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Abstract

Commutation errors arise in the derivation of the space averaged Navier–Stokes equations, the basic equations for the large eddy
simulation of turbulent flows, if the filter is non-uniform or asymmetric (skewed) with non-constant skewness. These errors need
to be analyzed for turbulent flow fields, where one expects a limited regularity of the solution. This paper studies the order of
convergence of commutation errors, as the filter width tends to zero, for functions with low regularity. Several convergence results
are proved and it is also shown that convergence may fail (or its order decreases) if the functions become less smooth. The main
results are those dealing with Hölder–continuous functions and with functions having singularities. The sharpness of the analytic
results is confirmed with numerical illustrations.
© 2006 Elsevier B.V. All rights reserved.
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1. Commutation errors in large eddy simulation (LES)—the motivation for the studies

Large eddy simulation (LES) is currently one of the most popular approaches for the simulation of turbulent flows.
Turbulent incompressible flows are governed by the incompressible Navier–Stokes equations

ut − Re−1�u + ∇(u uT) + ∇p = f in (0, T ] × �,

∇ · u = 0 in [0, T ] × �, (1)

where u = (u1, . . . , ud) is the velocity, p the pressure, Re > 0 the Reynolds number, � ⊂ Rd (d = 2 or 3) a given
domain, T a positive time and f the external force. Eqs. (1) must be equipped with boundary and initial conditions.
Often, the no-slip boundary condition u = 0 on �� is considered. A straightforward discretization of (1) by a finite
element or finite difference method, a so-called direct numerical simulation (DNS), seeks to simulate the behavior of
all persistent flow structures. However, the richness of scales in turbulent flows is by far too large to be handled by
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present day computers and a DNS is in general not possible. The basic goal of LES is to simulate only the behavior of
“large” flow structures (u, p), defined by a space filtering of the unknowns (u, p). This filtering (or space averaging)
is intended to act as a low-pass filter in order to capture only the large eddies of the flow and is generally realized by
the convolution of (u, p) with an appropriate filter function G:

u(y) = 1

�d

∫
Rd

G

(
y − x

�

)
u(x) dx, p(y) = 1

�d

∫
Rd

G

(
y − x

�

)
p(x) dx. (2)

Roughly speaking, the parameter � ∈ R+, the filter width, describes how much narrow (near to a Dirac’s delta function)
the filtering is. Furthermore, in the limit � → 0, the operation of filtering must reconstruct the original functions. For
an introduction to LES see Aldama [2], Sagaut [24], [4] or [18].

In order to simulate (u, p) and to describe their dynamical behavior, one must derive a set of partial differential
equations satisfied by these unknowns. The basic idea in the first step of the derivation of such equations is to filter the
Navier–Stokes equations (1) which gives, by using the linearity of the convolution operator,

ut − 1

Re
�u + ∇ · (u uT) + ∇p = f in (0, T ] × �,

∇ · u = 0 in [0, T ] × �. (3)

The derivation proceeds by assuming that convolution and differentiation commute, arriving to the so-called space
averaged Navier–Stokes equations

ut − 1

Re
�u + ∇ · (u uT) + ∇p = f + ∇ · (u uT − uuT) in (0, T ] × �,

∇ · u = 0 in [0, T ] × �. (4)

Now, the last and mostly studied step of LES-modeling consists in modeling the subgrid scale stress tensor
R(u, u) = u uT − uuT in terms of (u, p). In this paper, we want to focus on the derivation of the space averaged
Navier–Stokes equations. First, we note that the integrals in (2) are well-defined for functions defined in the whole
space and the definition could be easily adapted also in the periodic case. Additional problems with convolutions arise
when solid boundaries, which is the usual situation in applications, are present or a non-uniform filter width is used.
These problems are well-known, however they are usually neglected in practice. The topic of this paper is to analyze
the step from (3) to (4) if � = �(y), more precisely the assumption of the commutation property. This property holds
in special cases, e.g., if � = Rd and the filter width � is constant. In a general setting, a commutation error, whose ith
component is defined by

Ec,i (y) := �iu(y) − �iu(y), (5)

is committed, where u is the function (scalar or vector valued) which is filtered. Nowadays, this fact is well-known
[8,10,13,16–18,29,31], even if a rigorous analysis is still not complete. Note, if commutation errors do not vanish, the
divergence-free constraint may not be true anymore, i.e., ∇ · u �= 0, and the space averaged Navier–Stokes equations
may be (slightly, if the commutation errors are small) compressible. In particular, current mathematical research on
LES is starting to focus on this topic, see Layton [19] for currents trends in mathematics of LES, and also on problems
of consistency and sensitivity of equations with respect to �, see Anitescu et al. [3].

The commitment of an error in going from (3) to (4) may have several reasons:

(1) The convolution with a filter kernel with a constant � requires the extension of all functions outside � for the
integral in (2) to be well-defined. The extended functions will have, in general, a lack of smoothness at the
boundary of �. The theory of distributions shows that an additional term, see (6), appears in this case.

(2) The assumption of the commutation property fails if the filter width � = �(y) is non-constant but it is a function.
Here, y denotes the point at which a given function is filtered. In fact, the filtering is not described by a simple
convolution, but by a more complicated integral transform, see (10). The study of such non-uniform filters have
been started in Ghosal and Moin [16].
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(3) A commutation error might appear if the filter is not applied in a symmetric way. This means that y is the point
in which the function u is filtered and the center of the filter kernel G is not in y but it is shifted away from y by a
given quantity, possibly depending on y itself. This type of filters is called asymmetric or skewed [15,29]. Only
for constant filter width and constant asymmetry, there is no commutation error for skewed filters.

Possible advantages of using non-uniform and skewed filters are in the study of complex geometry problems and flows
with very different scales in different parts of the computational domain, etc., see [29] for a detailed discussion.

The mathematical study of questions arising in the application of the filter with constant �, after having trivially
extended outside � all functions appearing in the Navier–Stokes equations started in Dunca et al. [8], see also [18]. In
particular, if the convolution of the terms �u and ∇p is correctly defined in the sense of distributions, commutation of
convolution and differentiation leads to the term∫

��
G(x − s) S(u, p)(t, s)n(s) ds (6)

in the right-hand side of the space averaged Navier–Stokes equations (4), where S(u, p) = Re−1∇u − p I is the stress
tensor, I is the unit tensor and n is the outward unit normal on ��. The study of the convergence of (6) in Lp(Rd), as
� vanishes, reveals that (6) goes to zero if and only if the normal stress S(u, p)(t, s)n(s) is zero almost everywhere
on the boundary, for almost every time. This implies that there is no interaction between the (turbulent) flow and the
boundary of the domain—a situation which is rather unlikely in applications. A consequence of this result is that using
a discretization which is based on the strong form of the space averaged Navier–Stokes equations, the term (6) cannot
be neglected. For discretizations which are based on a weak or variational form, the effect of neglecting (6) can be
measured in the H−1(�)-norm and it is shown in [8] that this norm of (6) tends to zero as � → 0, with order of
convergence at least 1

2 .
The choice of a filter width function �(y) vanishing at the boundary overcomes the challenging problem of boundary

conditions for LES. We recall that the boundary conditions that complete (4) are not known. This is the problem of
“Near Wall Modeling.” The study of a filter width function such that

�(y) → 0 as y → �� (7)

has been pioneered by the van Driest damping [30] and filters with variable width in the whole domain are applied in
the dynamic method of Germano et al. [14]. The mathematical properties of the system arising with this variable filter
are much more delicate and their treatment requires deeper functional analysis tools. First steps in the analysis of a
Smagorinsky model with variable �(y) have been performed recently by Świerczewska [28].

