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Abstract

This paper presents a technique to improve the velocity error in finite element solu-

tions of the steady state Navier–Stokes equations. This technique is called pressure sep-

aration. It relies upon subtracting the gradient of an appropriate approximation of the

pressure on both sides of the Navier–Stokes equations. With this, the finite element

error estimate can be improved in the case of higher Reynolds numbers. For practical

reasons, the pressure separation can be applied above all for finite element discretisa-

tions of the Navier–Stokes equations with piecewise constant pressure. This paper pre-

sents a computational study of five ways to compute an appropriate approximation of

the pressure. These ways are assessed on two- and three-dimensional examples. They are

compared with respect to the error reduction in the discrete velocity and the computa-

tional overhead.
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1. Introduction

The steady state motion of an incompressible fluid is governed by the steady

state Navier–Stokes equations

� Re�1Duþ ðu � rÞuþrp ¼ f in X;

r � u ¼ 0 in X;

u ¼ g on oX;

ð1Þ

where X � Rd ; d 2 f2; 3g, is a bounded domain with Lipschitz boundary oX.
The Reynolds number Re > 0, the body forces f and the boundary conditions

g are given.
Finite element methods are one of the most popular approaches to discretise

(1). A lot of analytical results for finite element discretisation of (1) are avail-

able, see [4] for an overview. Recently, there have been investigations of tech-

niques to improve the accuracy of finite element solutions of (1) beyond the

standard analytical results. For example, in [14], superconvergence results on

uniform grids are proven. If all the assumptions for the application of this tech-

nique are fulfilled, one can obtain with a reasonable additional overhead a con-

siderable increase in the accuracy of the numerical solution.
This paper considers a technique to increase the accuracy of the computed

velocity in the case of a higher Reynolds number, i.e. the Navier–Stokes equa-

tions (1) are convection-dominated, and of the pressure being large in a certain

(semi-)norm. In this case, it turns out that one of the dominating terms in the

finite element error estimate is the product of the Reynolds number and the

norm of the pressure. The simple idea consists now to modify the Navier–

Stokes equations (1) such that the norm of the pressure in the modified equa-

tions is much smaller than the norm of the original pressure. This approach is
called pressure separation. The key idea of the pressure separation is to com-

pute a so-called separated pressure psep, which is a good approximation on

p, and to subtract the gradient of psep from both sides of the first equation

in (1). It dates back already from the middle of the 90s, [3,18]. A small number

of two-dimensional numerical tests can be found in [18,6].

This paper contains, to our knowledge, the first thorough numerical study of

the pressure separation. Although the application of the pressure separation

gives only an improvement in the constant in the velocity error estimate and
not in the order of convergence, the numerical studies will show that the dis-

crete velocity with pressure separation might be considerably more accurate

than without. There is a lot of freedom for computing psep. We will study in

this paper five different variants, see Section 3. The first two variants are based

on an appropriate modification of discrete pressures which are computed by

discretising the original Navier–Stokes equations (1). In the other three vari-

ants, appropriate auxiliary problems are solved to compute a function psep.
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The numerical study will assess these five variants based on the accuracy of the

results and the computational overhead.

In practical computations, the separated pressure psep will be a finite element

function. Thus, psep possesses only a limited regularity, psep 2 H1(X), and it

turns out that in this case the idea of pressure separation works if the Na-

vier–Stokes equations are discretised using a piecewise constant pressure space,

see Section 2. Appropriate velocity finite element spaces, which fulfill the inf–

sup stability condition with a piecewise constant pressure space are, e.g., non-
conforming spaces of first order [2,1,15,13]. Thus, we will restrict our numerical

study to such pairs of finite element spaces. It is well known that the numerical

results with these pairs of finite element spaces are quite inaccurate in compar-

ison with higher order finite element spaces, [17,10,7]. However, they can be an

important tool in the efficient solution of the discrete systems arising from

higher order discretisations, see [10,7,9] for the so-called multiple discretisation

multilevel method. In this multilevel method, lowest order non-conforming dis-

cretisation are used on all coarser levels of the multigrid hierarchy. The higher
order discretisation is applied only on the finest level. This approach uses the

well-known efficiency of multigrid methods for lowest order discretisations

[20,12]. The numerical studies in [10,7] show that the multiple discretisation

multilevel approach might work considerably more efficient than the standard

multigrid approach. Improving the accuracy of finite element solutions for

non-conforming finite element discretisations of lowest order will result in an

increased efficiency of the multiple discretisation multilevel method. For this

reason, the study of techniques which improve the accuracy of low order dis-
cretisations is of interest.

