is the same as for the first example. Most of the small particles, and almost no large par-
ticles, can be observed in the centre of the channel. The large particles arrive away from the centre.
In the points that are too close to the walls, the amount of particles is negligible. In contrast to the
first example, the amount of very large particles is much smaller, compare the values of the PSD for
particles with large diameters. This is due to the shorter residence time.

Figure 10. Experiment with flow rate Vr D 90 ml/min; cut of the stationary velocity field at the inlet of
the channel.
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Figure 11. Flow rate Vr D 90 ml/min; space–time-averaged normalised volume fraction at the outlet for
different parameters Cbr and Csh.

Figure 12. Flow rate Vr D 90 ml/min; time-averaged PSD at the outlet for different nodes, Cbr D 3 � 105

and Csh D 0.004.

Figure 13. Flow rate Vr D 90 ml/min; time-averaged normalised volume fraction at the outlet for different
nodes, Cbr D 3 � 10

5 and Csh D 0.004.

5.4. Discussion of the results and further aspects of the simulations

For both experimental setups, it was possible to identify model parameters Cbr and Csh such that a
very good agreement with the experimental data (space–time-averaged normalised volume fraction
at the outlet) could be obtained. The optimal values for Cbr and Csh differ somewhat but they are of
the same order of magnitude. We think that these differences are caused by the following reasons.
First, as already discussed in Section 2, the idealisation of spherical particles was used in modelling
the equation for the PSD. Second, the observed sizes of the diameters in the measurements were
not diameters of three-dimensional particles but diameters of projections of real particles onto a
plane. Both issues led of course to some errors in the measurements. The calibration of Cbr and
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Csh could compensate for these errors quite well for each experiment. However, this compensation
led to somewhat different values for Cbr and Csh. Finally, (15) is only a model with an unknown
modelling error.

The impact of both parts of the aggregation kernel (15) could be observed well in detailed stud-
ies of the PSD in the nodes at the outlet. The numerical results correspond completely to the
expectations.

The simulations were performed on Hewlett Packard (HP) BL2x220c computers with 2933 MHz
Xeon processors. Simulating one time step took around 45–60 s, including the calculation of all
data for evaluating the numerical simulations. The most expensive part was the computation of the
aggregation, which needed around 75% of this time.

6. SUMMARY AND OUTLOOK

This paper presented a numerical method for solving a population balance system consisting of
equations defined in a three-dimensional domain (Navier–Stokes equations, convection–diffusion
equations for mass and energy balances) and an equation defined in a four-dimensional domain
(PSD). The considered process of urea synthesis is aggregation-dominated. To our best knowledge,
the presented method is among the few approaches for solving a coupled population balance system
with aggregation, which is defined in domains with three and four dimensions.

Two experimental setups were considered. For both, it was possible with the proposed method to
calibrate unknown model parameters in the aggregation kernel in such a way that good agreements
to available experimental data were achieved. The obtained values of the parameters for both exper-
iments are of the same order of magnitude. Several possible reasons for the observed differences
were pointed out: the idealised assumption of spherical particles in the modelling, the observations
of projections of particles in the experiments and the modelling error of the kernel itself.

The next crucial step will be the extension of the model to needle-shaped particles as they occur
in practice. This is a challenge for modelling, measurements and numerical simulations as well.
To describe needle-shaped particles, two internal coordinates are necessary, namely, the length and
the diameter of the cross-section of the particles. The equation for the corresponding PSD will be
defined in a five-dimensional domain.

Considering the same flow domain as in the present paper, the five-dimensional domain will be a
tensor product of intervals. Then, the extension of the forward Euler upwind finite difference method
for discretising the convective part of the PSD equation is straightforward. However, in the future,
we intend to use more accurate schemes for this part, like essentially non-oscillatory (ENO) finite
difference methods (see [26] for promising studies of such methods). Another important task will be
the extension of the algorithm for computing the aggregation integrals. The simulation of coupled
population balance systems with two internal coordinates, including aggregation, without applying
any model simplification to obtain moment-based methods, would provide new contributions to the
understanding of population-balanced processes.
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