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1 Introduction

The Darcy equations describe the behavior of fluids in porous media. They consist of a
system of partial differential equations arising form Darcy’s law for the flow of a fluid in
a porous medium and the law of conservation of mass.

Boundary value problems for the Darcy equations can be used to model e.g. ground-
water contamination and other problems of practical importance in civil, geotechnical
and petroleum engineering involving fluid flow through porous media.

It is usually not possible to find an analytic solution to boundary value problems for the
Darcy equations, such that numerical methods have to be employed for approximating
the solution. (Mixed) finite element methods are a popular technique to discretize the
equations in order to obtain an approximate solution. They belong to the class of
numerical methods based on a variational formulation of the problem in which pressure
and velocity are variables.

Discretization of the Darcy equations with finite element methods results in algebraic
linear systems of saddle point type, that are large and sparse. Due to their indefiniteness
and often poor spectral properties, such linear systems are challenging to solve. The
efficient solution of these systems leads to the overall efficient simulation of flow problems
in porous media using finite element methods.

The purpose of this thesis is to study solution methods for the arising saddle point
problems, with an emphasis on iterative methods for large and sparse problems.

In Chapter 2 the mathematical foundations for the Darcy equations and the cor-
responding saddle point problems are introduced. Chapter 3 discusses the choice of
appropriate finite element spaces that are used to approximate the two variables.

The subsequent chapter presents basic algebraic properties of the saddle point matri-
ces and strategies for preconditioning of the saddle point system arising from the Darcy
equations, namely the Least Squares Commutator (LSC) preconditioner, a block precon-
ditioner based on the Schur complement approximation, the Vanka preconditioner, which
can be considered as a block Gauss-Seidel method and the incomplete LU factorization.

The numerical results can be found in Chapter 5. Finally a summary of results is
presented.
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2 Darcy Equations

This chapter introduces the Darcy equations and describes the derivation of the weak
formulation. Subsequently existence and uniqueness of a weak solution and the finite
element discretization are discussed. The presentation of this chapter mostly follows [2],
[3] and [5].

Consider the following system of first-oder partial differential equations for the flow
of a fluid through a porous medium

Ku +∇p = 0 in Ω (2.1)

∇ · u = f in Ω (2.2)

where

Ω ⊂ Rn is a bounded connected flow domain, which is a porous medium saturated
with a fluid, with Lipschitz boundary ∂Ω

u : Ω→ Rn is the fluid velocity

p : Ω→ R is the fluid pressure

f ∈ L2(Ω) is a given source term that represents the density of potential sources
(or sinks) in the medium

∇ is the gradient operator

∇· is the divergence operator

K is the tensor of hydraulic permeability of the medium.

Assume that K is symmetric and uniformly bounded from below and above on Ω, i.e.
there exist positive constants κ0 and κ1 such that the inequalities

κ0|w|2 ≤ wTK(x)w ≤ κ1|w|2

hold for all x ∈ Ω and w ∈ Rn, where | · | denotes the Euclidean norm in Rn.
The first equation (2.1) represents Darcy’s law for the velocity field u and the second

equation (2.2) derives from the law of conservation of mass and is called continuity
equation.
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In order to obtain a well-posed problem, the equations need to be equipped with
boundary conditions. Consider the following boundary conditions

p = pD on ΓD Dirichlet boundary condition (2.3)

u · n = uN on ΓN Neumann boundary condition (2.4)

where ΓD and ΓN are subsets of the boundary Γ = ∂Ω with Γ = ΓD∪ΓN and ΓD∩ΓN = ∅;
n is the outward normal vector defined (a.e.) on Γ.

2.1 Weak Formulation

The numerical solution of the Darcy problem (2.1) - (2.4) with finite element methods
is based on its variational or equivalently called weak formulation.

Function spaces In order to derive a weak formulation of problem (2.1) - (2.4) function
spaces that are based on the space of square (Lebesgue-) integrable functions on Ω,

L2(Ω) = {w : Ω→ R |
∫

Ω

|w(x)|2 dx = ‖w‖2
L2(Ω) <∞}

are used. To be precise, instead of functions, L2(Ω) consists of classes of measurable
functions, meaning that a class is made of functions that differ form each other only
on a subset of Ω of zero Lebesgue measure. One keeps calling them functions, that are
defined almost everywhere.

Consider the Hilbert space given for any positive integer m by

Hm(Ω) = {w ∈ L2(Ω) |Dαw ∈ L2(Ω) ∀ |α| ≤ m}

with the norm
‖w‖2

Hm(Ω) =
∑
|α|≤m

‖Dαw‖2
L2(Ω)

where

α = (α1, ..., αn) , |α| = α1 + ...+ αn and Dαw =
∂|α|w

∂xα1
1 · · · ∂xαn

n

and the derivatives Dαw are taken in a weak sense. In particular the space H1(Ω) is of
importance for the derivation of a weak formulation.

A function w ∈ H1(Ω) is defined a.e. in Ω, i.e. everywhere except on a subset of Ω
of zero Lebesgue measure. The boundary Γ has n-dimensional Lebesgue measure zero,
since it is a n − 1 dimensional subset of Rn. Assigning boundary values along Γ to a
function w ∈ H1(Ω) is possible with the notion of a trace operator.

Theorem 2.1. Assume Ω is bounded and the boundary Γ = ∂Ω is C1. Then there exists
a bounded linear operator γ0 : H1(Ω)→ L2(Γ) such that

γ0w = w|Γ if w ∈ C1(Ω) ∩H1(Ω) and

‖γ0w‖L2(Γ) ≤ C0‖w‖H1(Ω) for eachw ∈ H1(Ω).
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Proof : [7], chapter 5.5, Theorem 1.
Then γ0w is called the trace of w on Γ and denoted by w|Γ even if w is a general

function in H1(Ω) that might not be in C1(Ω).

The traces of functions in H1(Ω) span a Hilbert space, denoted H
1
2 (Γ), that is a proper

subspace of L2(Γ). Hence

H
1
2 (Γ) = γ0(H1(Ω))

with norm
‖g‖

H
1
2 (Γ)

= inf
v∈H1(Ω),γ0v=g

‖v‖H1(Ω).

The trace operator γ0 : H1(Ω) → H
1
2 (Γ) is surjective. The dual space of H

1
2 (Γ) is

denoted by H−
1
2 (Γ) and the dual pairing between H

1
2 (Γ) and H−

1
2 (Γ) by 〈·, ·〉. For an

introduction to the spaces Hs(Γ) (defined for all s ∈ R) see [9], p. 8.
To write an appropriate weak formulation of problem (2.1) - (2.4) we introduce the

Hilbert space
H(div,Ω) = {v ∈ L2(Ω)n | ∇ · v ∈ L2(Ω)}

with the norm
‖v‖2

H(div,Ω) = ‖v‖2
L2(Ω) + ‖∇ · v‖2

L2(Ω).

Functions in H(div,Ω) admit traces of the normal component on Γ, namely there exists a

bounded linear and surjective operator γn : H(div,Ω)→ H−
1
2 (Γ) such that γnv = v·n|Γ,

for every smooth v.

Lemma 2.2. For v ∈ H(div,Ω) one can define v · n|Γ ∈ H−
1
2 (Γ), the normal trace of

v on Γ and Green’s formula holds,∫
Ω

(∇ · v)p dx +

∫
Ω

∇p · v dx = 〈v · n, p〉 ∀p ∈ H1(Ω)

where one can write
∫

Γ
(v·n)p ds instead of 〈v·n, p〉, to denote the duality between H

1
2 (Γ)

and H−
1
2 (Γ).

Proof: [3], Lemma 2.1.1.

The restriction of v · n to ΓN , however, may not lie in H−
1
2 (ΓN). The subspace of

H(div,Ω) consisting of functions with zero normal trace on ΓN is given by

H0,ΓN
(div,Ω) = {v ∈ H(div,Ω) | 〈v · n, w〉 = 0 ∀w ∈ H1

0,ΓD
(Ω)} (2.5)

where
H1

0,ΓD
(Ω) = {w ∈ H1(Ω) |w|ΓD

= 0}.
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Homogeneous problem Consider the case uN = 0. A weak formulation of problem
(2.1) - (2.4) is obtained by multiplying eq. (2.1) with a test function v ∈ H0,ΓN

(div,Ω)
and the continuity equation (2.2) with test function q ∈ L2(Ω). Then both equations
are integrated over Ω,∫

Ω

Ku · v dx +

∫
Ω

∇p · v dx = 0 ∀v ∈ H0,ΓN
(div,Ω)∫

Ω

(∇ · u)q dx =

∫
Ω

fq dx ∀q ∈ L2(Ω).

Assume that the functions (u, p) are sufficiently smooth and apply Green’s formula to
the second integral in the first equation∫

Ω

∇p · v dx = −
∫

Ω

(∇ · v)p dx +

∫
Γ

(v · n)p ds

and insert p|ΓD
= pD in the integral over the boundary ΓD,∫

Γ

(v · n)p ds =

∫
ΓN

(v · n)p ds+

∫
ΓD

(v · n)pD ds.

The second term makes sense if pD ∈ H
1
2 (ΓD) and the boundary integral reads as the

duality product between H−
1
2 and H

1
2 . Since v ∈ H0,ΓN

(div,Ω) the first term vanishes.
Then the weak formulation of the Darcy problem (2.1) - (2.4) with inhomogeneous

Dirichlet and homogeneous Neumann boundary conditions reads as follows:
Given f ∈ L2(Ω) and pD ∈ H

1
2 (ΓD) find (u, p) ∈ H0,ΓN

(div,Ω)× L2(Ω) such that∫
Ω

Ku · v dx−
∫

Ω

(∇ · v) p dx = −
∫

ΓD

(v · n)pD ds ∀v ∈ H0,ΓN
(div,Ω)∫

Ω

(∇ · u)q dx =

∫
Ω

fq dx ∀q ∈ L2(Ω).

(2.6)

The Dirichlet boundary condition is implicit in the weak formulation. This type of
boundary condition is called natural. The Neumann boundary condition has to be
imposed on the velocity space and is called essential boundary condition.

Introducing two continuous bilinear forms

a(u,v) =

∫
Ω

Ku · v dx (2.7)

and

b(v, p) = −
∫

Ω

(∇ · v) p dx (2.8)

on H0,ΓN
(div,Ω) × H0,ΓN

(div,Ω) and H0,ΓN
(div,Ω) × L2(Ω), respectively, (2.6) can be

written in the following form:
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Given f ∈ L2(Ω) and pD ∈ H
1
2 (ΓD) find (u, p) ∈ H0,ΓN

(div,Ω)× L2(Ω) such that

a(u,v) + b(v, p) = −〈v · n, pD〉 ∀v ∈ H0,ΓN
(div,Ω)

b(u, q) = −〈f, q〉 ∀q ∈ L2(Ω),
(2.9)

where 〈f, q〉 =
∫

Ω
fq dx and 〈 ·, ·〉 denotes the dual pairing between a space and its dual

space.

