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Abstract

In the approximation of higher Reynolds number flow problems, the usual approach is to seek to approximate
suitable velocity averages rather than the pointwise fluid velocity itself. We consider an approach to this question
wherein the averages are local, spatial averages computed with the Gaussian filter (as in large eddy simulation)
and the averages are approximated without using either turbulent closure models or wall laws. The approach
we consider is a (underresolved) direct numerical simulation followed by postprocessing to extract accurate flow
averages. A priori and a posteriori estimates are given|fgr« (u — u”)|lo which can give guidance for the
coupling between the averaging radduand the mesh width. Numerical experiments support the error estimates
and illustrate the adaptive grid refinement procedure. Our analysis and experiments are for the equilibrium case
which is a step towards but still far from the actual case of a turbulent flow simulation.

0 2003 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords:Large eddy simulation; Postprocessing; Convergence of the finite element method

* Corresponding author.
E-mail addressesardst21@pitt.edu (A. Dunca), john@mathematik.uni-magdeburg.de (V. John), wjl@pitt.edu
(W. Layton).
URLSs: http://www-ian.math.uni-magdeburg.de /home/john/ (V. John), http://www.math.pitt.edu/~wjl (W. Layton).
1 partially supported by NSF grants DMS 9972622, INT 9814115 and DMS 0107627.
2 partially supported by the Deutsche Forschungsgemeinschaft (DFG) under the grant JO 329/4-1.

0168-9274/$30.000 2003 IMACS. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.apnum.2003.09.007



188 A. Dunca et al. / Applied Numerical Mathematics 49 (2004) 187—-205

1. Introduction

The velocity and pressur@l, p) in an equilibrium flow of a viscous, incompressible fluid satisfy the
steady state Navier—Stokes equations

—VAU+ (U-VYU+Vp=Ff ing,

V.u=0 in $2,

u=~0 onos2, 1)
fde:O,

2

wherev is the kinematic viscosity2 c R?, d = 2, 3, is a bounded, regular domain; 2 — R¢ is the
velocity, p: 2 — R is the pressure anfid 2 — R? is the force driving the flow. The Reynolds number
of the flow isO(v1).

Many flow simulations (even for equilibrium problems) are by nature underresolved. In those cases it
is normal to seek not to computebut rather local averagesof u. An example is to defing = g5 * u,
whereg; is a user-selected filter with filter widthwith 0 < mesh width< § < 1, see [31] for an overview
on filters applied in computations. One very common choice, which we make herein, is filtering with a
Gaussian. The usual approach to approximate various flow averages is to average the Navier—Stoke:
equations (1), to model the arising Reynolds stress teRgoru) := uuT — Gd" in terms ofd, i.e.,

R(u, u) ~ T(T, 0), to model the boundary behavior of the flow averages and then to solve approximately
the resulting continuum model, which is, hopefully, an approximaticm to

This usual method leads to very difficult problems of finding a closure model with accuracy and
universality and finding near wall models or wall laws for complex boundaries. At the present time, in
spite of intense research efforts over many years, solutions to these two problems which are both accurate
and universal continue to be elusive. Thus, there is a need to develop complementary approaches, sucl
as the one begun in [22], which avoid the issues of closure and wall laws.

Even within the usual approach of large eddy simulation (LES) the following question arises. How
is the accuracy of modeling steps to be assessed? The current gold standard is to take a (necessarily
lower Reynolds number simulation (a DNS) which is reliable, complif¢henu’ and compare it to the
model’s approximate solution”. An intermediate approach to evaluation is to take a DNS approximation
u" and compute the modeling residudk(u, u) — T(T, TG)||. In either approach, one difficulty is that
fully reliable flow simulations are only possible for lower Reynolds numbers whereas the targeted
physical problem occurs at higher Reynolds numbers. However, in either approach to validation, only
reliable approximations td and not tou are required. Thus by using an adaptive procedure to produce
assured accuracy in flow averages, it should be possible to provide reliable DNS data for higher Reynolds
numbers for velocity averages than for velocities. Exactly this goal of developing adaptive methods for
a computed flow’s local spatial averages was attacked in [22] for the simplest flow problem, the Stokes
problem.

In the present paper, we continue the development of these methods for higher (but not high) Reynolds
numbers by studying non-linear equilibrium flow problems. The smoothing properties of convolution
with a Gaussian have interesting consequences in the final estimates obtained in [22] and herein. Recently
very interesting results have been obtained by Hoffman [14,15] on the related question of estimating
mesh cell averages of space—time, SUPG approximations of time dependent flow problems. It is easy to
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forecast that there are many more interesting developments yet to come on the question of approximating
reliably velocity averages at Reynolds numbers for which reliable pointwise velocity approximations are
not possible.

The usual (physical) critique of the approach we study herein (underresolved-DNS— post-

processing— u") is that an accumulation of energy in the smallest resolved scala% will occur.
However, with the proper choice 6f averaging will remove oscillations caused by energy accumulation.
On the other hand, it is also easy to include in an analysis a subgrid model incorporated into the
discretization. The a posteriori estimates separate in terms which naturally decompose into modeling
residual and numerical residual terms evaluated at the approximate solution, a typical effect observed
also in [9,14,15] for example. This is illustrated in Section 5.

