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Abstract

The numerical solution of the non-stationary, incompressible Navier–Stokes model can be split into linearized auxiliary problems of
Oseen type. We present in a unique way different stabilization techniques of finite element schemes on isotropic meshes. First we describe
the state-of-the-art for the classical residual-based SUPG/PSPG method. Then we discuss recent symmetric stabilization techniques
which avoid some drawbacks of the classical method. These methods are closely related to the concept of variational multiscale methods
which seems to provide a new approach to large eddy simulation. Finally, we give a critical comparison of these methods.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The motivation of the present paper stems from the
finite element simulation of the incompressible Navier–
Stokes problem

otu� mDuþ ðu � rÞuþrp ¼ ~f; ð1Þ
r � u ¼ 0 ð2Þ

for the velocity u and the pressure p in a polyhedral domain
X � Rd , d 6 3, with a given source term ~f. A standard algo-
rithmic treatment of (1) and (2) is to semidiscretize in time
(with possible step length control) using an A-stable
method and to apply a fixed point or Newton-type itera-
tion per time step. This leads to the following auxiliary
problem of Oseen type in each step of this iteration:

LOsðb; u; pÞ :¼ �mDuþ ðb � rÞuþ cuþrp ¼ f in X; ð3Þ
r � u ¼ 0 in X: ð4Þ
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Also the iterative solution of the steady state Navier–
Stokes equations using a fixed point iteration leads to prob-
lems of type (3) and (4) with c = 0.

The standard Galerkin finite element method (FEM) for
(3) and (4) may suffer from two problems:

• dominating advection (and reaction) in the case of
0 < m� kbkL1ðXÞ,

• violation of the discrete inf–sup (or Babuška–Brezzi)
stability condition for the velocity and pressure
approximations.

The well-known streamline upwind/Petrov–Galerkin

(SUPG) method, introduced in [5], and the pressure-stabil-

ization/Petrov–Galerkin (PSPG) method, introduced in
[31,26], opened the possibility to treat both problems in a
unique framework using rather arbitrary FE approxima-
tions of velocity and pressure, including equal-order pairs.
Additionally to the Galerkin part, the elementwise residual
LOs(b;u,p) � f is tested against the (weighted) non-symmet-
ric part (b Æ $)v + $q of LOs(b;v,q). Moreover, it was
shown in [18,23,40] that an additional element-wise stabil-
ization of the divergence constraint (4), henceforth denoted
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as grad–div stabilization, is important for the robustness
if 0 < m� 1. Due to its construction, we will classify the
SUPG/PSPG/grad–div approach as an (element-wise)
residual-based stabilization technique.

Despite the success of this classical stabilization
approach to incompressible flows over the last 20 years,
one can find in recent papers a critical evaluation of this
approach, see e.g. [20,12]. Drawbacks are basically due to
the strong coupling between velocity and pressure in the
stabilizing terms. (For a more detailed discussion, cf. Sec-
tion 7.) Several attempts have been made to relax the
strong coupling of velocity and pressure and to introduce
symmetric versions of the stabilization terms:

• Recently, the interior penalty technique of the discontinu-
ous Galerkin (DG) method was applied in the framework
of continuous approximation spaces as proposed in [17]
leading to the edge/face oriented stabilization introduced
in [12]. It can be classified as well as a residual-based stabil-
ization technique since it controls the inter-element jumps
of the non-symmetric terms in (3) and (4).

• Another approach consists in projection-based stabiliza-
tion techniques. The first step was done in [16] where
weighted global orthogonal projections of the non-sym-
metric terms in (3) and (4) are added to the Galerkin
scheme. A related local projection technique has been
applied to the Oseen problem in [3] with low-order
equal-order interpolation. Another projection-based
stabilization was introduced in [32,29].

The projection-based methods are closely related to the
framework of variational multiscale methods introduced in
[25]. The latter method provides a new approach to large
eddy simulation (LES) of incompressible flows which does
not possess important drawbacks of the classical LES like
commutation errors.

The goal of the present paper is a unique presentation of
residual-based and projection-based stabilization tech-
niques to the numerical solution of the Oseen problem
(3) and (4), together with a critical comparison.

For brevity, we consider only conforming FEM. An
extension to a non-conforming approach like DG-methods
in an element- or patch-wise version can be found, e.g., in
[14,21]. The latter methods are not robust with respect to
the viscosity m. An overview of appropriate stabilization
mechanisms in the DG framework was given in [4].

The paper is organized as follows: In Section 2, we
describe the basic Galerkin discretization of the Oseen
problem. Then, we consider residual-based stabilization
methods including the classical SUPG/PSPG/grad–div sta-
bilization following [36], see Section 3, and the edge/face-
stabilization method following [12,13], see Section 4. Next,
we present projection-based stabilization techniques. Here,
we review the local projection approach proposed in [3], see
Section 5, and another projection-based stabilized scheme
due to [32,29], see Section 6. A critical comparison of the
schemes can be found in Section 7.
2. The standard Galerkin FEM for the Oseen problem

Throughout this paper, we will use standard notations
for Lebesgue and Sobolev spaces. The L2-inner product
in a domain x is denoted by (Æ,Æ)x. Without index, the L2-
inner product in X is meant.

This section describes the standard Galerkin FEM for
the Oseen-type problem (3) and (4), for simplicity of pre-
sentation with homogeneous Dirichlet data:

LOsðb; u; pÞ :¼ �mDuþ ðb � rÞuþ cuþrp ¼ f in X; ð5Þ
r � u ¼ 0 in X; ð6Þ
u ¼ 0 on oX ð7Þ

with b 2 [H1(X) \ L1(X)]d, m, c 2 L1(X), f 2 [L2(X)]d and

m > 0; ðr � bÞðxÞ ¼ 0; cðxÞP cmin P 0; a:e: in X:

ð8Þ

Let H 1
0ðXÞ :¼ fv 2 H 1ðXÞ j vjoX ¼ 0g and L2

0ðXÞ :¼ fq 2
L2ðXÞj

R
X q dx ¼ 0g. The variational formulation reads:

find U ¼ fu; pg 2 V�Q :¼ ½H 1
0ðXÞ�

d � L2
0ðXÞ s.t.

Aðb; U ; V Þ ¼LðV Þ 8V ¼ fv; qg 2 V�Q ð9Þ

with

Aðb;U ;V Þ¼ ðmru;rvÞþððb �rÞuþ cu;vÞþbðv;pÞ�bðu;qÞ;
ð10Þ

LðV Þ¼ ðf;vÞ; ð11Þ
bðv;pÞ¼�ðp;r� vÞ: ð12Þ

Suppose an admissible triangulation Th of the poly-
hedral domain X. We assume that Th is shape-regular,
i.e., there exists a constant Csh, independent of the meshsize
h with hT = h|T, such that Cshhd

T 6 measðT Þ for all
T 2

S
hTh. In particular, we exclude anisotropic elements

throughout the paper.
Moreover, we assume that each element T 2Th is a

smooth bijective image of a given reference element T̂ ,
i.e., T ¼ F T ðT̂ Þ for all T 2Th. Here, T̂ is the (open) unit
simplex or the (open) unit hypercube in Rd . For p 2 N,
we denote by P pðT̂ Þ the set fx̂a : 0 6 ai; 0 6

Pd
i¼1ai 6 pg

on a simplex T̂ or fx̂a : 0 6 ai 6 k; 1 6 i 6 pg on the unit
hypercube T̂ and define

X p
h ¼ fv 2 Cð�XÞ j vjT � F T 2 P pðT̂ Þ 8T 2Thg: ð13Þ

We introduce conforming FE spaces on Th for velocity
and pressure, respectively, by

Vr
h :¼ ½H 1

0ðXÞ \ X r
h�

d
; Qs

h :¼ L2
0ðXÞ \ X s

h ð14Þ

with r, s 2 N and we set Wr;s
h :¼ Vr

h �Qs
h. Clearly, other

conforming discrete spaces for the velocity and the pressure
can be chosen (e.g., enriched with bubble functions). More-
over, for brevity, we will not present possible extensions to
non-conforming methods.