Non-homogeneous problem Let uN 6= 0. By taking the divergence of eq. (2.1), ∇ ·
u +∇ ·K−1∇p = 0 and substituting in eq. (2.2), one obtains an alternative formulation
of the Darcy equations

−∇ ·K−1∇p = f in Ω.

Assume K−1∇p · n |ΓN
= uN , p |ΓD

= 0 and f = 0. Multiplication with q ∈ H1
0,ΓD

(Ω),
integration and integration by parts yields∫

Ω

K−1∇p · ∇q dx =

∫
ΓN

uNq ds. (2.10)

One can show with Lax- Milgram theorem that for uN ∈ H−
1
2 (ΓN) problem (2.10) has

a unique solution p ∈ H0,ΓD
(Ω), see [3].

Thus it is possible to consider any ũ such that ũ · n = uN on ΓN by considering a
solution to problem (2.10) and taking ũ = K−1∇p. Then look for u = ũ + u0 with
u0 ∈ H0,ΓN

(div,Ω). This leads to the following problem

a(u0,v) + b(v, p) = −〈v · n, pD〉 − a(ũ,v) ∀v ∈ H0,ΓN
(div,Ω)

b(u0, q) = −〈f, q〉 − b(ũ, q) ∀q ∈ L2(Ω).
(2.11)

This means that considering uN 6= 0 can be reduced to changing the right-hand side of
(2.9).

Problem (2.9) is a particular case of a general class of problems described as follows:
Let V and Q be two Hilbert spaces and their corresponding dual spaces given by V ′

and Q′. Suppose that a(·, ·) and b(·, ·) are two continuous bilinear forms on V × V and
V ×Q, respectively. For given g ∈ V ′ and f ∈ Q′ find (u, p) ∈ V ×Q such that

a(u,v) + b(v, p) = 〈g,v〉 ∀v ∈ V
b(u, q) = 〈f, q〉 ∀q ∈ Q.

(2.12)

System (2.12) is called linear saddle point problem.

2.2 Existence and Uniqueness

In the following conditions on the bilinear forms a(·, ·) and b(·, ·) for the well-posedness
of the linear saddle point problem (2.12), i.e. the existence of a unique solution of (2.12),
are given.
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Theorem 2.3. Assume that the bilinear form a(·, ·) is coercive on the subspace

W = {v ∈ V | b(v, q) = 0 ∀q ∈ Q} ⊂ V,

i.e. there exists a constant α ≥ 0 such that

a(v,v) ≥ α‖v‖2
V ∀v ∈ W.

Then problem (2.12) has a unique solution (u, p) ∈ V × Q if and only if b(·, ·) satisfies
the inf-sup condition, i.e.

∃β > 0 : inf
q∈Q\{0}

sup
v∈V \{0}

b(v, q)

‖v‖V ‖q‖Q
≥ β. (2.13)

Proof: [9], Corollary 4.1.

Apply the theorem 2.3 to problem (2.9), where

V = H0,ΓN
(div,Ω) and Q = L2(Ω)

and the bilinear forms a(·, ·) and b(·, ·) are given by (2.7) and (2.8).

Coercivity Let v ∈ W , i.e.

b(v, q) = −
∫

Ω

(∇ · v) q dx = 0 ∀q ∈ L2(Ω).

Since v ∈ H0,ΓN
(div,Ω) it holds ∇ · v ∈ L2(Ω). Choosing q to be ∇ · v,

0 =

∫
Ω

(∇ · v)(∇ · v) dx = ||∇ · v||2L2(Ω).

Thus the H(div,Ω)-norm coincides on W with the L2(Ω)-norm. Therefore coercivity
holds

a(v,v) =

∫
Ω

vTKv dx ≥ κ0||v||2L2(Ω) = κ0||v||2V ∀v ∈ W.

Inf-sup condition The bilinear form b(·, ·) given by (2.8) satisfies the inf-sup condition
on (H1

0,ΓN
(Ω))n × L2(Ω), ([12], theorem 3.46). On H1

0,ΓN
(Ω) the norms ‖ · ‖H1

0 (Ω) and
‖ · ‖H1(Ω) are equivalent. Thus the inf-sup condition still holds, when replacing ‖ · ‖H1

0 (Ω)

by ‖ · ‖H1(Ω).
From the estimate

||∇ · v||L2(Ω) ≤
√
d||∇v||L2(Ω) for v ∈ (H1(Ω))n

(proof: [12], Lemma 3.34) it follows

||v||2H1(Ω) ≥
1

d
||v||2H(div,Ω).
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Since H0,ΓN
(div,Ω) contains H1

0,ΓN
(Ω), the supremum over the larger space H0,ΓN

(div,Ω)
will be greater. Using the last inequality

inf
q∈L2(Ω)\{0}

sup
v∈H0,ΓN

(div,Ω)\{0}

b(v, q)

‖v‖H(div,Ω)‖q‖L2(Ω)

≥

inf
q∈L2(Ω)\{0}

sup
v∈H1

0,ΓN
(Ω)\{0}

b(v, q)√
d‖v‖H1(Ω)‖q‖L2(Ω)

≥ β√
d
.

Continuity of the bilinear forms follow from Hölder inequality

|a(u,v)| ≤
∫

Ω

|uTKv| dx ≤ κ1‖u‖H(div,Ω)‖v‖H(div,Ω)

|b(v, p)| ≤
∫

Ω

|(∇ · v) p| dx ≤ ‖v‖H(div,Ω)‖p‖L2(Ω).

2.3 Finite Element Discretization

The main idea of using finite element methods consists in replacing the infinite-dimensional
spaces V and Q by finite-dimensional spaces V h and Qh, respectively, and to apply
Galerkin method. The use of two different finite element spaces for the approximation
of the two variables (u, p) is denoted by mixed finite element method. If V h ⊂ V and
Qh ⊂ Q the finite element method is called conforming, otherwise non-conforming. In
the following only conforming finite element methods are considered. For conforming
spaces the discrete bilinear forms are the restrictions of a(·, ·) and b(·, ·) from V × V to
V h × V h and V ×Q to V h ×Qh, respectively.

Finite element formulation: Let V h ⊂ V be a velocity finite element space and
let Qh ⊂ Q be a pressure finite element space. The finite element discretization of (2.12)
reads as follws:

Find (uh, ph) ∈ V h ×Qh such that

a(uh,vh) + b(vh, ph) = 〈g,vh〉 ∀vh ∈ V h

b(uh, qh) = 〈f, qh〉 ∀qh ∈ Qh.
(2.14)

In order to have the finite element approximation well defined we need to know that
there exists a unique solution (uh, ph) ∈ V h ×Qh of problem (2.14).

Introduce the space

W h = {vh ∈ V h | b(vh, qh) = 0 ∀ qh ∈ Qh} ⊂ V h (2.15)

and assume a(·, ·) is coercive on W h. From Theorem 2.3 it follows, that there exists a
unique finite element solution if and only if the discrete inf-sup condition

∃β∗ > 0 : inf
qh∈Qh\{0}

sup
vh∈V h\{0}

b(vh, qh)

‖vh‖V ‖qh‖Q
≥ β∗ (2.16)
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holds.
A useful criterion to check the discrete inf-sup condition is the following result due to

Fortin.

Theorem 2.4. (Fortin, 1977, [8]) Assume the continuous inf-sup condition (2.13)
holds. Then the discrete inf-sup condition holds with a constant β∗ > 0 independent of
h, if and only if, there exists an operator Πh : V → V h such that

b(v − Πhv, q
h) = 0 ∀v ∈ V, ∀ qh ∈ Qh (2.17)

and

‖Πhv‖V ≤ C‖v‖V ∀v ∈ V (2.18)

with a constant C > 0 independent of h.
Proof: [5], Theorem 5.7.

2.4 Matrix-Vector Form

In order to derive an algebraic system from (2.9) or (2.11), the spaces V h and Qh are
equipped with a basis. Let {ϕh

i }i=1,...,nV
be a basis of V h and {ψhj }j=1,...,nQ

be a basis of
Qh, where nV = dimV h and nQ = dimQh. Then uh ∈ V h and ph ∈ Qh have the unique
representations

uh =

nV∑
i=1

uhiϕ
h
i , ph =

nQ∑
j=1

phjψ
h
j (2.19)

with unknown coefficients uhi , i = 1, ..., nV and phj , j = 1, ..., nQ. Inserting (2.19) in (2.14)
and testing with each basis function separately lead to the linear system of equations

nV∑
i=1

a(ϕh
i ,ϕ

h
l )u

h
i +

nQ∑
j=1

b(ϕh
l , ψ

h
j )phj = 〈g̃,ϕh

l 〉 l = 1, ..., nV

nV∑
i=1

b(ϕh
i , ψ

h
k )uhi = 〈f̃ , ψhk 〉 k = 1, ..., nQ,

which can be expressed in matrix-vector form as(
A BT

B 0

)
·
(
u
p

)
=

(
g
f

)
(2.20)

with finite element matrices

(A)li := a(ϕh
i ,ϕ

h
l ) =

∫
Ω
Kϕh

i ·ϕh
l dx, A ∈ RnV ×nV

(B)ki := b(ϕh
i , ψ

h
k ) = −

∫
Ω

(∇ ·ϕh
i )ψ

h
k dx, B ∈ RnQ×nV
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coefficient vectors

(u)i := uhi , u ∈ RnV

(p)j := phj , p ∈ RnQ ,

and right-hand sides including eventually non-homogeneous boundary conditions as in
(2.11),

(g)l := 〈g̃,ϕh
l 〉 = −

∫
ΓD

(ϕh
l · n)pD ds− a(ũ,ϕh

l ), g ∈ RnV

(f)k := 〈f̃ , ψhk 〉 = −
∫

Ω
fψhk dx− b(ũ, ψhk ), f ∈ RnQ .

The algebraic systems (2.20) that arise in the finite element discretizations of the Darcy
equations belong to the type of linear systems in saddle point form and have block struc-
ture. The symmetric positive definite matrix A is a discretization of the linear operator
’multiplication by K’, a zeroth-order differential operator. The conditioning properties
of A are independent of the discretization parameter h (for most discretizations), and
depend only on properties of the hydraulic permeability tensor K. The matrix −B rep-
resents a discrete divergence operator and BT a discrete gradient operator. Properties of
saddle point matrices such as solvability condition, spectral properties and conditioning
will be considered in section 4.1.
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3 The Choice of Finite Element Spaces

This chapter introduces appropriate finite element spaces for the discretization of prob-
lem (2.9) and follows [3], [5], and [12].

