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Abstract

In the approximation of higher Reynolds number flow problems, the usual approach is to seek to appr
suitable velocity averages rather than the pointwise fluid velocity itself. We consider an approach to this q
wherein the averages are local, spatial averages computed with the Gaussian filter (as in large eddy si
and the averages are approximated without using either turbulent closure models or wall laws. The a
we consider is a (underresolved) direct numerical simulation followed by postprocessing to extract accur
averages. Á priori and a posteriori estimates are given for‖gδ ∗ (u − uh)‖0 which can give guidance for th
coupling between the averaging radiusδ and the mesh widthh. Numerical experiments support the error estima
and illustrate the adaptive grid refinement procedure. Our analysis and experiments are for the equilibri
which is a step towards but still far from the actual case of a turbulent flow simulation.
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1. Introduction
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The velocity and pressure(u,p) in an equilibrium flow of a viscous, incompressible fluid satisfy
steady state Navier–Stokes equations

−ν	u + (u · ∇)u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on∂Ω,∫
Ω

pdx = 0,

(1)

whereν is the kinematic viscosity,Ω ⊂ R
d , d = 2,3, is a bounded, regular domain,u : Ω → R

d is the
velocity, p :Ω → R is the pressure andf :Ω → R

d is the force driving the flow. The Reynolds numb
of the flow isO(ν−1).

Many flow simulations (even for equilibrium problems) are by nature underresolved. In those c
is normal to seek not to computeu but rather local averagesu of u. An example is to defineu = gδ ∗ u,
wheregδ is a user-selected filter with filter widthδ with 0< mesh width< δ < 1, see [31] for an overview
on filters applied in computations. One very common choice, which we make herein, is filtering
Gaussian. The usual approach to approximate various flow averages is to average the Navie
equations (1), to model the arising Reynolds stress tensorR(u,u) := uuT − uuT in terms ofu, i.e.,
R(u,u) ≈ T(u,u), to model the boundary behavior of the flow averages and then to solve approxim
the resulting continuum model, which is, hopefully, an approximation tou.

This usual method leads to very difficult problems of finding a closure model with accurac
universality and finding near wall models or wall laws for complex boundaries. At the present tim
spite of intense research efforts over many years, solutions to these two problems which are both
and universal continue to be elusive. Thus, there is a need to develop complementary approach
as the one begun in [22], which avoid the issues of closure and wall laws.

Even within the usual approach of large eddy simulation (LES) the following question arises
is the accuracy of modeling steps to be assessed? The current gold standard is to take a (ne
lower Reynolds number simulation (a DNS) which is reliable, computeuh, thenuh and compare it to the
model’s approximate solutionwh. An intermediate approach to evaluation is to take a DNS approxim
uh and compute the modeling residual‖R(u,u) − T(u,u)‖. In either approach, one difficulty is th
fully reliable flow simulations are only possible for lower Reynolds numbers whereas the ta
physical problem occurs at higher Reynolds numbers. However, in either approach to validatio
reliable approximations tou and not tou are required. Thus by using an adaptive procedure to pro
assured accuracy in flow averages, it should be possible to provide reliable DNS data for higher R
numbers for velocity averages than for velocities. Exactly this goal of developing adaptive meth
a computed flow’s local spatial averages was attacked in [22] for the simplest flow problem, the
problem.

In the present paper, we continue the development of these methods for higher (but not high) R
numbers by studying non-linear equilibrium flow problems. The smoothing properties of convo
with a Gaussian have interesting consequences in the final estimates obtained in [22] and herein. R
very interesting results have been obtained by Hoffman [14,15] on the related question of est
mesh cell averages of space–time, SUPG approximations of time dependent flow problems. It is
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forecast that there are many more interesting developments yet to come on the question of approximating
reliably velocity averages at Reynolds numbers for which reliable pointwise velocity approximations are
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The usual (physical) critique of the approach we study herein (underresolved DNS→ uh → post-

processing→ uh) is that an accumulation of energy in the smallest resolved scales inuh will occur.
However, with the proper choice ofδ, averaging will remove oscillations caused by energy accumula
On the other hand, it is also easy to include in an analysis a subgrid model incorporated i
discretization. The a posteriori estimates separate in terms which naturally decompose into m
residual and numerical residual terms evaluated at the approximate solution, a typical effect o
also in [9,14,15] for example. This is illustrated in Section 5.

This paper contains both á priori error estimates and a posteriori estimates for velocity aver
Section 3 (using preliminaries collected in Section 2). Section 4 gives numerical tests of the pr
rates of convergence and the adaptive algorithm. For the former, we have selected test problem
the analytical hypotheses of the convergence theorem and for the latter one beyond them (th
cavity problem).

The non-linear, equilibrium problem (considered herein) is far from the goal of simulating accu
the generation, interaction and decay of the large structures in a turbulent flow. At this point, it is p
useful to review briefly the challenges and the possible next steps to the time dependent proble
post processing approach.

The estimates herein strongly exploit smoothing properties of the filter selected. Thus, at the s
fundamental issue arises of space versus space–time filtering as the most useful definition of t
scales in a turbulent flow. There is a lively discussion based on physics and fluid mechanics of
this question in the LES community and the answer is not yet clear. Because of the issue of time s
a choice of the exact realization of the post processing idea must also be made. There are thre
choices.

The first natural realization is the simple plan of a DNS over[0, Tfinal] which givesuh(t) and from
which g ∗ uh(t) can be computed on[0, Tfinal]. It is possible that, in the sense of flow statistics, a sim
picture to the equilibrium case might hold: non-physical energy piled up near the cutoff freque
removed by filtering, leaving (statistical) accuracy in the large scales with accuracy increasing
moves further from the cutoff length scale. On the other hand, in the sense of pointwise behav
picture is likely much more complex. Many turbulent flows have localized regions of intense back
(roughly speaking, energy transfer from the possibly corrupted small scales to the large scales)
one interpretation of the genesis of large scale numerical artifacts studied, e.g., in Brown and Min
and Drikakis and Smolarkiewicz [6]. Another interpretation is that leading order truncation error
contribute numerical vorticity which grows in these unstable regions [6]. Because of this effe
prospect for pointwise accuracy of this first approach is highly unclear.