A theoretical question which arises now is the following: What happens with the commutation errors (5) if the filter
width tends to zero? In applications, the filter width is in general proportional to the mesh size. If the mesh becomes
finer and finer, one likes to simulate smaller and smaller flow structures and asymptotically all flow structures governed
by the Navier–Stokes equations (1) should be simulated. This implies that the commutation errors must vanish as the
filter width tends to zero. The question is if this really happens. Furthermore, if the answer is positive, a knowledge of
the order of convergence is of interest. In view of applications, it is also of interest to find out how large the commutation
errors are in a given situation and how does neglecting the commutation errors influence the numerical results.

Numerical studies of the size of commutation errors for different filters at a turbulent mixing layer flow are presented
in van der Bos and Geurts [29]. It was found that—in particular—the size of the commutation error for asymmetric
filters might be so large that its modeling becomes necessary. A priori tests and modeling are also presented in [17].
Another observation in [17,29,5] is that modeling of commutation errors may be as important as that of the subgrid
scale stress tensor. Using so-called second order filters (first moment of the filter kernel vanishes but second moment
does not), many LES models lead to models of the subgrid scale stress tensor formally correct up to terms of O(�2),
e.g., the Smagorinsky model [26], the gradient model [20,6], the rational model [12], or the dynamic subgrid scale
model [14,21]. Then, the divergence of second order models for R(u, u) (see (4)) introduces terms that are formally
O(
∑d

l=1�i�l (y)�l (y))—which is the same order as for commutation errors for symmetric filters!
In this paper, we will study commutation errors for the most common filters (Gaussian filter, box filter) which are

applied to functions with (relatively) low regularity. The study of such functions is motivated by the available analysis,
in particular that for the weak solutions of the Navier–Stokes equations, one can prove only very low regularity results.
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Our approach is complementary to the available literature which considers smooth functions (C∞(�)) and constructs
filters satisfying certain properties, e.g., [16,22]. The consideration of functions with low regularity is, in our opinion,
necessary for applications.

The paper is organized as follows. Section 2 introduces the filters which will be studied and reviews the estimates for
commutation errors for smooth functions. Unified representation formulae for the commutation errors are derived. Sec-
tion 3 studies commutation errors for symmetric filters with compact support applied to Hölder–continuous functions.
It is shown that the order of convergence for the commutation error decreases if the function to be filtered possesses
less smoothness. Additionally, an estimate in the Lp(�)-norm will be given. In Section 4, commutation errors near
the boundary in the cases that the mean velocity obeys the 1/�th power law and that the flow field has a singularity
are investigated. It is shown that the convergence of the commutation errors requires the filter width to tend to zero
sufficiently fast near the boundary. The resulting smallness of the filter width requires in practice the resolution of
the flow field near the boundary. The analytical results of Sections 3 and 4 are supported with numerical illustrations.
Finally, Section 5 summarizes the results of the paper.

2. Classes of filters, review of filtering smooth functions

This section introduces the classes of filters with and without compact support. The filtering of smooth functions with
non-constant filter width and asymmetric filter kernels is reviewed. The derivation of the estimates is straightforward
and the results are in principle already known, see [22] for the case of assuming infinitely smooth functions. Below, the
regularity conditions to obtain these estimates are stated precisely. It turns out that the representation of the commutation
error is the same for both classes of filters, see Lemmas 2.1 and 2.3. To our best knowledge, the expressions (14) and
(19) has not been presented in the literature so far although alternative representations of the commutation error can
be found, e.g., see [29]. These expressions will be used in the following sections. In higher dimensions, we consider
the case that the filter operator is a tensor product of one-dimensional filters, which is the common approach in LES
[2,24].

2.1. Filters without compact support

First, we suppose that the function u which should be filtered and the filter G are both given on Rd . It will be allowed
that the filter width function � = �(y) depends on the point y in which the function is filtered and the center of the filter
kernel is moved away from this point by a vector t(y) = (t1(y), . . . , td (y)).

Let G�0 be a filter kernel with supp(G) = R. For the analysis, we assume that the filter is “normalized”, that the
first moment of the filter kernel exists and vanishes and that the second moment of the filter kernel exists, i.e.,∫ +∞

−∞
G(x) dx = 1,

∫ +∞

−∞
G(x)x dx = 0,

∫ +∞

−∞
G(x)x2 dx = M2 < + ∞. (8)

The existence of the above moments implies that G(x) tends sufficiently fast to zero as |x| → +∞. In particular, for
any bounded function u it holds

lim|x|→∞ G

(
x + t

�

)
xku(x − y) = 0 for k ∈ {0, 1, 2} and t, y, � ∈ R. (9)

The most popular example for such a filter kernel is the Gaussian G(x) = √
6/� exp(−6x2). For the Gaussian filter, all

moments exist and all odd moments vanish:∫ +∞

−∞
G(x)xk dx =

{
0 if k is odd,
1

2k

1

3k/2 3 5 · · · (k − 1) if k is even.

In the scalar case, the filtered function u(y) of u(x) is defined by

u(y) = 1

�(y)

∫ +∞

−∞
G

(
x + t (y))

�(y)

)
u(y − x) dx. (10)
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The generalization to the multi-dimensional case requires the introduction of some function spaces. Given any open
set A ⊂ Rd , we shall denote by Ck(A), k ∈ N, the space of functions which are continuous together with all partial
derivatives up to order k and by Ck

b(A) the functions belonging to Ck(A) which are bounded together with all partial

derivatives up to order k. The norm in Ck
b(A) is defined by ‖f ‖Ck

b (A) =∑k
|�|=0supx∈A|��f |, where � = (�1, . . . , �d)

is a multi-index and |�| =∑d
k=1 �i .