The paper is organised as follows. Section 2 presents the idea of pressure

separation in detail. The five variants of computing a function psep are de-

scribed in Section 3. Section 4 contains the numerical tests on two- and

three-dimensional examples. A detailed evaluation of these tests can be found

in Section 4.3. The results are summarised in Section 5.
2. The motivation of the pressure separation

Standard notations of Lebesgue and Sobolev spaces are used throughout

this paper. The norm in (L2(X))d, d 2 {1,2,3}, is denoted by kÆkL2, the norm

in (Hk(X))d by kÆkHk, k P 1, and the semi norm in (Hk(X))d by jÆjHk.

We consider the application of a Galerkin finite element method for the

numerical solution of (1). Let (Vh,Qh) be a pair of velocity–pressure finite ele-

ment spaces fulfilling the inf–sup stability condition where the functions from
Vh are piecewise polynomials of order k, k P 1, and the functions from Qh

are piecewise polynomials of order k � 1, e.g., see [4,5] for the inf–sup condi-

tion and examples of appropriate spaces. We assume that (1) has a unique
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solution (u,p) 2 (Hk+1(X))d · Hk(X). This implies a smallness assumption on

the data and on the Reynolds number, see [4, Chapter IV, Theorem 2.3]

for details. Denote the finite element solution by (uh,ph) and let h be the mesh

width of an underlying quasi-uniform triangulation of X.
The idea of the pressure separation can be motivated in a very simple

way on the Stokes equations with homogeneous Dirichlet boundary

conditions

� Duþrp1 ¼ f in X;

r � u ¼ 0 in X;

u ¼ 0 on oX:

ð2Þ

With the assumptions on the finite element spaces from above, the finite ele-

ment error estimate for (2) is, [4, Chapter II],

hju� uhjH1 þ ku� uhkL2 6Chkþ1ðjujHkþ1 þ jp1jHk Þ; ð3Þ

where the constant C depends on X and the solution of (2) is assumed to be

sufficiently regular. We consider now the Stokes problem with weighted diffu-
sive term

� Re�1Duþrp ¼ f in X;

r � u ¼ 0 in X;

u ¼ 0 on oX:

ð4Þ

This problem is equivalent to

� Dvþrp ¼ f in X;

r � v ¼ 0 in X;

v ¼ 0 on oX;

ð5Þ

with v = Re�1u. Applying the error estimate (3) to the solution of (5) and trans-

forming back to the solution of (4) give

hju� uhjH1 þ ku� uhkL2 6Chkþ1ðjujHkþ1 þ RejpjHk Þ; ð6Þ
where C depends on X. In the case that Re is high, the second term in the error

estimate (6) possesses a large weighting factor. In addition, if jpjHk(X) is large,

the right hand side of the error estimate is dominated by the second term.

For the Navier–Stokes equations (1), one can make a similar observation. If

the Reynolds number Re is higher and if the Hk-semi norm of the pressure is
large, then the product of these terms is a dominant term on the right hand side

of the finite element error estimate. However, there might be also other terms

on the right hand side of this estimate whose importance increases if the Reyn-

olds number becomes higher, see [18, p. 87].
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The goal of the pressure separation is to improve the right hand side of (6)

for the situation that Re and jpjHk(X) are large. Instead of (4), the following

problem is considered:

� Re�1Duþrðp � psepÞ ¼ f �rpsep in X;

r � u ¼ 0 in X;

u ¼ 0 on oX:

ð7Þ

Here, the separated pressure psep is a known function such that jp � psepjHk is

much smaller than jpjHk. Instead of (6), one obtains the error estimate

hju� uhsepjH1 þ ku� uhsepkL2 6Chkþ1ðjujHkþ1 þ Rejp � psepjHk Þ; ð8Þ

where uhsep is the velocity solution of the Galerkin finite element approximation

of (7).
For the Navier–Stokes equations, one can apply the same idea. That means,

instead of (1), the pressure separated Navier–Stokes equations

� Re�1Duþ ðu � rÞuþrðp � psepÞ ¼ f �rpsep in X;

r � u ¼ 0 in X;

u ¼ g on oX

ð9Þ

are solved. In this paper, we will study numerically the effect of solving (9) in-

stead of (1) on the accuracy of the discrete velocity.

