
Free University of Berlin

Master Thesis

Program

MSc. Computational Sciences

H(div) - Conforming Finite Elements
for the Stokes Equations

Student:
Cristina Melnic

Supervisor
Univ.-Prof. Dr. Volker John

Second Reviewer:
PD Dr. Alfonso Caiazzo

December 9, 2021



Statutory Declaration 

I declare that I have developed and written the enclosed thesis completely by myself, and have 
not used sources or means without declaration in the text. Any thoughts from others or literal 

quotations are clearly marked. 
'The thesis was not used in the sane or in a similar version to achieve an academic grading or 

is being published elsewhere. 

Berlin (Germany), December 9, 2021 

lelerie 2.4 
Cristina Melnic 



Acknowledgements

I would like to thank my supervisor, Univ.-Prof. Dr. Volker John, for his guidance and support
in every stage of this work, as well as the expertise that allowed a more efficient problem-solving
process.

I also want to acknowledge M.Sc. Derk Frerichs, for his patience of walking me through all
the intricacies of the program package ParMooN [25] and the insightful discussions during the
implementation stage. Moreover, I would like to thank Dr. Ulrich Wilbrandt for his first aid help
in difficult situations involving both the theoretical and implementation parts.

I am grateful for having been a part of my supervisor’s workgroup ’Numerical Mathematics
and Scientific Computing’ at the Weierstrass Institute, Berlin and learning research-related skills
from its members in a stimulating environment.

2



Contents

List of Symbols 4

List of Figures and Tables 6

1 Introduction 7
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 The Incompressible Navier-Stokes Equations 9
2.1 Physical background and derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The non-dimensionalization procedure . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Linear saddle point problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Divergence-free vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Results for existence and uniqueness of a solution . . . . . . . . . . . . . . . . . . . 15

3 Finite Element Methods for the Incompressible Navier-Stokes Equations 16
3.1 Brief Introduction into the Finite Element Method . . . . . . . . . . . . . . . . . . 16

3.1.1 The Ritz and Galerkin methods . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Construction of a finite element space . . . . . . . . . . . . . . . . . . . . . 20

3.2 H1-Conforming Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 The Galerkin finite element method . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Inf-sup stable pairs of finite element spaces . . . . . . . . . . . . . . . . . . 23
3.2.3 Error estimates for the Galerkin method . . . . . . . . . . . . . . . . . . . . 26

3.3 Techniques for reducing the violation of mass conservation . . . . . . . . . . . . . . 28
3.4 H(div)-Conforming Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 H(div)-conforming inf-sup stable pairs of spaces . . . . . . . . . . . . . . . . 32
3.4.2 DG formulation of the Stokes problem . . . . . . . . . . . . . . . . . . . . . 33

4 Numerical Studies 38
4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Harmonic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Polynomial solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Condition number dependence on σ . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Convergence order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Pressure robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Conclusion and Outlook 46

A Numerical Results 47
A.1 Convergence histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.2 Pressure robustness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 60

3



List of Symbols

E edge of a mesh cell K. 32, 34–37

Hdiv space of divergence-free functions. 26

K mesh cell of Th. 22, 32–37

Qh finite element pressure space. 22, 23, 26, 27, 32, 33, 35, 37

Q pressure space, L2
0(Ω). 22, 27

V h
div space of discretely divergence-free functions. 26, 27, 33

V h finite element velocity space. 22, 23, 26, 28, 32–35, 37

Vdiv space of weakly divergence-free functions. 26–28, 33

V velocity space, H1
0(Ω). 22, 26, 27, 33

Ω domain. 22, 23, 26, 27, 32–35, 37–39, 44, 46

β continuous inf-sup constant. 27

f body force. 9–12, 15, 22, 35

uh finite element velocity. 22, 23, 26, 27, 30, 35, 37, 41, 42, 44–46

u velocity. 11, 12, 15, 22–24, 26–31, 33, 34, 37–42

ϵ symmetry parameter of aϵ. 34–36

Eh
B set of domain boundary edges. 32, 34, 36

Eh
I set of interior edges. 32, 34, 36

Eh set of edges of T h. 32, 34–37

T h triangulation of Ω. 22, 32–37, 43, 45

∇·h discrete divergence operator. 23

ν kinematic viscosity. 26, 27, 35, 37, 38, 45

∂K boundary of a mesh cell K. 32–34

∂Ω boundary of the domain. 12, 14, 15, 32–34, 38, 39

σ penalty parameter to ensure coercivity of aϵ. 6, 34–38, 40–43, 46

a(·, ·) velocity-velocity bilinear form. 12, 14, 22, 33

aϵ(·, ·) DG velocity-velocity bilinear form. 33–35, 40, 46

b(·, ·) velocity-pressure bilinear form. 12, 14, 22, 23

bh(·, ·) discrete velocity-pressure bilinear form. 23, 34

hE diameter of an edge E. 34–37, 43, 44

4



hK area of a mesh cell K. 35

h largest value of hE for a given mesh T h. 27, 36, 37

ph finite element pressure. 22, 26, 27, 30, 35, 37, 41, 42, 44–46

p pressure. 11, 15, 22, 26, 27, 34, 37–42

5



List of Figures

4.1 Plots of the ’Harmonic solution’ example using [10] . . . . . . . . . . . . . . . . . . 39
4.2 Plots of the ’Polynomial solution’ example using [10] . . . . . . . . . . . . . . . . . 40

A.1 Convergence histories for the ’Harmonic solution’ example . . . . . . . . . . . . . . 48
A.2 Convergence histories with spaces of non-optimal behavior in comparison to results

from figure A.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.3 Convergence histories of the divergence of velocity for the ’Harmonic solution’ example 50
A.4 Convergence histories for the ’Polynomial solution’ example . . . . . . . . . . . . . 51
A.5 Convergence histories with spaces of non-optimal behavior in comparison to results

from figure A.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.6 Convergence histories of the divergence of velocity for the ’Polynomial solution’

example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.7 Pressure robustness comparison of H1-conforming spaces with BDMk for the ’Har-

monic solution’ example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.8 Pressure robustness comparison of H1-conforming spaces with RTk for the ’Har-

monic solution’ example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.9 Pressure robustness results with spaces of non-optimal behavior for the ’Harmonic

solution’ example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.10 Pressure robustness comparison of H1-conforming spaces with BDMk for the ’Poly-

nomial solution’ example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.11 Pressure robustness comparison of H1-conforming spaces with RTk for the ’Polyno-

mial solution’ example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.12 Pressure robustness results with spaces of non-optimal behavior for the ’Polynomial

solution’ example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

List of Tables

4.1 First search of optimal σ for BDM1 . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 First search of optimal σ for RT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Second search of optimal σ for BDM1 . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Second search of optimal σ for RT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Third search of optimal σ for BDM1 . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Third search of optimal σ for RT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.7 Overview of convergence orders for all finite element pairs . . . . . . . . . . . . . . 43

6



Chapter 1

Introduction

1.1 Motivation
The incompressible Navier-Stokes equations model the behavior of incompressible fluids using two
fundamental physical laws — the conservation of linear momentum and the conservation of mass.
They are of great interest in a range of fields such as weather forecasting, climate modelling, in
medical simulations of blood vessels and in many other scientific and engineering applications.

Due to them being a constrained system of partial differential equations finding solutions is
often challenging, and thus they are usually approximated by the means of numerical methods. To
that end, the equations are discretized in space and time using methods appropriate to the problem
at hand. In this work the stationary equations are discussed, so only the space discretization is of
relevance, which is typically done using finite element methods.

The classical stable and convergent finite element methods, however, introduce a few problems,
discussed in detail in [14], which this work will try to address. Firstly, the divergence constraint is
usually satisfied only discretely, thus the approximated solutions are violating the law of conser-
vation of mass, which can cause problems in many applications. In addition, the approximation
of velocity gains a nonphysical dependence on pressure and viscosity, a phenomenon called lack of
pressure-robustness, which causes erroneous results for problems where the pressure is much larger
than velocity, or the viscosity is much smaller.