Let u ∈ C1(Rd) ∩ C0
b (Rd) be a given function, let �k(y) ∈ C1

b(Rd) denote the width function of the filter with
respect to the direction xk and let the translation t(y) belong to (C1

b(Rd))d . The filter u of u is then defined by a tensor
product of one-dimensional filters:

u(y) =
d∏

k=1

1

�k(y)

∫
Rd

d∏
l=1

G

(
xl + tl(y)

�l (y)

)
u(y − x) dx. (11)

To keep the notations concise, we define A(y) =∏d
k=1 �k(y), and

G(x, y) =
d∏

k=1

G

(
xk + tk(y)

�k(y)

)
, Gl (x, y) =

d∏
k=1,k �=l

G

(
xk + tk(y)

�k(y)

)

such that

u(y) = 1

A(y)

∫
Rd

G(x, y)u(y − x) dx. (12)

A direct calculation shows

�iu(y) = − 1

A(y)

[(
d∑

k=1

�i�k(y)

�k(y)

)∫
Rd

G(x, y)u(y − x) dx

+
∫

Rd

(
d∑

l=1

Gl (x, y)G′
(

xl + tl(y)

�l (y)

)
�i tl(y)�l (y) − (xl + tl(y))�i�l (y)

�l (y)2

)
u(y − x) dx

+
∫

Rd
G(x, y)�iu(y − x) dx

]
, (13)

where �i = �/�yi . The last term is just �iu; consequently the ith component of the commutation error is the sum of the
other two terms. The commutation error is now transformed using integration by parts

1

�l (y)

∫
Rd

Gl (x, y)G′
(

xl + tl(y)

�l (y)

)
u(y − x) dx =

∫
Rd

G(x, y)�lu(y − x) dx,

1

�l (y)

∫
Rd

Gl (x, y)G′
(

xl + tl(y)

�l (y)

)
xlu(y − x) dx = −

∫
Rd

G(x, y)u(y − x) dx +
∫

Rd
G(x, y)xl�lu(y − x) dx.

The vanishing of the boundary terms (at infinity) follows from (9). Inserting these expressions into (13) shows that the
first term of (13) cancels out and it gives the following lemma.

Lemma 2.1. Let u ∈ C1(Rd) ∩ C0
b (Rd), �l ∈ C1

b(Rd), tl ∈ C1
b(Rd), l = 1, . . . , d. Then the ith component of the

commutation error has the form

Ec,i (y) =
d∑

l=1

[
�i�l (y)

�l (y)

(
xl�lu − yl�lu

)
(y) + �i tl(y)�l (y) − tl(y)�i�l (y)

�l (y)
�lu(y)

]
. (14)

It can be observed that there is no commutation error for skewed filters with both a constant skewness, i.e., �i tl(y)=0,
and with a constant filter width, i.e., �i�l (y) = 0, l = 1, . . . , d.
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We now investigate how the representation formula in the above proposition can be used to obtain a pointwise
estimate of the commutation error.

Proposition 2.2. Let u ∈ C2
b (Rd), let the first moment of the filter kernel vanish and the second moment exist and let

�l ∈ C1
b(Rd), tl ∈ C1

b(Rd), l = 1, . . . , d. Then,

|Ec,i (y)|�
∣∣∣∣∣

d∑
l=1

�i tl(y)�lu(y)

∣∣∣∣∣+ ‖u‖
C2(Rd )

⎛
⎝ d∑

k,l=1

|�i tl(y)tk(y)| + |M2|
d∑

l=1

|�i�l (y)�l (y)|
⎞
⎠ . (15)

Proof. We start by investigating the first term of (14). By using the Taylor formula for u at y with the Lagrange formula
for the remainder and by applying the following identities:∫ +∞

−∞
G

(
x + t (y)

�(y)

)
dx = �(y),

∫ +∞

−∞
G

(
x + t (y)

�(y)

)
x dx = −�(y)t (y),

∫ +∞

−∞
G

(
x + t (y)

�(y)

)
x2 dx = M2�(y)3 + �(y)t (y)2,

that follow from (8), one gets

d∑
l=1

�i�l (y)

�l (y)

(
xl�lu − yl�lu

)
(y)

=
d∑

l=1

�i�l (y)

�l (y)

(
tl(y)�lu(y) +

d∑
k=1

�k�lu(y + �kek)tl(y)tk(y) + M2�l (y)2�l�lu(y + �lel )

)
,

where ek is the unit vector in xk direction and �k ∈ R. For the second term, one obtains in the same way

d∑
l=1

�i tl(y)�l (y) − tl(y)�i�l (y)

�l (y)
�lu(y)

=
d∑

l=1

(
�i tl(y)�lu(y) − tl(y)�i�l (y)

�l (y)
�lu(y)

)
+

d∑
k,l=1

�i tl(y)tk(y)�k�lu(y + �kek)

−
d∑

k,l=1

�i�l (y)

�l (y)
�k�lu(y + �kek)tl(y)tk(y).

By collecting all terms and applying the triangle inequality, the statement of the proposition follows. �

Remark 2.1. Estimate (15) shows that the ith component of the commutation error depends not only on the derivative
with respect to yi of �i (y) and ti (y), but it depends also on the yi-derivative of all components of the filter width
functions and all translation directions.

Remark 2.2. Consider first the case that there is no translation of the filter kernel, tl(y) ≡ 0 for all l. Then, the leading
term in (15) is

‖u‖
C2(Rd )

|M2|
d∑

l=1

|�i�l (y)�l (y)|,

which shows that the commutation error vanishes as �l (y) → 0 for all l since |�i�l (y)| is bounded. The order of
convergence is at least linear. If �l (y) are constants but the translations of the filter kernel do not vanish, the requirement
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of the asymptotic vanishing of the commutation error is that �i tl(y) → 0 as �l (y) → 0 for all l. Thus, asymptotically
the translation has to be the same for all y ∈ Rd , i.e., the translation has to tend to a constant vector. Note that in the
case that all �l (y) and tl(y) are constants, no commutation error is committed. In the general case, one has to require
for a linear convergence of the commutation error that maxl |�i tl(y)| = O(maxl �l (y)), i.e., the translation is allowed
locally only to vary slowly and this variation has to tend to zero in the same way as maxl |�l (y)|.

Remark 2.3. There are two situations where a higher order convergence of the commutation error can be obtained
than proved in Proposition 2.2. The first one requires additional properties of the filter, namely that the filter is chosen
in such a way that estimates of the form |�i tl(y)|�C�l (y)�+1, |�i�l (y)|�C�l (y)� with � > 0 hold. That means, the
translation and the filter width function are allowed only to vary slowly.

The second situation requires, besides a condition on the filter, also a condition on the function u. Consider for
simplicity a symmetric filtering, the condition on the filter is that not only the first moment but all moments of the
filter kernel (starting from the first one) up to a certain order vanish and the condition on the function is a higher
regularity. This case has been studied in [22] for u ∈ C∞(R) using also a Taylor series expansion of u like in the proof
of Proposition 2.2. It is demonstrated that such filter kernels can be constructed. However, this construction is rather
involved. With the two assumptions from above, the pointwise commutation error can be made as small as desired.
Note, the use of such higher order filters leads to an equally strong decrease of the contribution of the divergence of the
subgrid scale stress tensor. Since the construction of an appropriate filter kernel can be done in principle, the crucial
assumption is the smoothness of u. In applications, u is the velocity field or the pressure of a turbulent flow. To expect
a high regularity is not realistic in this case.