The construction of finite-dimensional subspaces of the velocity and pressure spaces
is based on the decomposition of the domain Ω, in which the problem is posed, into
polyhedrons. This decomposition is called triangulation Th. The polyhedrons T are
called mesh cells and are usually triangles, quadrilaterals, tetrahedra, hexahedra, e.t.c.
The union of the polyhedrons is called grid or mesh and h = maxT∈Th hT is the mesh size,
with hT denoting the diameter of T . Let {Th} be a familiy of triangulations. Assume
that

• it holds Ω = ∪T∈Th T

• each mesh cell T ∈ Th is closed, the boundary is Lipschitz continuous and the
interior T̊ in nonempty,

• for T1 6= T2 it holds T̊1 ∩ T̊2 = ∅

• the intersection of two elements in Th is either empty or a common m-face, m ∈
{0, ..., n− 1}

• the family of triangulations is regular, i.e there is a constant σ > 0 independent
of h such that hT

pT
≤ σ for all T ∈ Th, where pT is the diameter of the largest ball

inscribed in T .

The velocity and pressure spaces are then approximated by piecewise (usually) poly-
nomial functions defined on each mesh cell T or functions obtained from polynomials by
a change of variable.

Let P (T ) ⊂ Cs(T ), s ∈ N, be a finite-dimensional space defined on the mesh cell T .
For the definition of finite element spaces one has to specify linear functionals defined
on P (T ). Let ΦT,1, ...,ΦT,dimP (T ) : Cs(T )→ R be linear and continuous functionals that
are linearly independent, where the smoothness parameter s has to be chosen in such a
way that the functionals ΦT,1, ...,ΦT,dimP (T ) are continuous.

Assume that P (T ) is unisolvent with respect to ΦT,1, ...,ΦT,dimP (T ), i.e. for each
a ∈ RdimP (T ) there exists exactly one p ∈ P (T ) such that

ΦT,i(p) = ai ∀i = 1, ..., dimP (T ).

Unisolvence means that every function p ∈ P (T ) is uniquely determined by values under
the functionals, the degrees of freedom. Choosing in particular the Cartesian unit
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vectors for a, then it follows from the unisolvence that a set {φT,i}dimP (T )
i=1 in P (T ) exists,

such that
ΦT,i(φT,j) = δij, i, j = 1, ..., dimP (T ).

Consequently, the set {φT,i}dimP (T )
i=1 forms a basis of P (T ).

Let Φi : Cs(Ω) → R, i = 1, ..., N be continuous linear functionals whose restiction to
Cs(T ) are the local functionals ΦT,1, ...,ΦT,dimP (T ). The subdomain wi denotes the union
of all mesh cells Tj for which there is a v ∈ P (Tj) such that Φi(v) 6= 0.

A function v defined on Ω with v|T ∈ P (T ) for all T ∈ Th is called continuous with
respect to Φi if

Φi(v|T1) = Φi(v|T2) ∀T1, T2 ∈ wi.

Then the space

S = {v ∈ L∞(Ω) | v|T ∈ P (T ) and v is continuous with respect to Φi, i = 1, ..., N}
(3.1)

is called finite element space. Recall that L∞(Ω) = {v : Ω → R | ess supx∈Ω|v(x)| <
∞}.

The global basis {φj}Nj=1 of S is defined by the condition

φj ∈ S, Φi(φj) = δij, i, j = 1, ..., N.

3.1 Approximations of H(div,Ω) on simplicial grids

In order to define finite element approximations to the solution (u, p) of (2.9) we need
to introduce finite-dimensional subspaces of H(div,Ω) and L2(Ω) made of piecewise
polynomial functions. First consider the case of simplicial grids and the associated
Raviart-Thomas spaces which are the best-known spaces approximating H(div,Ω).

3.1.1 Raviart-Thomas spaces

Given a simplex T ∈ Rn the local Raviart-Thomas space of order k ≥ 0 is defined
by

RTk(T ) = Pk(T )n + xPk(T ) (3.2)

where Pk is the space of polynomials of degree less than or equal to k. Denote with Fi, i =
1, ..., n + 1, the faces of the simplex T and with ni, i = 1, ..., n + 1 their corresponding
exterior unit normals. Local Raviart-Thomas spaces have the following properties:

Lemma 3.1. a) dimRTk(T )= n
(
k+n
k

)
+
(
k+n−1

k

)
.

b) If v ∈ RTk(T ), then v · ni ∈ Pk(Fi) for i = 1, ..., n+ 1.
Proof: The proof can be found in [5], Lemma 3.1.
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The degrees of freedom of RTk(T ) define a local interpolation operator

ΠT : H1(T )n → RTk(T ).

Lemma 3.2. Given v ∈ H1(T )n there exists a unique ΠTv ∈ RTk(T ) such that∫
Fi

ΠTv · ni pk ds =

∫
Fi

v · ni pk ds ∀pk ∈ Pk(Fi), i = 1, ..., n+ 1 (3.3)

and if k ≥ 1 ∫
T

ΠTv · pk−1 dx =

∫
T

v · pk−1 dx ∀pk−1 ∈ Pk−1(T )n. (3.4)

Proof: The proof can be found in [5], Lemma 3.2

In the proof it is first shown that the number of conditions defining ΠTv equals the
dimension of RTk(T ). Since dimPk(Fi) =

(
k+n−1

k

)
, the number of conditions in (3.3) is

the number of faces× dimPk(Fi) = (n+ 1)

(
k + n− 1

k

)
.

On the other hand, the number of conditions in (3.4) is dim(Pnk−1(T )) = n
(
k+n−1
k−1

)
. Then

the total number of conditions defining ΠTv is

(n+ 1)

(
k + n− 1

k

)
+ n

(
k + n− 1

k − 1

)
.

After rewriting one gets that the number of conditions defining ΠTv is precisely the
dimension of RTk(T ). Therefore, in order to show existence of ΠTv, it is enough to
prove uniqueness, i.e. for v ∈ RTk(T ) such that∫

Fi

v · ni pk ds = 0 ∀pk ∈ Pk(Fi), i = 1, ..., n+ 1

and ∫
T

v · pk−1 dx = 0 ∀pk−1 ∈ Pk−1(T )n

it follows v = 0 (see [5], p. 13). The proof implies thatRTk(T ) is unisolvent with respect
to the degrees of freedom definining the interpolation operator. Figure 3.1 shows the
degrees of freedom for k = 0 and k = 1 in the two dimensional case. The arrows indicate
values of normal components and the filled circle values of v (and so it corresponds to
two degrees of freedom).

Figure 3.1: Degrees of freedom for RT0 and RT1 in R2
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The degrees of freedom are choosen in such a way that a piecewise local Raviart-
Thomas function belongs to H(div,Ω).

Lemma 3.3 (Sufficient and Necessary Condition for a Finite Element Function
to be in H(div,Ω)). Let Th be a regular triangulation of Ω. A finite element function
vh ∈ (L2(Ω))n, i.e. piecewise polynomial vector function belongs to H(div,Ω) if and only
if vh · nF is continuous for all faces F of the triangulation.

Proof: [12], Chapter 3, Lemma 3.66

Let vh be a piecewise local Raviart-Thomas function. From the definition of the
finite element space (3.1) it follows that vh is continuous with respect to the degrees of
freedom, i.e. it holds∫

F

vh|T1 · nF pk ds =

∫
F

vh|T2 · nF pk ds ∀ pk ∈ Pk(F ), ∀T1, T2 ∈ Th, F = T1 ∩ T2.

Therefore the jumps
[
|vh · nF |

]
F

:= vh|T1 · nF − vh|T2 · nF vanish on all interior faces,

which is equivalent to the continuity of the normal component of vh across all faces of
the mesh cells in Th.

The global Raviart-Thomas finite element space associated with the triangula-
tion Th can be defined by

RTk(Th) = {v ∈ H(div,Ω) | v|T ∈ RTk(T ) ∀T ∈ Th}.

The global interpolation operator

Πh : H(div,Ω) ∩
∏
T∈Th

H1(T )n → RTk(Th)

is defined by setting
Πhv|T = ΠTv ∀T ∈ Th.

Since by definition Πhv|T = ΠTv ∈ RTk(T ), it remains to see that Πhv ∈ H(div,Ω). A
piecewise polynomial vector function Πhv is in H(div,Ω) if and only if it has continuous
normal components across the mesh cells. Since v ∈ H(div,Ω), the continuity of the
normal component of Πhv follows from lemma 3.1 b), in view of the degrees of freedom
(3.3) in the definition of ΠT .

The finite element space for the approximation of the scalar variable p is the standard
space of piecewise polynomials of degree k, namely

Pdk (Th) = {q ∈ L2(Ω) | q|T ∈ Pk(T )}.

where d stands for ’discontinuous’. Since no derivative of the scalar variable appears in
the weak formulation (2.9), no continuity in the approximation space for this variable is
required.
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Lemma 3.4. The operator Πh satisfies∫
Ω

∇ · (v − Πhv)qh dx = 0 (3.5)

∀v ∈ H(div,Ω) ∩
∏

T∈Th H
1(T )n and ∀qh ∈ Pdk . Moreover,

∇ · RTk = Pdk (3.6)

Proof : From (3.3) and (3.4) it follows, that for any v ∈ H1(T )n and any qh ∈ Pdk (T )∫
T

∇ · (v − ΠTv)qh dx = −
∫
T

(v − ΠTv) · ∇qh dx +

∫
∂T

(v − ΠTv) · n qh ds = 0

thus (3.5) holds. It is easy to see that ∇ · RTk ⊂ Pdk . To see the other inclusion recall
that div : H1(Ω)n → L2(Ω) is surjective (see [5], Lemma 2.4). Therefore, given qh ∈ Pdk
there exists v ∈ H1(Ω)n such that ∇ · v = qh. From (3.5) it follows that ∇ · Πhv = qh.

3.1.2 Application to Darcy Equations

In order to discretize problem (2.9) or (2.11) using the Raviart-Thomas space RT k(Th)
define

V h := {vh ∈ RT k(Th) |vh · n|ΓN
= 0}

in the sense of vh · n|ΓN
= 0 being defined as in (2.5). Such a definiton is possible if

the triangulation is made in such a way that there is no mesh cell across the interface
between ΓD and ΓN on Γ. Having chosen Vh the approximation of the pressure space
L2(Ω) is then implicitly done

Qh := Pdk (Th).