A key point in the analysis of some methods is local
inverse inequalities on T 2Th with a constant linv depend-
ing only on the shape-regularity
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kr � wkL2ðT Þ 6
ffiffiffi
d
p
krwk½L2ðT Þ�d�d

6 linvr2h�1
T kwk½L2ðT Þ�d 8w 2 Vr

h: ð15Þ
For simplicity, we assume that the solution

U 2W:¼V · Q of (9) is smooth enough such that
fIu

h;ru; I
p
h;spg 2Wr;s

h can be chosen as the global Lagrange
interpolants of {u,p}. More precisely, we want to apply
the local interpolation result

kv� IT
h;rvkHmðT Þ 6 CI

hl�m
T

rk�m
kvkHkðT Þ;

0 6 m 6 l ¼ minðr þ 1; kÞ ð16Þ

for the Lagrange interpolation IT
h;rv of v 2 Hk(T) with k > d

2
,

[24], Section 4. Here CI is a constant independent of hT, r,
v, T but dependent on m, k, Csh.

The standard Galerkin FEM of (9) reads as follows:
find U h ¼ fuh; phg 2Wr;s

h , s.t.

Aðb; U h; V hÞ ¼LðV hÞ 8V h ¼ fvh; qhg 2Wr;s
h : ð17Þ

Well-known sources of instabilities stem from the case
of dominating advection, kbkL1ðXÞ 	 m, and from the viola-
tion of the discrete inf–sup condition for Vr

h �Qs
h

9b0 > 0 : inf
qh2Qs

h

sup
vh2Vr

h

ðqh;r � vhÞ
krvhk½L2ðXÞ�d�dkqhkL2ðXÞ

P b0; ð18Þ

where b0 can be chosen independent of h. This is the case,
e.g., for equal-order velocity–pressure finite element spaces.
Note that the discrete inf–sup constant b0 depends in gen-
eral on r and s.
3. Classical residual-based stabilization methods

The classical stabilization of the Galerkin scheme is a
combination of pressure stabilization (PSPG) and stream-
line-upwind stabilization for advection (SUPG) together
with a stabilization of the divergence constraint: find
U h ¼ fuh; phg 2Wr;s

h , s.t.

Arbsðb; U h; V hÞ ¼LrbsðV hÞ 8V h ¼ fvh; qhg 2Wr;s
h ð19Þ

with

Arbsðb; U ; V Þ :¼Aðb; U ; V Þ þ
X

T2Th
cT ðr � u;r � vÞT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

grad–div stabilization

þ
X

T2Th
ðLOsðb; u; pÞ; du

T ðb � rÞvþ dp
TrqÞT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SUPG=PSPG stabilization

; ð20Þ

LrbsðV Þ :¼LðV Þ þ
X

T2Th
ðf; du

T ðb � rÞvþ dp
TrqÞT

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
ð21Þ

containing the three parameter sets fdu
Tg; fd

p
Tg and {cT}

depending on the choice of the FE spaces, see below. The
method simultaneously stabilizes spurious oscillations
coming from dominating advection and the violation of
the discrete inf–sup condition (18). For details and full
proofs of the following presentation, we refer to [36].
3.1. Stability of the method

Stability of the stabilized method (19)–(21) with
dT ¼ du

T ¼ dp
T is proved w.r.t.

jjjV jjjrbs :¼ j½V �j2rbs þ rkqk2
L2ðXÞ

� �1
2

; ð22Þ

j½V �j2rbs :¼ km1
2rvk2

L2ðXÞ þ kc
1
2vk2

L2ðXÞ þ J rbsðV ; V Þ; ð23Þ
J rbsðV ; V Þ :¼

X
T

dTkðb � rÞvþrqk2
L2ðT Þ þ

X
T

cTkr � vk
2
L2ðT Þ

ð24Þ

with parameters dT, cT, r > 0 to be determined. A simpli-
fied analysis is possible since |[Æ]|rbs is a mesh-dependent
norm on Wr;s

h if dT > 0. Assume that

0 < dT 6
1

2
min

h2
T

l2
invr4m

;
1

kckL1ðT Þ

( )
; 0 6 cT : ð25Þ

The inverse inequalities (15) and (25) imply that the
bilinear form Arbsðb; �; �Þ defined in (20) satisfies

Arbsðb; V h; V hÞP
1

2
j½V h�j2rbs; 8V h 2Wr;s

h : ð26Þ

The coercivity estimate (26) yields uniqueness and exis-
tence of the discrete solution, however it provides no control
of the L2-norm of the pressure. Assume now additionally

0 < l0

h2
T

r2
6 dT 6

1

2
min

h2
T

l2
invr4m

;
1

kckL1ðT Þ

( )
;

0 6 dTkbk2
L1ðT Þ 6 cT ð27Þ

with some positive constant l0. Taking advantage of Ver-
fürth’s trick, cf. [19,41], we can show that there exists a con-
stant b > 0, independent of m, h and the spectral orders r and
s, such that the bilinear form Arbsðb; �; �Þ in (20) satisfies

inf
Uh2W

r;s
h

sup
V h2W

r;s
h

Arbsðb; U h; V hÞ
jjjUhjjjrbsjjjV hjjjrbs

P b ð28Þ

with the weight

ffiffiffi
r
p

 ffiffiffi

c
p þ 1

l0

þ
ffiffiffi
m
p
þ kck

1
2

L1ðXÞCF þ
CFkbkL1ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ cminC2

F

q þmax
T

hT kbkL1ðT Þffiffiffi
m
p

0
B@

1
CA
�1

ð29Þ
of the L2-norm of the pressure in (22). Moreover, it denotes
c ¼ maxT2ThcT and CF the Friedrichs constant. Note that r
is only used for the analysis.

Remark. The lower bound of dT in (27) can be removed in
case of div-stable velocity–pressure interpolations. But then
one has to replace the constant b in (28) by the inf–sup
constant b0 = b0(r, s) from (18).
3.2. A priori error estimates

The following continuity result is derived using standard
inequalities. It reflects the effect of stabilization with
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assumption (25): For each U 2W with DujT 2
½L2ðT Þ�d 8T 2Th and V h 2Wr;s

h there holds

Arbsðb; U ; V hÞ � QrbsðUÞjjjV hjjjrbs ð30Þ
with

QrbsðUÞ :¼ j½U �jrbs þ
X

T2Th

1

dT
kuk2

L2ðT Þ

 !1
2

þ
X

T2Th

1

maxðm; cT Þ
kpk2

L2ðT Þ

 !1
2

þ
X

T2Th

dTk � mDuþ cuk2
L2ðT Þ

 !1
2

: ð31Þ

The L2-terms in (31) explode for m, c! 0 if dT = cT = 0.
Consider solutions U 2W and U h 2Wr;s

h of the con-
tinuous and of the discrete problem, respectively. Let
fIu

h;ru; I
p
h;spg 2Wr;s

h be an appropriate interpolant of U,
e.g., the Lagrange interpolant. Then we obtain the quasi-
optimal a priori estimate of scheme (19)–(21):

jjjU � U hjjjrbs � Qrbsfu� Iu
h;ru; p � Ip

h;spg: ð32Þ

Now we have to fix the stabilization parameters dT, cT

using (32) and the local interpolation inequalities (16).
Let the assumptions (8) and (27) be valid. Then, we obtain

jjjU�U hjjj2rbs�
X

T2Th

Mu
T

h2ðlu�1Þ
T

r2ðku�1Þ kuk
2
Hku ðT Þ þMp

T

h2ðlp�1Þ
T

s2ðkp�1Þ kpk
2
Hkp ðT Þ

 !