This paper contains both a priori error estimates and a posteriori estimates for velocity averages in
Section 3 (using preliminaries collected in Section 2). Section 4 gives numerical tests of the predicted
rates of convergence and the adaptive algorithm. For the former, we have selected test problems within
the analytical hypotheses of the convergence theorem and for the latter one beyond them (the driven
cavity problem).

The non-linear, equilibrium problem (considered herein) is far from the goal of simulating accurately
the generation, interaction and decay of the large structures in a turbulent flow. At this point, it is perhaps
useful to review briefly the challenges and the possible next steps to the time dependent problem of the
post processing approach.

The estimates herein strongly exploit smoothing properties of the filter selected. Thus, at the start the
fundamental issue arises of space versus space—time filtering as the most useful definition of the large
scales in a turbulent flow. There is a lively discussion based on physics and fluid mechanics of exactly
this question in the LES community and the answer is not yet clear. Because of the issue of time stepping,
a choice of the exact realization of the post processing idea must also be made. There are three natura
choices.

The first natural realization is the simple plan of a DNS o\&!T5na] Which givesu’(r) and from
which g % u” () can be computed o), Tinal. It is possible that, in the sense of flow statistics, a similar
picture to the equilibrium case might hold: non-physical energy piled up near the cutoff frequency is
removed by filtering, leaving (statistical) accuracy in the large scales with accuracy increasing as one
moves further from the cutoff length scale. On the other hand, in the sense of pointwise behavior, the
picture is likely much more complex. Many turbulent flows have localized regions of intense backscatter
(roughly speaking, energy transfer from the possibly corrupted small scales to the large scales). This is
one interpretation of the genesis of large scale numerical artifacts studied, e.g., in Brown and Minion [3]
and Drikakis and Smolarkiewicz [6]. Another interpretation is that leading order truncation error terms
contribute numerical vorticity which grows in these unstable regions [6]. Because of this effect, the
prospect for pointwise accuracy of this first approach is highly unclear.

The second natural approach is to use post processing each time steptgiygrfilter this to obtain
g * U (1,) and use this in the time stepping to obtaif(z,.1). This approach is closely related to, among
other algorithms, the spectral vanishing viscosity method of Mayday and Tadmor [27] and the filtering
stabilization of spectral element methods studied by Fisher and Mullen [29,10]. Precisely this second
approach has recently been tested in [7]. It was, as expected, overly diffusive and non-linear modifications
were necessary to obtain quality results. Thus, modifications of this second approach are clearly needed

The above “non-linear modifications” in [7] suggest an implicit LES model. Thus, the third option is
to explore an, as yet unknown, synthesis of adaptivity, post processing for high-frequency error reduction
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and LES modeling for low frequency accuracy. There is a lot of interesting recent work on adaptivity and
LES modeling, for, e.g., [9,14,15]. Finding the correct mix of these is the third approach and an exciting
research problem.

2. Notations and mathematical preliminaries

Standard notations of Lebesgue and Sobolev spaces are used throughout this paper. The inner produc
in (L?(£2))%,d =1, 2, 3 is denoted by, -), the norm in(L3(2))? by || - |lo, the norm in(H*(£2))? by
| - Ik, the seminorm i H*(£2))? by | - |, and the norms in Lebesgue spacés (£2))?, 1< p < oo,
p#2by]| - |, Bilinear forms and norms in subdomainsc 2 are marked by an additional index,
e.g.,(-, ), or| - llo... Norms of other spaces are marked by subscribing the name of the space at the norm
symbol. As usual,

Hy(22) = {v e H(2): v]ye =0},
L§(2)={q e L*(£2): (¢.1) =0}.
Let V = (H(£2))? and Q = L3($2). We define the bilinear and trilinear form
a(u,Vv) =v(Vu, Vv), b(u,v,w) = ((u- V)v, w).
The variational formulation of the Navier—Stokes equations (1) is to find &pajr) € V x Q such that
a(u,v) +bu,u,v) — (p,V-v)+(V-u,q) =f,v), 2

forall (v,q) eV x Q.
Let 7" denote a decomposition &f into mesh cells. We denote ldy the diameter of a mesh ce,
by h g the diameter of a fac&, and we set = maxy .+ {hk}. Each family of triangulations is assumed
to be admissible and shape regular in the usual sense, e.g., [4].
With the meshZ ™, we can construct conforming velocity-pressure finite element spdtesQ” with
vVt c Vv andQ" c Q. These spaces are assumed to satisfy the inf-sup or Babuska—Brezzi condition, i.e.,

there exists a constagt> 0 independent of the triangulation such that
h’ V- Vh
VY g0 ®3)
ghe0t ueyn 119" loll VV [lo