2.2. Filters with compact support

In this section, we study filters with compact kernel which are applied to functions u which are defined in a bounded
domain �. A main feature which is required is that the application of the filter leads to integrals whose domain of
integration is a subset of �, i.e., the filter width at a point y in any direction is not allowed to be larger than the distance
of y to the boundary in that direction. This situation has the appealing property that an extension of u outside � is not
necessary. It was shown in [8] that such an extension leads to additional terms in the commutation. But this requirement
also implies that the filter width has to tend to zero (at least in one direction) as the point y in which u is filtered tends
to the boundary of �. Thus, necessarily, the filter width is a function of y. We refer to [16] for a different approach
which avoids extensions of functions by using a map from the bounded domain onto Rd .

Let G be a filter kernel with support [− 1
2 , 1

2 ] (without loss of generality) which is normalized. Moreover, we assume
that the first moment of G(x) exists and vanishes and the second moment of G(x) exists

∫ 1/2

−1/2
G(x) dx = 1,

∫ 1/2

−1/2
G(x)x dx = 0,

∫ 1/2

−1/2
G(x)x2 dx = M2 (16)

and G ∈ C1(− 1
2 , 1

2 ). The most popular filter which fits into this framework is the box or the top hat filter G(x) = 1 if
|x|� 1

2 and G(x) = 0 elsewhere.
For simplicity of presentation, we show the derivation of the formula for the commutation error for symmetric filters.

For asymmetric filters, the derivation uses the same techniques. The final result will be given for the general case. Let
� ⊂ Rd be a bounded domain, u ∈ C1(�), �l (y) be scalar filter width functions with �l (y) ∈ C1(�), �l (y) > 0 for all
y ∈ �, l = 1, . . . , d. We denote by B(y) = [−�1(y), �1(y)] × · · · × [−�d(y), �d(y)] and we assume that

y + B(y) := [y1 − �1(y), y1 + �1(y)] × · · · × [yd − �d(y), yd + �d(y)] ⊂ �

for all y = (y1, . . . , yd) ∈ �. Denoting by A(y) =∏d
l=1 (2�l (y)), the filter of u is defined by

u(y) = 1

A(y)

∫
B(y)

d∏
l=1

G

(
xl

2�l (y)

)
u(y − x) dx. (17)
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Note, with this definition, the filter width in y, in the direction xl , is 2�l (y). Using the notations

G(x, y) =
d∏

k=1

G

(
xk

2�k(y)

)
, Gl (x, y) =

d∏
k=1,k �=l

G

(
xk

2�k(y)

)
,

Bl (y) = [−�1(y), �1(y)] × · · · × [−�l−1(y), �l−1(y)] × [−�l+1(y), �l+1(y)] × · · · × [−�d(y), �d(y)],
(dx)l = dx1 · · · dxl−1dxl+1 · · · dxd

and el for the unit vector in xl direction, a straightforward calculation gives

�iu(y) = 1

A(y)

[
−
(

d∑
k=1

�i�k(y)

�k(y)

)∫
B(y)

G(x, y)u(y − x) dx

−
d∑

l=1

2�i�l (y)

(2�l (y))2

∫
B(y)

Gl (x, y)G′
(

xl

2�l (y)

)
xlu(y − x) dx

+ G

(
1

2

) d∑
l=1

�i�l (y)

∫
Bl (y)

Gl (x, y)u (y − x + (xl − �l (y))el ) (dx)l

+ G

(
−1

2

) d∑
l=1

�i�l (y)

∫
Bl (y)

Gl (x, y)u (y − x + (xl + �l (y))el ) (dx)l

+
∫
B(y)

G(x, y)�iu(y − x) dx

]
. (18)

For d = 1, the integral over Bl (y) is to be understood as the difference of the value of the function u at the boundary
points x = �(y) and x = −�(y). The last term is just �iu such that (18) without this term is the ith component of the
commutation error. Observing that Gl (x, y) does not depend on xl , integration by parts gives

− 2�i�l (y)

(2�l (y))2

∫
B(y)

Gl (x, y)G′
(

xl

2�l (y)

)
xlu(y − x) dx

= �i�l (y)

�l (y)

[∫
B(y)

G(x, y)
(
u(y − x) − xl�lu(y − x)

)
dx

− G

(
1

2

)
�l (y)

∫
Bl (y)

Gl (x, y)u (y − x + (xl − �l (y))el ) (dx)l

− G

(
−1

2

)
�l (y)

∫
Bl (y)

Gl (x, y)u (y − x + (xl + �l (y))el ) (dx)l

]
.

Inserting this expression into (18), one observes that the first term of (18) cancels as well as all sums with the factors
G( 1

2 ) and G(− 1
2 ). Performing the same calculations for the asymmetric case proves the following lemma.

Lemma 2.3. Let u ∈ C1(U(y)), where U(y) is a neighborhood of y such that y + B(y) ⊂ U(y), �+
l (y) ∈ C1(U(y))

and �−
l (y) ∈ C1(U(y)), l = 1, . . . , d. Then, the ith component of the commutation error has the form

Ec,i (y) =
d∑

l=1

[
�i�

+
l (y) + �i�

−
l (y)

�+
l (y) + �−

l (y)
(xl�lu − yl�lu)(y) + �i�

+
l (y)�−

l (y) − �i�
−
l (y)�+

l (y)

�+
l (y) + �−

l (y)
�lu(y)

]
. (19)

The second term in (19) vanishes for symmetric filters and the commutation error vanishes for constant filter width
functions, i.e., �i�

−
l (y)=�i�

+
l (y)=0, l =1, . . . , d, regardless of the skewness. Comparing (19) with the commutation
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error (14) for filters without compact support, one finds that both formulas are in principle identical. The role of the
filter width function �l (y) in (14) is played by (�+

l (y) + �−
l (y))/2 in (19) and the role of the translation tl(y) in (14) is

played by (�+
l (y) − �−

l (y))/2 in (19). Next, a pointwise error estimate for the commutation error is proved. With the
same substitutions as above, it has a form similar to that of the error estimate (15).

Proposition 2.4. Let u ∈ C2(U(y)) where U(y) is defined in Lemma 2.3, let the first moment of the filter kernel vanish
and the second moment exists and let �+

l (y) ∈ C1(U(y)) and �−
l (y) ∈ C1(U(y)),l = 1, . . . , d. Then

|Ec,i (y)|�
∣∣∣∣∣

d∑
l=1

�i�
+
l (y) − �i�

−
l (y)

2
�lu(y)

∣∣∣∣∣
+ ‖u‖C2(U(y))

⎡
⎣ d∑

k,l=1

|�+
k (y) − �−

k (y)| |�i�
+
l (y) − �i�

−
l (y)|

4

+
d∑

l=1

|M2||�i�
+
l (y) + �i�

−
l (y)|(�+

l (y) + �−
l (y))

⎤
⎦ . (20)

Proof. From the normalization of the filter kernel and the values of the first two moments, it follows that for �+, �− ∈ R∫ �−

−�+
G

(
2x + �+ − �−

2(�+ + �−)

)
dx = �+ + �−,

∫ �−

−�+
G

(
2x + �+ − �−

2(�+ + �−)

)
x dx = − (�+ − �−)(�+ + �−)

2
,

∫ �−

−�+
G

(
2x + �+ − �−

2(�+ + �−)

)
x2 dx = M2(�

+ + �−)3 + 1

4
(�+ − �−)2(�+ + �−).