ð33Þ
with lp :¼ min{s + 1,kp}, lu :¼ min{r + 1,ku} and

Mu
T ¼

h2
T

r2dT
þ dT

kck2
L1ðT Þh

2
T

r2
þ kbk2

L1ðT Þ þ
r2m2

h2
T

 !
þ cT þ m

þ
kckL1ðT Þh

2
T

r2
;

Mp
T ¼ dT þ

h2
T

s2 maxðm; cT Þ
:

First, we consider the case of equal-order interpolation
of velocity and pressure, i.e., r ¼ s 2 N. Such pairs do
not fulfill the discrete inf–sup condition (18). The equilibra-
tion of the dT- and cT -dependent terms in Mu

T and Mp
T

together with the stability conditions (25) and (27) yields

dT 

r4m

h2
T

þ
rkbkL1ðT Þ

hT
þ kckL1ðT Þ

 !�1

; cT 

h2

T

r2dT
: ð34Þ

Then, a sufficiently smooth solution U of (9) with
U|T 2 [Hk(T)]d · Hk(T) for each T 2Th, obeys the error
estimate (with l = min(r + 1,k))

jjjU � U hjjj2rbs �
X

T2Th

h2ðl�1Þ
T

r2ðk�1Þ MT kuk2
HkðT Þ þ kpk

2
HkðT Þ

� �
;

MT ¼ mr2 þ
kbkL1ðT ÞhT

r
þ
kckL1ðT Þh

2
T

r2
: ð35Þ
Remark. The estimate (35) is optimal with respect to hT.
Unfortunately, it is suboptimal in the spectral order r in a
transition region between the diffusion-dominated and the
advection-dominated limits. This is caused by the term r4m

h2
T

in (34) in order to fulfill the stability conditions (27). It is
possible to refine the coefficient in front of the L2-term of u
on the right-hand side of (31), thus giving an optimal
estimate w.r.t. r at least in the diffusion-dominated limit,
see [36].
Next, we consider interpolation pairs Vr
h �Qs

h with
r = s + 1. (An extension to r P s + 1 is straightforward.)
This includes the div-stable Taylor–Hood pairs with
s ¼ r � 1 2 N on a shape-regular mesh Th. A balance of
the cT - and dT -dependent terms in Mu

T and Mp
T yields

dT 

h2

T

r2ðmþ cÞ ; cT 

h2

T

r2dT

 mþ c ð36Þ

with c 
 1. In this case, a sufficiently smooth solution U of
the Oseen problem (9) with U|T 2 [Hk+1(T)]d · Hk(T) for
each T 2Th obeys the error estimate

jjjU � U hjjj2rbs

�
X

T2Th

h2l
T

r2k
ðmþ cÞkuk2

Hkþ1ðT Þ þ
1

mþ c
kpk2

HkðT Þ

� �
ð37Þ

with l = min(r + 1,k), provided that hT is sufficiently small.
The estimate (37) is optimal w.r.t. both hT and r. The
choice (36) reflects the importance of the grad–div stabil-
ization term and a decreasing influence of the SUPG/PSPG
term with increasing spectral order r.

3.3. Variants of the method

Other variants containing the SUPG-/PSPG-stabiliza-
tion with dT ¼ du

T ¼ dp
T are the Galerkin/least-squares

(GLS) method [18] and the Douglas/Wang- or algebraic
subgrid-scale (ASGS) method [16] addingX
T2Th

ðLOsðb; UÞ � f; dT LOsðb; V ÞÞT

and

�
X

T2Th

ðLOsðb; UÞ � f; dT L�Osðb; V ÞÞT ;

respectively, to the Galerkin formulation (17). L�Os denotes
the adjoint operator of LOs. The analysis of these methods
is similar to the SUPG/PSPG/grad–div scheme using the
stabilizing effect of the term Js(Æ,Æ) defined in (24).

For div-stable interpolation pairs, a reduced stabilized

scheme by omitting the PSPG terms
P

T2Th
ðLOsðb; u; pÞ�

f; dTrqÞT from scheme (19)–(21) is analyzed in [20]. Prac-
tical calculations surprisingly show that the schemes with
and without PSPG give almost identical results. The
grad–div stabilization is always necessary for 0 < m� 1,
whereas the SUPG stabilization is useful for problems with
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layers. Moreover, an order reduction of 1
2

was observed by
using instead of the parameter choice (36) the design (34)
for equal-order interpolations.
3.4. Implementation issues

The system matrices of the Galerkin FEM and the
SUPG/PSPG stabilized scheme have the form

A BT

B 0

� �
and

As B1

B2 C

� �
;

respectively, with B1 5 B2, C 5 0. The blocks A and As as
well as B, B1 and B2 have a similar sparsity pattern. Thus,
the SUPG/PSPG method can be easily incorporated into
an existing code for solving the Galerkin FEM. One has
to store one additional off-diagonal block and the addi-
tional sparse matrix C for the pressure couplings arising
from the term

P
T2Th
ðrp; dp

TrqÞT in the stabilization. Note
that for the reduced stabilized scheme from [20] it holds
B2 = B and C = 0.

One drawback of the SUPG/PSPG scheme consists in
needing to evaluate second order derivatives of the velocity
if r P 2. However, these derivatives are multiplied with the
small factor m such that their omission is an option in prac-
tical computations.
3.5. Coupled vs. decoupled stabilization

Several drawbacks of the classical stabilization methods
presented so far stem from the strong velocity–pressure
coupling in the stabilization terms, see the discussion in
Section 7. In Sections 4–6, we will consider techniques with
decoupled stabilization terms.

Let us take as a starting point the stabilization terms of
Eq. (20)X
T2Th

ðLOsðb; u; pÞ; du
T ðb � rÞvþ dp

TrqÞT :

The subgrid viscosity concept in the sense of Guermond
[22] leads to the idea that the stabilization of the residual
does not have to act on the whole residual but only on
its projection into some appropriate subspace. We intro-
duce an abstract projection operator (I � P) and the mod-
ified stabilization termX
T2Th

ððI � P ÞLOsðb; u; pÞ; ðI � P Þðdu
T ðb � rÞvþ dp

TrqÞÞT

ð38Þ

(with a similar modification of the right-hand side of the
equation). Taking now v = u, q = p and (for simplicity)
dT ¼ du

T ¼ dp
T , we deduce that (38) becomesX

T2Th

n
ððI � P Þð�mDuþ cuÞ; dT ðI � P Þððb � rÞuþrpÞÞT

þ kðdT Þ
1
2ðI � P Þððb � rÞuþrpÞk2

L2ðT Þ

o
:

Clearly, the first part of this sum is necessary for consis-
tency and the last part gives the positivity. If the projection
operator (I � P) is chosen in such a way that the first part
vanishes sufficiently fast as h! 0, then the consistency part
could be dropped without spoiling the rate of convergence.
In this case, we may also drop the Petrov–Galerkin type
modification of the right-hand side.

Moreover, the positive part may be split into two in
order to decouple velocities and pressure. Introducing sep-
arate stabilization terms for pressure and velocity does not
change the consistency properties of the scheme since the
weak consistency is given by the approximation properties
of the projection and not by the residual. Then, (38) is
transformed to the decoupled and symmetric formX
T2Th

ðdu
T ðI � P Þððb � rÞuÞ; ðI � P Þððb � rÞvÞÞT

þ ðdp
T ðI � P Þrp; ðI � P ÞrqÞT :

A similar argument can be applied to the grad–div sta-
bilization term.

Choosing the subspaces and the projection operators in
a specific way, we obtain the stabilization techniques pro-
posed in Sections 4–6 where we will use for the stabilized
bilinear form the unified notation

Aðb; U ; V Þ þS�ðb; U ; V Þ:
4. Face oriented stabilization method

The face oriented stabilization method (or edge oriented
for d = 2) takes its origin in the paper [17] on interior pen-
alty procedures for elliptic and parabolic problems. The
idea was to increase the robustness of the Galerkin approx-
imation of elliptic problems (using continuous approxima-
tion spaces) by introducing additional least squares control
of the gradient jump over element boundaries. This method
was revived more than 20 years later in [8]. For the advec-
tion–diffusion problem, it was shown that the added pen-
alty term yields a method that is stable independent of
the local Peclet number PeT :¼ kbkL1ðT ÞhT

m and allows optimal
a priori error bounds uniform in PeT. The method was then
extended to the generalized Stokes problem in [9] and to
the Oseen equation with arbitrary polynomial degree in
[12]. Other work on the face oriented stabilization includes
the papers [6] where a discrete maximum principle is rigor-
ously proved for a face oriented shock capturing scheme
and [11] where the method is extended to high order poly-
nomial approximations in a hp-framework.

Since the stabilization is based on the faces of the ele-
ments, we introduce the set of all interior faces of the mesh
E, we denote the jump of the quantity x over some face e by
[x]e (the orientation of the jump is arbitrary, but fixed). The
jump is extended to vector valued functions component-
wise. For each face we set a fix (but arbitrary) orientation
of the normal vector ne. We let he denote the diameter of
the face e and hT = maxe�T he the meshsize of the element
T. Moreover, we assume that the mesh is locally quasi
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uniform in the sense that for any two elements T ; T 0 2Th

having at least one common node there holds hT 6 qhT 0

where q P 1 is a parameter depending on the mesh regular-
ity. The formulation takes the form, find U h 2Wr;r

h , such
that

Afosðb; Uh; V hÞ ¼LðV hÞ 8V h ¼ fvh; qhg 2Wr;r
h ; ð39Þ

where

Afosðb; Uh; V hÞ :¼Aðb; U h; V hÞ þSfosðb; Uh; V hÞ;

Sfosðb; Uh; V hÞ :¼
X
e2E

Z
e

cu
eðb; heÞ½ruhne�e � ½rvhne�eds

�
ð40Þ

þ
Z

e
ceðb; heÞ½r � uh�e½r � vh�eds ð41Þ

þ
Z

e
cp

eðb; m; heÞ½rph � ne�e½rqh � ne�eds
	
:

ð42Þ

The numerical analysis shows that the three parameter
sets in the stabilization term should be chosen as

cu
eðb; hÞ :¼ kb � nekL1ðeÞ

h2
e

ra
;

ceðb; hÞ :¼ kbkL1ðeÞ
h2

e

ra
;

cp
eðb; m; hÞ :¼ minð1;ReeÞ

h2
e

kbkL1ðeÞra
;

with Ree :¼ kbkL1ðeÞhe

mr
1
2

and a :¼ 7
2
.