The discrete Navier—-Stokes problem consists in finding a(péirp”) € V* x Q" such that
a(u,v*) +b(u* u" V") — (p", V V) + (V- Ut g") = (1), @y

for all (v, ¢g") e V' x Q".
We assume the following regularity of the solution of (2) and approximation properties of the finite
element spaces

ue (H*N2)'NV, pe H{@)NQ, k=1,
V" contains piecewise polynomials of degreey - (5)
Q" contains piecewise polynomials of degree 1.
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For a wide variety of velocity-pressure finite element spaces satisfying (3), the following optimal a priori
error estimates have been proven under the assumption (5), see, e.g., [12],

IV(u—un)|,+ |2 = p"[o < ch*(Iuliss+ 1plk).
|u—u||, < ch*(luless + k), |

(6)

wherec denotes throughout this paper a generic constant independ&titasfd (u”, p").
We will consider in this paper an average of the error which is defined by a convolution with the
Gaussian filter function

6 \¥/? 6
gs(X) = (ﬁ) eXp<—§|X|2>’ (7)

where|x| denotes the Euclidean normE R? ands is the filter width. A function to be convolved with
gs Is continued by zero outside@.

Lemma2.1. Let f1, f» € L?(£2), then

(85 * f1, f2) = (f1, 85 * f2), (8)
and

llgs * fulle < c(K)8 7 | fillo. ©)

Proof. First, we note that by a direct calculation (and a change of variables in the integral) it follows
immediately that

18agsll L1y < c(jl)d™, (10)

for any multi-indexc.
Using the symmetry of;s, Fubini’'s theorem and thaf;, f> are extended trivially off2 give

(gs * f1, f2)=/</gS(y_X)fl(X)dx>f2(y)dy

R R4

=f(/&a—wﬁwm0ﬁamx

R4 R4
= (f1, & * f2)r2re) = (f1, & * f2).

We haveg; * f1 € C®(R?) and d,(gs * f1) = (d4gs5) * f1 for any multi-indexa, see Rudin [30,
Theorem 6.35]. It follows fromy; = 0 outsides2 and Young’s inequality for convolutions

104 (g5 * f1) HLZ(Rd) < 19851l L2 ray |l f1ll0-
Inequality (9) follows now by applying (10). O

We wish to estimatéigs * (U — u)||o. To this end, we consider the linearized adjoint problem to the
Navier—Stokes equations with right siges ¥, wherey e (L2(£2))¢ is arbitrary but fixed. Letu, p)
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be the solution of (2). Then, the weak formulation of the adjoint problem linearizéd @ is to find
(¢, 1) € V x Q such that

a(v,$)+bU,v,¢) +b(V,u,¢) —(q.V-d) +(V-V, 1) = (g5 * ¥, V), (11)

for all (v,q) € V x Q. Problem (11) is assumed to bﬁ+1—regular, i.e., the solutioxg, A) exists and
satisfies

Ipllzsq + Al < c(u,v)ligs * Wiz y- (12)
From (9) follows
Ipliz,q + 1Al < c(u, v, k)89 llo. (13)

Let Iy»:V — V" and I, : Q — Q" be interpolation operators satisfying local interpolation error
estimates for all mesh cell§ € 7"

V=T g ¢ < P IVIkam wevn (B $2),

V(v = 1r ) o ¢ bl IVIkow)  We VN (H ),

V=1 W) o p <chy  PINVIkaw — Wevn (H*(2))!, VE C 0K, (14)
lg =101 @) g x < P llgllak) Vg € QN HN(R2),

-1/2
la —10:@ o, <chy lalax) — Yge€ QN HNR), YE C K.

If k> 2, the Lagrange interpolation operator can be taken/ferand I,.. In this case, we have
w(K)=K andw(E) ={K: E C 9K}. Fork < 2, one can use the Clément interpolation operator, [5].
In this casew(K) is the set of mesh cells which contaiis and all mesh cells whose closure has a
point with the closure oK in common. The seb(E) is the union of all mesh cells whose closure has a
common point with the closure of fade. By the shape regularity assumption on the triangulations, the
maximal number of mesh cells in(K) andw (E) is bounded independent Gf'. Thus, from the local
interpolation error estimates follow global ones

|V — 1), < ch¥lIvil we VN (H2)),
V(v = 1), < ch* vk eV n (B )", (15)
lg = Ion(@) ], < ch*llqllk Vg € QN H ().

The existence of interpolation operators fulfilling the local error estimates (14) is known for mesh
cells which originate from a reference mesh cell by an affine transformation, e.gl;dionplices or
parallelepipeds. The interpolation error of general quadrilateral and hexahedral finite elements with non-
affine transformations was studied in [28].

The jump[Vv"]; of a functionv” across a facé is defined by

V], = lim,_ 4ofV (X +ng) —Vi(x —tnp)} E ¢ 882,
£ limeof Vi (x— i) Ecag,

whereng is a normal unit vector ot andx € E. If E C 982, we choose the outer normal, otherwige
has an arbitrary but fixed orientation. With that, every fé®hich separates two neighbouring mesh
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cells K; and K5 is associated with a uniquely oriented normal (for definiteness fgrto K3) and the
jump of a functionv" € V" across a facé is [V']g = V"|g, — V"|k,. If v € V, then we know from the
trace theorenv|; € (HY?(E))¢ and for this reasofv]; =0 a.e.