Now, the proof is readily obtained by using the Taylor formula for �lu at the point y with the Lagrange formula for the
remainder and by applying the above formulas. �

Since the error estimate (20) has in principle the same form as the error estimate (15), the remarks after Proposition
2.2 will apply also here. However, there are two important differences. First, in (20), the C2-regularity of u is needed
only in a neighborhood of y and not on the whole domain. Thus, using a compact filter, an irregularity of u which is far
enough away from y with respect to the filter width does not effect the pointwise convergence of the commutation error
in y. Second, the commutation error vanishes if the filter width functions �−

l (y)=�+
l (y), l =1, . . . , d, are constant, see

(19). These conditions cannot be fulfilled (or only trivially) if one considers a bounded domain and requires that the
filter kernel should always be inside the closure of this domain. For simplicity, let � = (a, b) ⊂ R. If the filter kernel
should be contained in [a, b] then necessarily �−(y) → 0 as y → a and �+(y) → 0 as y → b. Thus, either we have
�−(y) = �+(y) = 0 (no filtering) or the filter width functions are not constant.

3. The box filter applied to functions with low regularity

This section contains the main results of this paper. The commutation error will be analyzed for functions with low
regularity, in particular for Hölder-continuous functions. Standard notations for Lebesgue and Sobolev spaces are used,
see [1].

3.1. Motivations for considering functions with low regularity

In this section, we study the application of the box filter to functions which possess less smoothness than required in
the analysis of Section 2.2. Our interest for finding upper bounds on the commutation error for non-smooth functions
is two-fold. There are mathematical and physical motivations.
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From the mathematical point of view, it is still unknown whether the three-dimensional Navier–Stokes equations
have smooth global-in-time solutions, or not. Even if for practical purposes it is often assumed that the solution is of
class C2 (at least when viewed at certain scales), more than 70 years of efforts of mathematicians have not been enough
for solving this important question. A both detailed and introductory review of the main results about this problem can
be found in Galdi [11]. We like to recall that “Leray–Hopf weak solutions”, those for which we have rigorous global
existence results, belong just to L∞(0, T ; L2(�)) ∩ L2(0, T ; H 1(�)). Their regularity is so weak that the problem of
their uniqueness is still open.

Another mathematical question arises when considering domains with corners. We recall that only in special cases
(e.g., small data, small time intervals, or small Reynolds number, and smooth domains) it is known that weak solutions
of the Navier–Stokes equations are “strong”, e.g., u ∈ W 2,2(�), see Sohr [27]. In the case that the domain � ⊂ R3

is a polyhedral domain, this result is not proved. A regularity result (in the time-dependent case) has been proved in
Deuring and von Wahl [7]: u ∈ W 3/2−�,2(�), p ∈ W 1/2−�,2(�), for all � > 0, while an “interior regularity” result still
holds and u ∈ W 2,2(�′) and p ∈ W 1,2(�′) for each �′ such that �′ ⊂ �. We observe that the Sobolev embedding
theorem implies p ∈ L�(�) for 2�� < 3. This means that, near a possible singular point x0, the pressure may have a
behavior of the form |p| ∼ ‖x − x0‖−� for � < 1. In the presence of re-entrant corners, like a flow facing a step, the
behavior could be even worse.

Another motivation to study functions with low regularity comes from the classical theory of homogeneous turbulence.
From the physical point of view, we recall that within Kolmogorov’s K41 theory, the first hypothesis, that of small-scale
homogeneity, predicts that �u(r, l) = u(r + l) − u(r), the velocity increment at point r, equals �u(r + �, l) (that at
point r + �) in a certain statistical sense and for all increments l and displacements � smaller than the integral scale,
e.g., see Frisch [9, Section 6.1]. The second hypothesis, that of self-similarity at small scales, implies a unique scaling
exponent h ∈ R such that, in a proper statistical sense, �u(r, 	l) = 	h�u(r, l) ∀ 	 ∈ R+, for all r and increments
l and 	l small compared to the integral scale. Finally, this unique scaling exponent h equals 1

3 by assuming that the
kinetic energy dissipated per unit mass is given by ε=0.5CDU3L−1, where CD is the drag coefficient (approximatively
constant for high Reynolds numbers), U is a typical velocity, and L a typical length. Several authors rediscovered or
contributed to the K41 theory (Obukhov, von Weizsäcker, Heisenberg, Onsager et al., see [9, Section 6.5]). Onsager
[23] was the first to point out that the |l|1/3 law for velocity increments means that, in some sense, the velocity is not
smooth but only Hölder-continuous of exponent 1

3 and he also pointed out the issue of possible singularities.
We will consider from now only functions in a bounded domain, since this is the most interesting case in applications,

and filters with compact support which do not require extending the functions of the Navier–Stokes equations off the
domain. Concretely, we will study the box filter because it is the most widely used filter with compact support. For
simplicity, we consider only the symmetric box filter, i.e., �+

l (y)=�−
l (y)=�l (y), l =1, . . . , d. For smooth functions, it

was proved in Proposition 2.4 that the commutation error vanishes as �l (y) → 0 for all l and that the rate of convergence
is at least linear. We will see that the behavior becomes worse for less smooth functions.

We use the notations of Section 2.2. From (18) follows that the ith component of the commutation error in the case
of the symmetric box filter has the form

Ec,i (y) = − 1

A(y)

(
d∑

l=1

�i�l (y)

�l (y)

)∫
B(y)

u(y − x) dx

+ 1

A(y)

[
d∑

l=1

�i�l (y)

∫
Bl (y)

u (y − x + (xl − �l (y))el ) (dx)l

+
d∑

l=1

�i�l (y)

∫
Bl (y)

u (y − x + (xl + �l (y))el ) (dx)l

]
. (21)

This formula was originally derived under the assumption u ∈ C1(U(y)), where U(y) is defined in Lemma 2.3, but it
is clear that the derivation proceeds analogously if �iu is defined only in a weak sense such that �iu may be undefined
on a set of Lebesgue measure zero. However, the case that �iu includes Dirac distributions is excluded. Note that also
the representation (19) of the commutation error is still valid.
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3.2. Pointwise estimate of the commutation error for Hölder-continuous functions

The space C0,�(�), � ∈ (0, 1], of �-Hölder-continuous functions is defined by

C0,�(�) =
{

u : � → R : sup
x,y∈�, x �=y

|u(x) − u(y)|
‖x − y‖� := M� < + ∞

}
.

The property of Hölder-continuity is stronger than continuity, e.g., for � = 1 the functions are Lipschitz-continuous.
On the other hand, Hölder-continuous functions may not be differentiable at all. An upper bound of the pointwise
commutation error is given in the following proposition.

Proposition 3.1. Let u ∈ C0,�(�), � ∈ (0, 1] and �l (y) ∈ C1(U(y)), l = 1, . . . , d, then

|Ec,i (y)|�C�

∣∣∣∣∣
d∑

l=1

�i�l (y)

�l (y)

∣∣∣∣∣
(

d∑
l=1

4�l (y)2

)�/2

, (22)

where C� > 0 is a constant depending on �.