4.1. Stability for face oriented stabilization

The stability of the method is obtained by the key obser-
vation that the operator controlling the jump of the gradi-
ent actually controls the part of the gradient of the discrete
approximation that is orthogonal to the finite element
space. Thanks to this observation, one may obtain the cru-
cial control of the streamline derivative and the pressure
gradient independently. To prove stability we need the fol-
lowing interpolation result from discontinuous to continu-
ous spaces.

There exists an interpolation operator p�h : ½W disc
r;h �

d !
½W c

r;h�
d , where W disc

r;h denotes the space of discontinuous
functions being piecewise polynomials of order r on each
element and W c

r;h ¼ fv 2 W disc
r;h : v 2 C0g, and constants c0,

c1 depending on the local mesh geometry and the polyno-
mial degree, but not on the local mesh size, such that

c0Jðvh; vhÞ � kh
1
2ðrvh � p�hrvhÞk2

L2ðXÞ � c1Jðvh; vhÞ

for all vh 2 X r
h, where

Jðvh; vhÞ ¼
X
e2E

Z
e

h2
e j½rvh�ej

2 ds:

Then one uses the fact that |[$ph]e| = |[$ph Æ ne]e| for con-
tinuous finite element spaces. Well-posedness of the dis-
crete problem is assured thanks to the following discrete
inf–sup condition. Independently of m and h there holds
jjjUhjjjfos � sup
06¼V h2Wr

h

Afosðb; Uh; V hÞ
jjjV hjjjfos

;

for all Uh 2Wr
h where the triple norm is defined by

jjjV hjjj2fos :¼ j½V h�j2fos þ rkphk
2
L2ðXÞ ð43Þ

with

j½V h�j2fos :¼ km1
2rvhk2

L2ðXÞ þ kc
1
2vhk2

L2ðXÞ þSfosðb; V h; V hÞ
ð44Þ

and r similar to (29). Note that (43) defines a norm for
both velocity and pressure whereas (44) only is a seminorm
on the product space.

4.2. A priori error estimates for face oriented stabilization

The use of coercivity in the seminorm (44), Galerkin
orthogonality, continuity and finally approximation leads
to the following a priori error estimate

j½U � U h�j2fos � Mu
h
r

� �2ðlu�1Þ

kuk2
Hku ðXÞ

þMp
h
r

� �2ðlp�1Þ

kpk2
Hkp ðXÞ; ð45Þ

where lp :¼ min{r + 1,kp}, lu :¼ min{r + 1,ku} and the con-
stants are given by

Mu¼c
h2

r2
þmax

T2Th

min
hT

r
1
2

kbkL1ðT Þþ
h2

T r2kbk2
W 1;1ðT Þ

c
;m

Re2
T

r
1
2

( )
þm;

and

Mp ¼ max
T2Th

hT

r
1
2

min kbk�1
L1ðT Þ;

hT

mr
3
2

� 	� 	
:

Here, we denote by ReT :¼ kbkL1ðT ÞhT

mr
1
2

and assume addi-

tionally that b 2 [W1,1(X)]d. The convergence of the pres-
sure in the L2-norm may then be estimated leading to

kp � phk
2
L2ðXÞ �

h
r

� �2lp

kpk2
Hkp ðXÞ þ r�1rj½U � U h�j2fos: ð46Þ

The above dependencies on the polynomial order may
so far be proven rigorously only on quasi-uniform tensor
product meshes. Note the slight suboptimality of the hp-
estimates in the high Reynolds number regime. In the case
h < r�

5
2, the estimate in the triple norm is suboptimal by a

power of r
1
4 and for the estimate of the pressure in the L2-

norm we get an additional factor of r
1
2 due to the use of H1-

stability of the L2-projection. In the low Reynolds number
regime, the triple norm estimate is optimal, but the subop-
timality of the pressure remains. For details on the hp-anal-
ysis for face oriented stabilization, see [11].

4.3. Variants of the face oriented stabilization method

In (40), one may take the jump in the streamline deriv-
ative only, instead of building the streamline diffusion
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character into the stabilization parameter cu
e in the form of

the factor kb � nekL1ðeÞ. Following [7], note that |[b Æ
$uh]e|

2 = (b Æ ne)
2 |[$uhne]e|

2. Another possibility is not to
emphasize the streamline direction in the stabilization. In
fact, if ce is used as stabilizing parameter in (40), then the
divergence stabilization (41) may be omitted, at the expense
of a possibly larger constant in the a priori error estimate.
It is noteworthy that such a modification, introducing
crosswind diffusion, will have no influence on the order.

Note also that here only the pressure stabilization is
depending on the viscosity m. This can be understood as
using the local Reynolds number as non-dimensional
weight for a higher order viscosity term in the velocity sta-
bilization. An equivalent term, controlling both instabili-
ties due the convective terms and the divergence free
constraint (hence replacing (40) and (41)), isX
e2E

Z
e

Ree
he

r3
½mruhne�e � ½rvhne�eds: ð47Þ

Remark. To simplify the analysis the boundary conditions
are imposed weakly. Weak imposition of the boundary
conditions was considered in [12] using an approach due to
[37]. Details have been omitted above for brevity.
Remark. For velocity/pressure pairs of Taylor–Hood type
satisfying the discrete inf–sup condition, the choice cp

e ¼ 0
is allowed. However, in this case it is recommended to
replace the jump stabilization (41) of the divergence by a
term cT ($ Æ uh,$ Æ vh) with cT = 1, compare Section 3.2. It
is unclear whether the use of the term (47) is sufficient to
stabilize both advection and incompressibility in such a
case also. For details on finite element methods with veloc-
ity–pressure pairs satisfying the discrete inf–sup condition,
see [9,13].
4.4. Implementation issues

The implementation of face oriented stabilization tech-
niques requires an additional nearest neighbor data struc-
ture, or a table giving the two elements associated to each
face. Such structures are necessary also for a posteriori
error estimation and hence for adaptive finite element
codes. The task of implementing the gradient jumps only
requires the addition of the stabilizing matrix. An efficient
implementation will use the symmetry of the matrix and
moreover consider each face only once. On the other hand
in case the streamline diffusion character is abandoned both
velocities and pressures are stabilized using isotropic gradi-
ent jumps. In this case the stabilization matrix for both
velocities and pressures may be set up (on a fixed mesh)
as a preprocessing step. At each time step the stabilization
matrix for velocities or pressures are constructed from this
precomputed matrix simply by multiplying the indices with
the appropriate weights accounting for varying b. This may
allow to diminish the computational cost compared to the
residual based stabilization where for consistency reasons
the whole matrix has to be recomputed at each time step.

5. Local projection-based stabilization method

The local projection-based stabilization (LPS) is
designed for equal-order interpolation of pressure and
velocities, i.e. r = s, and the stabilization of convective
terms. For the formulation of the local projection, we
restrict ourselves to a certain class of meshes. We assume
that the mesh Th results from a coarser mesh T2h by
one global refinement. Hence, the mesh Th consists of
patches of elements; for instance in two dimensions, three
triangles can be grouped together in order to form one tri-
angle of T2h. This restriction can be omitted for a certain
variant of the local projection discussed in Section 5.3.
As further notation, we introduce the space of patch-wise
discontinuous finite elements of degree r � 1:

X r�1
2h :¼ fv 2 L2ð�XÞ j vjT � F T 2 P r�1ðT̂ Þ 8T 2T2hg: ð48Þ
We introduce the L2-projection p2h;r�1 : X r

h ! X r�1
2h ,

characterized by

ð/� p2h;r�1/;wÞ ¼ 0 8/ 2 X r
h 8w 2 X r�1

2h

and the fluctuation operator with respect to p2h;r�1 by

�,h :¼ I � p2h;r�1;

where I stands for the identity mapping. For the Stokes
system, it was proposed in [1] to account for the violation
of the inf–sup condition (18) by adding the stabilization
term

ð�,hrp; dp�,hrqÞ
to the Galerkin formulation. Similar to the PSPG method,
the parameter dp depends on the local mesh size: dp 
 h2

T

for the Stokes problem. For the Oseen system, the same
term is added but the parameter dp should be chosen differ-
ently. This will be specified later.