The second natural approach is to use post processing each time step: givenuh(tn), filter this to obtain
g ∗ uh(tn) and use this in the time stepping to obtainuh(tn+1). This approach is closely related to, amo
other algorithms, the spectral vanishing viscosity method of Mayday and Tadmor [27] and the fi
stabilization of spectral element methods studied by Fisher and Mullen [29,10]. Precisely this
approach has recently been tested in [7]. It was, as expected, overly diffusive and non-linear modifi
were necessary to obtain quality results. Thus, modifications of this second approach are clearly

The above “non-linear modifications” in [7] suggest an implicit LES model. Thus, the third opt
to explore an, as yet unknown, synthesis of adaptivity, post processing for high-frequency error re
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and LES modeling for low frequency accuracy. There is a lot of interesting recent work on adaptivity and
LES modeling, for, e.g., [9,14,15]. Finding the correct mix of these is the third approach and an exciting
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2. Notations and mathematical preliminaries

Standard notations of Lebesgue and Sobolev spaces are used throughout this paper. The inne
in (L2(Ω))d , d = 1,2,3 is denoted by(·, ·), the norm in(L2(Ω))d by ‖ · ‖0, the norm in(H k(Ω))d by
‖ · ‖k , the seminorm in(H k(Ω))d by | · |k and the norms in Lebesgue spaces(Lp(Ω))d , 1 � p � ∞,
p �= 2 by ‖ · ‖Lp . Bilinear forms and norms in subdomainsω ⊂ Ω are marked by an additional inde
e.g.,(·, ·)ω or ‖ ·‖0,ω . Norms of other spaces are marked by subscribing the name of the space at th
symbol. As usual,

H 1
0 (Ω) = {

v ∈ H 1(Ω): v|∂Ω = 0
}
,

L2
0(Ω) = {

q ∈ L2(Ω): (q,1) = 0
}
.

Let V = (H 1
0 (Ω))d andQ = L2

0(Ω). We define the bilinear and trilinear form

a(u,v) = ν(∇u,∇v), b(u,v,w) = (
(u · ∇)v,w

)
.

The variational formulation of the Navier–Stokes equations (1) is to find a pair(u,p)∈ V ×Q such that

a(u,v)+ b(u,u,v)− (p,∇ · v) + (∇ · u, q) = (f,v), (2)

for all (v, q) ∈ V × Q.
Let T h denote a decomposition ofΩ into mesh cells. We denote byhK the diameter of a mesh cellK ,

by hE the diameter of a faceE, and we seth = maxK∈T h{hK}. Each family of triangulations is assum
to be admissible and shape regular in the usual sense, e.g., [4].

With the meshT h, we can construct conforming velocity-pressure finite element spacesV h ×Qh with
V h ⊂ V andQh ⊂ Q. These spaces are assumed to satisfy the inf–sup or Babuška–Brezzi conditi
there exists a constantβ > 0 independent of the triangulation such that

inf
qh∈Qh

sup
vv∈V h

(qh,∇ · vh)

‖qh‖0‖∇vh‖0
� β > 0. (3)

The discrete Navier–Stokes problem consists in finding a pair(uh,ph) ∈ V h ×Qh such that

a
(
uh,vh

) + b
(
uh,uh,vh

) − (
ph,∇ · vh

) + (∇ · uh, qh
) = (

f,vh
)
, (4)

for all (vh, qh) ∈ V h × Qh.
We assume the following regularity of the solution of (2) and approximation properties of the

element spaces

u ∈ (
Hk+1(Ω)

)d ∩ V, p ∈ Hk(Ω) ∩Q, k � 1,
V h contains piecewise polynomials of degreek,

Qh contains piecewise polynomials of degreek − 1.

 . (5)
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For a wide variety of velocity-pressure finite element spaces satisfying (3), the following optimal a priori
error estimates have been proven under the assumption (5), see, e.g., [12],

th the

h

llows

,

the
∥∥∇(
u − uh

)∥∥
0 + ∥∥p − ph

∥∥
0 � chk

(|u|k+1 + |p|k
)
,∥∥u − uh

∥∥
0 � chk+1

(|u|k+1 + |p|k
)
,

}
, (6)

wherec denotes throughout this paper a generic constant independent ofT h and(uh,ph).
We will consider in this paper an average of the error which is defined by a convolution wi

Gaussian filter function

gδ(x) =
(

6

δ2π

)d/2

exp

(
− 6

δ2
|x|2

)
, (7)

where|x| denotes the Euclidean norm ofx ∈ R
d andδ is the filter width. A function to be convolved wit

gδ is continued by zero outsideΩ .

Lemma 2.1. Letf1, f2 ∈ L2(Ω), then

(gδ ∗ f1, f2) = (f1, gδ ∗ f2), (8)

and

‖gδ ∗ f1‖k � c(k)δ−k‖f1‖0. (9)

Proof. First, we note that by a direct calculation (and a change of variables in the integral) it fo
immediately that

‖∂αgδ‖L1(Rd) � c
(|α|)δ−|α|, (10)

for any multi-indexα.
Using the symmetry ofgδ , Fubini’s theorem and thatf1, f2 are extended trivially offΩ give

(gδ ∗ f1, f2) =
∫
Rd

( ∫
Rd

gδ(y − x)f1(x)dx
)
f2(y)dy

=
∫
Rd

( ∫
Rd

gδ(x − y)f2(y)dy
)
f1(x)dx

= (f1, gδ ∗ f2)L2(Rd) = (f1, gδ ∗ f2).

We havegδ ∗ f1 ∈ C∞(Rd) and ∂α(gδ ∗ f1) = (∂αgδ) ∗ f1 for any multi-indexα, see Rudin [30
Theorem 6.35]. It follows fromf1 ≡ 0 outsideΩ and Young’s inequality for convolutions∥∥∂α(gδ ∗ f1)

∥∥
L2(Rd)

� ‖∂αgδ‖L1(Rd)‖f1‖0.