Proof. Let us fix y ∈ B(y). By the mean value theorem of integral calculus there are y1, y2, y3 ∈ y + B(y) such that∫
B(y)

u(y − x) dx = A(y)u(y1),

∫
Bl (y)

u (y − x + (xl − �l (y))el ) (dx)l = A(y)

2�l (y)
u(y2),

∫
Bl (y)

u (y − x + (xl + �l (y))el ) (dx)l = A(y)

2�l (y)
u(y3).

The l-component of y2 is yl − �l (y) and of y3 is yl + �l (y). Inserting these formulas into the expression for the
commutation error (21) gives

Ec,i (y) =
d∑

l=1

�i�l (y)

�l (y)

(
−u(y1) + 1

2
u(y2) + 1

2
u(y3)

)
.

From the Hölder-continuity of u, it follows

|Ec,i (y)|� M�

2

∣∣∣∣∣
d∑

l=1

�i�l (y)

�l (y)

∣∣∣∣∣ (‖y2 − y1‖�
2 + ‖y3 − y1‖�

2).

Since y1, y2, y3 are points in the box y + B(y), the last factor can be finally estimated by twice the diameter of the
filter box, raised to the power of �. �

To interpret the result of the proposition, we consider the simplest case that �l (y) = �(y), l = 1, . . . , d. Then (22)
becomes

|Ec,i (y)|�C�4�/2d1+�/2 |�i�(y)|
�(y)1−� .

We observe that the condition �(y) → 0 is not longer sufficient for the pointwise convergence of the commutation error.
There is now an additional condition of the form �i�(y) → 0 needed. In the case � < 1, one has even to ensure that
�i�(y) → 0 tends sufficiently fast to zero in comparison to �(y). The latter has to be valid in particular as y approaches
the boundary �� of �. Let �(y) be of the form �(y) = (distance(y, ��))1+
. A straightforward calculations shows that

 has to fulfill the condition 
 > (1 − �)/� in order to ensure the pointwise convergence of the commutation error.
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3.3. Estimates for the Lp(�)-norm of the commutation error

In this section, we study the commutation error for functions u, given in an interval (a, b), which are bounded and
continuous, u ∈ C0

b (a, b), and continuously differentiable but in a given point 	 ∈ � = (a, b) such that approaching 	,
the derivatives are not bounded. We suppose that the derivatives can be estimated by rational functions

|u′(y)|�
{ C3

|y − 	|� , y ∈ U0(	)\{	},
C4 elsewhere,

|u′′(y)|�
{ C5

|y − 	|1+� , y ∈ U0(	)\{	},
C6 elsewhere,

where � ∈ [0, 1), U0(	) is a fixed neighborhood of 	 and the constants C3, . . . , C6 are fixed.

Definition 3.2. A family of filter width functions {�(y)}�0
is called a regular �0-family, if the filter width functions

depend on a parameter �0 such that

• �(y) ∈ C1(�) for all �(y) ∈ {�(y)}�0
;

• ‖�(y)‖L∞(�) → 0 if and only if �0 → 0;
• there is a constant C0 independent of �(y) such that max

y∈� |�(y)|�C0�0 for all �(y) ∈ {�(y)}�0
.

By considering a regular �0-family of filter width functions, one can study the asymptotic behavior of the commutation
error by taking the limit �0 → 0.

Proposition 3.3. Let � = (a, b), u be a function with the properties described above and {�(y)}�0
a regular �0-family

of filter width functions. Then

‖Ec‖Lp(�) �C(ε, �)‖�′(y)‖L∞(�) �1/p−�(1+ε)

0 , p ∈ [1, ∞), (23)

for sufficiently small �0, where ε > 0 is any positive real number.

Proof. The regular �0-family of filter width functions satisfies the following property: if �0 is sufficiently small, then
there exists U(	), a neighborhood of 	, such that

(	 − 2C0�0, 	 + 2C0�0) ⊂ U(	) ⊂ (	 − C1�0, 	 + C1�0) ⊂ (a, b)

with C1 independent of �(y). In addition, one can choose a constant C2 ∈ R, C2 > 0, independent of �0, such that
C2�0 ��(y) for all y ∈ (	 − 3C0�0, 	 + 3C0�0).

The idea of the proof is to treat the neighborhood where the derivatives of u are singular separately from the rest of
the domain. To perform this, the Lp(�)-norm of the commutation error can be split as follows∫

�
|Ec(y)|p dy =

∫
�\(U(	)∪U1(	))

|Ec(y)|p dy +
∫

U1(	)\U(	)

|Ec(y)|p dy +
∫

U(	)

|Ec(y)|p dy,

where U1(	) is a neighborhood of 	 such that for all y ∈ �\U1(	) we have y ± �(y) ∈ �\U0(	). If �0 is small enough
then U(	) ⊂ U0(	) ⊂ U1(	). Hence, U(	) ∪ U1(	) = U1(	), see Fig. 1 for an illustration. A technical difficulty arises
in the following estimates from the commutation error being inside the integrals. The commutation error at a point
y of the domain of integration is bounded by values of the functions in a neighborhood of y, e.g., see (20). But this
neighborhood may be extended outside the domain of integration and therefore we have to consider in the following
estimates always a domain which is slightly larger than the domain of integration. The extension of the domain which
we have to consider is bounded by C0�0.

To estimate the first integral, one can use the estimate (20) for the commutation error and the uniform boundedness
of u′′: ∫

�\U1(	)

|Ec(y)|p dy�C

∫
�\U1(	)

∣∣∣�′(y)�(y)‖u‖C2(U(y))

∣∣∣p dy

�C‖�′(y)‖p

L∞(�)
‖�(y)‖p

L∞(�)
�C‖�′(y)‖p

L∞(�)
�p

0 .
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> C0�0 > 2C0�0 > 2C0�0 > C0�0

λ
U(λ)

U0(λ)

U1(λ)

Fig. 1. Illustration to the proof of Proposition 3.3.

Choosing C5 large enough and using (20), the second integral can be estimated in the following way:∫
U1(	)\U(	)

|Ec(y)|p dy

�C‖�′(y)‖p

L∞(�)
‖�(y)‖p

L∞(�)

∫
�\(	−C0�0,	+C0�0)

1

|y − 	|p(1+�) dy

�C‖�′(y)‖p

L∞(�)
‖�(y)‖p

L∞(�)

(
C − 1

(C0�0)
p(1+�)−1

)

�C‖�′(y)‖p

L∞(�)
�p

0 + C‖�′(y)‖p

L∞(�)
�1−p�

0 .