Remark. Due to the orthogonality property

ð�,hrp;p2h;r�1rqÞ ¼ 0 8p; q 2 X r
h;

the local projection can be applied only onto the test func-
tion or onto the ansatz function. Hence, it holds

ð�,hrp; dp�,hrqÞ ¼ ð�,hrp; dprqÞ ¼ ðrp; dp�,hrqÞ: ð49Þ
Then, the convective term is stabilized by introducing

ð�,hððb � rÞuÞ; duðb � rÞvÞ:
In order to avoid further notations, we extend the defi-

nition of �,h onto vector-valued functions. Additional con-
trol over the divergence is obtained by the term

ð�,hðr � uÞ; cr � vÞ:
Note that these terms are also symmetric by the same

argument as before (49). Summarizing all these terms leads
to the stabilization
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Slpsðb; U ; V Þ :¼ ð�,hrp; dprqÞ þ ð�,hr � u; cr � vÞ
þ ð�,hððb � rÞuÞ; duðb � rÞvÞ; ð50Þ

and the discrete bilinear form of the Oseen problem:

Alpsðb; U ; V Þ ¼Aðb; U ; V Þ þSlpsðb; U ; V Þ:
In contrast to the residual-based stabilization tech-

niques, the right-hand side keeps unchanged, such that
the discrete system reads: find Uh ¼ fuh; phg 2Wr;r

h , s.t.

Alpsðb; U h; V Þ ¼LðV Þ 8V ¼ fv; qg 2Wr;r
h : ð51Þ

By the same argument as in the remark above, the stabil-
ization term can be written as

Slpsðb; U ; V Þ ¼ ð�,hrp; dp�,hrqÞ þ ð�,hðr � uÞ; c�,hðr � vÞÞ
þ ð�,hððb � rÞuÞ; du�,hððb � rÞvÞÞ:

Similar to PSPG/SUPG, this stabilization contains three
sets of parameters {du}, {dp} and {c}.
5.1. Stability for local projection stabilization

For the stabilization (50), we define the mesh-dependent
semi-norm jjjVjjjlps by

jjjV jjj2lps :¼ km1=2rvk2
L2ðXÞ þ kc1=2vk2

L2ðXÞ þ kd
p1=2�,hrqk2

L2ðXÞ

þ kc1=2�,hr � vk2
L2ðXÞ þ kd

u1=2�,hððb � rÞvÞk2
L2ðXÞ;

which contains the fluctuations with respect to �,h. The
main parts in this semi-norm including the energy-norm
and the L2-norm of v are the same as for the residual-based
methods, see (22). The difference is in the h-dependent parts
because the pressure and velocity in jjj Æ jjjlps are separated,
but these parts include only the fluctuations.

Stability is achieved directly by diagonal testing:

Alpsðb; V ; V Þ ¼ jjjV jjj2lps 8V 2W:

Control over the L2-norm of the pressure is obtained by
the upper bound for the discrete solution Uh in the semi-
norm jjj Æ jjjlps and the data f, cf. [3]:

kphk
2
L2ðXÞ � jjjU hjjj2lps þ kfk

2
L2ðXÞ:

This result induces uniqueness of the pressure.

5.2. A priori estimate for local projection stabilization

The a priori estimate for this stabilization becomes

jjjU � U hjjj2lps

�
X

T2Th

Mu
T

h2ðlu�1Þ
T

r2ðku�1Þ kuk
2
Hku ðT Þ þMp

T

h2ðlp�1Þ
T

r2ðkp�1Þ kpk
2
Hkp ðT Þ

 !

ð52Þ

with

Mu
T ¼

1

du
T

þ 1

dp
T

þkckL1ðT Þ

� �
h2

T

r2
þmþr2l2

invcT þdu
T r2l2

invkbk
2
W 1;1ðT Þ;
Mp
T ¼ r2l2

invd
p
T þ

h2
T

r2 maxðm;cT Þ
:

This estimate has some similarities to the one for the
residual based stabilization (33). However, the considered
(semi)-norm is different.

The choice of the stabilization parameters dp
T ; d

u
T ; cT can

be done in dependence of the regularity of the pressure. We
consider the two most important cases:

At first, we study the case of same regularity of pressure
and velocity, i.e. k:¼kp = ku, and l :¼ min{r + 1,k}. Equil-
ibration of the terms involving the stabilization constants
leads to the optimal choice

du
T :¼ r2m

h2
T

þ
r2linvkbkW 1;1ðT Þ

hT
þ kckL1ðT Þ

 !�1

; ð53Þ

dp
T :¼ du

T ;

cT :¼ h2
T

r4du
T l2

inv

: ð54Þ

Provided 0 < l0h2
T=r2

6 dp
T , this leads to Mu

T 
 h2
T=ðd

u
T r2Þ

and Mp
T 
 r2dp

T l2
inv, such that the estimate (52) becomes

jjjU � U hjjj2lps �
X

T2Th

h2ðl�1Þ

r2ðk�1Þ Mu
Tkuk

2
HkðT Þ þMp

Tkpk
2
HkðT Þ

� �
;

ð55Þ

with

Mu
T ¼ mþ hT linvkbkW 1;1ðT Þ þ

h2
T

r2
kckL1ðT Þ; ð56Þ

and

Mp
T ¼ r2dp

T l2
inv: ð57Þ

Let us shortly compare this result with (35) for the resid-
ual-based stabilization. Besides the fact that the considered
(semi-)norms on the left-hand sides differ, the right-hand
sides are qualitatively the same at least for small r. In the
case that the flow is advection-dominated, the time-step is
large and higher order approximation is considered
(r	 1) the estimate (55)–(57) is readily suboptimal due
to the term hT linvkbkL1ðT Þ which is not divided by r. How-
ever, for moderate m as well as for moderate time steps, the
estimate (55)–(57) is optimal.

At second, in the case of less regular pressure, i.e.
kp = ku � 1, the choice of the stabilization parameters
above would give a poor a priori estimate because
Mp

T 
 Mu
Tkbk

�1
L1ðT Þ. In order to have Mp

T 
 hT Mu
T , the

parameter dp
T should scale as h2

T . We take du
T as before in

(53) and

dp
T :¼ h2

T

r4ml2
inv

; cT :¼ m:

This leads to Mp
T 
 h2=ðr2mÞ,

Mu
T ¼ ð1þ r2l2

invÞmþ hT l2
invkbkW 1;1ðT Þ þ

h2
T

r2
kckL1ðT Þ;
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and to the a priori estimate

jjjU � U hjjj2lps �
X

T2Th

h2lp
T

r2kp
Mu

Tkuk
2
Hku ðT Þ þ

1

m
kpk2

Hkp ðT Þ

� �
:

5.3. Variants of local projection stabilization

In this section, we present some variants of the local
projection stabilization. First of all, the stabilization term
for the convective term can be replaced by the full deriva-
tive. In this case, the stabilization becomes

SlpsðU ; V Þ ¼ ð�,hrp; dprqÞ þ ð�,hru; durvÞ: ð58Þ

Furthermore, instead of the fluctuation filter �,h, the
filter with respect to the global Lagrange interpolant onto
the coarser mesh can be used:

,h :¼ I � I2h;r:

When such a filter is used, the stabilization consists of
building the gradients of the fluctuations with respect to
the filter. The Oseen system can now be stabilized by add-
ing the terms:

Slpsðb; U ; V Þ :¼ ðr,hp; dpr,hqÞ þ ðr � ð,huÞ; cr � ð,hvÞÞ
þ ððb � rÞ,hu; duðb � rÞ,hvÞ: ð59Þ

With this notation, the discrete equation remains as
before, see (51). The semi-norm jjj Æ jjjlps contains now the
stabilization terms of (59). Stability can be shown by the
same technique as for the variant presented in Section
5.1, see [1]. The a priori estimate (52) remains valid, but
in order to apply the Lagrange interpolant onto the exact
solution, we have to assume that p 2 Ht(X) and v 2 Ht(X)d,
with t > d

2
. This variant can be considered as a generaliza-

tion of the concept of Guermond [22] proposed for advec-
tion–diffusion equations.