Whereas there exist methods to improve the results of the classical methods in relation to these
limitations, H(div)-conforming finite element methods are known to eradicate them completely,
which makes them an attractive topic of current research.

The goal of the thesis is to compare the properties of the H(div)-conforming finite element
methods with the more traditionally used H1-conforming finite element methods in approximating
the solution to the Stokes equations. This is achieved by a short presentation of the analytical
results from the literature for both methods, followed by the implementation of these methods
for the Stokes equations in the program package ParMooN [25] and, ultimately, by using them to
perform numerical studies. The latter aim to verify whether the theoretical predictions hold and
to obtain a quantitative idea about the advantages and disadvantages of both methods in parallel.

The results of this work address the Stokes equations in particular, as a first step in analyzing
the above-mentioned properties for the Navier-Stokes equations. The Stokes equations are an
approximation to the Navier-Stokes equations in the special case of steady-state flow, which was
considered in this work, and large viscosity of the fluid. The latter condition simplifies the problem
from non-linear to linear, which reduces the number of technical details in the implementation
process, without impacting the studied property. In addition, as mentioned in [14], it emphasizes
that the above limitations originate in the discretization of the divergence operator, and not in the
properties of nonlinearity or dominating convection of the full Navier-Stokes system.
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1.2 Structure of the Thesis
The contents of this work are summarized in the following outline:

• In Chapter 2, a derivation of the incompressible Navier-Stokes equations from the physical
point of view is presented. Then, the problem is reformulated via the non-dimensionalization
procedure, such that it can be used in numerical analysis. Further, the variational formulation
of the problem is presented and is identified with a linear saddle point problem. Then, the
results for existence and uniqueness of a solution of such a problem are shown.

• Chapter 3 starts with an introduction to the theory of the finite element methods, where
some fundamental theorems and concepts are presented. Then, the particularities of solving
incompressible flow problems using finite element methods are discussed, followed by a pre-
sentation of inf-sup stable pairs of H1-conforming spaces and their error estimates. Here, the
limitations of these methods are discussed with respect to mass conservation and pressure
robustness, as well as some methods to ameliorate them. In order to fully overcome these
limitations, H(div)-conforming finite element methods are introduced and results for their
error estimates are cited from literature.

• Chapter 4 contains numerical studies on the properties of H(div)-conforming finite element
methods performed with the implemented discontinuous Galerkin formulation of Stokes equa-
tions in the program package ParMooN [25]. Namely, three different aspects are addressed:
the choice of an optimal penalty parameter to ensure a well-conditioned problem, the conver-
gence orders of the new method in comparison to the classical ones, and an illustration of the
attained pressure-robustness property. Before presenting the studies themselves, examples of
problems with prescribed solutions used for computations are introduced.

• Finally, Chapter 5 provides a summary of the obtained results, together with the conclu-
sions that they point to, before closing with some comments on possible improvements and
elaborations in future works.
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Chapter 2

The Incompressible Navier-Stokes
Equations

The goal of this chapter is to present the incompressible Navier-Stokes equations and their proper-
ties, along with the difficulties in solving them, which will then motivate the need of the methods
from the subsequent chapters. The structure follows closely Chapters 2 and 3 from [13].

2.1 Physical background and derivation
The Navier-Stokes equations model the dynamics of fluids and come from two fundamental physi-
cal laws - conservation of mass and conservation of momentum. The physical quantities involved
in these equations are the density of the fluid ρ(t, x) : [kg/m3], the pressure P (t, x) : [N/m2] and
the velocity v(t, x) : [m/s]. These are assumed to be sufficiently smooth functions in the temporal
and spatial domains t ∈ [0, T ] and x ∈ Ω ⊂ R3.

Let us consider an arbitrary open volume ω ∈ Ω with smooth surface boundary ∂ω, which is
constant in time. The conservation of mass implies that the change of mass in the volume is equal
to the flux of mass through the boundary and can be written as

d

dt
m(t) = d

dt

∫
ω

ρ(t,x)dx = −
∫

∂ω

(ρv)(t, s) · n(s)ds.

Using the divergence theorem on the last integral term, yields∫
ω

∇ · (ρv)(t,x)dx =
∫

∂ω

(ρv)(t, s) · n(s)ds.

Since the volume ω is arbitrary, the following relation is obtained,

(∂tρ+ ∇ · (ρv)) (t,x) = 0 ∀t ∈ (0, T ], x ∈ Ω. (2.1)

This represents the first from the Navier-Stokes equations and is called the continuity equation.
The derivation of the second equation originates in the Newton’s second law. Confining the problem
again to an arbitrary volume ω, the change of momentum in that volume is equal to the sum of
integral of the net force density in the volume ω and the integral of the momentum flux across the
boundary ∂ω

d

dt

∫
ω

ρv(t,x)dx =
∫

ω

fnet (t,x)dx −
∫

∂ω

(ρv)(v · n)(t, s)ds [N].

Applying the divergence theorem on the surface integral and changing differentiation with respect
to time, yields ∫

ω

(
∂t(ρv) + ∇ ·

(
ρvvT

))
(t,x)dx =

∫
ω

fnet(t,x)dx.

By applying the product rule, the previous relation becomes∫
ω

(∂tρv + ρ∂tv+ vvT ∇ρ+ ρ(∇ · v)v + ρ(v · ∇)v
)

(t,x)dx =
∫

ω

fnet(t,x)dx.
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Since for incompressible fluids the density ρ is constant and the velocity field has neither sinks
nor sources ∇ · v = 0, the expression can be further simplified. Considering in addition that the
volume ω is arbitrary, the final relation can be written as

ρ (∂tv + (v · ∇)v) = fnet ∀t ∈ (0, T ], x ∈ Ω. (2.2)

The net force density is the result of superposition of external forces like gravity, electromagnetic
force or buoyancy, and internal forces, which are forces that a fluid element exerts on the adjacent
element. Examples of the latter are pressure and the viscous drag, and they represent contact
forces, acting on the surface of the fluid element. Their net result on ω can be expressed as a
surface integral of the product between the stress vector t

[ N
m2

]
and the surface element vector ds.

The conservation of momentum equation (2.2) with the force terms written explicitly becomes∫
ω

ρ(t,x) (∂tv + (v · ∇)v) (t,x)dx =
∫

ω

fext(t,x)dx +
∫

∂ω

t(t, s)ds. (2.3)

The Cauchy stress theorem (proof in [11], pages 50-52) states that the stress vector t denoting the
state of stress at a point is uniquely determined by the stress tensor S

[ N
m2

]
and the unit normal

to that point on the surface n through the relation t = S · n. Using the divergence theorem again,
the limits of integration of the internal force term can be switched and a subsequent simplification
of (2.3) is possible. ∫

∂ω

t(t, s)ds =
∫

ω

∇ · S(t,x)dx,

ρ (∂tv + (v · ∇)v) = ∇ · S + f ext ∀t ∈ (0, T ], x ∈ Ω. (2.4)

Modelled in terms of the variables of the present problem, the stress tensor can be decomposed in
two terms,

S = V − P I. (2.5)

The first term represents the viscous stress tensor V
[ N

m2

]
, which contains the forces from the

friction of fluid particles. Since friction can occur only when the particles have different velocities,
the tensor is modelled in terms of a velocity gradient. Moreover, the condition of conservation of
angular momentum results in the symmetry of the stress tensor S leaving only 6 unique components
(proof in [13], pages 13-14). Therefore, the symmetry constraint imposes another dependence of
V on the transpose of the velocity gradient. In case of small velocity gradients, the so-called
Newtonian fluid, V is well approximated by the linear dependence on ∇v. With the additional
incompressibility condition ∇·v = 0, the viscous stress tensor V is only proportional to the velocity
deformation tensor D(v) as in the expression below, µ

[
kg

m s

]
being the first order viscosity constant

V = 2µD(v) = ∇v + (∇v)T

2 [1/s]. (2.6)

The second term is the pressure P [Pa] from the forces acting on the surface of the fluid volume
ω, with I - the identity tensor. The effect of the pressure only normal to the surface and directed
inwards can be expressed as

−
∫

∂ω

Pnds = −
∫

ω

∇Pdx = −
∫

ω

∇ · (P I)dx. (2.7)

By substituting the terms (2.7), (2.6) making up the stress tensor in equation (2.4) and the in-
compressibility conditions in the continuity equation (2.1), the Navier-Stokes equations for incom-
pressible fluids

∂tv − 2ν∇ · D(v) + (v · ∇)v + ∇P

ρ
= f ext

ρ
in (0, T ] × Ω,

∇ · v = 0 in (0, T ] × Ω
(2.8)

are obtained, where ν = µ/ρ
[

m2

s

]
is the kinematic viscosity of the fluid.
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2.2 The non-dimensionalization procedure
For the numerical analysis of the above equations, non-dimensionalization is required. This gives
the means to quantitatively compare the terms in the equation to each other and better understand
their influence on the overall dynamics. In this section, the procedure of getting to the non-
dimensional version of the system is described.
Firstly, a change in notation is made by assigning a prime to quantities with dimensions from (2.8),
t′ and x′. Subsequently, the conversion relations using the characteristic length L, velocity U and
time T ∗ scales are established:

x = x′

L
, u = v

U
, t = t′

T ∗ .