3. Error estimatesfor thelarge eddies

In this section, we give both & priori (Proposition 3.1) and a posteriori (Proposition 3.5) error estimates
for the most basic realization of our idea, using the usual, centered, Galerkin finite element method with
no extra stabilization, eddy viscosity or upwinding. These estimates show that the large eddies contain
extra accuracy whenevérs- h. These estimates are valid for general and shape regular meshes (and thus
do not depend upon superconvergence properties) but do depend upon the smoothing properties of the
convolution by a Gaussian. Thus, they should be extensible to the Pao filter and the sharp spectral cut-off
filter but not to the box filter.

Proposition 3.1 (A priori error estimate)Let (u, p) be the solution of the Navier-Stokes equatif#)s
(u”, p") be the solution of the discrete Navier—Stokes equat{@ghsand § be the filter width of the
Gaussian filter(7). Suppos€u, p) possesses the regularity given(b), the finite element spaces fulfill
the inf-sup conditiorg3) and the regularity(12) of the solution of the linearized adjoint proble(hl) is
1/2 < k < k. Denotee = u — u”, then there are positive constantéu, v, k) andc(u, v, k, €) such that
foranye >0

I\
lgs * €llo < c(u, v, k)(g) 8(IIVelo+ [P — p"|| o+ IV - €llo + M| Vullol Vello + A2 Vell3)
+c(u, v, k, €)8%2|elloll Vello. (16)

Proof. Choosing the test functions in (2) from the finite element spaces and subtracting (4) from (2)
gives the Galerkin orthogonality

a(e V") +b(u,u,v') —b(u", u" V') — (p— p", V-V + (V-e¢") =0,
for all (v, ¢") e V! x Q". A straightforward calculation gives

b(u,u,v") —b(u*, u" V") =b(e, u,v") + b(u, e V") — b(e, e V"), (17)
such that
a(e V") +b(eu,v") +b(u,ev') —b(eeVvt)—(p—p". Vv-vV")+(V-eq")=0. (18)

We setv = eandqg = p — p" in the linearized dual problem (11) and subtract (18). This gives for all
V', g") eVt x Q"
(g*xv.0=a(e¢—V')+b(uep—Vv')+beup—Vv')+b(eevt)
—(p=p"V-(p-V"))+(V-er—q"). (19)
We wish to bound the terms on the right side of (19). Therefore, we chdosd« (¢) andg” = 1,1 (1).

By applying the Cauchy—Schwarz inequality, the interpolation error estimate (15) and estimate (13), we
get
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la(e.¢ — Iyu(#)| < vIVelo| V(e — Iyi (@)

. ~ (h\*
< cvh¥|| ;41 Vello < c(u, v,k)(g) 3 Velloll ¥ llo.
A%
(p—=p". V(¢ — Iyn(@))| <c(u, v,k)(g) 8lp —p"|,l¥ llo.

%
|(V-er—1Ipn(D) <c(u,v,k)<g> 81V -€lloll ¥ llo-
Using Holder’s inequality, the Sobolev imbeddings'(22) — L%(2) and HY2(2) — L3(£2), the

interpolation of HY/2(£2) betweenL?(£2) and H1(£2) (see [1, Theorem 4.17]), the interpolation error
estimate (15) and the estimate (13) yield

|b(u.e. ¢ — Iyi(¢))| < llull sl Vello||¢ — Iyi() | s < clVulloliVello|¢ — Ivi () 12
1/2 1/2

<clVullollVello|¢ — Ivi(®) |, || V(e — Ivi ()
A o\
<CIIVU||0||Vellohk+l/2||¢||;g+1<C(U,U,k)(g) nY28|Vulloll Veloll ¥ llo-

One obtains in the same way

%
[b(e u,é — Iyr(@)| < c(u, UJC)(g) W25V ullol Veloll o
The last trilinear term in (19) is split into two parts

b(e.e Iyi(¢)) =b(e e Iyi(p) — @) +b(e e ¢).
For the first of these terms, we get in the analogous way as above
A% 1/2 2
[b(e & Iy (9) = ¢)| < c(u,v. k) { 5 | H/281Vell¥lo.
The second term is estimated by using the Sobolev imbeddi#ig(£2) — L>*(£2), ¢ > 0 and (13)

Ib(e e ¢)| < llellol VelollllLe < c(e)llellol Velollp s/

<c(u, v,k £)8Y2 |lelloll Velloll¥ llo. (20)
The Riesz representation theorem and (8) yield
(gs*e¥) (gs* ¥, €
lgsrelo= sup DSV _ gy &40 (21)
Ye(L2(2))4 I¥lo Ye(L2(2))4 I¥lo

Thus, collecting estimates and dividing b ||o gives the error estimate (16).0

Remark 3.2. Let the approximation assumptions (5) be fulfilled. Then, the last factor of the first term in
(16) behaves liked (h*).
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Lets = ch® with « € [0, 1]. The order of convergence given by (16)agh*+1+1-0G&=D)y |f  ~ 1 and
a < 1, the convergence of the large eddies defined by convolutiongyithfaster than the convergence
of the velocity as given in (6).