From the practical point of view, psep will be represented by a finite element

function. Using a standard conforming finite element space for psep, then

psep 2 H1(X) but psep 62 H 2ðXÞ. That means, the last term in the error estimate

(8) is well defined only for k = 1. The condition on the finite element spaces for-
mulated above imply that the discrete velocity is of first order and the discrete

pressure is piecewise constant (Qh = P0 or Q
h = Q0). First order velocity spaces

which fulfill the inf–sup condition with piecewise constant pressure spaces are

on triangular grids the non-conforming Crouzeix–Raviart space V h ¼ P nc
1 , [2],

the Bernardi–Raugel space, [1] and the modified Crouzeix–Raviart space, [13].

The non-conforming Crouzeix–Raviart space and the Bernardi–Raugel space

can be applied also on tetrahedral grids. On quadrilateral and hexahedral grids

one can use the rotated bilinear finite element space Qrot
1 , [15]. For all these

spaces, the H1-semi norm on the right hand side of (8) has to be replaced by

a discrete H1-semi norm which is computed mesh cell by mesh cell. The major-

ity of finite element codes does not provide finite element spaces which are sub-

spaces of H2(X) such that a higher regularity of psep than H1(X) cannot be

achieved using such codes. Thus, the case k = 1 is the most important one

and we will restrict our numerical studies to this case.
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3. The studied variants for computing a separated pressure psep

In this paper, we will assess five different techniques for computing psep
which will be presented in this section.

3.1. Variant 1

The application of the pressure separation requires a good approximation of
p. In the first variant, we will use the approximation of p which is computed by

solving the Navier–Stokes equations (1), namely the finite element solution ph.

Since ph is piecewise constant, it is not in H1(X). Therefore we cannot directly

use ph as separated pressure. Instead, we use an interpolation I1(p
h) of ph into

the first order finite element space consisting of continuous functions P1(Q1).

This interpolation is based on local averaging, see [19,11,8] for details of the

averaging operator and its implementation. Thus, Variant 1 of the pressure

separation looks as follows:

• Compute the finite element solution (uh,ph) for the original Navier–Stokes

equations (1).

• Compute psep = I1(p
h).

• Compute the finite element solution ðuhsep; phsepÞ of the pressure-separated

Navier–Stokes equations (9).

• Assign uhNSE ¼ uhsep, p
h
NSE ¼ ph þ phsep.

3.2. Variant 2

Variant 1 has the disadvantage that it requires the solution of the Navier–

Stokes equations two times. Thus, one can expect that it needs roughly twice

the computing time of solving the Navier–Stokes equations without pressure

separation. The numerical tests will confirm this expectation, see Section 4.3.

One idea to improve this aspect is to solve the original Navier–Stokes equations
(1) only approximately using a small fixed number of iterations or a weak stop-

ping criterion. From the many possibilities in this approach, we tested this one,

that only one step in the fixed point iteration of the Navier–Stokes equations is

applied. As initial guess (uh,0,ph,0), the interpolation of the solution from the pre-

vious level is used. After the first iteration step, one obtains (uh,1,ph,1) and we set

psep = I1(p
h,1). The other steps of this variant are the same as of Variant 1.

3.3. Variant 3

The third approach is motivated by the fact that the pressure separation

should improve the computational results for higher Reynolds number Re.
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Neglecting for higher Re the viscous term in the Navier–Stokes equations (1)

and also the non-linear convective term gives the equation $p = f. Applying

the divergence operator to this equation and equipping it with homogeneous

Neumann boundary condition gives an equation to compute a separated pres-

sure psep 2 H 1ðXÞ \ L2
0ðXÞ

� Dpsep ¼ �r � f in X;

opsep
on

¼ 0 on oX;

Z
X
psep dx ¼ 0:

ð10Þ

The use of homogeneous Neumann boundary condition was proposed in [3].