To estimate the last term, the representation (19) of the commutation error is used. Choosing C3 large enough and using
Hölder’s inequality, one gets

∫
U(	)

|Ec(y)|p dy =
∫

U(	)

∣∣∣∣∣ �′(y)

2�(y)2

∫ y+�(y)

y−�(y)

(y − x)u′(x) dx

∣∣∣∣∣
p

dy

�C‖�′(y)‖p

L∞(�)

∫
(	−3C0�0,	+3C0�0)

[
1

�(y)2p
‖x‖p

L
�′1 (−�(y),�(y))

×
∥∥∥∥ 1

d(	, x)

∥∥∥∥
p

L�1 (y−�(y),y+�(y))

]
dy.

From the assumptions on u′, the maximal exponent �1 which can be chosen is �1 = 1/(� + ε�) with an arbitrary ε > 0.
The exponent �′

1 is the dual exponent of �1 and it is �′
1 = 1/(1 − �− ε�) with an arbitrary ε > 0. By using the inequality

0 < C2�0 ��(y)�C0�0 with C2 independent of �0, the fact that the length of the domain of integration is 6C0�0, the
fact that the second factor is bounded since � < 1 and the formula for �′

1, one obtains

∫
U(	)

|Ec(y)|p dy�C‖�′(y)‖p

L∞(�)

∫
(	−3C0�0,	+3C0�0)

�(y)p(�′
1+1)/�′

1

�(y)2p
dy

�C‖�′(y)‖p

L∞(�)
�1−p�(1+ε)

0 .

Comparing all estimates, one finds that the last one dominates the other ones. �

An inspection of the proof shows that if �= 0 then �1 =∞ and �′
1 = 1. In this case, the constant in (23) depends only

on � but not on some parameter ε. If � > 0, then C(ε, �) → ∞ as ε → 0.
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Fig. 2. The filter width functions �� and �
 for �0 = 0.05.

In can be shown by a straightforward computation that a function with the properties described at the beginning of
this section belongs to the Hölder space C0,1−�. Thus, (22) with � = 1 − � can be used for estimating the commutation
error in L∞(�).

3.4. Numerical examples

The sharpness of the estimates given in this section is shown by Examples 3.1 and 3.2. In these examples, the interval
[−1, 1] was divided by an equi-distant grid into 20 000 sub-intervals. The commutation error was computed in all grid
points. The maximum of the absolute values in the grid points is given below as its L∞(�)-norm. Numerical quadrature
was used to compute the other Lp(�)-norms. The order of convergence was computed using the results corresponding
to the two smallest values of the parameter �0.

Example 3.1. We consider � = (−1, 1) and u = |x|. Apart from x = 0, the derivative of u is defined in the classical
sense and u is Lipschitz-continuous, i.e., u ∈ C0,1(�). A straightforward calculation of the commutation error using
either its definition or the representation (19) shows

Ec(y) =
{0 if |y|��(y),

�′(y)

2

(
1 − y2

�(y)2

)
if |y| < �(y).

The commutation error vanishes outside (−�(y), �(y)) since u is linear if x �= 0.
We will study the commutation error for two filter width functions. The first one is

��(y) = �0

(
1 + 1

2
sin

(
y

�0

))
(1 − y2)

with �0 > 0, see Fig. 2, and it follows that

�0

2
(1 − y2)���(y)� 3�0

2

(
1 − y2

)
∀ y ∈ [−1, 1].

The left inequality shows that �� is positive in (−1, 1) and the right one shows that y−��(y) ∈ [−1, 1] and y+��(y) ∈
[−1, 1] if �0 � 2

3 . Clearly, �� ∈ C1([−1, 1]) such that all requirements on the filter width function which were made
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Table 1
Example 3.1, computed norms of the commutation error

�0 Filter width function �� Filter width function �


Ec(0) ‖Ec‖L1 ‖Ec‖L2 ‖Ec‖L∞ ‖Ec‖L1 ‖Ec‖L2 ‖Ec‖L∞

0.4 0.25 0.0956 0.1376 0.2615 0.12423 0.14731 0.22524
0.2 0.25 0.0557 0.1037 0.2509 0.03698 0.05648 0.11023
0.1 0.25 0.0299 0.0757 0.2501 0.00956 0.02038 0.05469
0.05 0.25 0.0153 0.0540 0.2500 0.00241 0.00724 0.02728
0.025 0.25 0.0077 0.0384 0.2500 6.021E−4 0.00256 0.01363
0.0125 0.25 0.0038 0.0271 0.2500 1.506E−4 9.061E−4 0.00682
Order 0 0.998 0.499 0 1.999 1.5 1
Theory 0 1 0.5 0 2 1.5 1

Table 2
Example 3.2, computed norms of the commutation error

�0 Filter width function �� Filter width function �


‖Ec‖L1 ‖Ec‖L2 ‖Ec‖L∞ ‖Ec‖L1 ‖Ec‖L2 ‖Ec‖L∞

0.4 0.09045 0.11244 0.23265 0.103927 0.110421 0.181423
0.2 0.05718 0.09857 0.28480 0.040079 0.051558 0.115233
0.1 0.04100 0.09654 0.38779 0.016174 0.026757 0.076259
0.05 0.03032 0.09625 0.54319 0.006120 0.013557 0.051955
0.025 0.02222 0.09621 0.76635 0.002250 0.006805 0.036022
0.0125 0.01613 0.09621 1.08313 8.1558E−4 0.003407 0.025215
0.00625 0.01161 0.09621 1.53155 2.9309E−4 0.001704 0.017739
Order 0.474 0 −0.5 1.476 1 0.507
Theory 0.5 − ε −ε −0.5 1.5 − ε 1 − ε 0.5

in the analysis are fulfilled. Obviously, ��(y) → 0 as �0 → 0. The derivative �′
� is well-defined for every �0 > 0 and

uniformly bounded with respect to �0. But its limit for �0 → 0 does not exist due to the infinite number of oscillations
that occur. It is ��(0) = �0 and �′

�(0) = ‖�′
�‖L∞(�) = 0.5 for all �0 > 0.

The second filter width function which was used is

�
(y) = �0(1 + y) arctan(4(1 − y)),

see Fig. 2. This filter width function fulfills all requirements made in the analysis. In contrast to ��, it has the property
�′

(y) = O(�0) in a neighborhood of y = 0.
The numerical results are presented in Table 1. For the convergence of the commutation error in Lp(�), p ∈ [1, ∞),

estimate (23) with � = 0 applies. The commutation error in L∞(�) is estimated by (22) with � = 1. Table 1 shows that
all theoretical expectations are fulfilled and that the estimates are sharp.

Example 3.2. We now consider the function

u(x) =
{

0 if x�0,√
x if x > 0

in � = (−1, 1). The commutation error has the form

Ec(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if y < − �(y),

− �′(y)

6�(y)2

(√
y + �(y)(2y − �(y))

)
if |y|��(y),

− �′(y)

6�(y)2

(√
y + �(y)(2y − �(y)) −√y − �(y)(2y + �(y))

)
if y > �(y).
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The function is Hölder-continuous with the Hölder exponent 1
2 and it fulfills the assumptions of Proposition 3.3 with

� = 1
2 . Thus, the order of convergence in L∞(�) is estimated by (22), the order of convergence in Lp(�), p ∈ [1, ∞),

by (23). The numerical results in Table 2 show that the analytical bounds are sharp.