Substituting these relations in (2.8), then multiplying by a factor of 1
U2 from both sides gives the

following expressions in the non-dimensionalized time and space domains:

L

UT ∗ ∂tu − 2ν
UL

∇ · D(u) + (u · ∇)u + ∇ P

ρU2 = L

ρU2 f ext in (0, T ] × Ω,

∇ · u = 0 in (0, T ] × Ω.

New variables using the obtained constants are defined in the following way

p = P

ρU2 , Re = UL

v
, St = L

UT ∗ , f = L

ρU2 f ext.

Here, Re and St are the Reynolds and the Strouhal numbers, which allow the classification of
different flow cases.
The Navier-Stokes equations in this notation and with an additional simplification using the char-
acteristic timescale T ∗ = L/U are the equations represented below, which are the basis for math-
ematical analysis and numerical simulations:

∂tu − 2ν∇ · D(u) + (u · ∇)u + ∇p = f in (0, T ] × Ω, (2.9)
∇ · u = 0 in (0, T ] × Ω. (2.10)

There is, however, one more simplification to be done on the velocity deformation tensor D(u).
Using the incompressibility property ∇ · v = 0 and the Schwarz theorem, the terms of the tensor
can be re-written in the following way

∇ · (∇u) = ∆u, (2.11)
∇ ·

(
∇uT

)
= ∇ (∇ · u) = 0. (2.12)

Applying these results to the term from (2.6) and substituting in the first equation from (2.10),
yields

∂tu − ν∆u + (u · ∇)u + ∇p = f in (0, T ] × Ω, (2.13)
∇ · u = 0 in (0, T ] × Ω. (2.14)

In this study only the steady state incompressible Navier-Stokes equations will be considered,
where the velocity and the pressure do not change with time. Therefore, the studied system (2.14)
with ∂tu = 0 is rewritten as

−ν∆u + (u · ∇)u + ∇p = f in Ω,
∇ · u = 0 in Ω.

(2.15)

A necessary but not sufficient condition for a steady-state system is the time independence of f
and of the boundary conditions.

The final non-dimensionalized form of equations (2.15) presents difficulties for the mathematical
analysis. These are, namely, the coupling of velocity and pressure and the nonlinearity of the
convective term. Additionally, for numerical simulations, difficulties appear in cases of a dominant
convective term, or equivalently small viscosity. In the following subsections, the first steps of the
analysis of the problem will be presented, with the goal of addressing some of these difficulties.
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2.3 Variational formulation
Let us consider again the strong form of the incompressible Navier-Stokes equations (2.15) and
specify homogeneous Dirichlet boundary conditions u = 0 on the boundary ∂Ω. The weak form is
obtained by multiplying the respective system with test functions and integrating by parts over the
domain Ω, thereby transferring the derivatives from the unknown functions to the test functions.
The function spaces for velocity and pressure are the Hilbert spaces defined as

V = H1
0 (Ω) =

{
v : v ∈ H1(Ω) with v = 0 on ∂Ω

}
, (2.16)

where the value of v on the boundary is to be understood in the sense of traces,

Q = L2
0(Ω) =

{
q : q ∈ L2(Ω) with

∫
Ω
q(x)dx = 0

}
. (2.17)

The inner product in V and the induced norm are given by

(v,w) =
∫

Ω
(∇v : ∇w)(x)dx, ∥v∥V = ∥∇v∥L2(Ω). (2.18)

Whereas the inner product and the induced norm in Q are given by

(q, r) =
∫

Ω
(qr)(x)dx, ∥q∥Q = ∥q∥L2(Ω). (2.19)

The dual space of V is V ′ = H−1(Ω) and the dual of the pressure space is Q′ = Q.
With the above definitions of V = H1

0 (Ω) and Q = L2
0(Ω), the weak or variational problem of

(2.15) can be formulated following the Remark 6.4 from [13]:
Given f ∈ H−1(Ω), find (u, p) ∈ V ×Q such that

(ν∇u,∇v) + ((u · ∇)u,v) − (∇ · v, p) = ⟨f ,v⟩V ′,V ,

−(∇ · u, q) = 0,
(2.20)

for all (u, p) ∈ V ×Q.
An equivalent formulation is the following:

(ν∇u,∇v) + ((u · ∇)u,v) − (∇ · v, p) + (∇ · u, q) = ⟨f ,v⟩V ′,V (2.21)

for all (u, p) ∈ V ×Q.
The definitions of the function spaces imply that the terms in both formulations are well-defined.
The weak form can be identified as an abstract saddle point problem, which is formally presented
in the next section.

2.4 Linear saddle point problems
The abstract linear saddle point problem offers a context for studying the existence and uniqueness
of solutions of incompressible flow problems. Its presentation here follows the Remarks 3.3, 3.7
and Theorems 3.18 and 3.46 from the Chapter 3 in [13].
Let V and Q be two real Hilbert spaces with inner products (·, ·)V and (·, ·)Q with their respective
induced norms. Their dual spaces are given by V ′ and Q′, with the dual pairings given by ⟨·, ·⟩V ′,V

and ⟨·, ·⟩Q′,Q and the induced norms.
Two continuous bilinear forms are considered a(·, ·) : V × V → R, b(·, ·) : V × Q → R with the
usual definition of norms.
The abstract linear saddle point problem is the following: Find (u, p) ∈ V ×Q such that for given
(f, r) ∈ V ′ ×Q′

a(u, v) + b(v, p) = ⟨f, v⟩V ′,V ∀v ∈ V,

b(u, q) = ⟨r, q⟩Q′,Q ∀q ∈ Q.
(2.22)

Problem (2.22) can be equivalently formulated in terms of operators. The linear operators associ-
ated with the bilinear are the following

A ∈ L (V, V ′) defined by ⟨Au, v⟩V ′,V = a(u, v) ∀u, v ∈ V,
B ∈ L (V,Q′) defined by ⟨Bu, q⟩Q′,Q = b(u, q) ∀u ∈ V,∀q ∈ Q.

(2.23)

12



Let B′ ∈ L (Q,V ′) be the adjoint (dual) operator of B defined by

⟨B′q, v⟩V ′,V = ⟨Bv, q⟩Q′,Q = b(v, q) ∀v ∈ V,∀q ∈ Q.

With these operators, problem (2.22) can be written in the equivalent form: Find (u, p) ∈ V ×Q
such that

Au+B′p = f in V ′,

Bu = r in Q′.
(2.24)

Definition of the Well-posedness of (2.24).
The problem (2.24) is well-posed if the linear operator Φ(·, ·) defined as

Φ ∈ L (V ×Q,V ′ ×Q′) : Φ(v, q) = (Av +B′q,Bv) ,

where (·, ·) stands for a vector with 2 components, is an isomorphism from V ×Q onto V ′ ×Q′.