Inequality (9) follows now by applying (10). ✷
We wish to estimate‖gδ ∗ (u − uh)‖0. To this end, we consider the linearized adjoint problem to

Navier–Stokes equations with right sidegδ ∗ ψ , whereψ ∈ (L2(Ω))d is arbitrary but fixed. Let(u,p)
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be the solution of (2). Then, the weak formulation of the adjoint problem linearized at(u,p) is to find
(φ, λ) ∈ V × Q such that

rror

e
[5].
s a
s a

, the
l

mesh

ith non-

sh
a(v,φ)+ b(u,v,φ)+ b(v,u,φ) − (q,∇ · φ)+ (∇ · v, λ) = (gδ ∗ψ,v), (11)

for all (v, q) ∈ V × Q. Problem (11) is assumed to beHk̂+1-regular, i.e., the solution(φ, λ) exists and
satisfies

‖φ‖k̂+1 + ‖λ‖k̂ � c(u, ν)‖gδ ∗ψ‖k̂−1. (12)

From (9) follows

‖φ‖k̂+1 + ‖λ‖k̂ � c
(
u, ν, k̂

)
δ−k̂+1‖ψ‖0. (13)

Let IV h :V → V h and IQh :Q → Qh be interpolation operators satisfying local interpolation e
estimates for all mesh cellsK ∈ T h∥∥v − IV h(v)

∥∥
0,K � chk

K‖v‖k,ω̃(K) ∀v ∈ V ∩ (
Hk(Ω)

)d
,∥∥∇(

v − IV h(v)
)∥∥

0,K � chk−1
K ‖v‖k,ω̃(K) ∀v ∈ V ∩ (

Hk(Ω)
)d
,∥∥v − IV h(v)

∥∥
0,E � ch

k−1/2
E ‖v‖k,ω̃(E) ∀v ∈ V ∩ (

Hk(Ω)
)d
, ∀E ⊂ ∂K, (14)∥∥q − IQh(q)

∥∥
0,K � chk

K‖q‖k,ω̃(K) ∀q ∈ Q ∩Hk(Ω),∥∥q − IQh(q)
∥∥

0,E � ch
k−1/2
E ‖q‖k,ω̃(K) ∀q ∈ Q ∩Hk(Ω), ∀E ⊂ ∂K.

If k � 2, the Lagrange interpolation operator can be taken forIV h and IQh . In this case, we hav
ω(K) = K andω(E) = {K: E ⊂ ∂K}. For k < 2, one can use the Clément interpolation operator,
In this case,ω(K) is the set of mesh cells which containsK and all mesh cells whose closure ha
point with the closure ofK in common. The setω(E) is the union of all mesh cells whose closure ha
common point with the closure of faceE. By the shape regularity assumption on the triangulations
maximal number of mesh cells inω(K) andω(E) is bounded independent ofT h. Thus, from the loca
interpolation error estimates follow global ones∥∥v − IV h(v)

∥∥
0 � chk‖v‖k ∀v ∈ V ∩ (

Hk(Ω)
)d
,∥∥∇(

v − IV h(v)
)∥∥

0 � chk−1‖v‖k ∀v ∈ V ∩ (
Hk(Ω)

)d
, (15)∥∥q − IQh(q)

∥∥
0 � chk‖q‖k ∀q ∈ Q∩ Hk(Ω).

The existence of interpolation operators fulfilling the local error estimates (14) is known for
cells which originate from a reference mesh cell by an affine transformation, e.g., ford-simplices or
parallelepipeds. The interpolation error of general quadrilateral and hexahedral finite elements w
affine transformations was studied in [28].

The jump[vh]E of a functionvh across a faceE is defined by[
vh

]
E

:=
{

lim t→+0
{
vh(x + tnE)− vh(x − tnE)

}
E �⊂ ∂Ω,

lim t→+0
{−vh(x − tnE)

}
E ⊂ ∂Ω,

wherenE is a normal unit vector onE andx ∈ E. If E ⊂ ∂Ω , we choose the outer normal, otherwisenE

has an arbitrary but fixed orientation. With that, every faceE which separates two neighbouring me
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cellsK1 andK2 is associated with a uniquely oriented normal (for definiteness fromK1 to K2) and the
jump of a functionvh ∈ V h across a faceE is [vh]E = vh|K − vh|K . If v ∈ V , then we know from the

imates
od with
contain
nd thus
es of the
l cut-off

ll

m (2)

r all

13), we
2 1

trace theoremv|E ∈ (H 1/2(E))d and for this reason[v]E = 0 a.e.

3. Error estimates for the large eddies

In this section, we give both á priori (Proposition 3.1) and a posteriori (Proposition 3.5) error est
for the most basic realization of our idea, using the usual, centered, Galerkin finite element meth
no extra stabilization, eddy viscosity or upwinding. These estimates show that the large eddies
extra accuracy wheneverδ � h. These estimates are valid for general and shape regular meshes (a
do not depend upon superconvergence properties) but do depend upon the smoothing properti
convolution by a Gaussian. Thus, they should be extensible to the Pao filter and the sharp spectra
filter but not to the box filter.

Proposition 3.1 (Á priori error estimate).Let (u,p) be the solution of the Navier–Stokes equations(2),
(uh,ph) be the solution of the discrete Navier–Stokes equations(4) and δ be the filter width of the
Gaussian filter(7). Suppose(u,p) possesses the regularity given in(5), the finite element spaces fulfi
the inf–sup condition(3) and the regularity(12) of the solution of the linearized adjoint problem(11) is
1/2 < k̂ � k. Denotee = u − uh, then there are positive constantsc(u, ν, k̂) and c(u, ν, k̂, ε) such that
for anyε > 0

‖gδ ∗ e‖0 � c
(
u, ν, k̂

)(h

δ

)k̂

δ
(‖∇e‖0 + ∥∥p − ph

∥∥
0 + ‖∇ · e‖0 + h1/2‖∇u‖0‖∇e‖0 + h1/2‖∇e‖2

0

)
+ c

(
u, ν, k̂, ε

)
δ1/2−ε‖e‖0‖∇e‖0. (16)