If « =1, then the order of convergence for the large eddies is the same as for the velocity. This is
consistent since the filter width corresponds to the mesh size in this case. Flow structures smaller than
the mesh size cannot be computed such that the mesh size gives a lower bound for the filter width. Thus,
taking the filter width of the order of the mesh size must recover the results known for the velocity.

The last term in (16) is of orde® (K% +1+*(1/2=9)y wheree > 0. This is a higher order term for any
a €0, 1].

Remark 3.3. Estimate (16), which is true faf € {2, 3}, can be improved for = 2 since the Sobolev
imbeddingsH?3(2) — L%(2), HY3(2) — L3(2) and H*(2) — L>®(£2), ¢ > 0 hold. One obtains

~(h\F
llgs * €llo < c(u, v, k) (3) 5(IVelo+ | p — p"||o+ IV - ello+ 13 Vullol Vel + h?3| Vell3)

+c(u, v, k, )82 |lellol Vello.

However, the improvements occur only in higher order terms and the asymptotic order of convergence is
the same as faf = 3, see Remark 3.2.

Remark 3.4. An alternative definition of the linearized dual problem: Fiigd 1) € V x Q such that

a(v,$) +bU,v, ) +b(v,u", ¢) — (g, V-¢) + (V-V, 1) = (gs x ¥, V),

for all (v,g) € V x Q would lead to the vanishing of the terhie, e, v") in (19) and to the last term in

the error estimate (16). However, the constants in the stability estimate (12) and in the error estimate (16)
would depend oni”, too. In addition, assuming a higher regularity of the solution of the linearized dual
problem like in (12) requires in general sufficiently regular data. Regularity &@n be assumed but the
regularity foru” is restricted by the regularity of functions in the finite element space. In general, only
u" e (HY(£2))¢ is given.

Proposition 3.5 (A posteriori error estimate).et the assumptions of Propositi@n be fulfilled. Then,
there are constants(u, v, k) > 0andc(u, v, k, €) > 0 such that for any > 0

1/2
||ga*e||o<6(u,v,k)< 2 ni> +e(u, vk, £)5*lellol Vello #2
KeTh
with
s (hc\E [ b (yh h "2
=5 8% he|f — (—vau" + (u" - V)u" + Vp )HO,K
h
IRy 7E||[—vVuhn+p*‘n]EH§,E] 23)

ECOK

Proof. Let ¥ € (L%(£2))? be given and let(¢, 1) € (V, Q) be the solution of the linearized dual
problem (11). The error equation (19), the identity (17) and (8) give
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(V. gsx0)=a(e¢—V")+b(u,u,¢—v")—bU" u, ¢—V)
+(r—¢" V€)= (p—p".V-(p—V"))+bEeed). (24)
Let
rg =[f— (—vAu" + (u" - V)u" + vp")]

be the strong residual of the momentum equation restricted to the mesk .chitegration by parts
of (24) mesh cell by mesh cell and- u = 0 give

Ik

W, g% =) [(rK,qS—V")K—(k—qh,V-uh)K+/(—vvuhnE+phnE)-(¢—vh)ds}

KeTh 9K
+b(e e ¢).
Choosingv”" = Iy (¢), ¢" = I,1(1) and applying the local interpolation estimates (14) give

(W, gsx0)| < ) [h'?lllrzc||o,1<||¢||,;+1,w(,<) oA AT P T
KeTh
h1€+1/2
b 3 T [ ]l 1 + 0 ).

ECOK

The shape regularity ¢f7 "} guarantees that the number of mesh cells (i ) andew (E) can be bounded
independently oh. Thus, there is a constant independent stich that

[, 8% 0)] <C( 2. [hi”zlHKn%,K + 1S
KeTh
h21€+1 ) 1/2
+ Z E2 ||[—vVuhn—|—phn]EHO’Ei|> (”¢”l€+1+ ”)‘”12) + |b(e’ e ¢)|

ECoK

The application of the estimates (13) and (20), division||#ylo, the definition of the(L2(£2))¢ norm
in (21) andhg < hg give (22). O

4, Numerical studies

The approximate solutions we shall present are computed using the following algorithm. The Navier—
Stokes equations (1) are linearized by a fixed point iteration(Wetp™) be the current iterate, then the
next iterate is computed by solving

—vAUT 4+ (Ut VU 4+ Vprtt =0 in £2,
V.utl=0 in 2,
utl=0 onag, (25)

/de:O.

2



A. Dunca et al. / Applied Numerical Mathematics 49 (2004) 187—-205 197

The linear saddle point problem (25) is discretized by a finite element method. We will use so-called
mapped finite elements, i.e., all finite elements are defined first on a referendé aelll the finite
elements on an arbitrary mesh cEllare defined with the help of the reference map to the reference cell,
see [23] for advantages of using this approach in finite element computations.