Definition of a bounded Bilinear Form.
Let b(·, ·) : V × V → R be a bilinear form on the Banach space V . Then it is bounded if

|b(u, v)| ≤ M ||u||V ||v||V , ∀u, v ∈ V, M > 0, (2.25)

with the constant M independent of u and v.

Definition of a coercive Bilinear Form.
The bilinear form is coercive or V−elliptic if

b(u, u) ≥ m||u||2V , ∀u ∈ V,m > 0, (2.26)

where the constant m is independent of u.

In the case that the spaces V and Q are finite, with dimensions nV and nQ respectively, the
operators can be represented with matrices, with B′ = BT , and the functions with vectors. So,
the saddle point problem (2.24) becomes equivalent to the following linear system of equations(

A BT

B 0

) (
u
p

)
=

(
f
r

)
,

(
A BT

B 0

)
∈ R(nV +nQ)×(nV +nQ). (2.27)

The well-posedness of the saddle-point problem is given by the invertibility of the system matrix,
which equivalently insures a unique solution.
Considering the velocity and pressure separately, it is possible to solve the system (2.27) by solving
the first equation and then inserting it in the second one as follows,

u = A−1 (
f −BT p

)
, (2.28)(

BA−1BT
)
p = BA−1f − r. (2.29)

If (2.29) has a unique solution p, it can be inserted in (2.28), which will give a unique solution for
u as well. In order to find the unique solutions, both A and BA−1BT have to be non-singular. For
the latter to be true, the condition ker

(
BT

)
= {0} has to hold, i.e., B must be injective on the

range of A−1BT . Otherwise, if there is a non-zero p̃ ∈ ker
(
BT

)
, then also p + p̃ is a solution to

(2.29) and p is no longer a unique solution.
When pressure and velocity are considered at once, the whole system matrix must be non-singular.
This is given by the necessary condition nQ ≤ nV . If A is non-singular, the system matrix is
non-singular if and only if B has full rank. It will be shown that rank(B) = nQ if and only if

inf
q∈RnQ,q ̸=0

sup
v∈RnV ,v ̸=0

vTBT q

∥v∥2∥q∥2
≥ β > 0. (2.30)

Proof:
i) Let (2.30) be satisfied and rank(B) < nQ. In this case, there is a q ∈ RnQ , q ̸= 0, such that
q ∈ ker(BT ). Then, vTBT q = 0 for all v ∈ RnV , the supremum is zero and (2.30) cannot be
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satisfied. This is a contradiction to the initial assumption, hence rank(B) = nQ.
ii) Now let rank(B) = nQ. For each q ∈ RnQ , q ̸= 0, BT q ̸= 0 with BT ∈ RnV . Choosing v = BT q
in (2.30) gives

inf
q∈Rn,q ̸=0

sup
v∈Rnv,v ̸=0

vTBT q

∥v∥2∥q∥2
≥ inf

q∈Rn,q ̸=0

∥∥BT q
∥∥2

2∥∥BT q
∥∥

2 ∥q∥2
(2.31)

= inf
q∈Rn,q ̸=0

∥∥BT q
∥∥

2
∥q∥2

. (2.32)

The obtained relation takes the infimum over the Rayleigh quotient, which is identified as the
smallest eigenvalue of BBT and is expressed below

inf
q∈Rn,q ̸=0

qTBBT q

qT q
= λmin

(
BBT

)
.

Since B was assumed to have full rank λmin
(
BBT

)
> 0 and with (2.32), one gets the inequality

(2.30) in terms of the minimal eigenvalue

inf
q∈RnQ,q ̸=0

sup
v∈RnV ,v ̸=0

vTBT q

∥v∥2∥q∥2
≥ λ

1/2
min

(
BBT

)
> 0.

■

In essence, the saddle point problem (2.27) has a unique solution if A is non-singular and B
satisfies the inf-sup condition (2.30). This is formally stated in the next lemma:

Lemma on the Sufficient Condition on a(·, ·) for Well-posedness of (2.24) (Lemma
3.19 from [13])
With the assumption that the bilinear form a(·, ·) is V0-elliptic (2.26), the problem (2.24) is well-
posed if and only if the bilinear form b(·, ·) satisfies the following inf-sup condition

∃ β > 0, s.t. inf
q∈Q,q ̸=0

sup
v∈V,v ̸=0

b(v, q)
||v||V ||q||Q

≥ β. (2.33)

The proof can be found in [13] on pages 39 and 40. ■

2.5 Divergence-free vector spaces
For incompressible flow problems, one is interested in divergence-free and weakly divergence-free
spaces. In this section, the definitions of such spaces will be presented.
The space of vector fields in L2, with the divergence belonging to L2 is defined as

H(div,Ω) = {v ∈ L2(Ω) : ∇ · v ∈ L2(Ω)}. (2.34)

A particular space of divergence-free functions used in numerical analysis is defined by

Hdiv(Ω) = {v ∈ H(div,Ω) : ∇ · v = 0 and v · n = 0 on ∂Ω in the sense of traces}. (2.35)

If for a vector field v ∈ L1(Ω) with p ≥ 1 there exists a function θ ∈ L1
loc(Ω) such that

−
∫

Ω
∇ψ · vdx =

∫
Ω
ψθ dx, ∀ψ ∈ C∞

0 (Ω),

then the function θ is the weak divergence of v.
The weakly divergence-free spaces satisfy additionally the following condition∫

Ω
∇ψ · v dx = 0, ∀ψ ∈ C∞

0 (Ω).
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The space of weakly divergence-free functions can be formally defined using the spaces V and Q
from (2.16), (2.17) and represents the kernel of the operator B from the saddle point problem
(2.24). This space is namely

V0 = Vdiv = {v ∈ V : (∇ · v, q) = 0 ∀ q ∈ Q}. (2.36)

The divergence of the functions from Vdiv vanishes in the sense of L2 almost everywhere in Ω. The
regularity requirement for functions is thus weaker in Hdiv than in Vdiv.

2.6 Results for existence and uniqueness of a solution
In this section, the results for existence and uniqueness of a weak solution to (2.20) are presented.
The existence of a weak solution always holds, whereas the uniqueness only in cases of sufficiently
small external forces and small viscosity. If the solution is not unique, numerical simulations will
yield time-dependent solutions. The full theorems are formulated as follows:

Theorem on the Existence of a Solution (Theorem 6.17 in [13])
Let Ω ⊂ Rd, d ∈ 2, 3 be a bounded domain with Lipschitz boundary, ∂Ω and let f ∈ H−1(Ω).
Then there exists at least one solution of (2.20).

Theorem on the Existence and Uniqueness of a Solution for Small Data (Theorem
6.20 in [13])
Let the previous theorem on existence hold and let in addition

Ndiv||f ||H−1(Ω)

ν2 < 1 (2.37)

then problem (2.21) has a unique solution u ∈ Vdiv and problem (2.20) has a unique solution
(u, p) ∈ V ×Q.

In the last theorem, Ndiv represents the norm of the convective term with basis functions be-
longing to the space Vdiv. It is defined as

Ndiv = sup
u,v,w∈Vdiv\{0}

((u · ∇)v,w)
∥u∥V ∥v∥V ∥w∥V

.

The proofs of the theorems can be found in reference [6].
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Chapter 3

Finite Element Methods for the
Incompressible Navier-Stokes
Equations

This section aims to present fundamental results from the theory of finite element methods, fol-
lowing the lecture notes in [24] and the appendix B from the reference [13].

3.1 Brief Introduction into the Finite Element Method
3.1.1 The Ritz and Galerkin methods
The goal of the Finite Element Methods consists in computing an approximate solution to a
differential equation by looking for it in a finite dimensional space Vh, with the basis {ϕ1≤i≤N }.
The approximate solution has the form

uh =
N∑

i=1
uiϕi(x).

Given the function space Vh and the basis {ϕi(x)}, the approximate solution uh is completely
determined by the coefficients ui. The problem now consists in how to choose Vh and how to
determine the coefficients ui such that uh is a good approximation to the solution u of the original
problem.
The first idea, authored by Ritz in 1902, was to transform the boundary value problem into a min-
imization problem. This is rigorously captured by the Ritz representation theorem, given below.
The Hilbert space V will be considered with the inner product a(·, ·) : V × V → R and the norm
||v||V = a(v, v)1/2.