Proof. Choosing the test functions in (2) from the finite element spaces and subtracting (4) fro
gives the Galerkin orthogonality

a
(
e,vh

) + b
(
u,u,vh

) − b
(
uh,uh,vh

) − (
p − ph,∇ · vh

) + (∇ · e, qh
) = 0,

for all (vh, qh) ∈ V h × Qh. A straightforward calculation gives

b
(
u,u,vh

) − b
(
uh,uh,vh

) = b
(
e,u,vh

) + b
(
u, e,vh

) − b
(
e, e,vh

)
, (17)

such that

a
(
e,vh

) + b
(
e,u,vh

) + b
(
u, e,vh

) − b
(
e, e,vh

) − (
p − ph,∇ · vh

) + (∇ · e, qh
) = 0. (18)

We setv = e andq = p − ph in the linearized dual problem (11) and subtract (18). This gives fo
(vh, qh) ∈ V h × Qh

(gδ ∗ψ, e) = a
(
e,φ − vh

) + b
(
u, e,φ − vh

) + b
(
e,u,φ− vh

) + b
(
e, e,vh

)
− (

p − ph,∇ · (φ − vh
)) + (∇ · e, λ − qh

)
. (19)

We wish to bound the terms on the right side of (19). Therefore, we choosevh = IV h(φ) andqh = IQh(λ).
By applying the Cauchy–Schwarz inequality, the interpolation error estimate (15) and estimate (
get
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∣∣a(
e,φ − IV h(φ)

)∣∣ � ν‖∇e‖0

∥∥∇(
φ − IV h(φ)

)∥∥
0( ) ˆ

ror

rm in
� cνhk̂‖φ‖k̂+1‖∇e‖0 � c
(
u, ν, k̂

) h

δ

k

δ‖∇e‖0‖ψ‖0,

∣∣(p − ph,∇ · (φ − IV h(φ)
))∣∣ � c

(
u, ν, k̂

)(h

δ

)k̂

δ
∥∥p − ph

∥∥
0‖ψ‖0,

∣∣(∇ · e, λ− IQh(λ)
)∣∣ � c

(
u, ν, k̂

)(h

δ

)k̂

δ‖∇ · e‖0‖ψ‖0.

Using Hölder’s inequality, the Sobolev imbeddingsH 1(Ω) → L6(Ω) and H 1/2(Ω) → L3(Ω), the
interpolation ofH 1/2(Ω) betweenL2(Ω) andH 1(Ω) (see [1, Theorem 4.17]), the interpolation er
estimate (15) and the estimate (13) yield∣∣b(u, e,φ − IV h(φ)

)∣∣ � ‖u‖L6‖∇e‖0

∥∥φ − IV h(φ)
∥∥
L3 � c‖∇u‖0‖∇e‖0

∥∥φ − IV h(φ)
∥∥

1/2

� c‖∇u‖0‖∇e‖0

∥∥φ − IV h(φ)
∥∥1/2

0

∥∥∇(
φ − IV h(φ)

)∥∥1/2
0

� c‖∇u‖0‖∇e‖0h
k̂+1/2‖φ‖k̂+1 � c

(
u, ν, k̂

)(h

δ

)k̂

h1/2δ‖∇u‖0‖∇e‖0‖ψ‖0.

One obtains in the same way

∣∣b(e,u,φ − IV h(φ)
)∣∣ � c

(
u, ν, k̂

)(h

δ

)k̂

h1/2δ‖∇u‖0‖∇e‖0‖ψ‖0.

The last trilinear term in (19) is split into two parts

b
(
e, e, IV h(φ)

) = b
(
e, e, IV h(φ) − φ

) + b(e, e,φ).

For the first of these terms, we get in the analogous way as above

∣∣b(e, e, IV h(φ) − φ
)∣∣ � c

(
u, ν, k̂

)(h

δ

)k̂

h1/2δ‖∇e‖2
0‖ψ‖0.

The second term is estimated by using the Sobolev imbeddingH 3/2+ε(Ω) → L∞(Ω), ε > 0 and (13)∣∣b(e, e,φ)
∣∣ � ‖e‖0‖∇e‖0‖φ‖L∞ � c(ε)‖e‖0‖∇e‖0‖φ‖3/2+ε

� c
(
u, ν, k̂, ε

)
δ1/2−ε‖e‖0‖∇e‖0‖ψ‖0. (20)

The Riesz representation theorem and (8) yield

‖gδ ∗ e‖0 = sup
ψ∈(L2(Ω))d

(gδ ∗ e,ψ)

‖ψ‖0
= sup

ψ∈(L2(Ω))d

(gδ ∗ψ, e)
‖ψ‖0

. (21)

Thus, collecting estimates and dividing by‖ψ‖0 gives the error estimate (16).✷
Remark 3.2. Let the approximation assumptions (5) be fulfilled. Then, the last factor of the first te
(16) behaves likeO(hk).
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Let δ = chα with α ∈ [0,1]. The order of convergence given by (16) isO(hk+1+(1−α)(k̂−1)). If k̂ > 1 and
α < 1, the convergence of the large eddies defined by convolution withgδ is faster than the convergence

This is
ller than
h. Thus,
.
y

v

ence is

n
ate (16)
dual
e

, only

al
of the velocity as given in (6).
If α = 1, then the order of convergence for the large eddies is the same as for the velocity.

consistent since the filter width corresponds to the mesh size in this case. Flow structures sma
the mesh size cannot be computed such that the mesh size gives a lower bound for the filter widt
taking the filter width of the order of the mesh size must recover the results known for the velocity

The last term in (16) is of orderO(h2k+1+α(1/2−ε)) whereε > 0. This is a higher order term for an
α ∈ [0,1].
Remark 3.3. Estimate (16), which is true ford ∈ {2,3}, can be improved ford = 2 since the Sobole
imbeddingsH 2/3(Ω) → L6(Ω), H 1/3(Ω) → L3(Ω) andH 1+ε(Ω) → L∞(Ω), ε > 0 hold. One obtains

‖gδ ∗ e‖0 � c
(
u, ν, k̂

)(h

δ

)k̂

δ
(‖∇e‖0 + ∥∥p − ph

∥∥
0 + ‖∇ · e‖0 + h2/3‖∇u‖0‖∇e‖ + h2/3‖∇e‖2

0

)
+ c

(
u, ν, k̂, ε

)
δ1−ε‖e‖0‖∇e‖0.