Problem (10) will be discretised by first order conforming finite elements

P1(Q1). This is in contrast to [3], where (10) was discretised with non-conform-

ing finite elements of lowest order (P nc
1 ). The arising scalar discrete equation is

solved very effectively by using a multigrid method.
3.4. Variants 4 and 5

Variants 4 and 5 are extensions of Variant 3. Let uh0 be an approximation of

u. Then the non-linear convective term is not simply neglected in the equation

for psep as in Variant 3 but it is put on the right hand side of the equation for

psep. Thus one has to solve

� Dpsep ¼ �r � ðf � ðuh0 � rÞuh0Þ in X;

opsep
on

¼ 0 on oX;

Z
X
psep dx ¼ 0:

ð11Þ

There are of course many possibilities to obtain an approximation uh0, e.g.,

taking the interpolation of the solution from the previous level or solving the

original Navier–Stokes equations on the given level approximately (like in Var-

iant 2) or solving them even accurately (like in Variant 1). Variant 4 is the sim-

plest of these possibilities, namely to take the interpolation of the solution from

the previous level. In Variant 5, we used for uh0 the iterate which is computed

with the first step of the non-linear iteration (this is uh,1 in Variant 2). An inter-
polation of the non-conforming discrete velocity uh0 into a conforming finite ele-

ment space was not applied since the term ðuh0 � rÞuh0 is needed in the

assembling of the right hand side of (11) only in quadrature points in the inte-

rior of mesh cells.
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In many applications there is f = 0. Thus, whereas in this case one can com-

pute a separated pressure psep with Variants 4 and 5, one obtains only the triv-

ial solution with Variant 3.
4. The numerical studies

The numerical tests will study the following two questions for the variants of
computing a separated pressure which were presented in previous section:

• Does the error in the discrete velocity becomes smaller if the pressure-sepa-

rated Navier–Stokes equations (9) are solved instead of the original Navier–

Stokes equations (1)?

• How much is the overhead for computing an appropriate separated pressure

psep and solving (9)?

The numerical studies involve two-dimensional as well as three-dimensional

examples. They were performed using the non-conforming bilinear rotated fi-

nite element discretisation Qrot
1 =Q0 and the Crouzeix–Raviart finite element

P nc
1 =P 0. The computations were carried out with the code MooNMD [8,11].

In all figures, �Var. 0� stands for solving the Navier–Stokes equations (1)

without pressure separation.

4.1. Two-dimensional tests

For the two-dimensional tests, we have chosen X = (0,1)2, Re = 1000 and

the prescribed velocity field u = (u1,u2) and the pressure p where

u1 ¼ 2x2ð1� xÞ2ðyð1� yÞ2 � y2ð1� yÞÞ;
u2 ¼ �2y2ð1� yÞ2ðxð1� xÞ2 � x2ð1� xÞÞ;
p ¼ x3 þ y3 � 0:5:

ð12Þ

The velocity fulfills homogeneous Dirichlet boundary conditions. The right

hand side f was chosen such that (u,p) fulfill the Navier–Stokes equations (1)

for the given Reynolds number.

Computations were performed on triangular grids with the P nc
1 =P 0 finite ele-

ment and on rectangular grids with the Qrot
1 =Q0 finite element. The initial trian-

gular grid (level 0) is shown in Fig. 1. On this unstructured grid, any

superconvergence effects can be excluded. The initial rectangular grid consists

of four squares with edge length 0.5. The grids were refined uniformly. On the

finest level 9, there are 9,439,744 degrees of freedom on the triangular grid and

5,246,976 degrees of freedom on the rectangular grid.



Fig. 1. Coarse grid for the computations with P nc
1 =P 0 in 2d.
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The numerical results for the velocity errors in the L2-norm and the H1-semi

norm are presented in Fig. 2. The results for the P nc
1 =P 0 and the Qrot

1 =Q0 finite

element are very similar. With all variants of the pressure separation, the com-
puted solutions are more accurate than without pressure separation. Using

Variants 1 and 2, which are based on approximations of the discrete pressure

computed without pressure separation, the gain in the error is roughly one or-

der of magnitude. The differences between Variants 1 and 2 are rather small.
Fig. 2. 2d example, velocity errors, left L2-norm, right H1-semi norm, top P nc
1 =P 0, bottom Qrot

1 =Q0.
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With Variants 3 and 4, which are based on the solution of an auxiliary

problem, the gain in the errors is three to four orders of magnitude. Only very

small differences can be observed between these variants. The results for Var-

iant 5 are in between the other variants. On coarse grids, the gain in the error is

better than with Variants 1 and 2 but worse than with Variants 3 and 4. On fine

grids, Variant 5 behaves similar to Variants 3 and 4.