The cube(—1,1)¢ is used as reference/paﬁ for quadrilateral and hexahedral mesh cells. The
reference transformation from the closure f6fonto the closure of a mesh cdll is denoted byFy.
Ford = 3, we denote by, (K) and P,(K) the following sets of polynomials ok

~ k o N i+j+H<k o

i,j,I=0 i,j,1=0
The modifications forl = 2 are obviously. The spaces on an arbitrary meshielre given by

0u(K) :={g =G o F' § € 0(K)},
P(K):={p=poF: peP(K))
and the global finite element spaces by
Or:={ve H{(2): vlx € Qu(K)}, k=1,
P%:={ve L¥(2): vlx € P(K)}, k>1.
In our numerical tests, we use the inf—sup stable pairs of finite element spa¢€s_1, k > 2, and

Qk/Pkdlsf, k > 2, on quadrilateral and hexahedral grids. As commonly done, the fact that the velocity

space is a vector-valued function is not indicated in these notations.

For defining simplicial finite elements, the reference triangle with the vertiés, (1, 0), (0, 1) and
the reference tetrahedron with the verti¢es0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) are used. Using the spaces
on the mesh cells given above, we define

Po:={ve H'(2): vl e P(K)}, k=1

We use pairs of inf-sup stable finite element spa@g;_1, k > 2, on simplicial meshes.
In order to support the a priori error estimate (16), we have to compute the convolution of the error.
Letp € L?(R?), then we obtain by applying the Fourier transform

32
F(gs *)(Y) = (F(gs) F(@)(y) = exp(—2—4|y|2)}“ (@)(Y).
Approximating the exponential by the subdiagonal Padé approximation

1
ax _ O 2.2 ’
= Tra O
neglecting terms o (§%) and the inverse Fourier transform yield

§2 \1
F(p)(y) =7’((1 — 2—4A) w)(Y),

F(gs x0)(Y) = (F(g) F(@)(y) ~ s
14 5582

from what follows

§2 \ 1
~[I—-—A . 26
g *¢ < 24> @ (26)
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We use the second order elliptic partial differential equation on the right side of (26) for approximating the
convolution numerically. This is much more efficient than numerical quadrature, see [213.dfven on

a bounded domain, the second order elliptic partial differential equation is equipped with homogeneous
Neumann boundary conditions as proposed in [11].

Example 4.1 (2d example supporting the error estimat@$) and (22)). We consider the Navier—Stokes
equations (1) in2 = (0, 1)? with the prescribed solution = (4, u») and p given by

uy = 2m Sin°(zrx) sin(ry) coYry),
up = — 31 Siré(mx) cogx) sirf(zr y),
p =cogmx)+ cogry)

andRe= 10. This problem fits exactly into the framework of the analysis presented in Section 3. The
order of convergence depends on the regulakrityf the dual problem given in (12). In the case of a
polygonal domain, one can expect in general only 1. However, the regularity might be higher for
particular examples. The order of convergence obtained in the numerical studies suggest that
in this example. It follows from Remark 3.2 that fér= ch* the order of convergence expected for
llgs * (U—uM|gisk+2—aif k=2 andk +3 — 2« if k > 3.

The mesh widttk for a given triangulatior? is defined by

h=maxhg, wherehg:= max|x—y|
KeT x,yek

and the global error estimate hy= (3", n%)¥2 with nx given by (23). Note that the a posteriori error
estimaten is only useful if its order of convergence is the same as for the a priori error estimate (16).

Tables 1-4 present results for finite element discretizations with velocity spaces of ardkpressure
spaces of ordek — 1, k € {2, 3,4} and different values 08. The computations were carried out on
quadrilateral and triangular grids. The initial quadrilateral grid (level 0) consists of four squares of
edge length ®. The initial triangular grid is obtained by dividing these squares from bottom left to
top right.

All numerical tests coincide very well with the analytical results. The error estimator shows in all
numerical tests the correct asymptotic order of convergence. However, the error is always overestimated
in this example. The overestimation ranges from a factor of about 26 (Table 1) to nearly 400 (Table 4).

Table 1

Example 4.1 0>/ Q1 finite element discretizatios,= 0.5 (@ = 0)

Level lu—u"lg llgs * (u—u"llo n
0 5840541e-1 1631631le-1 1.173043e-01
1 8.551689¢e-2 2772 2412399%e-2 2.758 7174224e-1 4.031
2 1.086894e-2 2976 1297768e-3 4,216 4197971e-2 4.095
3 1.380864e-3 2977 8637593e-5 3.909 2518792e-3 4.059
4 1732925e-4 2994 5677399e-6 3.927 1554372e-4 4.018
5 2.168210e-5 2999 3643621e-7 3.962 9682313e-6 4.005
6 2.710897e-6 3.000 2307744e-8 3.981 6046293e-7 4.001
7 3.388818e-7 3.000 1451969e-9 3.990 3778124e-8 4.000