Consider the discrete problem:
Find (uh, ph) ∈ V h ×Qh such that

a(uh,vh) + b(vh, ph) = 〈g̃,vh〉 ∀vh ∈ V h

b(uh, qh) = 〈f̃ , qh〉 ∀qh ∈ Qh
(3.7)

where f̃ and g̃ eventually include non-homogeneous boundary conditions as in problem
(2.11), that is,

〈g̃,vh〉 = −〈vh · n, pD〉 − a(ũ,vh)

〈f̃ ,vh〉 = −〈f, qh〉 − b(ũ, qh).

In section 2.2 it was shown that b(·, ·) satisfies the continuous inf-sup condition (2.13)
on H0,ΓN

(div,Ω)× L2(Ω). The interpolation operators Πh are uniformly bounded from
T ⊂ H(div,Ω) = V to V h, i.e.

‖Πhv‖H(div,Ω) ≤ C‖v‖T ∀v ∈ T (3.8)



16

(since they are linear and continuous mappings T → V h), where T = H(div,Ω) ∩∏
T∈Th H

1(T )n. Using (3.5) and (3.8) one obtains from theorem 2.4 that the discrete
inf-sup condition (2.16) is satisfied with a constant independent of h.

Equation (3.6) shows that W h ⊂ W : Let vh ∈ W h ⊂ V h, from (3.6) it follows that
∇ · vh ∈ Qh ⊂ Q. From the definition (2.15) of W h it follows that b(vh,∇ · vh) = 0 and
thus vh ∈ W .
W h ⊂ W implies that coercivity of a(·, ·) on W h follows directly from coercivity of

a(·, ·) on W . The discrete problem (3.7) has a unique solution due to theorem 2.3.
The explicit construction of the operator Πh requires regularity assumptions which

do not hold for a general function in V = H(div,Ω). But existence of the operator Πh

on a subspace T ⊂ V verifying (2.17) and (2.18) for v ∈ T and the norm on the right
hand side of (2.18) replaced by that of the space T is enough to obtain optimal error
estimates.

Error estimates

Theorem 3.5. If the solution (u, p) of problem (2.9) belongs to Hm(Ω)n × Hm(Ω),
1 ≤ m ≤ k + 1, and if (uh, ph) is the solution of (3.7), then there exist constants C1, C2

depending on n, k, the regulartiy constant σ and the coefficient K, such that

‖u− uh‖L2(Ω) ≤ C1h
m‖∇mu‖L2(Ω) (3.9)

‖p− ph‖L2(Ω) ≤ C2h
m
(
‖∇mu‖L2(Ω) + ‖∇mp‖L2(Ω)

)
. (3.10)

Proof: [5], Theorem 3.8, Theorem 3.10.

3.1.3 BDM - spaces

The following spaces introduced by Brezzi, Douglas and Marini use different order ap-
proximations for each variable in order to reduce the degrees of freedom (thus reducing
the computational cost) while preserving the same order of convergence for u provided
by RT k spaces.

In the following the local spaces for each variable u and p are defined. It can be
checked that the degrees of freedom defning the spaces approximating the vector variable
guarantee the continuity of the normal component and therefore the global spaces are
subspaces of H(div,Ω).

For n = 2, k ≥ 1 and a triangle T define

BDMk(T ) = (Pk(T ))2

for the approximation of the vector variable. And let

Pk−1(T )

be the corresponding space for the scalar variable. Observe that

dimBDMk(T ) = (k + 1)(k + 2).
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For example dimBDM1(T ) = 6 and dimBDM2(T ) = 12. Figure 3.2 shows the degrees
of freedom for these two spaces. The arrows correspond to degrees of freedom of normal
components while the circles indicate the internal degrees of freedom corresponding to
the second and third conditions in the definition of ΠT below.

The parametrization of the triangle T with a convex combination of a1, a2, a3, the
corners of T , reads as follows

T = {x ∈ R2 : x = λ1a1 + λ2a2 + λ3a3, 0 ≤ λ1, λ2, λ3 ≤ 1, λ1 + λ2 + λ3 = 1}.

The coefficients λ1, λ2, λ3 are called the barycentric coordinates of x ∈ T . The function
bT = λ1λ2λ3 is called ”bubble” function. For φ ∈ H1(Ω)

curlφ = (
∂φ

∂y
,−∂φ

∂x
).

Let li, i = 1, 2, 3 be the sides of T . The interpolation operator ΠT is defined as follows:∫
li

ΠTv · ni pk ds =

∫
li

v · ni pk ds ∀pk ∈ Pk(Fi), i = 1, 2, 3

∫
T

ΠTv · ∇pk−1 dx =

∫
T

v · ∇pk−1 dx ∀pk−1 ∈ Pk−1(T )

and when k ≥ 2∫
T

ΠTv · curl(bTpk−2) dx =

∫
T

v · curl(bTpk−2) dx ∀pk−2 ∈ Pk−2(T )

Figure 3.2: Degrees of freedom for BDM1 and BDM2 in R2

One can check that property (3.5) follows from the definition of ΠT and proof of its
existence is similiar to that of Lemma 3.2. The same error estimate for the approximation
of u holds. For p the best order of convergence is reduced by one with respect to the
estimate obtained for the Raviart-Thomas approximation, see [5].
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3.2 Approximations of H(div,Ω) on rectangular grids

First spaces introduced by Raviart and Thomas are defined. For nonnegative integers
k,m the space of polynomials of the form

q(x, y) =
k∑
i=1

m∑
j=1

aijx
iyj

is denoted by Qk,m, then the Raviart-Thomas space on a rectangle R is given by

RTk(R) = Qk+1,k(R)×Qk,k+1(R)

and the space for the scalar variable is Qk,k(R). It can be checked that

dimRTk(R) = 2(k + 1)(k + 2).

Figure 3.3 shows the degrees of freedom for k = 0 and k = 1. Denoting with li,
i = 1, 2, 3, 4 the four sides of R, the degrees of freedom defining the operator ΠT for this
case are ∫

li

ΠTv · ni pk ds =

∫
li

v · ni pk ds ∀pk ∈ Pk(li), i = 1, 2, 3, 4

and for k ≥ 1∫
R

ΠTv · φk dx =

∫
R

v · φk dx ∀φk ∈ Qk−1,k(R)×Qk,k−1(R).

Figure 3.3: Degrees of freedom for RT0(R) and RT1(R)

Spaces introduced by Brezzi, Douglas and Marini on rectangular elements are defined
for k ≥ 1 as

BDMk(R) = (Pk(R))2 + 〈curl(xk+1y)〉+ 〈curl(xyk+1)〉

and the associated scalar space is Pk−1(R). It can be checked that

dimBDMk(R) = (k + 1)(k + 2) + 2.
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The degrees of freedom for k = 1 and k = 2 are shown in fig. 3.4.
The operator ΠT is defned by∫

Fi

ΠTv · ni pk ds =

∫
Fi

v · ni pk ds ∀pk ∈ Pk(li), i = 1, 2, 3, 4

and for k ≥ 2 ∫
R

ΠTv · pk−2 dx =

∫
R

v · pk−2 dx ∀pk−2 ∈ (Pk−2(R))2.

Figure 3.4: Degrees of freedom for BDM1(R) and BDM2(R)

The RT k as well as the BDMk spaces on rectangles have analogous properties to
those on triangles. Therefore the same error estimates obtained for triangular grids are
valid in both cases.

More generally, one can consider quadrilateral grids. Given a convex quadrilateral
Q, the spaces are defined using the Piola transform from a reference rectangle R to Q.
Define for example the Raviart-Thomas spaces RT k(Q).

Let R = [0, 1]× [0, 1] be the reference rectangle and F : R→ Q a bilinear transforma-
tion taking the vertices of R into the vertices of Q. Then define the local space RT k(Q)
by using the Piola transform, i.e. if x = F (x̂), DF is the Jacobian matrix of F and
J = |detDF |,

RT k(Q) = {v : Q→ R2 : v(x) =
1

J(x̂)
DF (x̂)v̂(x̂) with v̂ ∈ RT k(R)}.

Similar error estimates to those obtained for triangular elements can be proved under
appropriate regularity assumptions on the quadrilaterals.

3d extensions of the spaces defined above: For tetrahedral grids the spaces are defined
in an analogous way, the construction of the interpolation operator ΠT requires a different
analysis. In the case of 3d rectangular grids, the extensions of RT k are defined in an
analogous way and the extensions of BDMk can be defined for a 3d rectangle R by

BDDFk(R) = P3
k + 〈{curl(0, 0, xyi+1zk−i), i = 0, ...k}〉

+ 〈{curl(0, xk−iyzi+1, 0), i = 0, ...k}〉
+ 〈{curl(xi+1yk−iz, 0, 0), i = 0, ...k}〉
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where now the notation curl v is used for the rotational of a three dimensional vector
field v. All the convergence results obtained in 2d can be extended for the 3d spaces
mentioned here.
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4 Solvers for Linear Saddle Point
Problems

Finite element discretizations of the Darcy problem, (2.1) - (2.4), lead to linear systems
of equations in saddle point form

(
A BT

B 0

)
·
(
u
p

)
=

(
g
f

)
, A =

(
A BT

B 0

)
(4.1)

with

A ∈ RnV ×nV , B ∈ RnQ×nV , u, g ∈ RnV , p, f ∈ RnQ ,

where nV is the number of velocity degrees of freedom and nQ is the number of pressure
degrees of freedom. The matrix A represents the discrete analog of the linear operator
’multiplication by K’, i.e. (A)ij =

∫
Ω
Kϕj · ϕi dx, i, j = 1, ..., nV is a weighted mass

matrix. B and BT are matrix representations of discrete analogs of the negative diver-
gence operator and the gradient operator. The assumptions on K being symmetric and
bounded from below imply that A is symmetric positive definite. Therefore the saddle
point matrix A ∈ R(nV +nQ)×(nV +nQ) of system (4.1) is symmetric and indefinite. All
matrix blocks are sparse such that A is sparse too.

Thus efficient simulations of flow problems in porous media, using inf-sup stable finite
element spaces, require the efficient solution of sparse linear saddle point problems (4.1).

The subsequent section follows [2] and investigates properties of the saddle point
matrix A such as solvability condition, spectral properties and conditioning. Precondi-
tioners, that are used to accelerate the speed of convergence of iterative solvers for linear
saddle point problems (4.1), are presented afterwards following [1], [6], [12] and [13].

4.1 Properties of Saddle Point Matrices

Solvability Condition If A is nonsingular, then the saddle point matrix A admits the
following block triangular factorization

A =

(
A BT

B 0

)
=

(
I 0

BA−1 I

)(
A 0
0 −BA−1BT

)(
I A−1BT

0 I

)
. (4.2)

The matrix
S := −BA−1BT
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is called Schur complement of A. It follows from the block factorization (4.2) that A is
nonsingular, if and only if S is, because then all factors in (4.2) are nonsingular.