As last variant we will shortly discuss is the most attrac-
tive one from the practical point of view. Instead of using
two different meshes Th, and T2h, only the principal mesh
Th is used. The discrete space Wr;r

h should be at least of
order r P 2. The additional space Wr�1;r�1

h is used to for-
mulate the local projection:

~,h :¼ I � Ih;r�1:

The stabilized form reads as (59) when ,h is replaced by
~,h. This stabilization term keeps optimal for the Stokes sys-
tem. However, for the Oseen system it becomes suboptimal
because the advection stabilization ensures only the con-
vergence order of the lower order space Wr�1;r�1

h .

5.4. Implementation issues

The price for this symmetric minimal stabilization tech-
nique is the larger stencil of the corresponding stiffness
matrix due to the projection �,h acting on patches. If the
complete stencil is included in the sparsity structure of
the matrix, the memory requirement is about a factor of
two larger in comparison to the Galerkin part (in 2-D
and in 3-D as well). However, with a cheap preconditioner,
as for instance

Sprecðb; U ; V Þ :¼ ðrp; dprqÞ þ ðr � u; cr � vÞ
þ ððb � rÞu; duðb � rÞvÞ;

the larger stiffness matrix can be avoided. We refer to [1]
for theoretical and practical results of such a precondi-
tioner in the case of the Stokes problem.

Another necessity for the use of such local projection is
the availability of patches (cells of the mesh T2h).

6. A coarse space projection based method

The local projection based method presented in Section
5 can be cast into a more general framework. Let GH,U be a
finite dimensional space of d · (d + 1)-tensor-valued func-
tions and d be a non-negative function. The index H should
indicate that GH,U is a coarse or large scale space, either
defined on a coarser grid or by low order finite elements
on the finest grid. The abstract coarse space projection
formulation seeks fU h;GH ;Ug 2Wr;s

h �GH ;U such that

Aðb; U h; V hÞ þ ðrU h �GH ;U ; drV hÞ ¼ LðV hÞ 8V h 2Wr;s
h ;

ðrU h �GH ;U ;LH ;U Þ ¼ 0 8LH ;U 2 GH ;U :

ð60Þ

The second equation in (60) is the L2(X) projection of
the pressure gradient and of the velocity gradient into
GH,U. Note that the (trivial) choice GH ;U :¼ ðrVr

hÞ�
ðrQs

hÞ, where, e.g., rVr
h stands for the space consisting

of all derivatives of functions in the space Vr
h defined in

(14), avoids any projection and the Galerkin formulation
is obtained. We will shortly discuss several non-trivial
choices of GH,U in order to recover several types of stabil-
ization techniques.

1. One of the first projection methods for equal-order
interpolation of the Stokes system, which was proposed
in [15], projects the pressure gradient only. This method
can be cast into this framework by taking GH ;U :¼
ðrVr

hÞ � ðX r
hÞ

d . The gradient of the velocity is not pro-
jected, but the pressure gradient becomes projected onto
a discrete space equal to the discrete velocity space with-
out Dirichlet conditions. In this case, the projection acts
globally due to the continuity of the functions of GH,U.

2. Taking a discontinuous space GH,U leads to a local pro-
jection and has the benefit that the additional degrees of
freedom, GH ;U , can be locally condensed. In particular,
with the notation of (48), the choice GH ;U :¼
ðX r�1

2h Þ
d�d � ðX r�1

2h Þ
d leads to GH ;U ¼ p2h;r�1rUh. Due to

the orthogonality property (49), the local projection
terms in (58) are recovered:

SlpsðU ; V Þ ¼ ð�,hrp; dp�,hrqÞ þ ð�,hru; du�,hrvÞ:

3. Finally, the case of inf–sup stable pairs of finite element
spaces was studied in [28]. Since the pressure stabiliza-
tion is not necessary in this case, GH ;U ¼ GH � ðrQs

hÞ.
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Possible choices of the velocity part GH of GH,U and of d
will be discussed in more detail in this section.

Let Wr;s
h ¼ Vr

h �Qs
h be a pair of finite element spaces

which fulfill the discrete inf–sup condition (18). Let GH

be a finite dimensional space of d · d-tensor-valued func-
tions. Since the stabilization parameter d can be interpreted
in the coarse space projection based method as an addi-
tional viscosity, it is denoted by madd(V,x). Then, the coarse
space projection based method is defined as follows: find
fU h;GHg 2Wr;s

h �GH such that

Aðb;U h;V hÞþðmaddðU h;hÞðruh�GH Þ;rvhÞ ¼ LðV hÞ 8V h 2Wr;s
h

ðruh�GH ;LH Þ ¼ 0 8LH 2GH :

ð61Þ

Methods of this kind have been studied in, e.g. [28–
30,32–34]. Their complete description requires to choose
two parameters: the space GH and the additional viscosity
madd(Uh,h).

The first parameter in (61) is the space of tensor-valued
functions GH. The second equation in (61) states that the
tensor-valued function GH is just the L2(X)-projection of
$uh into GH: GH ¼ P GHruh. With this notation, one can
reformulate (61) as follows: find U h 2Wr;s

h such that

AcspðU h; uh; vhÞ ¼Aðb; Uh; V hÞ þScspðU h; uh; vhÞ
¼LðV hÞ 8V h 2Wr;s

h ð62Þ

with

ScspðU h; uh; vhÞ :¼ ðmaddðUh; hÞðI � P GH Þruh;rvhÞ:

In (62), GH plays the role of a large scale space such that
ðI � P GH Þruh represents (resolved) small scales or fluctua-
tions of $uh. To avoid negative additional viscosity, it is
required that GH  frvhjvh 2Wr;s

h g. In the extreme case
that equality holds, the second term on the left-hand side
of (62) vanishes and the Galerkin finite element discretiza-
tion of the Oseen equations (5)–(7) is recovered. If
GH ¼ fOg, one obtains an artificial viscosity stabilization
of the Oseen equations with a possible non-linear artificial
viscosity. If madd(Uh,h) is the Smagorinsky eddy viscosity
model (63), the Smagorinsky LES model is recovered (in
the case of the Navier–Stokes equations). Since GH repre-
sents large scales, it must be in some sense a coarse finite
element space. There are essentially two possibilities. If
Wr;s

h is a higher order finite element space, GH can be
defined as low order finite element space on the same grid
as Wr;s

h . This approach is studied in [29]. The second possi-
bility, in particular if Wr;s

h is a low order finite element
space, consists in defining GH on a coarser grid, see [30]
for a study of this approach in the case of advection-dom-
inated advection–diffusion equations.

Concerning the second parameter of (61), madd(Uh,h),
almost all studies (for the Navier–Stokes equations) used
an eddy viscosity of Smagorinsky type [39]

maddðU h; hÞ ¼ cSmah2
Tkruhk2; ð63Þ
where cSma is a user-chosen constant, typically
cSma 2 [0.001,0.05], and kÆk2 denotes the Frobenius norm
of a tensor. In [30], madd(Uh,h) = ch has been used in the
projection based stabilization for stabilizing advection-
dominated advection–diffusion equations on equi-distant
meshes with mesh size h.
6.1. Stability of the method

The method (62) introduces additional viscosity by
adding madd(Uh,h) to the resolved small scales. For the
subsequent analysis, we consider for simplicity the case
madd(Uh,h) being independent of Uh. Then, the additional
viscosity madd(h) can be written in front of the second term
on the left-hand side of (62) and the second equation of
(61) can be used to add a helpful zero to get the following
problem: find U h 2Wr;s

h such that

Aðb; Uh; V hÞ þScspðuh; vhÞ ¼LðV hÞ 8V h 2Wr;s
h ð64Þ

with

Scspðuh; vhÞ :¼ ðmaddðhÞðI � P GH Þruh; ðI � P GH ÞrvhÞ:

By properties of the L2(X)-projection, one obtains for
kruhkL2ðXÞ > 0

Scspðuh; uhÞ ¼ maddðhÞ kruhk2
L2ðXÞ � kP GHruhk2

L2ðXÞ

� �
¼ maddðhÞ 1�

kP GHruhk2
L2ðXÞ

kruhk2
L2ðXÞ

 !
kruhk2

L2ðXÞ

¼: mþðh;GH ; uhÞkruhk2
L2ðXÞ

ð65Þ

with 0 6 m+(h,GH,uh) 6 madd(h). If kruhkL2ðXÞ ¼ 0, we set
m+(h,GH, uh) = 0. The viscosity m+(h,GH,uh) is small only
if the L2(X)-projection of $uh into the large scale space
GH is close to $uh itself. This is the case if there are (almost)
no small scales in the flow. We are not interested in this
situation since a stabilization is not necessary in this case.
The effective viscosity is now given by

meffðh;GH ; uhÞ :¼ mþ mþðh;GH ; uhÞ:

The stability estimate is obtained in the usual way by
using Uh as test function. One obtains in the first step

meffðh;GH ; uhÞkruhk2
L2ðXÞ þ cminkuhk2

L2ðXÞ 6 jðf; uhÞj: ð66Þ

We consider only the case that cmin > 0. The modifica-
tions for cmin = 0 are obvious. The right-hand side of (66)
can be estimated by the Cauchy–Schwarz inequality or
by the dual estimate. Either estimate is followed by
Young’s inequality. One obtains finally

meffðh;GH ; uhÞkruhk2
L2ðXÞ þ cminkuhk2

L2ðXÞ

6 min
kfk2

L2ðXÞ

cmin

;
kfk2

H�1ðXÞ

meffðh;GH ; uhÞ

( )
:
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6.2. A priori error analysis

The a priori error analysis starts in the usual way by
subtraction (64) from (9) for test functions from Wr;s

h , split-
ting the error into

e ¼ fu� uh; p � phg ¼ fu� ~uh; p � ~phg � fuh � ~uh; ph � ~phg
¼ fgu; gpg � f/u

h;/
p
hg

with f~uh; ~phg 2Wr;s
h and using the test function

V h ¼ f/u
h;/

p
hg. It is discussed in [28] that f~uh; ~phg can be de-

fined by the Stokes projection of {u,p} to ensure optimal
interpolation estimates for {gu,gp}. After reordering terms,
one obtains

meffðh;GH ;/
u
hÞkr/u

hk
2
L2ðXÞ þ cmink/u

hk
2
L2ðXÞ

6 jðmrgu;r/u
hÞ þ ððb � rÞgu;/u

hÞ þ ðcgu;/u
hÞ

� ðp � ~ph;r � /u
hÞ þScspðgu;/u

hÞ �Scspðu;/u
hÞj

for arbitrary ~ph 2 Qs
h.

The first terms on the right-hand side are estimated
using techniques like the Cauchy–Schwarz inequality,
Hölder’s inequality, Poincaré–Friedrichs’ inequality and
Young’s inequality. One obtains for the last terms on the
right-hand side, using the definition of m+ from (65),

Scspðgu;/u
hÞ 6 2mþðh;GH ; g

uÞkguk2
L2ðXÞ

þ mþðh;GH ;/
u
hÞ

8
kr/u

hk
2
L2ðXÞ

6 2mþðh;GH ; g
uÞkguk2

L2ðXÞ

þ meffðh;GH ;/
u
hÞ

8
kr/u

hk
2
L2ðXÞ;

Scspðu;/u
hÞ 6 2maddðhÞkðI � P GH Þruk2

L2ðXÞ

þ meffðh;GH ;/
u
hÞ

8
kr/u

hk
2
L2ðXÞ:

Collecting terms, using (65) and applying the triangle
inequality give the final estimate

meffðh;GH ; ðu� uhÞÞkrðu� uhÞk2
L2ðXÞ þ cminku� uhk2

L2ðXÞ

6 C inf
ð~uh;~phÞ2W

r;s
h

"
meffðh;GH ; g

uÞkrguk2
L2ðXÞ

þ cmin þ
kck2

L1ðXÞ

cmin

 !
kguk2

L2ðXÞ þ
kp � ~phk2

L2ðXÞ

meffðh;GH ;/
u
hÞ

þ kbk2
L1ðXÞmin

kguk2
L2ðXÞ

cmin

;
krguk2

L2ðXÞ

meffðh;GH ;/
u
hÞ

( )

þ maddðhÞkðI � P GH Þruk2
L2ðXÞ

#
:

Except the last term on the right-hand side of this esti-
mate, all terms behave asymptotically as the interpolation
error. The last term tends to zero as the mesh width
h! 0 if madd(h)! 0 or if GH tends to the space
{$v|v 2 V}. In both cases, the Galerkin finite element dis-
cretization of the Oseen equations is recovered asymptoti-
cally. To obtain an optimal order of convergence, madd(h)
and GH have to be chosen in such a way that the last term
behaves at least as the interpolation error.

L2-error estimates for the pressure can be derived in the
standard way by using the discrete inf–sup condition (18).
6.3. Implementation issues

The algebraic representation of (61) consists in a large
coupled system of equations. The solution of this system
in coupled form has been studied in [30] and it has been
found to be a very inefficient approach. A straightforward
idea consists in condensing the coupled system by eliminat-
ing the equations describing the L2(X)-projection into GH

to obtain an algebraic analog of (62). In comparison to
the Galerkin finite element discretization of the Oseen
equations, one gets an additional matrix on the left-hand
side. In [30], a semi-implicit-in-time approach to the non-
stationary Navier–Stokes problem (1) and (2) was found
to be quite efficient which solves in each time step an equa-
tion of the form: Find U h 2Wr;s

h such that

Aðb; Uh; V hÞ þ ðmaddðU h; hÞruh;rvhÞ
¼LðV hÞ þ ðmaddðUh; hÞP GHruold

h ;rvhÞ ð67Þ

for all V h 2Wr;s
h , where uold

h is the solution from the previ-
ous discrete time. Note, the left-hand side of (67) is in gen-
eral a stable discretization, e.g., using (63) gives the same
matrices as in the linearization of the Smagorinsky LES
model. The fully implicit approach after the condensation
of the L2(X)-projection was studied in [29].

In [29,30], the efficient implementation of (61) and (67)
into an existing finite element code was investigated. No
matter if GH is defined on the same grid as Wr;s

h or on a
coarser grid, one finds for the reason of efficiency two
requirements on GH:

• GH should be a discontinuous finite element space,
• the basis of GH should be L2(X)-orthogonal.

If higher order finite elements are used for velocity and
pressure, the definition of GH on the same grid with low
order finite elements is appealing. In this case, the fulfill-
ment of the two requirements on GH prevent unnecessary
fill-in in the matrices which describe the L2(X)-projection
into GH. In particular, the discontinuity of GH allows the
computation of the L2(X)-projection by using only local
information. Altogether, the conditions on GH ensure that
the sparsity pattern of the additional matrix is the same as
of the matrix representing Aðb; Uh; V hÞ. Thus, adding both
matrices to obtain the left-hand side of (62) causes no
difficulties.

To summarize, the costs of the coarse space projection
space method consist essentially in storing and assembling
additional matrices which represent the second term in the
first equation of (61) and the second equation of (61).
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These matrices can be used either to modify the right-hand
side as in the semi-implicit approach (67) or to modify the
system matrix like in the fully implicit approach.

7. Critical comparison and outlook

Let us first come back to the discussion at the end of Sec-
tion 3 where a rough motivation of the symmetric stabiliza-
tion methods of Sections 4–6 was given. In particular,
choosing the subspaces and the (abstract) projection opera-
tor P in the way proposed in Sections 5 and 6 leads to the
local projection and coarse-space projection based methods.
Choosing the projection operator as p�h, cf. Section 4.1, leads
to an face oriented stabilization method of Section 4. This
reasoning has given a more rigorous treatment in [3]
where it was shown that SUPG stabilization on the subgrid
alone is sufficient to yield optimal a priori error estimates.

The following conclusions can be drawn:

• We have traded the full element residual of the SUPG/
PSPG method for a projected residual, thus loosing
the Galerkin orthogonality.

• The approximation properties of the projection give a
weak consistency of the right order that allows for the
decoupling of the velocity and the pressure and hence
leads to a decoupled stabilization.

• However, at the price of a larger stencil and/or in the
case P projects onto a space of lower polynomial order
or a coarser space, the approximation properties of the
scheme will be given by this coarse space. This results
from the weak convergence of the stabilization operator.
Typically the convergence order depends on the weak
consistency of the stabilization operator. If the small
scale space is chosen too small then the projection error
vanishes at a rate significantly lower than the approxi-
mation error of the fine scale mesh (cf. Section 5.3 and
6). The slow convergence of the projection error will
then make convergence rates deteriorate.