Theory 3000 4000 4000
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Table 2
Example 4.1,P3/ P, finite element discretization,= 107>
Level lu—u"llo llgs * (u—uMllo n
0 2.030502e-1 3.446956e-2 6.750303e-0
1 1940913e-2 3387 4348816e-3 2987 2677952e-1 4.656
2 1216234e-3 3996 1387224e-4 4970 1189230e-2 4.493
3 7.764174e-5 3969 4951325e-6 4.808 5249900e-4 4.502
4 4.902454e-6 3985 1958768e-7 4.660 2322077e-5 4.499
5 3.070333e-7 3997 8207853e-9 4577 1026300e-6 4.500
6 1918967e-8 4.000 3498957e-10 4552 4535184e-8 4.500
Theory 4000 4500 4500
Table 3
Example 4.1,P3/ P> finite element discretizatiod,= i (o« = 1)
Level llgs * (u—u™)llo n
0 3.789549e-2 8.027508e-0
1 5.331715e-3 2.829 4503760e-1 4.156
2 1.890456e-4 4818 2828482e-2 3.993
3 9.572364e-6 4.304 1765849¢e-3 4.002
4 5721758e-7 4.064 1104572e-4 3999
5 3.520322e-8 4.023 6904097e-6 4.000
6 2.181624e-9 4.012 4314618e-7 4.000
Theory 4000 4000
Table 4 .
Example 4.104/ P§'C finite element discretization,= 708
Level lu—u"llo llgs * (U —uMllo n
0 3537659e-2 5.995522e-3 1.489979¢-0
1 1231637e-3 4.844 1236179e-4 5.600 3945655e-2 5239
2 3971647e-5 4.955 2499258e-6 5628 9527598e-4 5.372
3 1254649¢e-6 4984 5678712e-8 5.460 2250758e-5 5404
4 3.932204e-8 4.996 1345722e-9 5.399 5325324e-7 5401
5 1229726e-9 4.999 3202971e-11 5393 1260853e-8 5.400
Theory 5000 5400 5400

Example 4.2 (3d example supporting the error estimdtib)). Let 2 = (0, 1)% and letu = (u1, uz, u3)
and p given by

ui(x, y, z) = sin(zx) sin(zr y) sin(z z) + x* cosy),
us(x, y, z) = cogmwx)cogry)cosrz) — 3y°z,

uz(x, y, z) = cogmrx) sin(ry) cosmz) + cogxx) Sin(rry) sin(rz) — 4x3z cosmy) + 4.5y%z2,

p(x,y,2)=3x —sin(y + 4z) +c.
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Table 5
Example 4.2,Q2/P1d'SC finite element discretization, order of convergence for different choicés of
Level llu—u"lo lgs * (u—ullo llgs * (u—uMllo
§=h05 §=05

0 3.742528e-2 7.012790e-3 1.008274e-2
1 4.478076e-3 3.063 7.600275e-4 3.206 8531608e-4 3563
2 5.343528e-4 3.067 6406178e-5 3569 6249804e-5 3771
3 6.569613e-5 3.024 4774094e-6 3.746 4232580e-6 3.884
4 8.173159%e-6 3.007 3300154e-7 3.855 2748632e-7 3945
5 1.020367e-6 3.002 2184200e-8 3917 1750525e-8 3973

Theory 3000 3500 4000

The constant is chosen such that L%(.Q) and the right sidd is chosen such thau, p) fulfil the
momentum equation in (1) féke= 10. In contrast to (1), we have here a solution with non-homogeneous
Dirichlet boundary conditions. As in Example 4.1, the numerical results suggest that the regularity of
the dual problem (12) is given with > 2. Thus, the expected asymptotic order of convergence for
llgs * (U—uM|gisk +2—«if k=2 ands = ch®, see Remark 3.2.

The computations were carried out with tigs/ PldiSC finite element discretization on a hexahedral
grid. The initial grid (level 0) consists of 8 cubes of edge length @n level 5, there are nearly 7.5
million degrees of freedom.

Table 5 presents the computed results. For fikédk.,a = 0, the numerical results coincide well with
the analytical prediction. Far = 1°%°, the order of convergence in the numerical tests is larger than the
expected asymptotic value. We think that the grids are not yet sufficiently fine to be in the asymptotic
regime in this case.

Example 4.3 (2d examples investigating the adaptive refinement using the a posteriori error esjimator
The last numerical example shows that the large eddies can be computed on an adaptively refined
grid with less degrees of freedom than the solution of the Galerkin discretization of the Navier—Stokes
equations(u”, p") for the same stopping criterion on the global a posteriori error estimate.

We consider the driven cavity problem in 2d wiRe= 1000 ins2 = (0, 1)2 and withf =0, u = (1, 0)"
for y =1 and no slip conditions on the other parts of the boundary, see Fig. 1 for an illustration of the
flow. Since the restriction ofi to the boundary does not lie iIHY2(3£2), it follows thatu ¢ H(£2).
Although the solution of the driven cavity problem is not sufficiently smooth to match the assumptions
of Proposition 3.5, the behaviour of the a posteriori error estimator can be illustrated well with this
example.

We used in the computations tlig/ P; finite element discretization on a triangular grid. The coarsest
level (level 0) consists of 32 equal triangles. This grid is refined twice uniformly (512 triangles) before
the adaptive grid refinement based on the a posteriori error estimates (23) starts. In addition, we presen
results for the standard estimator far — u”||o where the local error estimate is given by

ny =hy|f— (-Re*AU" + (U" - V)u" + Vp") H(Z)K
3
PR+ Y PE|[-Re VUit phn]
ECOK

2
EHOE
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)

Fig. 1. Streamlines of the solution of the driven cavity problem.