Representation theorem of Ritz.
Let f ∈ V ′ be a continuous and linear functional, then there is a uniquely determined u ∈ V with

a(u, v) = f(v), ∀v ∈ V. (3.1)

In addition, u is the unique solution of the variational problem

F (v) = 1
2a(v, v) − f(v) → min ∀v ∈ V. (3.2)

Proof.

(i) Proving the existence of a solution u of a variational problem:
Since f is continuous, it holds that

|f(v)| ≤ C||v||V ∀v ∈ V,
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from which follows
F (v) ≥ 1

2 ||v||2V − C||v||V ≥ −1
2C

2,

where the result from the necessary criterion for a local minimum of F (v) was used,

2
2 ||v||V − C = 0 ⇐⇒ ||v||V = C.

Hence, the function F (·) is bounded from below and

κ = inf
v∈V

F (v)

exists.

Let {vk}k∈N be a sequence with F (vk) → k for k → ∞. The parallelogram identity in a
Hilbert space gives

||vk − vl||2V + ||vk + vl||2V = 2||vk||2V + 2||vl||2V .

Using the linearity of f(·) and κ ≤ F (v) for all v ∈ V , one obtains

||vk − vl||2V =

= 2||vk||2V + 2||vl||2V − 4
∣∣∣∣∣∣∣∣vk + vl

2

∣∣∣∣∣∣∣∣2

V

− 4f(vk) − 4f(vl) + 8f
(
vk + vl

2

)
= 4F (vk) + 4F (vl) + 4F

(
vk + vl

2

)
≤ 4F (vk) + 4F (vl) − 8κ → 0, for k, l → ∞.

Hence, {vk}k∈N is a Cauchy sequence. Since V is a complete space, there exists a limit u of
this sequence with u ∈ V . Because F (·) is continuous, it is F (u) = κ and u is a solution of
the variational problem.

(ii) Showing that each solution of the variational problem (3.2) is also a solution of (3.1):
For arbitrary v ∈ V , it holds that

Φ(ϵ) = F (u+ ϵv) = 1
2a(u+ ϵv, u+ ϵv) − f(u+ ϵv)

= 1
2a(u, u) + ϵa(u, v) + ϵ2

2 a(v, v) − f(u) − ϵf(v)

If u is a minimum of the variational problem, then the function Φ(ϵ) has a minimum at ϵ = 0.
The necessary condition for a local minimum is then

0 = Φ′(0) = a(u, v) − f(v), ∀v ∈ V.

(iii) Proving the uniqueness of the solution u:
To this end, proving the uniqueness of the solution of the equation (3.1) is sufficient. Other-
wise, the existence of two solutions of the variational problem (3.2) would be a contradiction
to the condition from the previous step. Let u1 and u2 be two solutions of the equation (3.1).
The difference of both equations yields the following,

a(u1 − u2, v) = 0, ∀v ∈ V.

In particular, for v = u1 − u2, ||u1 − u2||V = 0, such that u1 = u2.

■

The Poisson problem with Dirichlet boundary conditions can be used as an example

− ∆u = f. in Ω, u = 0, on ∂Ω. (3.3)
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Its equivalent minimization problem can be formulated as follows,

min
u∈H1

0 (Ω)

(
1
2

∫
Ω

|∇u(x)|2dx−
∫

Ω
f(x)u(x)dx

)
. (3.4)

For the latter problem to be well-defined, the following Hilbert spaced, defined on a domain Ω ∈ Rn,
are needed

H1(Ω) = {u ∈ L2(Ω), ∇u ∈ (L2(Ω))d}, H1
0 = {u ∈ H1(Ω), u = 0 on ∂Ω} (3.5)

The associated scalar product, the norm in H1(Ω), the semi-norm in H1(Ω) and the norm in L2(Ω)
are

(u, v)1 =
∫

Ω
∇u(x) · ∇v(x)dx+

∫
Ω
u(x)v(x)dx,

||u||1,Ω =
∫

Ω
|∇u(x)|2dx+

∫
Ω
u(x)2dx,

|u|1,Ω =
∫

Ω
|∇u(x)|2dx,

||u||0,Ω =
∫

Ω
u(x)2dx.

The standard minimization problem with a cost functional J defined on a Hilbert space V , of the
form

min
u∈V

J [u]

consists in solving the associated Euler equation J ′[u] = 0, by computing the Fréchet derivative.
This approach results in the variational formulation which, in case of this problem, reads∫

Ω
∇u(x) · ∇v(x)dx =

∫
Ω
f(x)v(x)dx ∀v ∈ H1

0 (Ω). (3.6)

The Ritz - Galerkin method.
The principle of the Galerkin (or Ritz-Galerkin) method consists then in looking for a solution
of the variational problem (3.2), in a finite dimensional space Vh of the space V where the exact
solution of (3.1) is defined. In order to approximate this solution with a numerical method, it
will be assumed that V has a countable orthonormal basis (Shauder basis). Then, there are finite-
dimensional subspaces V1, V2, ... ⊂ V with dimVk = k with the property that for each u ∈ V and
each ϵ > 0, there is a K ∈ N and a uk ∈ Vk with

||u− uk||V ≤ ϵ, ∀k ≥ K. (3.7)

An inclusion of the form Vk ⊂ Vk+1 is not required. The Ritz approximation of (3.1) and (3.2) is
then given by the following problem:
Find uk ∈ Vk with

a(uk, vk) = f(vk), ∀vk ∈ V. (3.8)
Best approximation property.
Additionally, the solution of (3.8) is the best approximation of u in Vk, which means that it satisfies

||u− uk||V = inf
vk∈Vk

||u− vk||V . (3.9)

Proof.
Taking the difference between (3.3) and (3.8), one gets the following Galerkin orthogonality,

a(u− uk, vk) = 0, ∀vk ∈ Vk. (3.10)

Hence, (u − uk) ⊥ Vk, meaning that uk is the orthogonal projection of u onto Vk with respect to
the inner product of V .
Taking wk ∈ Vk as an arbitrary element, using the Galerkin orthonormality (3.10) and the Cauchy-
Schwarz inequality, it follows that

||u− uk||2V = a(u− uk, u− uk) = a(u− uk, u− (uk − wk))
= a(u− uk, u− vk) ≤ ||u− uk||V ||u− vk||V .

Since wk ∈ Vk is arbitrary, vk ∈ Vk is arbitrary too, as vk = uk − wk.
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(i) For ||u − uk||V > 0, division by ||u − uk||V gives the statement of the best approximation,
namely, ||u− uk||V ≤ ||u− vk||,∀vk ∈ Vk.

(ii) For ||u− uk||V = 0, the statement is trivially true.

■
Convergence of the Ritz approximation.

It is also possible to prove that the Ritz approximation converges, i.e.

lim
k→∞

||u− uk||V = 0.

Proof.
Using the best approximation property (3.9) and the property (3.7), one obtains

||u− uk||V = inf
vk∈Vk

||u− vk||V ≤ ϵ

for each ϵ < 0 and k ≥ K(ϵ). Hence, the convergence is proved. ■
Formulation as a linear system of equations.

In order to compute the solution uk, the basis functions {ϕk
i=1} of Vk are used. The equation of the

Ritz approximation (3.8) is satisfied for all vk if and only if it satisfied for each basis functions ϕi.
This follows from the linearity of the both sides of the equation with respect to the test function and
from the representation of vk ∈ Vk as a linear combination of the basis functions, vk =

∑k
i=1 αiϕi.

Plugging the test function in this form into (3.8) gives

a(uk, vk) =
k∑

i=1
αia(uk, ϕi) =

k∑
i=1

αif(ϕi) = f(vk).

The equation is satisfied if a(uk, ϕi) = f(ϕi), i = 1, .., k. On the other hand, if (3.8) holds, then it
holds for each basis function ϕi.
Now, writing the ansatz function as a linear combination of the basis functions uk =

∑k
j=1 u

jϕj

and using the basis functions as test functions, one obtains the following

k∑
j=1

a(ujϕj , ϕi) =
k∑

j=1
a(ϕj , ϕi)uj = f(ϕi), i = 1, ..., k.