We now compare the methods from Sections 3–6 with
respect to their different properties concerning some rele-
vant issues such as velocity–pressure approximation, design
of stabilization parameters, cost of stabilization, a priori
error estimates.

7.1. Velocity–pressure approximation

Although not presented for all variants, all methods
share the property that rather arbitrary pairs of velocity–
pressure approximation are allowed. In particular, equal-
order pairs are still attractive from the implementation
point of view.

The stabilization of div-stable pairs of velocity–pressure
spaces is necessary to treat the advection-dominated case.
In this case, the non-symmetry of the SUPG/PSPG scheme
is even more bothering with the non-symmetric velocity/
pressure coupling. On the other hand, the stabilization of
the face oriented method or the local projection method
remains symmetric since the stabilization of velocity and
pressure are decoupled.

7.2. Design of stabilization parameters

In the case of equal-order pairs, the stabilization param-
eters of the SUPG/PSPG/grad–div scheme depend in a sen-
sitive way on the data at the element level. This is a
consequence of the non-symmetric structure of the
SUPG/PSPG terms. In particular, in the proof of the sta-
bility estimate (26) is the inverse inequality needed to con-
trol the terms coupled with the Laplacian Duh. This
imposes certain upper bounds on the stabilization parame-
ters, whereas in the case of local projection stabilization
and face oriented stabilization (at least when considering
higher order polynomial approximation) the method is
very robust with respect to overstabilization. Choosing
the stabilization parameter too large gives rise to a less
well-conditioned matrix, but has remarkably little effect
on the approximation error (see i.e. [10,38] for numerical
examples). The decoupled velocity and pressure stabiliza-
tions also allow for stabilization parameters for the velocity
that are independent of the viscosity. Such a choice might
not always correspond to the least possible perturbation,
but the order of the numerical scheme will not be altered.
For the case of the pressure however the stabilization must
be changed in order to keep optimal order estimates in the
regime of low local Reynolds number. Reducing the viscos-
ity dependence of the stabilization parameters is of interest
in strongly nonlinear situations such as those arising in
combustion or viscoelastic flows.

For div-stable pairs, one obtains a much simpler param-
eter design for the SUPG/PSPG/grad–div scheme. More-
over, it seems that the PSPG terms can be omitted in this
case, see [20]. They can be omitted also for the symmetric
stabilizations in Sections 4 and 5. In this case the stabiliza-
tion parameter may be chosen independent of the viscosity.
Some grad–div stabilization is still necessary in this case to
obtain a priori error estimates that are robust when m! 0.
Simply dropping the pressure stabilization without modify-
ing the stabilization terms of the velocity leads to a numer-
ical scheme of order hlp�1

2 for the error in the triple norm
(22). Since the pressure space is of lower polynomial order
than the velocity space, this estimate looks suboptimal.
Increasing the least squares control of the divergence on
the other hand leads to an estimate that is optimal in the
Hdiv norm, see [13,9].

7.3. A priori analysis

A striking advantage of the schemes with a symmetric
stabilization is the separate control of velocity and pressure
terms in the analysis. In this respect, the physical meaning
of the stabilization term

P
T dTkðb � rÞuþrpk2

L2ðT Þ of the
SUPG/PSPG scheme is unclear. In the case of symmetric
stabilization on the other hand, the a priori error estimate
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is given in the physically relevant triple norm augmented
with the stabilization terms that now give a measure on
how much artificial dissipation has been added to the equa-
tion. Hence the artificial dissipation of energy induced by
the stabilization may be monitored efficiently.

The accuracy of the methods presented in Sections 3–6 is
comparable, see, e.g., the discussion in Section 5.2. The anal-
ysis of the SUPG/PSPG/grad–div scheme is the most com-
plete so far, including local estimates for scalar advection
problems, and a priori error estimates in a hp-framework.
Considering the other methods, it seems that some addi-
tional work remains to obtain a more complete analysis.

In the case of the projection stabilizations, it is the
approximation property of the coarse space that gives the
precision of the a priori error estimates. It would therefore
seem appealing to choose the coarse space as big as possi-
ble from the point of view of precision, for stability on the
other hand it should be chosen small enough.

7.4. Expense of stabilization: computational costs

Only the SUPG/PSPG/grad–div scheme has a non-sym-
metric structure of the stabilization terms. The bulk of
additional terms may lead to a time-consuming assembling
of the linear system. But these terms can be easily imple-
mented into existing codes. On the other hand, the scheme
is (much) more compact than that of the edge/face-oriented
stabilization method.

The latter method can be easily implemented into codes
with a data structure that allows the application of stan-
dard a posteriori estimators. On the one hand, integrations
have to performed on the faces of the elements as in a DG
method and there are many more faces than elements. But
on the other hand, these integrals are of lower dimension
and can hence be evaluated at lower cost than the integrals
over the elements. The computational cost of the projec-
tion-based schemes depends in an essential way on the effi-
cient implementation of the projectors, and on the choice
of the coarse spaces (see Section 6 for more details).

The construction of efficient algebraic solvers and pre-
conditioners is simpler for the schemes with symmetric sta-
bilization. The strong velocity–pressure couplings in the
matrix of the SUPG/PSPG/grad–div scheme makes this
task more complicated, see, e.g. [35]. For the face/edge ori-
ented stabilization, the system matrix does not have the
same structure as the standard Galerkin method. The same
is true for projection-based schemes where the coarse space
does not posses specific properties as discussed in Section
6.3, see also [16]. An appealing alternative in this case seems
to be the use of quasi Newton algorithms for the solution of
the non-linear problem, using only the part of the matrix
that fits in the standard Galerkin stencil cf. Section 5.4.

7.5. Unsymmetric vs. symmetric stabilization

Numerical flow simulation are very often used for opti-
mization issues where beside of the Navier–Stokes equa-
tions (primal problem) an associated adjoint (or dual)
problem arises. This adjoint problem has probably also
to be stabilized. Usually, there are two possibilities to han-
dle adjoint problems numerically:

(i) Building the adjoint out of the discretized stabilized
primal problem.

(ii) Building the adjoint out of the continuous primal
problem and then stabilize it.

These two possibilities are not equal in general. Possibil-
ity (ii) has the drawback, that the adjoint problem is in gen-
eral not consistent with the optimization problem, because
the gradient is perturbed. In contrast, possibility (i) is con-
sistent, but not necessarily discretized properly. This is
exactly the situation for the classical residual based stabil-
ization techniques in finite elements. A symmetric stabiliza-
tion cures this problem, because the possibilities (i) and (ii)
become equal. Due to the symmetry of face/edge stabiliza-
tion, local projection and coarse space projection these
schemes are advantageous for optimization problems.
The local projection method has already been used in opti-
mization, see [2].

7.6. Outlook

The accurate numerical solution of the advection-domi-
nated Oseen equations by finite element methods requires
the addition of viscosity in a sophisticated way. Moreover,
if equal order finite element spaces for the velocity and the
pressure are applied, the use of pressure stabilization terms
becomes necessary.

We presented an overview on stabilization schemes (ele-
ment and face/edge residual based, projection methods)
which differ above all in their basic ideas for stabiliz-
ing dominating advection. Compared to the Galerkin
discretization, the numerical overhead increases for all
approaches, in particular with respect to the memory
requirements. Either the sparsity pattern of matrix blocks
becomes more dense (edge-stabilization and local projec-
tion method (velocity–velocity block)) or additional matri-
ces have to be assembled (SUPG, coarse space projection
scheme). Nevertheless, we discussed several aspects show-
ing that the not fully consistent schemes of Sections 4–6
with symmetric stabilization have some potential advanta-
ges over the classical SUPG/PSPG scheme.

An a priori error analysis is available for all presented
schemes, leading to information about the principal choice
of the parameters involved in these schemes on shape-reg-
ular triangulations. More research is necessary to extend
the analysis to the case of anisotropic meshes.

We did not include a numerical comparison of the
schemes, although all statements of the paper are supported
by our numerical experience. In this respect, we hope to
invite other groups to contribute to such a comparison.

As discussed in Section 1, the methods under consider-
ation have to applied as a kernel within a full code for
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the finite element simulation based on the incompressible
Navier–Stokes model. For brevity, we did not describe
the link of the stabilized schemes to the variational multiscale
method proposed in [25,22,27] which provide a new app-
roach to large eddy simulations of turbulent flows. The
schemes with a symmetric stabilization, as considered in
Sections 4–6 are strongly motivated from this point of view.
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