Computational studies were performed also with lower Reynolds numbers

than 1000. The qualitative results of these studies are the same as with
Re = 1000, namely, the application of all variants of pressure separation re-

sulted in numerical solutions with smaller errors. However, quantitatively,

we observed that the gain in the error reduction was smaller for smaller Reyn-

olds numbers, compare also the three-dimensional tests. This effect can be ex-

pected since the pressure separation is a technique which is proposed for higher

Reynolds numbers, see Section 2.
4.2. Three-dimensional tests

The three-dimensional tests were performed on the unit cube X = (0,1)3 with

the prescribed velocity u = (u1,u2,u3) and pressure p

u1ðx; y; zÞ ¼ aðsinðpxÞ sinðpyÞ sinðpzÞ þ x4 cosðpyÞÞ;
u2ðx; y; zÞ ¼ aðcosðpxÞ cosðpyÞ cosðpzÞ � 3y3zÞ;
u3ðx; y; zÞ ¼ aðcosðpxÞ sinðpyÞ cosðpzÞ þ cosðpxÞ sinðpyÞ sinðpzÞ

� 4x3z cosðpyÞ þ 4:5y2z2Þ;
pðx; y; zÞ ¼ 3x� sinðy þ 4zÞ þ c:

The constant c was chosen such that p 2 L2
0ðXÞ. With the parameter a 2 R it

is possible to consider flows which are dominated by the pressure gradient (a
close to zero) and also flows which are dominated by the velocity (absolute va-

lue of a large). From the motivation of the pressure separation and also from

the error estimate (8) for the Stokes equations, it becomes clear that a positive
effect of applying a pressure separation can be expected in particular for flows

which are dominated by the pressure gradient.

We will present computations for the P nc
1 =P 0 finite element on tetrahedral

grids and the Qrot
1 =Q0 finite element on hexahedral grids. The Reynolds num-

bers for which the solution of the stationary Navier–Stokes equations in 3d

was possible are much smaller than the Reynolds numbers for which these

equations can be solved in 2d. Thus, we will present results with Re = 30 for

the P nc
1 =P 0 finite element discretisation and with Re = 50 for the Qrot

1 =Q0 finite
element discretisation. The right hand side and the boundary conditions of the

Navier–Stokes equations (1) were chosen such that (u,p,Re) satisfies these

equations.
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The initial tetrahedral grid (level 0) consist of six tetrahedra and the initial

hexahedral grid of eight cubes of side length 0.5. On the finest level, there are

11,083,776 degrees of freedom on the tetrahedral grid (level 6) and 2,658,304

degrees of freedom on the hexahedral grid (level 5).

The computational results are presented in Figs. 3 and 4. We will first dis-

cuss the results for the pressure gradient dominated flows, i.e., a = 0.25 for

the P nc
1 =P 0 finite element and a = 0 for the Qrot

1 =Q0 finite element. These results

are qualitatively similar to the results of the 2d computations. All variants of
the pressure separation lead to a decrease in the errors. The results obtained

with Variants 3 and 4 are again in general more accurate than with Variants

1 and 2. On the hexahedral grid, Qrot
1 =Q0 with a = 0, Variant 5 behaves like

in the 2d tests. On the tetrahedral grid, P nc
1 =P 0 with a = 0.25, Variant 5 gives

almost identical results as Variant 4. The gain in the error is about one order

of magnitude for P nc
1 =P 0, a = 0.25, and up to four orders of magnitude for

Qrot
1 =Q0, a = 0. Altogether, the application of the pressure separation leads to

a considerable improvement of the discrete velocity for pressure gradient dom-
inated flows.
Fig. 3. 3d example, velocity errors, left L2-norm, right H1-semi norm, P nc
1 =P 0, top a = 0.25, bottom

a = 1.



Fig. 4. 3d example, velocity errors, left L2-norm, right H1-semi norm, Qrot
1 =Q0, top a = 0, middle

a = 0.5, bottom a = 1.
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If the flow becomes more velocity dominated (a = 0.5 and 1), the situation

changes somewhat. Applying Variants 1 and 2 of the pressure separation gives

still a decrease of the error (0.5–1 order of magnitude). In contrast, the errors

of the solutions computed with Variants 3 and 4 are sometimes larger than the

errors of the solution without pressure separation. Using a better velocity
approximation in the auxiliary problem, i.e., Variant 5 instead of Variant 4,
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leads to a considerable improvement of the results. In summary, using a pres-

sure separation has less effect for velocity dominated flows. But for some var-

iants of the pressure separation, there is still a notable gain of accuracy.