The latter is equivalent to the linear system of equations Au = f , with the stiffness matrix
A = (aij)k

i,j=1 = a(ϕj , ϕi)k=1
i,j=1 and the right-hand side fi = f(ϕi), i = 1, ..., k.

Coming back to the example of the Poisson problem, one can write explicitly its variational
problem in terms of the basis (ϕ1, ..., ϕk) that characterizes the space Vk. Using the latter ansatz
and test functions, the variational form is expressed in the following way

k∑
j=1

uj

∫
Ω

∇ϕj(x) · ∇ϕi(x)dx =
∫

Ω
f(x)ϕi(x)dx, i = 1, ..., k.

Where the matrix A is defined by the entries
(∫

Ω ∇ϕi(x) · ∇ϕj(x)dx
)

1≤i,j≤k
, the vector of unknown

coefficients is u = (u1, ..., uk)T and the right-hand side is f =
(∫

Ω f(x)ϕ1(x)dx, ...,
∫

Ω f(x)ϕN (x)dx
)T .

Because the bilinear form a(·, ·) is an inner product, one can easily show that the matrix A is sym-
metric and positive definite, i.e.,

A = AT ⇐⇒ a(v, w) = a(w, v),∀v, w ∈ Vk,

xTAx > 0 for x ̸= 0 ⇐⇒ a(v, v) > 0,∀v ∈ Vk, v ̸= 0.

□

In case the bilinear form is not an inner product, but is bounded (2.25) and coercive (2.26),
it is possible to approximate the solution to (3.1) with the same idea as for the Ritz method, but
which is called the Galerkin method. An equivalent to the Ritz Representation Theorem in this
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case is the Lax-Milgram Theorem, whose statement and proof can be found in Appendix B1 of
[13]. The discrete problem using the Galerkin method consists in finding uk ∈ Vk such that

b(uk, vk) = f(vk), ∀vk ∈ Vk. (3.11)

The error estimate corresponding to this problem is given below.
Lemma of Cea.
Let b : V ×V → R be a bounded and coercive bilinear form on the Hilbert space V and let f ∈ V ′

be a bounded linear functional. Let u be a solution of (3.1) and uk be a solution of (3.11), then
the following error estimate holds

||u− uk|| ≤ M

m
inf

vk∈Vk

||u− vk||V , (3.12)

where the constants M and m are given in (2.25) and (2.26).
Proof.
The difference between (3.1) and (3.11) gives the error equation with the property of the Galerkin
orthogonality,

b(u− uk, vk) = 0, ∀vk ∈ Vk.

Using the Galerkin orthogonality, the coercivity (2.26) and boundedness (2.25) of the bilinear form,
one obtains

||u− uk||2V ≤ 1
m
b(u− uk, u− uk) = 1

m
b(u− uk, u− vk) ≤ M

m
||u− uk||V ||u− uk||V ,∀vk ∈ Vk.

By dividing both sides by ||u− uk|| ≠ 0, one obtains the statement of the lemma. ■

An important consideration for choosing the space Vh lies in its approximation properties. In
the Lemma of Cea, the error is bounded by a multiple of the best approximation error, where the
factor depends on the properties of the bilinear form. The study of the best approximation error
will hence be of importance in the error analysis.

For efficiency purposes, basis functions with a small support are used. Since the products
between basis functions vanish for most matrix components, sparse matrices are obtained, which
can be optimally handled. To this end, the domain is decomposed into triangles/tetrahedra or
quadrilaterals/hexahedra in 2D/3D and the basis functions are chosen to be low order polynomials,
on each of the elements. The freedom to choose the shape of the elements of the mesh offers great
flexibility to handle complicated geometries of the boundaries and contributes to the wide usability
of the method.

3.1.2 Construction of a finite element space
This section will provide details on how the finite-dimensional space Vk ⊂ V can be constructed
in a practical way. It follows the sources [24] and [13].
Let (K,P,Σ) be a triple such that

(i) K is a closed subset of Rn of non-empty interior,

(ii) P is a finite dimensional vector space of functions defined on K,

(iii) Σ is a set of linear forms on P of finite cardinality N , Σ = σK,1, ..., σK,N .

Definition 1 The elements of Σ are called degrees of freedom of the finite element.

Definition 2 Σ is said to be P - unisolvent if for any N-tuple α = (α1, ..., αN ), there exists
an unique element p ∈ P such that σK,i(p) = αi for i = 1, ..., N .

Definition 3 The triple (K,P,Σ) of Rn is called Finite Element if it satisfies (i), (ii) and (iii)
and if Σ is P -unisolvent.

In the latter definition, K is the domain of definition of the finite element, P is the finite
dimensional space of the approximation, and Σ uniquely defines a local basis of P for α chosen
from the set of Cartesian unit vectors. This triple builds the finite element matrices associated to
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the variational formulation applied to functions in the approximation space P . The unisolvence
property ensures that the elements of P characterized by the degrees of freedom form a local basis
of P . This is given by the following conditions from Lemmas 1 and 2.

Lemma 1 The set Σ is P -unisolvent if and only if the two following properties are satisfied

(i) dim P = |Σ|=N,

(ii) If σK,j = 0 for j = 1, ..., N , then p = 0.

Lemma 2 The set Σ is P -unisolvent if and only if the two following properties are satisfied

(i) dim P = |Σ|=N,

(ii) There exist N linearly independent functions pi ∈ P , i = 1, ..., N such that σK,j(pi) = δij .

Both lemmas check if the dimension equals the number of degrees of freedom and then check the
injectivity or the surjectivity, which both imply bijectivity given the correct dimension, of the
mapping P −→ RN , p 7→ (σK,1(p), ..., σK,N (p)).

The Global Functionals.
Let the global functionals σ1, ..., σN : Cs(Ω) → R be continuous linear functionals of the same
type as in the set of linear form Σ. The restriction of functionals to Cs(K) defines a set of local
functionals σK,1, ..., σK,N , where it is assumed that the local functionals are unisolvent on P (K). □

The Finite Element Space.
A basis function defined on Ω with v|K ∈ P (K) for all K ∈ T h is called continuous with respect
to the functional σi : Ω → R if

σi(v|K1) = σj(v|K2), ∀K1,K2 ∈ ωi,

where ωi is the union of all mesh cells Kj , for which there is a p ∈ P (Kj) with σi(p) ̸= 0.
The space below is defined as the finite element space:

S = {v ∈ L∞(Ω) : v|K ∈ P (K) and v is continuous with respect to σi, i = 1, ..., N}.

The global basis {ϕj}N
j=1 of S is defined by the condition

ϕj ∈ S, σi(ϕ) = δij , i, j = 1, ..., N.

A global basis function coincides with a local basis function on each cell, which implies the unique-
ness of the global basis function.
The continuity of the global functionals {σi}N

i=1 does not always imply the continuity of the finite
element functions. This depends on the definition of the functionals that determine the finite
element space. □
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3.2 H1-Conforming Methods
This section presents the formalism of the classical methods used to solve the Stokes equations
and explains the origin of the problems with their approximated solutions, which this thesis aims
to address, namely violation of mass conservation and lack of pressure robustness. To that end,
the Stokes finite element problem is presented, together with the necessary conditions for solvabil-
ity. Further, pairs of finite element spaces for these methods will be introduced, as well as error
estimates with their convergence rates. The structure and content of the section follows closely
Section 3 from [14] and Chapter 4.2 from [13], to which it is referred for certain proofs and further
details.