We consider the case where A is symmetric positve definite. Then A−1 is also symmet-
ric positve definite and the matrix BA−1BT is symmetric positiv semidefinite. Indeed,
one has

xTBA−1BTx = (BTx)TA−1(BTx) ≥ κ0|BTx|2

and one can see that BA−1BT is symmetric positive definite if and only if kerBT = {0}
(hence, if and only if BT has full column rank, i.e. rank(B) = nQ).

The Schur complement S, and thus A, is invertible if and only if BT has full column
rank, since in this case the Schur complement S is symmetric negative definite. Then
problem (4.1) has a unique solution.

It is proved in [12] that B has full rank if and only if

∃β > 0 : inf
q∈RnQ\{0}

sup
v∈RnV \{0}

vTBT q

|v||q|
≥ β.

In the finite element context the nonsingularity of A is not sufficient to ensure mean-
ingful computed solutions. It is important that the used finite element spaces satisfy the
discrete inf-sup condition (2.16) with a parameter β∗ > 0 that does not depend on the
mesh parameter h. This is the case since the inverse of the discrete inf-sup parameter β∗

enters the finite element error estimates. The error bounds depend on inverse of powers
of β∗. Thus, a behavior of the form β∗ → 0 for successive refinements (h→ 0) leads to
a deterioration of the order of convergence in the error estimates.

Spectral Properties Spectral properties of saddle point matrices are relevant when
solving the linear system of equations (4.1) by iterative methods. The following result
from Rusten and Winther (1992) establishes eigenvalue bounds for the considered class
of saddle point matrices.

Theorem 4.1. (Rusten and Winther, 1992, [15]. Eigenvalue bounds for the symmetric
case) Assume A is symmetric positive definite and B has full rank. Let µ1 and µn
denote the largest and smallest eigenvalues of A and let σ1 and σm denote the largest
and smallest singular values of B. Let σ(A) denote the spectrum of A. Then

σ(A) ⊂ I− ∪ I+

where

I− =

[
1

2

(
µn −

√
µ2
n + 4σ2

1

)
,
1

2

(
µ1 −

√
µ2

1 + 4σ2
m

)]
and

I+ =

[
µn,

1

2

(
µ1 +

√
µ2

1 + 4σ2
1

)]
.

These bounds can be used to obtain estimates for the condition number of A. In turn,
these estimates can be used to predict the rate of convergence of iterative methods.



23

Conditioning Issues Saddle point systems that arise in practice can be very poorly
conditioned. In some cases the special structure of the saddle point matrix A can be
exploited to avoid or mitigate the effect of ill-conditioning.

Consider a saddle point problem where A is symmetric positive definite and B has
full rank. In this case A is symmetric and its spectral condition number is given by

κ(A) =
max |λ(A)|
min |λ(A)|

.

From the previous Theorem 4.1 one can see that the condition number of A grows
unboundedly as either µn = λmin(A) or σm = σmin(B) goes to zero (assuming that
λmax(A) and σmax(B) are kept constant). This growth of the condition number of
A means that the rate of convergence of most iterative solvers (like Krylov subspace
methods) deteriorates as the problem size increases. Preconditioning may be used to
reduce or even eliminate this dependency on h in many cases.

4.2 Preconditioners for Iterative Solvers

The performance of iterative solvers for algebraic linear saddle point problems (4.1) can
be improved if preconditioners are used. Preconditioners are approximations of A−1

that can be computed comparatively efficiently. These approximations might be a fixed
matrix or an iterative method or a combination of both.

One distinguishes between left and right preconditioners. Denote the preconditioner
by M−1. Then, for left preconditioning, one considers instead of Ax = b the system

M−1Ax =M−1b

in the iterative solver and for right preconditioning the problem

AM−1y = b, x =M−1y.

The preconditioner M−1 should satisfy two requirements:

• The convergence of the iterative method for the preconditioned system withM−1A
or AM−1 should be faster than for the original system with A. That means,M−1

should be good approximation to A−1.

• The action of M−1 should be inexpensive.

In general, one has to find a compromise between these two requirements.

The Krylov subspace methods compute the solution of (4.1) in at most nV + nQ
iterations (in exact arithmetic) by construction. However, this property is useless if
nV + nQ is large. When the linear system represents a discretized partial differential
equation, then an approximate solution xk of the linear system with an error norm on
the level of the discretization error is often sufficient. Once this error level is reached, the
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iterative method can be stopped. The question is how fast can a given Krylov subspace
method reach a given accuracy level. Starting point for the convergence analysis of
Krylov subspace methods based on the minimization of the residual is the interpretation
of the kth residual in terms of the initial residual multiplied by a certain polynomial in
the matrix A,

‖b−Axk‖2 = ‖rk‖2 = min
z∈x0+Kk(r0,A)

‖b−Az‖2 = min
pk∈Pk,pk(0)=1

‖pk(A)r0‖2.

If A is normal then

‖rk‖2 ≤ ‖r0‖2 min
pk∈Pk,pk(0)=1

‖pk(A)‖2 = ‖r0‖2 min
pk∈Pk,pk(0)=1

max
λ is eigenvalue of A

|pk(λ)|. (4.3)

Hence ‖rk‖2/‖r0‖2, the kth relative Euclidean residual norm, is bounded by the value
of a polynomial approximation problem on the eigenvalues of A. This bound provides
some intuition of how the eigenvalue distribution influences the worst-case convergence
behavior of minimal residual methods. For example, a single eigenvalue cluster far away
from the origin implies fast convergence (measured by the relative Euclidean residual
norm).

If A is symmetric positive definite, the standard approach for estimating the right-
hand side of (4.3) is to replace the min-max problem on the discrete set of eigenvalues
by a min-max approximation problem on its convex hull (i.e., on an interval from the
smallest eigenvalue λmin to the largest eigenvalue λmax of A). The latter is solved by
scaled and shifted Chebyshev polynomials of the first kind, giving the bound

min
pk∈Pk,pk(0)=1

max
λ is eigenvalue of A

|pk(λ)| ≤ 2
(√κ(A)− 1√

κ(A) + 1

)k
, where κ(A) =

λmax

λmin

. (4.4)

The bounds (4.3)-(4.4) show that in this case a small condition number of A is sufficient
(but not necessary) for fast convergence.

In the case of a nonsingular symmetric indefinite matrix A, the min-max approx-
imation problem on the matrix eigenvalues in (4.3) cannot be replaced by the min-
max problem on their convex hull, as eigenvalues lie on both sides of the origin. Here
one may replace the discrete set of eigenvalues by the union of two intervals contain-
ing all of them and excluding the origin, say I− ∪ I+ ≡ [λmin, λs] ∪ [λs+1, λmax] with
λmin ≤ λs < 0 < λs+1 ≤ λmax.

When both intervals are of the same length, i.e. λmax−λs+1 = λs−λmin, the solution
of the corresponding min-max approximation problem

min
pk∈Pk,pk(0)=1

max
λ∈I−∪I+

|pk(λ)| (4.5)

leads to the bound

min
pk∈Pk,pk(0)=1

max
λ is eigenvalue of A

|pk(λ)| ≤ 2
(√|λminλmax| −

√
|λsλs+1|√

|λminλmax|+
√
|λsλs+1|

)[k/2]

, (4.6)
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where [k/2] denotes the integer part of k/2. For an illustration of this bound suppose
that |λmin| = λmax = 1 and |λs| = λs+1. Then κ(A) = λ−1

s+1 and the right-hand side of
(4.6) reduces to

2
(1/λs+1 − 1

1/λs+1 + 1

)[k/2]

. (4.7)

Note that (4.7) corresponds to the value of the right-hand side of (4.4) at step [k/2] for
a symmetric positive definite matrix having all its eigenvalues in the interval [λ2

s+1, 1],
and thus a condition number of λ−2

s+1. Hence the convergence bound for an indefinite
matrix with condition number κ needs twice as many steps to decrease to the value of
the bound for a definite matrix with condition number κ2. This indicates that solving
indefinite problems represents a significant challenge.

In the general case when the two intervals are not of the same length, the explicit
solution of (4.5) becomes quite complicated and no simple and explicit bound on the
min-max value is known. An alternative to give relevant information about the actual
convergence behavior is to consider the asymptotic behavior of the min-max value (4.5),
and in particular the asymptotic convergence factor

ρ(I− ∪ I+) ≡ lim
k→∞

(
min

pk∈Pk,pk(0)=1
max

λ∈I−∪I+
|pk(λ)|

) 1
k
.

Asymptotic convergence results can be useful in the convergence analysis of minimal
residual methods for sequences of linear systems of growing dimension, e.g., when study-
ing the dependence of the convergence behavior on the mesh size in a discretized differ-
ential equation.

4.2.1 Least Squares Commutator (LSC) Preconditioner

The straightforward application of many standard schemes for the solution or precondi-
tioning of linear systems of equations becomes difficult because of the block structure of
the saddle point matrix A from (4.1). For this reason preconditioners have been devel-
oped where individual systems of equations for the pressure and for each component of
the velocity have to be solved. These individual systems do not possess a block struc-
ture, which enables the application of standard solvers and preconditioners. The LSC
preconditioner belongs to this class of methods that solve equations connected with the
first and second rows of blocks separately.

The LSC preconditioner is derived from the LU decomposition of the matrix A and
the approximation of the Schur complement by keeping a certain operator commutator
error small.

Multiplying the second and third factor of (4.2) gives the LU decomposition

A =

(
I 0

BA−1 I

)(
A BT

0 S

)
= LU (4.8)

where S = −BA−1BT is the Schur complement of A.
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From (4.8) it follows that AU−1 = L which suggests to use the matrix U−1 as a
right-oriented preconditioner, since the preconditioned matrix L has perfectly clustered
eigenvalues.

Consider the eigenvalue problem for the preconditioned system with the right-oriented
preconditioner U−1, (

A BT

B 0

)(
A BT

0 S

)−1(
v
q

)
= λ

(
v
q

)
.

Setting (
A BT

0 S

)−1(
v
q

)
=

(
u
p

)
it follows (

A BT

B 0

)(
u
p

)
= λ

(
A BT

0 S

)(
u
p

)
. (4.9)

From the first row of (4.9) one obtains

(1− λ)(Au+BTp) = 0.

There are two possibilites: λ = 1 and Au + BTp = 0. In the first case λ = 1 is an
eigenvalue of multiplicity nV . For the second case, inserting

u = −A−1BTp

in the second block equation Bu− λSp = 0 gives

−BA−1BTp = λSp (4.10)

thus λ = 1 is an eigenvalue of multiplicity nQ. The Schur complement is generally not
explicitly available and is a dense matrix in case it is available, if A−1 is dense. Thus in
practice it is not feasible to use the Schur complement as part of the preconditioner U−1.
But eq. (4.10) shows that a good approximation of the Schur complement will influence
the good convergence of the preconditioned system with U−1. The construction of an
approximation to the Schur complement leads to the LSC preconditioner.