However, the improvements occur only in higher order terms and the asymptotic order of converg
the same as ford = 3, see Remark 3.2.

Remark 3.4. An alternative definition of the linearized dual problem: Find(φ, λ) ∈ V × Q such that

a(v,φ)+ b(u,v,φ)+ b
(
v,uh,φ

) − (q,∇ · φ) + (∇ · v, λ) = (gδ ∗ψ,v),

for all (v, q) ∈ V × Q would lead to the vanishing of the termb(e, e,vh) in (19) and to the last term i
the error estimate (16). However, the constants in the stability estimate (12) and in the error estim
would depend onuh, too. In addition, assuming a higher regularity of the solution of the linearized
problem like in (12) requires in general sufficiently regular data. Regularity foru can be assumed but th
regularity foruh is restricted by the regularity of functions in the finite element space. In general
uh ∈ (H 1(Ω))d is given.

Proposition 3.5 (A posteriori error estimate).Let the assumptions of Proposition3.1 be fulfilled. Then,
there are constantsc(u, ν, k̂) > 0 andc(u, ν, k̂, ε) > 0 such that for anyε > 0

‖gδ ∗ e‖0 � c
(
u, ν, k̂

)( ∑
K∈T h

η2
K

)1/2

+ c
(
u, ν, k̂, ε

)
δ1/2−ε‖e‖0‖∇e‖0, (22)

with

η2
K =

(
hK

δ

)2k̂

δ2

[
h2
K

∥∥f − (−ν	uh + (
uh · ∇)

uh + ∇ph
)∥∥2

0,K

+ ∥∥∇ · uh
∥∥2

0,K +
∑

E⊂∂K

hE

2

∥∥[−ν∇uhn + phn
]
E

∥∥2
0,E

]
. (23)

Proof. Let ψ ∈ (L2(Ω))d be given and let(φ, λ) ∈ (V ,Q) be the solution of the linearized du
problem (11). The error equation (19), the identity (17) and (8) give
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(ψ, gδ ∗ e) = a
(
e,φ − vh

) + b
(
u,u,φ− vh

) − b
(
uh,uh,φ− vh

)(
h

) (
h

(
h
))

avier–
e

+ λ− q ,∇ · e − p − p ,∇ · φ − v + b(e, e,φ). (24)

Let

rK = [
f − (−ν	uh + (

uh · ∇)
uh + ∇ph

)]∣∣
K

be the strong residual of the momentum equation restricted to the mesh cellK . Integration by parts
of (24) mesh cell by mesh cell and∇ · u = 0 give

(ψ, gδ ∗ e) =
∑
K∈T h

[(
rK,φ− vh

)
K

− (
λ− qh,∇ · uh

)
K

+
∫
∂K

(−ν∇uhnE + phnE

) · (φ − vh
)
ds

]
+ b(e, e,φ).

Choosingvh = IV h(φ), qh = IQh(λ) and applying the local interpolation estimates (14) give∣∣(ψ, gδ ∗ e)
∣∣ �

∑
K∈T h

[
hk̂+1
K ‖rK‖0,K‖φ‖k̂+1,ω(K) + hk̂

K

∥∥∇ · uh
∥∥

0,K‖λ‖k̂,ω(K)

+
∑

E⊂∂K

h
k̂+1/2
E

2

∥∥[−ν∇uhn + phn
]
E

∥∥
0,E‖φ‖k̂+1,ω(E)

]
+ ∣∣b(e, e,φ)

∣∣.
The shape regularity of{T h} guarantees that the number of mesh cells inω(K) andω(E) can be bounded
independently ofh. Thus, there is a constant independent ofh such that∣∣(ψ, gδ ∗ e)

∣∣ � c

( ∑
K∈T h

[
h2k̂+2
K ‖rK‖2

0,K + h2k̂
K

∥∥∇ · uh
∥∥2

0,K

+
∑

E⊂∂K

h2k̂+1
E

2

∥∥[−ν∇uhn + phn
]
E

∥∥2
0,E

])1/2(‖φ‖k̂+1 + ‖λ‖k̂

) + ∣∣b(e, e,φ)
∣∣.

The application of the estimates (13) and (20), division by‖ψ‖0, the definition of the(L2(Ω))d norm
in (21) andhE � hK give (22). ✷

4. Numerical studies

The approximate solutions we shall present are computed using the following algorithm. The N
Stokes equations (1) are linearized by a fixed point iteration. Let(un,pn) be the current iterate, then th
next iterate is computed by solving

−ν	un+1 + (
un · ∇)

un+1 + ∇pn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,

un+1 = 0 on∂Ω,∫
Ω

pdx = 0.

(25)



A. Dunca et al. / Applied Numerical Mathematics 49 (2004) 187–205 197

The linear saddle point problem (25) is discretized by a finite element method. We will use so-called
mapped finite elements, i.e., all finite elements are defined first on a reference cellK̂ and the finite

cell,

he

locity

es

error.
elements on an arbitrary mesh cellK are defined with the help of the reference map to the reference
see [23] for advantages of using this approach in finite element computations.

The cube(−1,1)d is used as reference cell̂K for quadrilateral and hexahedral mesh cells. T
reference transformation from the closure ofK̂ onto the closure of a mesh cellK is denoted byFK .
For d = 3, we denote byQk(K̂) andPk(K̂) the following sets of polynomials on̂K

Qk

(
K̂

) :=
{
q̂ =

k∑
i,j,l=0

aijl x̂
i ŷj ẑl

}
, Pk

(
K̂

) :=
{
p̂ =

i+j+l�k∑
i,j,l=0

bijl x̂
i ŷj ẑl

}
.