4. Convergence of the commutation error near boundaries

The error estimate (20) for a filter kernel with compact support applied to a function in a bounded domain provides
an estimate of the commutation error provided ‖u‖C2(U(y)) is bounded. If ‖u‖C2(U(y)) is not bounded, the commutation
error might be unbounded in � as well. We will consider two cases, which are relevant in practice, where this can happen
and formulate the conditions on the filter width function to ensure convergence of the commutation error. For simplicity
of presentation, the analysis is performed for a symmetric application of the filter kernel, �−(y) = �+(y) = �(y).

The results are also connected with the previous section and in particular with the intent of understanding the role
of the commutation error for non-smooth solutions to the Navier–Stokes equations. Analytical studies of commutation
errors for model situations in the turbulent channel flow problem can be found in [5].

4.1. The 1/�th power wall law

Let � = (0, a). We study the situation that the mean velocity obeys the 1/�th power wall law at x = 0. That means,
the corresponding component u of the velocity has the form

u(x) =
{

U∞
(

x

�

)1/�

, 0�x��,

U∞, � < x,

where U∞ is the free stream velocity, � > 1 and � is the boundary layer thickness, see [25]. Often, � = 7 is used. This
function fulfills the assumptions of Proposition 2.4.

We are interested in the behavior inside the boundary layer, i.e., 0 < x < �. Inside this interval, there is

u′′(x) = U∞�� 1

�

(
1

�
− 1

)
x1/�−2.

Thus, u′′(x) is not bounded as x → 0. Approaching the boundary, it is required in Section 2.2 that the filter width
function tends to zero. Let �(y)=O(yq), q > 0. Then, �′(y)=O(yq−1) and the error estimate (20) has near the boundary
y = 0 the form

|Ec(y)|�Cy2q+1/�−3. (24)

Thus, the requirement for the convergence of the commutation error in a neighborhood of zero is q > (3 − 1/�)/2. The
following numerical example shows the sharpness of estimate (24).

Example 4.1. The commutation errors presented in Fig. 3 are computed using U∞ = 1, � = 1, � = 7 and �(y) =
0.1(y(1 − y))q . It can be seen for q = 10

7 that the commutation error is bounded but it does not converge to zero. This
is exactly the value of q which makes the power of y in (24) equal to zero. For larger values of q, convergence of the
commutation error can be observed and for smaller values divergence. The order of convergence and divergence is
exactly the order which is given in the estimate (24), compare with the asymptotics presented in Fig. 3.

The convergence of the commutation error in the case that the mean flow obeys the 1/�th power law at the wall is
only given if the filter width function tends to zero sufficiently fast near the boundary. Since in computations the value
of the filter width function has to be larger than the mesh width, this implies that the mesh has to be very fine at the
wall. In practice, the convergence of the commutation error requires that the boundary layer must be resolved in the
numerical simulation. The use of higher order filters does not present a remedy in this situation since estimates for
higher order filters involve higher derivatives of u which are even more singular than the second derivative.
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Fig. 3. Example 4.1, the absolute value of the commutation error in a neighborhood of y = 0 for different values of q.

4.2. Singularities at the boundary

In this section, we analyze the role of singularities at the boundary on the convergence of the commutation error. In
particular, we have in mind the application to the situation of having a singularity in the velocity or pressure field at a
corner on the boundary, cf., the discussion in Section 3.1.

Proposition 4.1. Consider u = x−a , a > 0 in (0, b] and let the filter width function be of the form �(y) = cyq if y is
sufficiently small, q �1, with c > 0 such that y − �(y) > 0 for y ∈ (0, b]. Then

|Ec(y)|�Cy2q−3−a (25)

if y is sufficiently small.

Proof. The commutation error (19) reduces in one dimension and for the symmetric box filter to

Ec(y) = �′(y)

2�(y)

(
u(y + �(y)) + u(y − �(y)) − 1

�(y)

∫ y+�(y)

y−�(y)

u(x) dx

)
.

Let a �= 1. A straightforward calculation gives

Ec(y) = �′(y)

2(1 − a)�(y)2

(
− y + a�(y)

(y + �(y))a
+ y − a�(y)

(y − �(y))a

)
.

Using the special form of �(y) leads to

Ec(y) = q

4c(1 − a)
y−(q+a) −(1 + acyq−1)(1 − cyq−1)a + (1 − acyq−1)(1 + cyq−1)a

(1 + cyq−1)a(1 − cyq−1)a
.

Inserting the Taylor series expansion of (1 ± cyq−1)a at y = 0 into this formula reveals that all terms up to the power
y2(q−1) vanish. Hence Ec(y) = O(y−(q+a)+3(q−1)).
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Fig. 4. Example 4.2, the absolute value of the commutation error at y = 0 for different values of q, left u(x) = 1/
√

x, right u(x) = 1/x.

For a = 1, proceeding in the same way, one obtains

Ec(y) = q

4yq+1

(
2cyq−1 − (1 − c2y2(q−1))(ln(1 + cyq−1) − ln(1 − cyq−1))

(1 + cyq−1)(1 − cyq−1)

)
.

Using the Taylor series expansion for ln(1 ± cyq−1) at y = 0 shows that all terms with powers of y less than 3(q − 1)

cancel out in the numerator. This leads to the desired result. �

Example 4.2. In this example, we consider u(x) = 1/
√

x and u(x) = 1/x, x ∈ (0, 1], and �(y) = 0.1(y(1 − y))q ,
for different values of q. The assumptions of Proposition 4.1 are fulfilled in this example and the behavior of the
commutation error near y = 0 is estimated by (25). The results presented in Fig. 4 show the sharpness of this estimate
in the asymptotic limit.

Like in the case of the 1/�th power wall law, the convergence of the commutation error requires that the values of the
filter width function �(y) must become sufficiently small near the singularity. In this region, it has to be asymptotically
even smaller than in the region where the power law holds. The connection of the value of the filter width function and
the mesh size requires—in practice—a mesh near the singularity which allows the resolution of the singularity.

5. Summary

In this paper, commutation errors were studied for functions with low regularity and non-uniform and asymmetric
filters. Commutation errors are committed by deriving the space averaged Navier–Stokes equations and they are one
source of error in each LES model. The significance of commutation errors has been realized only recently.

The main novelty of our studies is that we did not try to find good asymptotics of the errors by making ad hoc
assumptions on the filter kernel and on the smoothness of the functions. On the contrary, we tried to understand the
role of commutation errors for widely used filters, applied to functions with realistic regularity. As first step, a unified
representation of the commutation errors has been derived. Estimates of the commutation errors were proved analyt-
ically for Hölder-continuous functions and for functions with rational singularities in their derivatives. Furthermore,
commutation errors for functions obeying the 1/�th power wall law and functions which are singular at the boundary
have been analyzed analytically and numerically.

A main result in this paper is that the asymptotic vanishing of the commutation errors requires in all cases some strict
connection between the regularity of the function and the value of the filter width function. This connection may lead
to such a small filter width that in practice the resolution of the flow becomes necessary.
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