The basic idea is to search for a regular matrix Ap ∈ RnQ×nQ acting on coefficients of
the pressure space such that

BTAp = ABT . (4.11)

Multiplying (4.11) with −BA−1 from left and A−1
p from right gives

−BA−1BT = −BBTA−1
p .
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Using this form of the Schur complement when applying U−1 as a preconditioner
requires approximating the action of (−BBTA−1

p )−1, which is more easily done, as Ap
is known and BBT is symmetric positive definite and represents a discretization of a
pressure Poisson problem.

Since BT ∈ RnQ×nV , nV > nQ, is a full rank rectangular matrix, (4.11) is in general
an overdetermined system and can only be solved in a minimizing sense

min
Ap

= ‖ABT −BTAp‖ (4.12)

for some matrix norm ‖ · ‖.
The appearing matrices in (4.12) are discrete counterparts of the underlying continu-

ous operators from the Darcy equations. The matrix BT stems from the finite element
discretization of the gradient operator and A from the linear operator ’multiplication
by K’. The unknown matrix Ap is now assumed to originate from the discretization
of the linear operator acting on the pressure space. The minimization problem can be
interpreted as minimizing the discrete commutation error

ABT −BTAp.

To support the interpretation one has to specify the concrete choice of the finite ele-
ment spaces and introduce appropriate weights by multiplying with the inverses of the
velocity and pressure mass matrices Mv ∈ RnV ×nV and Mp ∈ RnQ×nQ and consider the
minimization problem

min
Ap

‖M−1
v AM−1

v BT −M−1
v BTM−1

p Ap‖. (4.13)

Multiplying from left with BA−1Mv and from right with A−1
p Mp the term inside the

norm gives a formula for the approximation of the Schur complement

S = −BA−1BT ≈ −BM−1
v BTA−1

p Mp. (4.14)

Specifying the minimization problem (4.13) as minimizing columnwise in a Mv-weighted
vector norm

‖v‖Mv = 〈Mvv,v〉
1
2

leads to the least squares problems

min
[ap]j
‖[M−1

v AM−1
v BT ]j −M−1

v BTM−1
p [ap]j‖Mv j = 1, ..., nQ, (4.15)

where the unknowns [ap]j are the columns of Ap. The first order optimality conditions
read

M−1
p BM−1

v BTM−1
p [ap]j = [M−1

p BM−1
v AM−1

v BT ]j j = 1, ..., nQ

which leads to the following representation of Ap,

Ap = Mp(BM
−1
v BT )−1(BM−1

v AM−1
v BT ). (4.16)
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Inserting this expression in (4.14) gives an approximation of the Schur complement

S ≈ −(BM−1
v BT )(BM−1

v AM−1
v BT )−1(BM−1

v BT ). (4.17)

It is not practical to work with M−1
v in (4.17), since it is a dense matrix. A practical

algorithm is obtained by replacing Mv with diag(Mv) = Dv from which the sparse
discrete Laplacian BD−1

v BT can be constructed. The LSC preconditioner is obtained by
replacing M−1

v with (diag(Mv))
−1 = D−1

v everywhere in (4.17)

SLSC := −(BD−1
v BT )(BD−1

v AD−1
v BT )−1(BD−1

v BT ). (4.18)

The application of the LSC preconditioner requires to solve as preconditioning step a
problem of the form (

A BT

0 SLSC

)(
v
q

)
=

(
bv
bq

)
for a given vector (bv, bq)

T . In the first step, one solves

SLSCq = bq

which requires the solution of two discrete Poisson-type problems for the pressure with
the same matrix BD−1

v BT and matrix-vector products with the matrices B, BT , A and
(the diagonal matrix) D−1

v since

S−1
LSC := −(BD−1

v BT )−1(BD−1
v AD−1

v BT )(BD−1
v BT )−1.

After having computed q one finds v by solving

Av = bv −BT q

which requires the solution of a problem for the velocity unknowns.

4.2.2 Vanka Preconditioner

Standart preconditioners like Jacobi method or SOR method cannot be applied for
systems of type (4.1) because of the zero block in the diagonal of A and special solvers
need to be designed. A popular class of iterative solvers or preconditioners for problems
of type (4.1) are Vanka-type solvers. They can be understood as block Gauss-Seidel
methods.

Let Vh and Qh be the set of velocity and pressure degrees of freedom, respectively.
These sets are decomposed into

Vh = ∪Jj=1Vhj , Qh = ∪Jj=1Qhj . (4.19)

These subsets are not required to be disjoint. Let Aj be the block of the matrix A that
contains those entries of A whose indices belong to Wh

j = Vhj ∪Qhj , i.e. the intersection
of rows and columns of A with the global indices belonging to Wh

j ,

Aj =

(
Aj BT

j

Bj 0

)
∈ RdimWh

j ×dimWh
j .
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Similarly, denote by (·)j the restriction of a vector to the rows corresponding to the
degrees of freedom in Wh

j . Each preconditioning step with a Vanka-type preconditioner
consists in a loop over the sets Wh

j , j = 1, ..., J , where for each Wh
j a local system of

equations connteced with the degrees of freedom in this set is solved. The local solutions
are updated in a Gauss-Seidel manner. The Vanka preconditioner computes new velocity
and pressure values by(

u
p

)
j

:=

(
u
p

)
j

+A−1
j

((
g
f

)
−A

(
u
p

))
j

The local systems of equations are usually solved with a direct solver.
A general strategy for choosing the sets Vhj and Qhj is as follows:

• First, pick some pressure degrees of freedom that define Qhj .

• Second, Vhj is formed by all velocity degrees of freedom that are connected with
the pressure degrees of freedom from Qhj by non-zero entries in the matrix B.

With this strategy a Vanka-type preconditioner is determined by the particular choice
of the sets Qhj , j = 1, ..., J .

For discontinuous pressure approximation consider the mesh-cell-oriented Vanka pre-
conditioner. This preconditioner takes for Qhj all pressure degrees of freedom that belong
to one mesh cell. Then, the corresponding velocity degrees of freedom are all those which
belong to the same mesh cell. The number of local systems J to be solved in one pre-
conditioning step then equals the number of cells in the mesh Th and all local systems
are of the same size.

Damping of the Iterate Sometimes it is beneficial to damp the iterate of the Vanka
preconditioner. Let (u, p) be the current iterate and (δu, δp) the update computed by one
iteration of the preconditioner. Then the new iterate is computed by (u, p) + ω(δu, δp),
where ω ∈ R, ω > 0.

4.2.3 Incomplete LU Factorization

In the application of direct solvers for linear systems of equations with a sparse matrix
the additional fill-in that occurs, if a factorization of the matrix, like the LU factorization
is computed, appears to be a drawback. Applying a LU factorization to a sparse matirx
A, the factors L and U are generally considerably denser than A.

A main part of direct solvers for sparse linear systems, like UMFPACK, [4] is a re-
ordering of the unknowns such that the fill-in is reduced.

In the context of preconditioning, the LU factorization can be modified such that it
respects the sparsity pattern or zero pattern of the matrix A, i.e. L is stored with a
sparsity pattern that corresponds to the strict lower triangle of A and U with a sparsity
pattern that corresponds to the upper triangle of A. Performing the algorithm of the
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standard LU factorization (without pivoting), one neglects all entries that do not fit in
the prescribed pattern. In this way one obtains an incomplete LU (ILU) factorization

A = LU + E,

with the error matrix E.
Avoiding pivoting in the application of the ILU factorization of A does not lead

necessarily to a failure of this method. Considering a system of the form (4.1), the
degrees of freedom are ordered in a way that the pressure degrees of freedom come last
and the entries of the (2,2) block of A are zero. Under these conditions a division by
zero does not occur because the zero entries at the main diagonal vanish during the
incomplete factorization.

The application of ILU as preconditioner requires the solution of two sparse linear
systems of equations with triangular matrices:

1. solve the lower triangular system Lw = r,
2. solve the upper triangular system Uz = w.
For using ILU as preconditioner, it is essential that the diagonal entries do not belong

to the prescribed zero pattern since a linear system of equations with matrix U has to
be solved.

The main costs of unpreconditioned iterative methods are the multiplication of the
sparse matrix with a vector. If the zero pattern is appropriately given, then the costs
for applying the ILU preconditioner are proportional to the costs of the matrix-vector
multiplication.
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5 Numerical Studies

In the following numerical studies of different solvers for the Darcy equations in 2d and
3d are presented. The studies were performed on problems involving singularities (the
five-spot problem) and discontinuous coefficients associated with a checkerboard domain.
The considered examples can be found in [10] and [11].

The simulations were performed with the finite element code ParMooN, [18]. For
discretizing the Darcy equations the Galerkin finite element method with inf-sup stable
pairs of finite element spaces was used. As Krylov subspace method, the flexible GMRES
(FGMRES) method is used for the iterative solution of the arising algebraic linear saddle
point systems. The purpose of the computational analysis is to compare the performance
of the following solvers:

• UMFPACK, sparse direct solver [4],

• FGMRES with least squares commutator (LSC) preconditioner with direct solver
UMFPACK to solve the Poisson subproblems and velocity systems,

• FGMRES with Vanka preconditioner with direct solver LAPACK to solve the local
systems of equations,

• FGMRES with LSC preconditioner provided by PETSc, [19]-[20], a library provid-
ing iterative solvers together with preconditioners for linear saddle point problems,
with direct solver UMFPACK for all linear subsystems,

• FGMRES with Euclid preconditioner provided by PETSc.

The Euclid preconditioner is a scalable implementation of the Parallel ILU (incom-
plete LU) algorithm, available in hypre, [17], a software library of high performance
preconditioners and solvers for the solution of large, sparse linear systems of equations,
which PETSc uses. Scalable means that the factorization (setup) and application (tri-
angular solve) timings remain nearly constant when the global problem size is scaled
in proportion to the number of processors. As with all ILU preconditioning methods,
the number of iterations is expected to increase with global problem size. Experimental
results have shown that PILU preconditioning is in general more effective than Block
Jacobi preconditioning for minimizing total solution time. For scaled problems, the
relative advantage appears to increase as the number of processors is scaled upwards.
For details see [17]. For the Vanka preconditioner a damping of the update is applied.
The damping parameter was set to 1, 5. The iteration of FGMRES is terminated when
the maximum number of iterations is achieved (it has been set to 5000). FGMRES is
restarted after 20 iterations and stopped when the Euclidean norm of the residual vector
was smaller than 10−8.
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5.1 Analytic Example

First consider a problem where the exact solution is known. The domain under consid-
eration is Ω = [0, 1]× [0, 1] and the exact pressure solution is given by

p = sin 2πx sin 2πy.