3.2.1 The Galerkin finite element method
The variational formulation of the incompressible Navier-Stokes equations from Chapter 2.3 (2.20)
restricted to the Stokes case, i.e., steady-state flow with large viscosity, has the following form:
Find the weak solution (u, p) ∈ V ×Q := H1

0(Ω) ∩ L2
0(Ω), which satisfies the system below

a(u,v) + b(v, p) = (f ,v) ∀v ∈ V , (3.13)
b(u, q) = (g, q) ∀q ∈ Q, (3.14)

with a(u,v) = ν(∇u,∇v) and b(v, q) = −(∇ · v, q).
The finite element method aims to approximate the solution above using finite-dimensional spaces
of piecewise polynomials V h ×Qh ⊂ V ×Q on a triangulation of the domain Ω, with mesh cells K
∈ T h. The Galerkin finite element method to solve the Stokes equations has the following form:
Find the solution (uh, ph) ∈ V h ×Qh to the system

a(uh,vh) + b(vh, ph) = (f ,vh) ∀vh ∈ V h, (3.15)
b(uh, qh) = (g, qh) ∀qh ∈ Qh. (3.16)

Since the last lemma of Chapter 2.4 implies that solving the Stokes problem (3.13) - (3.14) requires
the coercivity of the a(·, ·) bilinear form and a b(·, ·) bilinear form that satisfies the inf-sup condition
(2.33), similar requirements will have to be imposed on the finite element problem (3.15) - (3.16).
This will ensure existence and uniqueness of the approximated solution, as well as convergence to
the analytical solution, as the mesh width becomes smaller. To this end, the finite element spaces
V h and Qh must satisfy the discrete inf-sup condition below from the Remark 3.51 of [13].

The discrete inf-sup condition.(Remark 3.51 from [13])
The combination of spaces V h and Qh is inf-sup stable if it holds that

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

bh(vh, qh)
||vh||V h ||qh||Qh

≥ βh
is > 0 (3.17)

or equivalently if there is a βh
is > 0 such that

sup
vh∈V h\{0}

bh(vh, qh)
||vh||V h

≥ βh
is ||qh||Qh , ∀qh ∈ Qh. (3.18)

Here, the bilinear form bh : V h ×Qh → R is defined by

bh(vh, qh) = −
∑

K∈T h

(∇ · vh, qh)K . (3.19)

The norms in the denominator are defined as follows

||vh||V h =

 ∑
K∈T h

(∇vh,∇vh)K

1/2

, ||qh||Qh = ||qh||L2(Ω). (3.20)

□
Since the finite element spaces is this chapter are conforming, i.e., V h ⊂ V and Qh ⊂ Q, the
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bilinear form bh(·, ·) is identical to b(·, ·) and can be expressed with an integral over the domain
Ω. Additionally, the velocity norm is ||vh||V h = ||∇vh||L2(Ω). This, however, will not be the case
for the H(div)-conforming finite elements, discussed in Chapter 3.3, where the generality of the
definitions above will be of use.
Spaces that satisfy this condition are presented in Section 3.2.2, from which the Taylor-Hood pairs
Pk/Pk−1, k ≥ 2 and the MINI element P1 ⊕ V h

bub/P1 will be used for comparison with H(div)-
conforming spaces in the numerical studies from Chapter 4.
Computations with the (discretely) inf-sup stable pairs, however, do not ensure even a weakly
divergence-free (2.5) approximation uh to the pointwise divergence-free (2.34) solution u. The
reason lies in the fact that the discrete inf-sup condition only implies that the discrete divergence
operator (3.21) is surjective from V h to Qh.

The discrete divergence operator
The operator ∇·h : V h→ Qh is called discrete divergence and is defined as

(∇ ·h vh, qh) = (∇ · vh, qh) ∀qh ∈ Qh. (3.21)

□
Hence, the divergence-free condition is enforced only locally and the discretely inf-sup stable pairs
of spaces satisfy the condition ∇·h V h = Qh, but the global divergence-free property does not
hold, i.e., ∇ · V h ̸⊂ Qh. This causes the limitations of the violation of mass and lack of pressure-
robustness, in a way which becomes clear upon analyzing the error estimates, as done in section
3.2.3.

3.2.2 Inf-sup stable pairs of finite element spaces
This section will present pairs of finite element spaces that satisfy the (discrete) inf-sup condition,
based on Chapter 3.6 from [13].

1. The MINI Element.
This element is defined on simplicial meshes and is given by

V h = P1 ⊕ V h
bub, Qh = P1, (3.22)

with V h
bub - the space of local bubble functions

V h
bub = {vh

bub : supp(vh
bub) = K, vh

bub|K = α
d+1∏
i=1

λi, K ∈ T h, α ∈ R},

where λi are the barycentric coordinates of the simplex K. It follows that

vh
bub|K ∈ Pd+1(K) ∩H1

0 (K).

This pair was first introduced in [2] and it is the lowest order conforming inf-sup stable pair
of finite element spaces. Its construction relies on the idea of enriching the standard finite
element space for velocity such that the discrete inf-sup condition (3.17) is satisfied. The
proof of the latter can be found in Theorem 3.121. of [13].

2. The Family of Taylor-Hood Finite Element Spaces.
This family on triangular and tetrahedral grids is given by Pk/Pk−1, k ≥ 2, and on quadri-
lateral and hexahedral grids by Qk/Qk−1, k ≥ 2. Therefore, the pressure is approximated by
a continuous function, so bh(·, ·) = b(·, ·) and || · ||V h = || · ||V .
The proof that the pair Pk/Pk−1, k ≥ 2 satisfies the discrete inf-sup condition (3.17) in two
and three dimensions can be found in Theorems 3.128 and 3.129 of [13]. And the proof of
the latter for the pair Qk/Qk−1, k ≥ 2 in two and three dimensions can be found in [19] and
[20] respectively.
The pairs from the Taylor-Hood finite element family are among the most popular ones used,
especially the pairs with k = 2, because of the simplicity of their implementation.

3. Spaces on Simplicial Meshes with Discontinuous Pressure.
These spaces are of interest due to the fact that they satisfy a property that is called in the
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literature local mass conservation. An illustration of the latter follows from the Remark 4.32.
in [13]:
Let us consider meshes with affinely mapped grid cells. Since the piecewise constant functions
are a subspace of a discontinuous pressure finite element space, one can make the following
changes in the discrete continuity equation

0 =
∑

K∈T h

∫
K

(∇ · uh)q(x)dx =
∑

K∈T h

qh

∫
K

(∇ · uh)(x)dx ∀qh ∈ P0 or qh ∈ Q0. (3.23)

Considering an arbitrary mesh cell K1 and another arbitrary mesh cell K2 ̸= K1, one can
choose the following

qh =


1, in K1,

− |K1|
|K2| , in K2, qh ∈ L2

0(Ω).
0, else,

Substituting qh in (3.23), one obtains∫
K2

∇ · uh(x)dx = |K2|
|K1|

∫
K1

∇ · uh(x)dx ∀K2 ∈ T h.

It follows that∫
Ω

∇ · uh(x)dx =
∑

K∈T h

∫
K

∇ · uh(x)dx =
∑

K∈T h

|K|
|K1|

∫
K1

∇ · uh(x)dx

= 1
|K1|

∫
K1

∇ · uh(x)dx
∑

K∈T h

|K|

= |Ω|
|K1|

∫
K1

∇ · u(x)dx.

(3.24)

Using integration by parts, the result below is obtained∫
Ω

∇ · uh(x)dx =
∫

∂Ω
uh · n(s)ds = 0.

Therefore, the last term on the right-hand side of (3.24) vanishes and since the cell K1 was
chosen to be arbitrary, the local mass conservation equation is obtained∫

K

∇ · uh(x)dx = 0 ∀K ∈ T h. (3.25)

However, it is shown in Fig. 4.4. of [13] that the magnitude of the error ||∇ · uh||L2(Ω) is
the same for both discretizations with continuous and certain discretizations with discontinu-
ous pressure finite element space despite the local mass conservation property of the latter. □

Examples of spaces with discontinuous pressure are presented below.

(i) The Scott-Vogelius Pair.
This pair is given by Pk/P

disc
k−1, k ≥ 2. It has the property of being weakly divergence-

free, i.e.,
∇ · V h = ∇ · Pk = P disc

k−1 = Qh.