The modifications ford = 2 are obviously. The spaces on an arbitrary mesh cellK are given by

Qk(K) := {
q = q̂ ◦ F−1

K : q̂ ∈ Qk

(
K̂

)}
,

Pk(K) := {
p = p̂ ◦ F−1

K : p̂ ∈ Pk

(
K̂

)}
and the global finite element spaces by

Qk := {
v ∈ H 1(Ω): v|K ∈ Qk(K)

}
, k � 1,

P disc
k := {

v ∈ L2(Ω): v|K ∈ Pk(K)
}
, k � 1.

In our numerical tests, we use the inf–sup stable pairs of finite element spacesQk/Qk−1, k � 2, and
Qk/P

disc
k−1, k � 2, on quadrilateral and hexahedral grids. As commonly done, the fact that the ve

space is a vector-valued function is not indicated in these notations.
For defining simplicial finite elements, the reference triangle with the vertices(0,0), (1,0), (0,1) and

the reference tetrahedron with the vertices(0,0,0), (1,0,0), (0,1,0), (0,0,1) are used. Using the spac
on the mesh cells given above, we define

Pk := {
v ∈ H 1(Ω): v|K ∈ Pk(K)

}
, k � 1.

We use pairs of inf–sup stable finite element spacesPk/Pk−1, k � 2, on simplicial meshes.
In order to support the a priori error estimate (16), we have to compute the convolution of the

Let ϕ ∈ L2(Rd), then we obtain by applying the Fourier transform

F(gδ ∗ ϕ)(y) = (
F(gδ)F(ϕ)

)
(y) = exp

(
− δ2

24
|y|2

)
F(ϕ)(y).

Approximating the exponential by the subdiagonal Padé approximation

eax = 1

1+ ax
+O

(
a2x2),

neglecting terms ofO(δ4) and the inverse Fourier transform yield

F(gδ ∗ ϕ)(y) = (
F(gδ)F(ϕ)

)
(y) ≈ 1

1+ |y|2
24 δ

2
F(ϕ)(y) = F

((
I − δ2

24
	

)−1

ϕ

)
(y),

from what follows

gδ ∗ ϕ ≈
(
I − δ2

24
	

)−1

ϕ. (26)



198 A. Dunca et al. / Applied Numerical Mathematics 49 (2004) 187–205

We use the second order elliptic partial differential equation on the right side of (26) for approximating the
convolution numerically. This is much more efficient than numerical quadrature, see [21]. Ifϕ is given on

eneous

s

. The
f a
or
t

for

or
6).

on
res of
ft to

in all
stimated
le 4).
a bounded domain, the second order elliptic partial differential equation is equipped with homog
Neumann boundary conditions as proposed in [11].

Example 4.1 (2d example supporting the error estimates(16)and (22)). We consider the Navier–Stoke
equations (1) inΩ = (0,1)2 with the prescribed solutionu = (u1, u2) andp given by

u1 = 2π sin3(πx)sin(πy)cos(πy),

u2 = −3π sin2(πx)cos(πx)sin2(πy),

p = cos(πx) + cos(πy)

andRe= 10. This problem fits exactly into the framework of the analysis presented in Section 3
order of convergence depends on the regularityk̂ of the dual problem given in (12). In the case o
polygonal domain, one can expect in general onlyk̂ = 1. However, the regularity might be higher f
particular examples. The order of convergence obtained in the numerical studies suggest thak̂ = 3
in this example. It follows from Remark 3.2 that forδ = chα the order of convergence expected
‖gδ ∗ (u − uh)‖0 is k + 2− α if k = 2 andk + 3− 2α if k � 3.

The mesh widthh for a given triangulationT is defined by

h = max
K∈T

hK, wherehK := max
x,y∈K

|x − y|

and the global error estimate byη = (
∑

K η2
K)1/2 with ηK given by (23). Note that the a posteriori err

estimateη is only useful if its order of convergence is the same as for the a priori error estimate (1
Tables 1–4 present results for finite element discretizations with velocity spaces of orderk and pressure

spaces of orderk − 1, k ∈ {2,3,4} and different values ofδ. The computations were carried out
quadrilateral and triangular grids. The initial quadrilateral grid (level 0) consists of four squa
edge length 0.5. The initial triangular grid is obtained by dividing these squares from bottom le
top right.

All numerical tests coincide very well with the analytical results. The error estimator shows
numerical tests the correct asymptotic order of convergence. However, the error is always overe
in this example. The overestimation ranges from a factor of about 26 (Table 1) to nearly 400 (Tab

Table 1
Example 4.1,Q2/Q1 finite element discretization,δ = 0.5 (α = 0)

Level ‖u − uh‖0 ‖gδ ∗ (u − uh)‖0 η

0 5.840541e−1 1.631631e−1 1.173043e+01
1 8.551689e−2 2.772 2.412399e−2 2.758 7.174224e−1 4.031
2 1.086894e−2 2.976 1.297768e−3 4.216 4.197971e−2 4.095
3 1.380864e−3 2.977 8.637593e−5 3.909 2.518792e−3 4.059
4 1.732925e−4 2.994 5.677399e−6 3.927 1.554372e−4 4.018
5 2.168210e−5 2.999 3.643621e−7 3.962 9.682313e−6 4.005
6 2.710897e−6 3.000 2.307744e−8 3.981 6.046293e−7 4.001
7 3.388818e−7 3.000 1.451969e−9 3.990 3.778124e−8 4.000

Theory 3.000 4.000 4.000
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Table 2
Example 4.1,P3/P2 finite element discretization,δ = h0.75
Level ‖u − uh‖0 ‖gδ ∗ (u − uh)‖0 η

0 2.030502e−1 3.446956e−2 6.750303e+0
1 1.940913e−2 3.387 4.348816e−3 2.987 2.677952e−1 4.656
2 1.216234e−3 3.996 1.387224e−4 4.970 1.189230e−2 4.493
3 7.764174e−5 3.969 4.951325e−6 4.808 5.249900e−4 4.502
4 4.902454e−6 3.985 1.958768e−7 4.660 2.322077e−5 4.499
5 3.070333e−7 3.997 8.207853e−9 4.577 1.026300e−6 4.500
6 1.918967e−8 4.000 3.498957e−10 4.552 4.535184e−8 4.500