The velocity field is computed from Darcy’s law, eq. (2.1), with permeability tensor
K = I,

u = −∇p =

(
−2π cos(2πx) sin(2πy)
−2π sin(2πx) cos(2πy)

)
.

the source term f is calculated from (2.2) by taking the divergence of the velocity field,

f = ∇ · u = ∂xu1 + ∂yu2 = 8π2 sin(2πx) sin(2πy)

and the boundary data uN is calculated by taking its normal components,

u · n1 = u1(1, y) = −2π sin(2πy) on {1} × [0, 1]

u · (−n1) = −u1(0, y) = 2π sin(2πy) on {0} × [0, 1]

u · n2 = u2(x, 1) = −2π sin(2πx) on [0, 1]× {1}
u · (−n2) = −u2(x, 0) = 2π sin(2πx) on [0, 1]× {0}

where n1 =

(
1
0

)
and n2 =

(
0
1

)
.

Figure 5.1: Analytic example. Elevation plot of the exact pressure field.
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For a numerical simulation of the described boundary value problem the standard
Galerkin method was used with the velocity finite element spaces RT k and BDMk and
corresponding pressure finite element spaces Pdk on uniform triangular and quadrilateral
grids. Table 5.1 and fig. 5.2 illustrate the number of cells and the number of degrees of
freedom on quadrilateral grids obtained by uniform refinement of the domain.

Table 5.1: Number of cells and number of degrees of freedom on quadrilateral grids.

grid number number of degrees of freedom
level of cells BDM1 BDM2 BDM3 RT 0 RT 1 RT 2 RT 3

0 64 352 752 1344 208 800 1776 3136
1 256 1344 2912 5248 800 3136 7008 12416
2 1024 5248 11456 20736 3136 12416 27840 49408
3 4096 20736 45440 82432 12416 49408 110976 197120

102 103

103

104

105

number of cells

#
d
of

Number of degrees of freedom (# dof) on the used quadrilateral grids

BDM1 BDM2

BDM3 RT 0

RT 1 RT 2

RT 3

Figure 5.2: Plot of number of degrees of freedom on quadrilateral grids

Results on triangular (right column) and quadrilateral (left column) grids are pre-
sented in fig. 5.4.

At first glance it can be seen that the direct solver UMFPACK and PETSc LSC
preconditioner performed best and Vanka and LSC preconditioners performed worst for
all discretizations on both triangular and quadrilateral grids.

The Vanka preconditioner was slightly faster than the LSC preconditioner (except for
RT 0 discretizations on triangular grids), in particular for high order discretizations. For
RT 2 discretizations on quadrilateral grids the LSC preconditioner did only converge on
the coarsest grid (level 0) and for BDM2 discretizations the LSC preconditioner did not
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converge on the finest triangular grid (level 3) within the prescribed number of iteration
steps.

PETSc Euclid preconditioner showed inferior efficiency to the direct solver UMFPACK
and PETSc LSC preconditioner but superior efficiency to Vanka and LSC precondition-
ers.

All solvers needed in general less computing time for lower order discretizations RT 0,
BDM1 (linear finite element spaces) than for higher order discretizations RT 1, BDM2,
RT 2 (quadratic and cubic finite element spaces), due to larger number of degrees of
freedom for higher order discretizations, in particular on fine grids. For the solution of
the systems on the coarsest grids UMFPACK, PETSc LSC and Euclid approaches had
similar computing times for all discretizations, whereas Vanka and LSC preconditioners
had worse results for higher than for lower order discretiaztions.

Figure 5.3: Analytic example. Isolines (left) and streamlines (right).
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Figure 5.4: Analytic example. Computing times of solvers on triangular (right column)
and quadrilateral (left column) grids.
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5.2 Five-Spot Problem

Consider a square domain as shown in fig. 5.5 which has prescribed velocity at the lower
left-hand corner and the upper right-hand corner and zero normal flow prescribed along
the boundaries. Assume the divergence of the velocity field, f , consists of Dirac delta
functions acting at the lower left-hand and upper right-hand corner, with strength 1

4

and −1
4
, respectively. The lower left-hand corner represents the source, or injection well,

while the upper right-hand corner represents the sink, or production well.

x

y u1 = 0u1 = 0

u2 = 0

u2 = 0

Source (injection well)

Sink (production well)

Figure 5.5: Schematic diagram of the quarter five-spot problem.

The divergence of the velocity u is given by

∇ · u =
1

4
δ(x, y)− 1

4
δ(x− 1, y − 1) in [0, 1]2.

Inserting Darcy’s law, Ku = −∇p, with K = I, leads to the Poisson equation for the
pressure p,

∇ · (−∇p) = −∆p =
1

4
δ(x, y)− 1

4
δ(x− 1, y − 1). (5.1)

Recall that the function

Φ(x, y) = − 1

2π
log
√
x2 + y2

defined for
√
x2 + y2 6= 0 is called fundamental solution of Laplace’s equation and sat-

isfies

−∆Φ = δ(x, y) in R2.

Therefore the solution of eq. (5.1) in R2 is given by

p(x, y) = − 1

8π
log
√
x2 + y2 +

1

8π
log
√

(x− 1)2 + (y − 1)2
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Figure 5.6: Five-spot problem. Elevation plot of the exact pressure field.

and velocity is obtained by Darcy’s law,

u1(x, y) = − ∂

∂x
p(x, y) =

1

8π

(
x

x2 + y2
− x− 1

(x− 1)2 + (y − 1)2

)

u2(x, y) = − ∂

∂y
p(x, y) =

1

8π

(
y

x2 + y2
− y − 1

(x− 1)2 + (y − 1)2

)
.
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Figure 5.7: Five-spot problem. The velocity field u for the quarter five-spot problem.

The Poisson equation (5.1) on the unit square with homogeneous Neumann bound-
ary conditions models two unit points sources of opposite strength and located on a
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diagonal of the square. It is a standard porous media problem known as the quarter
five-spot problem, which is a popular test case scenario in oil reservoir simulation. The
analytical solution of the quarter five-spot problem is derived in [14], where a method
for analytically solving boundary value problems stated for the planar Poisson equation
in a rectangular domain has been developed.

For the simulation of the problem an equivalent distribution of normal velocity, uN ,
was calculated and the simulation was performed with uN , setting f = 0.

Consider a decomposition of the domain Ω = [0, 1]2 into uniform quadrilaterals or
triangles. The mesh parameter h > 0 is taken to be the edge length for quadrilaterals,
and the short-edge length for triangles.

In the case of piecewise linear finite element functions assume a linear distribution of
the normal velocity uN along the external edges of the corner mesh cells. Considering
the corner mesh cell at the injection well (x, y) = (0, 0),

uN = u · n1 = u1(0, y) = ay + b on {0} × [0, h]

uN = u · n2 = u2(x, 0) = ax+ b on [0, h]× {0}

where n1 =

(
−1
0

)
, n2 =

(
0
−1

)
and a, b ∈ R. Assume uN to be zero at the nodes

adjacent to the corner nodes, i.e.

uN(h) = ah+ b = 0

considering the corner node (x, y) = (0, 0). The divergence theorem gives∫
∂[0,1]2

uN(x, y) ds = 2

∫ h

0

ax+ b dx = ah2 + 2bh =
1

4
=

∫
[0,1]2
∇ · u dxdy

since the divergence of the velocity is the Dirac delta funtion acting at the injection well
with strength 1

4
. One can determine a, b by solving(

h2 2h
h 1

)
·
(
a
b

)
=

(
1
4

0

)
.

It follows

− 1

h2

(
1 −2h
−h h2

)
·
(

1
4

0

)
=

(
a
b

)
and uN(x) = − 1

4h2x + 1
4h

. The distribution of uN at the production well is derived
similarly. Thus the linear distribution of uN is uniquely defined on the edges (see fig. 5.9
left).

In the case of piecewise quadratic finite element functions assume a parabolic dis-
tribution of the normal velocity uN along the external edges of the corner mesh cells.
Considering again the corner mesh cell at the injection well (x, y) = (0, 0), it should hold

uN = u · n1 = u1(0, y) = ay2 + by + c on {0} × [0, h]

uN = u · n2 = u2(x, 0) = ax2 + bx+ c on [0, h]× {0}.
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Assume uN is zero and has zero derivative at the mesh cell vertex nodes away from the
corners, i.e. uN(h) = ah2 + bh+ c = 0 and u

′
N(h) = 2ah+ b = 0, considering the corner

node (x, y) = (0, 0). Again the divergence theorem gives∫
∂[0,1]2

uN(x, y) ds = 2

∫ h

0

ax2 + bx+ c dx =
2

3
ah3 + bh2 + 2ch =

1

4
=

∫
[0,1]2

1

4
δ(x, y) dxdy.

To determine a, b, c solve 2
3
h3 h2 2h
h2 h 1
2h 1 0

 ·
ab
c

 =

1
4

0
0


⇒

− 3

2h3

 −1 ∗ ∗
2h ∗ ∗
−h2 ∗ ∗

 ·
1

4

0
0

 =

ab
c


thus uN(x) = 3

8h3x
2 − 3

4h2x + 3
8h

. The quadratic distribution of uN is uniquely defined
on the edges (see fig. 5.9 right).

1
4h

1
4h

h

3
8h

3
8h

h

Figure 5.9: Five-spot problem. Distribution of uN along the corner mesh cell at the
production well. The distribution of uN at the injection well is the same
with opposite direction.

As in the previous example the numerical solution was carried out with the standard
Galerkin method. The same pairs of finite element spaces on triangular and quadrilateral
grids as in the previous example were used.

The results are illustrated in fig. 5.11. The direct solver UMFPACK and PETSc LSC
preconditioner were again the fastes methods for all discretizations.

The LSC and Vanka preconditioners were the slowest methods. Vanka preconditioner
was faster than LSC preconditioner, except for RT 0 discretizations. On triangular
grids the LSC preconditioner did not converge for RT 2 discretization. For the Vanka
preconditioner the time spend on the coarsest quadrilateral grid was negligible for RT 0

discretization.
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On coarse grids (level 0, 1) PETSc LSC and Euclid preconditioners behaved similarly
regarding the computing time. However the computing times of the Euclid precondi-
tioner did increase faster than the computing times of the PETSc LSC preconditioner if
the grid was refined. Euclid preconditioner was still more efficient than the Vanka and
LSC preconditioners.

In fig. 5.12, it can be seen that the Vanka and LSC preconditioners needed more
FGMRES iterations than PETSc LSC and Euclid preconditioners. For PETSc LSC
the number of necessary FGMRES iterations was very small and did not increase if
the grid was refined. In contrast, these numbers increased considerably for the Euclid
preconditioner. Still both methods had similar computing times on coarse grids.