Table 6
Degrees of freedom of the meshes presented in Fig. 2
8 Degrees of freedom
Velocity Pressure All

standard.2-estimator 791624 99450 891074
0.1 186 108 23470 209578
0.3 141014 17784 158798
0.6 105730 13354 119084

The framework of deriving this error estimator is given, e.g., in [8]. The estimator for the large eddies,

Proposition 3.5, has a similar form like this standarderror estimator. Thus, it is easy to implement in

an existing code which allows adaptive grid refinement with residual based a posteriori error estimators.
The algorithm used for choosing the mesh cells which should be refined is described in detail in [19].

After the computation of the error estimates on a triangulafigithe following criteria for refining the

mesh cells were applies. Given initialigl = 0.5.

(1) Amesh cellX is refined if
nx = tolmaxng.
KeT

(2) Ifin the first step less than 10% of the current mesh cells are marked for refineaténtecreased
as long as at least 10% of the mesh cells will be refined.

We did not apply coarsening of mesh cells. The stopping criterion for the computationswag .

The results of the computations are presented in Table 6 and Fig. 2. The choice of different values of
leads to different final meshes. The larger the eddies to be approximated, the less degrees of freedom ar
necessary to fulfil the stopping criterion. Especially away from the singularities in the upper corners,
the meshes obtained for the large eddies are coarser than the mesh obtained with the &tandard
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Fig. 2. Final grids for driven cavity examplg < 1le—7, standard.2-error estimator, estimatarwith § =0.1,5 =0.3,5 = 0.6
(top left to bottom right).

error estimator. The sequence of meshes computed with the error estimators for the large eddies anc
the standard.?-error estimator is also different. In comparison to the stand&rérror estimator, the

local estimates of the error estimators for the large eddies posses an additional weighting gactor
Thus, large mesh cells are refined earlier using the estimator for the large eddies.

5. Extensionsto some stabilized discretizations

Naturally, at higher Reynolds numbers the usual (centered) Galerkin finite element method is
improvable and there have been many interesting proposals for improvement. In this section, we aim to
show that the framework of Section 3 can often be easily extended to account for the extra effects which
arise in more complex discretizations. Since the theory of SUPG methods has been highly advanced,
see [14,15], we focus herein on complementary methods which use subgrid stabilization of a general
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form vV - A"(u"). Thus, the discrete problem considered in this section is to(fifidp") € V" x Q"
satisfying

a(u", V") + (A" (U"), W) +b(u" u" V) — (P, V V) + (VU g = (F V), (27)
for all (v, ¢") € V* x Q". Interesting examples of suchA”(u") include the von Neumann—
Richtmeyer/Smagorinsky/Ladyzhenskaya model, e.g., [32,25], the models developed in [18] and eddy

viscosity models acting only on the smallest resolved scales, see Hughes et al. [17,16], Guermond [13]
and [26,24].

Proposition 5.1. Let (u”, p") satisfy (27) and let the assumptions of Propositi@® hold. Then with
e=u — u" andng given in(23), there are constants(u, v, k) > 0, c(u, v, k, €) > 0, ho(u) such that for
h < ho(u) and for anye > 0

llgs * €llo < c(u, v, &, 8){< 3 rﬁ()l/z . ( 5 (hFK)%SZHAh(Uh)”é’K)l/z

KeTh KeTh

+ [8Y2 % lellol Vello + 1| A" (") _,;]}. (28)

Proof. A key ingredient to develop residual based a posteriori error estimates is Galerkin orthogonal-
ity [2,20]. The discretization (27) satisfies the approximate Galerkin orthogonality condition:

a(e V') +b(eu,v')+b(u,e V') —bleeVv')—(p—p", Vv-v)+(V-eq")
=—(A"(u"), W) w'evh

This is (18) modified by the term on the right side. Following the proof of Proposition 3,def.?($2)?
be given and let¢, 1) be the solution of (11), the same estimates then give

A 1/2 A
(¥, 85 %8)| < [c(u,v,k)( > n%) +e(u vk, 8)51/2_8||e||o||ve||0]||¢||0

KeT"
+[(A"(u"), VIyi(9))|.
Applying the triangle inequality to the last term on the right side gives
(A" (U"), Vivs (@) < |(A" ("), Vo) | + [(A™ (U"), V (1y($) — 9))].
The second term is bounded using (14) and (13)

(@) 5w o)) <cton b T (%) 1w, ) e

KeTh
while the first term is bounded by

(A" (). V)| < e(u,v. R)s ] A (W) | gl o
The proof is completed by collecting estimatess
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Remark 5.2. The a posteriori error estimate can naturally be interpreted as being split into a “numerical
residual” component (the first term in the right side of (28)), a “modeling residual’ component (the
second term) and a component which is asymptotically of higher order (the third bracketed component).
This decoupling occurs in other a posteriori error estimates for approximations of models of stationary
turbulence in [9]. The third, bracketed term in (28) is of higher order provided the basic method (27) is
asymptotically convergent ds— 0. Thus, a complete treatment requires an & priori convergence study
of (27) which will necessarily depend upon the specific chosen forat ¢ii").
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