Theory 4.000 4.500 4.500

Table 3
Example 4.1,P3/P2 finite element discretization,δ = h (α = 1)

Level ‖gδ ∗ (u − uh)‖0 η

0 3.789549e−2 8.027508e+0
1 5.331715e−3 2.829 4.503760e−1 4.156
2 1.890456e−4 4.818 2.828482e−2 3.993
3 9.572364e−6 4.304 1.765849e−3 4.002
4 5.721758e−7 4.064 1.104572e−4 3.999
5 3.520322e−8 4.023 6.904097e−6 4.000
6 2.181624e−9 4.012 4.314618e−7 4.000

Theory 4.000 4.000

Table 4
Example 4.1,Q4/P

disc
3 finite element discretization,δ = h0.8

Level ‖u − uh‖0 ‖gδ ∗ (u − uh)‖0 η

0 3.537659e−2 5.995522e−3 1.489979e+0
1 1.231637e−3 4.844 1.236179e−4 5.600 3.945655e−2 5.239
2 3.971647e−5 4.955 2.499258e−6 5.628 9.527598e−4 5.372
3 1.254649e−6 4.984 5.678712e−8 5.460 2.250758e−5 5.404
4 3.932204e−8 4.996 1.345722e−9 5.399 5.325324e−7 5.401
5 1.229726e−9 4.999 3.202971e−11 5.393 1.260853e−8 5.400

Theory 5.000 5.400 5.400

Example 4.2 (3d example supporting the error estimate(16)). Let Ω = (0,1)3 and letu = (u1, u2, u3)

andp given by

u1(x, y, z) = sin(πx)sin(πy)sin(πz)+ x4 cos(πy),

u2(x, y, z) = cos(πx)cos(πy)cos(πz)− 3y3z,

u3(x, y, z) = cos(πx)sin(πy)cos(πz)+ cos(πx)sin(πy)sin(πz)− 4x3zcos(πy) + 4.5y2z2,

p(x, y, z) = 3x − sin(y + 4z) + c.
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Table 5
Example 4.2,Q2/P

disc
1 finite element discretization, order of convergence for different choices ofδ

eous
rity of
for

ral
.5

th
n the

ptotic

ator
refined

Stokes

of the

ptions
h this

sest
efore
present
Level ‖u − uh‖0 ‖gδ ∗ (u − uh)‖0 ‖gδ ∗ (u − uh)‖0
δ = h0.5 δ = 0.5

0 3.742528e−2 7.012790e−3 1.008274e−2
1 4.478076e−3 3.063 7.600275e−4 3.206 8.531608e−4 3.563
2 5.343528e−4 3.067 6.406178e−5 3.569 6.249804e−5 3.771
3 6.569613e−5 3.024 4.774094e−6 3.746 4.232580e−6 3.884
4 8.173159e−6 3.007 3.300154e−7 3.855 2.748632e−7 3.945
5 1.020367e−6 3.002 2.184200e−8 3.917 1.750525e−8 3.973

Theory 3.000 3.500 4.000

The constantc is chosen such thatp ∈ L2
0(Ω) and the right sidef is chosen such that(u,p) fulfil the

momentum equation in (1) forRe= 10. In contrast to (1), we have here a solution with non-homogen
Dirichlet boundary conditions. As in Example 4.1, the numerical results suggest that the regula
the dual problem (12) is given witĥk � 2. Thus, the expected asymptotic order of convergence
‖gδ ∗ (u − uh)‖0 is k + 2− α if k = 2 andδ = chα, see Remark 3.2.

The computations were carried out with theQ2/P
disc
1 finite element discretization on a hexahed

grid. The initial grid (level 0) consists of 8 cubes of edge length 0.5. On level 5, there are nearly 7
million degrees of freedom.

Table 5 presents the computed results. For fixedδ, i.e.,α = 0, the numerical results coincide well wi
the analytical prediction. Forδ = h0.5, the order of convergence in the numerical tests is larger tha
expected asymptotic value. We think that the grids are not yet sufficiently fine to be in the asym
regime in this case.

Example 4.3 (2d examples investigating the adaptive refinement using the a posteriori error estim).
The last numerical example shows that the large eddies can be computed on an adaptively
grid with less degrees of freedom than the solution of the Galerkin discretization of the Navier–
equations(uh,ph) for the same stopping criterion on the global a posteriori error estimate.

We consider the driven cavity problem in 2d withRe= 1000 inΩ = (0,1)2 and withf = 0, u = (1,0)T

for y = 1 and no slip conditions on the other parts of the boundary, see Fig. 1 for an illustration
flow. Since the restriction ofu to the boundary does not lie inH 1/2(∂Ω), it follows that u /∈ H 1(Ω).
Although the solution of the driven cavity problem is not sufficiently smooth to match the assum
of Proposition 3.5, the behaviour of the a posteriori error estimator can be illustrated well wit
example.

We used in the computations theP2/P1 finite element discretization on a triangular grid. The coar
level (level 0) consists of 32 equal triangles. This grid is refined twice uniformly (512 triangles) b
the adaptive grid refinement based on the a posteriori error estimates (23) starts. In addition, we
results for the standard estimator for‖u − uh‖0 where the local error estimate is given by

η2
K = h4

K

∥∥f − (−Re−1	uh + (
uh · ∇)

uh + ∇ph
)∥∥2

0,K

+ h2
K

∥∥∇ · uh
∥∥2

0,K +
∑

E⊂∂K

h3
E

2

∥∥[−Re−1∇uhn + phn
]
E

∥∥2
0,E.
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Fig. 1. Streamlines of the solution of the driven cavity problem.