Figure 5.10: Five-spot problem. Isolines (left) and streamlines (right).
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Figure 5.11: Five-spot problem. Computing times on triangular (right column) and
quadrilateral (left column) grids.
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Figure 5.12: Five-spot problem. Number of FGMRES iterations on triangular (right
column) and quadrilateral (left column) grids.



43

5.2.1 Nine-Spot Problem

Consider an extension of the quarter five-spot problem to the three dimensional case.
Assume that the cube Ω = [0, 1]3 has prescribed velocity at the lower left-hand corner
and the upper right-hand corner and zero normal flow prescribed along the faces of the
cube. Assume the divergence of the velocity field, f , consists of Dirac delta functions
acting at the lower left-hand and upper right-hand corner, with strength 1

8
and −1

8
,

respectively.
The fundamental solution of Laplace’s equation in 3d is given by

Φ(x, y, z) =
1

4π
√
x2 + y2 + z2

.

Therefore the pressure satisfying

−∆p =
1

8
δ(x, y, z)− 1

8
δ(x− 1, y − 1, z − 1) (5.2)

in R3 is given by

p(x, y, z) =
1

32π

(
1√

x2 + y2 + z2
− 1√

(x− 1)2 + (y − 1)2 + (z − 1)2

)
and the velocity is obtained with Darcy’s law

u1(x, y) = − ∂

∂x
p(x, y) =

1

32π

(
x(

x2 + y2 + z2
) 3

2

− x− 1(
(x− 1)2 + (y − 1)2 + (z − 1)2

) 3
2

)

u2(x, y) = − ∂

∂y
p(x, y) =

1

32π

(
y(

x2 + y2 + z2
) 3

2

− y − 1(
(x− 1)2 + (y − 1)2 + (z − 1)2

) 3
2

)
.

Figure 5.13: Nine-spot problem. RT 0 - pressure solution on finest grid.
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Figure 5.14: Nine-spot problem. RT 0 - velocity solution on finest grid.

Figure 5.15: Nine-spot problem. Streamfunction.

Consider a decomposition of the domain Ω = [0, 1]3 into uniform hexahedra or tetra-
hedra. The mesh parameter h > 0 is taken to be the edge length of the hexahedra or
tetrahedra. Assume a constant distribution of the normal velocity uN along the external
faces of the corner mesh cells [0, h]3 and [1 − h, 1]3 and perform the simulation of the
problem with uN , setting f = 0.
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The solution is carried out with the Galerkin finite element method. The velocity
finite element spaces RT k, k = 0, 1, 2 and BDMk, k = 1, 2 with corresponding pressure
finite element spaces Pdk were used on uniform tetrahedal and hexahedral grids.

Table 5.2 and fig. 5.16 illustrate the number of degrees of freedom on hexahedral grids
obtained by uniform refinement of the domain.

Table 5.2: Number of cells and number of degrees of freedom on hexahedral grids.

grid number number of degrees of freedom
level of cells BDM1 BDM2 RT 0 RT 1 RT 2

0 64 784 1888 304 2240 7344
1 512 5696 13952 2240 17152 57024
2 4096 43264 107008 17152 134144 449280
3 32768 336896 837632 134144 1060864 3566592

102 103 104

103

104

105

106

number of cells

#
d
of

Number of degrees of freedom (# dof) on the used hexahedral grids

BDM1 BDM2

RT 0 RT 1

RT 2

Figure 5.16: Plot of number of degrees of freedom on hexahedral grids

The results are presented in fig. 5.17. In 3d the Euclid preconditioner showed the best
performance. The computing times of Vanka and Euclid preconditioners were similar;
on fine grids Vanka was slightly slower than Euclid.

The LSC preconditioner had worst results: systems on the finest grids could not be
solved and for high order discretizations (RT 2 and BDM2) the LSC preconditioner did
only converge on coarse grids (level 2, 3). However for low order discretizations LSC
was efficient on the coarsest grids (level 2) in particular for RT 0 on triangular grids.

The direct solver UMFPACK showed rapid increasement of computing times if grid
was refined for all discretizations compared to Vanka and Euclid preconditioners and did
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not converge on the finest grids (level 5) for RT 2 discretizations. In addition, solving
the systems with the direct solver needed high memory requirements.

On coarse grids (level 2, 3) the results of the PETSc LSC preconditioner were in
general similar to the results of Euclid and Vanka preconditioners. The computing
times of the PETSc LSC preconditioner did increase faster than the computing times of
Euclid and Vanka preconditioners (except for RT 0 on triangular grids) if the grid was
refined in particular for BDM1. On the finest quadrilateral grid (level 5) the PETSc
LSC preconditioner did not converge for RT 2 and BDM2 discretizations, whereas on
the finest triangular grid the computing times of the PETSc LSC preconditioner did not
increase.
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Figure 5.17: Nine-spot problem. Computing times on triangular (right column) and
quadrilateral (left column) grids.
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5.3 The Checkerboard Domain

This simulation considers cases in which there are abrupt changes in the permeability
parameter. We consider the quarter five-spot problem described earlier, now zoned as
shown in fig. 5.18 with a piecewise constant permeability tensor.

I II

IVIII

Figure 5.18: Checkerboard domain with sharp change in permeability value.

Consider the case where the permeability is set to K = I in zones I and IV and
K = 100 · I in zones II and III. The numerical solution was carried out with the standard
Galerkin method for the velocity finite element spaces RT k, k = 0, 1, 2 and BDMk,
k = 1, 2 on uniform triangular and quadrilateral grids with corresponding pressure finite
element spaces Pdk . The results are illustrated in fig. 5.20. The direct solver UMFPACK
was the most efficient method. PETSc LSC preconditioner showed inferior efficiency to
UMFPACK in particular for higher order discretizations on fine grids, but still superior
efficiency to the other solvers. LSC precondtioner did only converge forRT 0 and BDM1

discretizations on coarse grids (level 0,1), hence showed worst performance. Vanka was
only efficient for low order discretizations on coarse grids, the computing times did
increase fast if the grid was refined. The systems on the finest grids (level 3) could not
be solved with Vanka preconditioner. Euclid behaved similar to PETSc LSC, but was
slower or did not converge on the finest grids (level 3). On the finest triangular grid
Euclid did not converge for for RT 2. On the finest quadrilateral grid Euclid did only
converge for RT 0 disretization.

Figure 5.19: Checkerboard problem: Isolines (left) and streamlines (right).
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Figure 5.20: Checkerboard domain. Computing times of solvers for discretizations on
triangular (right column) and quadrilateral (left column) grids.
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5.3.1 Checkerboard Domain in 3D

An extension of the previous problem to the three dimensional case is considered, i.e.
the nine-spot problem for a cube zoned as shown in fig. 5.21 where the permeability is
set to K = I in zones I and VIII and K = 100 · I in the remaining zones.

I

VIII

Figure 5.21: Checkerboard domain for a cube.

The numerical solution was carried out with the standard Galerkin method for the
velocity finite element spaces RT k, k = 0, 1, 2 and BDMk, k = 1, 2 with corresponding
pressure finite element spaces Pdk on uniform tetrahedral and hexahedral grids.

The results are illustrated in fig. 5.22: The behavior of the solvers was the same as in
the previous example in 3d, the nine-spot problem.
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Figure 5.22: Checkerboard domain in 3d. Computing times of solvers for discretizations
on triangular (right column) and quadrilateral (left column) grids.
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5.4 Summary of Results

In the examples presented in this chapter, we could generally observe

• the direct solver UMFPACK was the fastes method for all examples in 2d. In
contrast, the efficiency of the direct solver decrased considerably on finer grids in
3d.

• Considering only FGMRES with LSC and Euclid preconditioners provided by
PETSc, one could see that for the considered examples in 2d the LSC precon-
ditioner proved to be faster than Euclid preconditioner regarding the computing
times in particular on fine grids. For the studied examples in 3d the Euclid pre-
conditioner had the best results compared to the other solvers.

• FGMRES with Vanka and LSC preconditioners provided by ParMooN were the
least efficient methods for the considered examples in 2d. In general, the Vanka
preconditioner demonstrated better results than LSC preconditioner, in particular
for higher order discretizations. For the examples in 3d Vanka was most efficient
together with Euclid.

• In 2d the permeability tensor with abrupt changes (checkerboard domain) did
impact the performance of the solvers. All solvers, exept for the direct solver,
performed worse in particular on fine grids. That was not the case in 3d.
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6 Conclusion and Outlook

This thesis studied different solvers for linear systems in saddle point form that arise in
finite element discretizations of the Darcy equations. Firstly the mathematical founda-
tions for the Darcy equations and the corresponding saddle point systems were presented.
Inf-sup stable pairs of finite element spaces employed in the numerical studies were in-
troduced. Afterwards the basic properties of the saddle point matrices were briefly
considered and techniques of preconditioning, were discussed. In numerical studies for
problems in 2d and 3d the performance of LSC and Vanka preconditioners provided by
ParMooN, LSC and Euclid preconditioners provided by PETSc and the direct solver
UMFPACK were compared. The conclusions of these studies are as follows.

• For problems in 2d the direct solver UMFPACK was the best choice. FGMRES
with the LSC preconditioner provided by PETSc was competitive to the direct
solver in case of a constant permeability tensor K = I. The computing times
of PETSc LSC and Euclid preconditioners were similar on coarse grids however
computing times of Euclid increased faster if the grid was refined. Vanka and LSC
preconditioners provided by ParMooN were slow compared to the other solvers, in
particular LSC preconditioner for high order discretizations.

• The performance of the studied solvers for problems in 2d depended on the perme-
ability tensor. Examples with K = I and a piecewise constant permeability tensor
(checkerboard domain) were considered. The mass matrix A in both cases has
different properties, which have a different impact on the efficiency of the stud-
ied solvers. For a piecewise constant permeability parameter the studied solvers
performed worse than for K = I.

• The simulation of problems in 3d could be performed fastest with FGMRES and
the Euclid or Vanka preconditioners. UMFPACK was ineffcient with respect to
computation time and memory requirements. The results of the PETSc LSC
preconditioner were in general comparable with Euclid and Vanka preconditioners,
whereas LSC preconditioner provided by ParMooN could only solve systems for
low order discretizations on coarse grids.

Further investigations could consider different permeability parameters such as nondiag-
onal tensors and check their influence on the efficiency of the solvers. Iterative methods
for the solution of the arising subproblems in the Vanka and LSC preconditioners could
be investigated. In the further investigations could consider other preconditioning tech-
niques such as multigrid preconditioning and other block preconditioners based on the
Schur complement approximation in order to compare their performance as well as time-
dependend problems.
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