4.3. Computational overhead and assessment of the variants for computing

a separated pressure

The application of the pressure separation requires additional computa-
tional efforts. These are the computation of an approximation of ph (Variants

1 and 2) and the solution of an auxiliary problem (Variants 3–5). In this sec-

tion, first the additional overhead in terms of computing time is assessed.

The discrete Navier–Stokes equations are solved by a preconditioned flexible

GMRES method, [16]. As preconditioner, the multiple discretisation multilevel

method is applied, see Section 1 for a short explanation or [7,8] for details of

this method. This approach has been proven to be efficient and robust in a

numerical study for solving the stationary 3d Navier–Stokes equations govern-
ing the flow around a cylinder, [7]. In our computations, this solver was applied

with the same parameters in all tests.

For assessing the computational overhead, we took the solution time for the

Navier–Stokes equations without pressure separation as unit (100%) for each

example. The relative computing times to this unit are presented in Table 1.

As expected in Section 3, the application of Variant 1 roughly doubles the com-

puting time. In contrast, the computational overhead for Variant 2 is in general

only about 10% or below. Since the error reduction is very similar for both of
these variants, Variant 2 has to be preferred for the reason of less computa-

tional overhead. The computational overhead for Variants 3–5 is larger than

for Variant 2, but in general considerably smaller than for Variant 1. There

are small differences among Variants 3–5 in the computational overhead for

the 2d computations and the pressure gradient dominated 3d computations.

For the velocity dominated 3d computations, Variant 5 has the smallest
Table 1

Relative computing times compared to the computing time for solving the Navier–Stokes equations

without pressure separation (100%)

Example Var. 0 Var. 1 Var. 2 Var. 3 Var. 4 Var. 5

2d, P nc
1 =P 0 100 198 103 108 111 98

2d, Qrot
1 =Q0 100 174 97 110 111 106

3d, P nc
1 =P 0; a ¼ 0:25 100 249 158 142 142 157

3d, P nc
1 =P 0; a ¼ 1 100 192 112 146 146 112

3d, Qrot
1 =Q0; a ¼ 0 100 187 110 122 124 138

3d, Qrot
1 =Q0; a ¼ 0:5 100 184 103 159 161 132

3d, Qrot
1 =Q0; a ¼ 1 100 187 96 191 160 110
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overhead. Altogether, based on the computational overhead, no ranking of the

Variants 3–5 can be done.

Considering the error reductions obtained with Variants 2–5, one finds that in

2d and the pressure gradient dominated 3d computations, Variants 3 and 4 are

best and Variant 2 is by far worst. Variant 5 is, at least for finer levels, close to

Variants 3 and 4. In the velocity dominated 3d computations, Variants 3 and 4

are worse than Variants 2 and 5. If the nature of the flow is known a priori, these

results give an indication which variant should be used. In the case that the nat-
ure of the flow is unknown, we recommend to use Variant 5 since the results ob-

tained with this variant were on finer levels in all case close to the best ones.

4.4. Some possible extensions

We think that a more sophisticated modification of Variant 5, e.g., by solv-

ing first the Navier–Stokes equations up to a certain accuracy before solving

the auxiliary problem to compute psep, will improve the results further.
Another approach, which was proposed in [18], consists in solving an aux-

iliary problem of form (11) in each step of the non-linear iteration for solving

the Navier–Stokes equations. The function uh0 in (11) is the current iterate of

the discrete velocity.

The pressure separation can be applied also to the time-dependent Navier–

Stokes equations, e.g., see [6]. For these equations, there is an easy way for

choosing psep, namely by taking the discrete pressure solution from the previ-

ous discrete time. In particular, in the case of small time steps, there will be in
general only a small difference in the pressures of two consecutive discrete

times. Thus, the discrete pressure from the previous discrete time will be a good

approximation of the pressure in the current discrete time.
5. Summary

The paper presented numerical studies of applying the pressure separation,
which is a technique to improve the accuracy of the discrete velocity in finite

element solutions of the Navier–Stokes equations in the case of higher Reyn-

olds numbers. It turned out that this technique can be applied above all for

lowest order non-conforming finite element discretisations of the Navier–

Stokes equations. Five different variants of computing a separated pressure

were compared at two- and three-dimensional examples. The application of

the pressure separation led in the most cases to a considerable decrease of

the velocity errors. This decrease was large especially for pressure gradient
dominated flows. Based on the error decrease and the computational overhead,

none of the studied variants to compute a separated pressure can be clearly pre-

ferred. However, a good choice in all cases was Variant 5.
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