Table 6
Degrees of freedom of the meshes presented in Fig. 2

δ Degrees of freedom

Velocity Pressure All

standardL2-estimator 791624 99450 891074
0.1 186 108 23 470 209 578
0.3 141 014 17 784 158 798
0.6 105 730 13 354 119 084

The framework of deriving this error estimator is given, e.g., in [8]. The estimator for the large e
Proposition 3.5, has a similar form like this standardL2-error estimator. Thus, it is easy to implement
an existing code which allows adaptive grid refinement with residual based a posteriori error estim

The algorithm used for choosing the mesh cells which should be refined is described in detail
After the computation of the error estimates on a triangulationT , the following criteria for refining the
mesh cells were applies. Given initiallytol = 0.5.

(1) A mesh cellK is refined if

ηK � tol max
K∈T

ηK.

(2) If in the first step less than 10% of the current mesh cells are marked for refinement,tol is decreased
as long as at least 10% of the mesh cells will be refined.

We did not apply coarsening of mesh cells. The stopping criterion for the computations wasη � 10−7.
The results of the computations are presented in Table 6 and Fig. 2. The choice of different valδ

leads to different final meshes. The larger the eddies to be approximated, the less degrees of fre
necessary to fulfil the stopping criterion. Especially away from the singularities in the upper co
the meshes obtained for the large eddies are coarser than the mesh obtained with the stanL2-
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vanced,
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Fig. 2. Final grids for driven cavity example,η � 1e−7, standardL2-error estimator, estimatorη with δ = 0.1, δ = 0.3, δ = 0.6
(top left to bottom right).

error estimator. The sequence of meshes computed with the error estimators for the large ed
the standardL2-error estimator is also different. In comparison to the standardL2-error estimator, the
local estimates of the error estimators for the large eddies posses an additional weighting fachK .
Thus, large mesh cells are refined earlier using the estimator for the large eddies.

5. Extensions to some stabilized discretizations

Naturally, at higher Reynolds numbers the usual (centered) Galerkin finite element met
improvable and there have been many interesting proposals for improvement. In this section, we
show that the framework of Section 3 can often be easily extended to account for the extra effect
arise in more complex discretizations. Since the theory of SUPG methods has been highly ad
see [14,15], we focus herein on complementary methods which use subgrid stabilization of a
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form ∇ · Ah(uh). Thus, the discrete problem considered in this section is to find(uh,ph) ∈ V h × Qh

satisfying

–
d eddy
nd [13]

gonal-
a
(
uh,vh

) + (
Ah

(
uh

)
,∇vh

) + b
(
uh,uh,vh

) − (
ph,∇ · vh

) + (∇ · uh, qh
) = (

f,vh
)
, (27)

for all (vh, qh) ∈ V h × Qh. Interesting examples of suchAh(uh) include the von Neumann
Richtmeyer/Smagorinsky/Ladyzhenskaya model, e.g., [32,25], the models developed in [18] an
viscosity models acting only on the smallest resolved scales, see Hughes et al. [17,16], Guermo
and [26,24].

Proposition 5.1. Let (uh,ph) satisfy(27) and let the assumptions of Proposition3.5 hold. Then with
e = u − uh andηK given in(23), there are constantsc(u, ν, k̂) > 0, c(u, ν, k̂, ε) > 0, h0(u) such that for
h � h0(u) and for anyε > 0

‖gδ ∗ e‖0 � c
(
u, ν, k̂, ε

){( ∑
K∈T h

η2
K

)1/2

+
( ∑

K∈T h

(
hK

δ

)2k̂

δ2
∥∥Ah

(
uh

)∥∥2
0,K

)1/2

+ [
δ1/2−ε‖e‖0‖∇e‖0 + δ−k̂+1

∥∥Ah
(
uh

)∥∥−k̂

]}
. (28)

Proof. A key ingredient to develop residual based a posteriori error estimates is Galerkin ortho
ity [2,20]. The discretization (27) satisfies the approximate Galerkin orthogonality condition:

a
(
e,vh

) + b
(
e,u,vh

) + b
(
u, e,vh

) − b
(
e, e,vh

) − (
p − ph,∇ · vh

) + (∇ · e, qh
)

= −(
Ah

(
uh

)
,∇vh

) ∀vh ∈ V h.

This is (18) modified by the term on the right side. Following the proof of Proposition 3.5, letψ ∈ L2(Ω)d

be given and let(φ, λ) be the solution of (11), the same estimates then give

∣∣(ψ, gδ ∗ e)
∣∣ �

[
c
(
u, ν, k̂

)( ∑
K∈T h

η2
K

)1/2

+ c
(
u, ν, k̂, ε

)
δ1/2−ε‖e‖0‖∇e‖0

]
‖ψ‖0

+ ∣∣(Ah
(
uh

)
,∇IV h(φ)

)∣∣.
Applying the triangle inequality to the last term on the right side gives∣∣(Ah

(
uh

)
,∇IV h(φ)

)∣∣ �
∣∣(Ah

(
uh

)
,∇φ)∣∣ + ∣∣(Ah

(
uh

)
,∇(

IV h(φ) − φ
))∣∣.

The second term is bounded using (14) and (13)

∣∣(Ah
(
uh

)
,∇(

IV h(φ) − φ
))∣∣ � c

(
u, ν, k̂

)( ∑
K∈T h

(
hK

δ

)2k̂

δ2
∥∥Ah

(
uh

)∥∥2
0,K

)1/2

‖ψ‖0,

while the first term is bounded by∣∣(Ah
(
uh

)
,∇φ)∣∣ � c

(
u, ν, k̂

)
δ−k̂+1

∥∥Ah
(
uh

)∥∥−k̂
‖ψ‖0.

The proof is completed by collecting estimates.✷
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Remark 5.2. The a posteriori error estimate can naturally be interpreted as being split into a “numerical
residual” component (the first term in the right side of (28)), a “modeling residual” component (the

onent).
tionary
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second term) and a component which is asymptotically of higher order (the third bracketed comp
This decoupling occurs in other a posteriori error estimates for approximations of models of sta
turbulence in [9]. The third, bracketed term in (28) is of higher order provided the basic method
asymptotically convergent ash → 0. Thus, a complete treatment requires an á priori convergence
of (27) which will necessarily depend upon the specific chosen form ofAh(uh).
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