It is shown in Example 3.73. from [13] that the Scott-Vogelius finite element does not
generally satisfy the discrete inf-sup condition (3.17). However, it can be proved that
it satisfies the discrete inf-sup condition (3.17) on special meshes.
In two dimensions, it is proved in [23] that the discrete inf-sup condition (3.17) is ful-
filled for k ≥ 4 if there is no singular vertex in the mesh. A vertex is singular if the edges
that meet at the vertex fall onto two straight lines. For this purpose, barycentric-refined
grids are used, where from an admissible triangular mesh, new edges are introduced by
connecting all the vertices of the mesh cell with its barycenter (an example is Fig. 3.9.
from [13]). A proof for the fulfilment of the discrete inf-sup condition (3.17) for Pk/P

disc
k−1
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with k ∈ {2, 3} on barycentric-refined meshes can be found in [12].
In three dimensions, it is proved in [22] that the condition is fulfilled for k ≥ 3 on
barycentric-refined meshes, where it avoids singular vertices and edges.

(ii) The Pbubble
2 /Pdisc

1 and Pbubble
3 /Pdisc

2 Pairs.
These pairs were proposed in [5] with the goal of obtaining an inf-sup stable pair of
finite element spaces with a piecewise linear and discontinuous pressure on arbitrary
simplicial grids by enriching the velocity space using bubble functions.
In two-dimensions, mesh cell bubble functions are added. For each triangular mesh
cell, the cell bubble function is given by the product of the barycentric coordinates
λ1λ2λ3. In three dimensions, it is proposed in [5] that the space is enriched with all
the mesh cell bubble functions and all the face bubble functions. For a mesh cell K
with barycentric coordinates λ1, ..., λ4, the mesh cell bubble functions are in this case
λ1λ2λ3λ4 and the four face bubble functions are the product of three mutually distinct
barycentric coordinates.
In practice, one has to note that the bubble functions are higher order degree poly-
nomials and require higher order quadrature rules. In [8] the choice P bubble

2 /P disc
1 is

considered to be optimal. An example of a higher order inf-sup stable pair by enrich-
ment with bubble functions is P bubble

3 /P disc
2 given in [5].

(iii) The Bernardi-Raugel Element.
The Bernandi-Raugel finite element of first order PBR

1 /P0 is constructed by enriching
the space P1(K) with vector-valued basis functions. Using the barycentric coordinates
λi, i = 1, ..., d+ 1, face (or in two dimensions edge) bubble functions are defined by

vh
bub,i =

d+1∏
j=1,j ̸=i

λjni, i = 1, ..., d+ 1,

where ni is the unit normal pointing outward on the face Ei, which is opposite to the
vertex ai. The local finite element space is given by

PBR
1 (K) = P1(K) ⊕ span

{
vh

bub,i, i = 1, ..., d+ 1
}
.

The degrees of freedom are the values at the vertices vh(ai), i = 1, ..., d + 1, and the
fluxes through the faces v · ni, i = 1, ..., d+ 1.
The combination of the basis functions and local functionals leads to continuous func-
tions in the global velocity space (Remark 3.138. in [13]).
The proof of discrete inf-sup stability of the global space is based on the construction
of the Fortin operator (presented in Lemma 3.78. of [13]). The properties of the Fortin
operator are proved in Lemma II.4 of [3].
According to [3], the construction of the velocity space and the proof of the inf-sup
condition can be extended to regular families of triangulations made of quadrilaterals.
Similarly, in three-dimensions, the Bernardi-Raugel element of order two PBR

2 /P disc
1 is

defined (details in Remark 3.140 of [13]).

4. Spaces on Quadrilateral and Hexahedral Meshes with Discontinuous Pressure.
The most common pairs of spaces of this type are Qk/P

disc
k−1 with k ≥ 2. In Example 3.71. of

[13] it is shown that the pair of spaces Q1/P0 = Q1/Q0 is in general not inf-sup stable. For
k ≥ 2 there are two types of Qk/P

disc
k−1 spaces - mapped and unmapped.

For the unmapped type, the local space Qk is defined by a mapping from a reference cell K̂
while the space P disc

k−1(K) is defined on the mesh cell K. The mapped type is defined entirely
with the reference transformation. This transformation from a quadrilateral or hexahedral
reference cell is in general a bilinear or trilinear mapping. Therefore, it gives rise to mesh
cells with curved boundaries (Remark 3.141. from [13]) and, in general, does not preserve
the type of mapped functions, i.e., the images of polynomials are generally not polynomials.
Hence, the mapped and unmapped pairs of spaces are in general different.
Proofs of the fulfilment of the discrete inf-sup condition (3.17) for the unmapped pairs of
spaces Qk/P

disc
k−1 in two dimensions can be found in the Chapter II, Theorem 3. of [7] and in

case of the mapped pairs of spaces Qk/P
disc
k−1 for d dimensions can be found in [18].
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3.2.3 Error estimates for the Galerkin method
The derivation of error estimates for the above inf-sup stable pairs with the property that ∇·V h ̸⊂
Qh requires the definition of the space of discretely divergence-free functions V h

div below

V h
div = {vh ∈ V h : bh(vh, qh) = 0, ∀qh ∈ Qh}, (3.26)

which is the kernel of the discrete divergence operator (3.21). The functions of this space, as men-
tioned above, are not generally divergence-free (2.35) nor weakly divergence-free, i.e., V h

div ̸⊂ Hdiv
and V h

div ̸⊂ Vdiv. Nevertheless, they can be used as test functions both in the continuous problem
(3.13)-(3.14) and the finite element problem (3.15)-(3.16) as V h

div ⊂ V h ⊂ V holds.

Error estimate for the gradient of velocity. (based on Sect. 3 [14] and Ch. 4.2 [13])
By choosing such test functions, qh = 0 and taking the difference, the following relation is obtained

a(u − uh,vh) + b(vh, p− ph) = 0 ∀vh ∈ V h
div. (3.27)

Because of the local divergence-free property b(vh, ph) = 0 and the error equation reduces to

a(u − uh,vh) + b(vh, p) = 0 ∀vh ∈ V h
div.

But since globally, the test function isn’t divergence-free, the dependence on pressure cannot be
removed from the error estimate for velocity. To bring (3.27) to a more suggestive form, a term
b(vh, qh) = 0 for arbitrary qh ∈ Qh is added on the left-hand side. Moreover, the following
decomposition for the error is substituted in (3.27)

u − uh = (u − ũh) − (uh − ũh) =: η − ϕh, for arbitrary ũh ∈ V h
div,

alongside with choosing vh = ϕh. These changes lead to the expression

ν||∇ϕh||2L2(Ω) = ν(∇η,∇ϕh) − (∇ · ϕh, p− qh), ∀qh ∈ Qh. (3.28)

Applying the Cauchy-Schwarz inequality to the first term on the right-hand side, yields

|(∇η,∇ϕh)| ≤ ||∇η||L2(Ω)||∇ϕh||L2(Ω).

Similarly, applying the Cauchy-Schwarz inequality to the second term on the right-hand side,
together with the estimate ||∇ · ϕh||L2(Ω) ≤ ||∇ϕh||L2(Ω) (Lemma 3.179 in [13]), gives

| − (∇ · ϕh, p− qh)| ≤ ||p− qh||L2(Ω)||∇ · ϕh||L2(Ω)

≤ ||p− qh||L2(Ω)||∇ϕh||L2(Ω).

By further using the two inequalities above in equation (3.28) and dividing it by ν||∇ϕh||L2(Ω) ̸= 0
the relation below is obtained

||∇ϕh||L2(Ω) ≤ ||∇η||L2(Ω) − ν−1||p− qh||L2(Ω), ∀qh ∈ Qh.

For the case ||∇ϕh||L2(Ω) = 0, the relation trivially holds, and the case ν = 0 is excluded since it
is not physically relevant. Ultimately, combining it with the triangle inequality of the gradient of
the error decomposition, gives

||∇(u − uh)||L2(Ω) ≤ ||∇ϕh||L2(Ω) + ||∇η||L2(Ω)

≤ 2||∇ϕh||L2(Ω) + ν−1||p− qh||L2(Ω).

The resulting estimate in terms of the best approximation errors is then given by

||∇(u − uh)||L2(Ω) ≤ 2 inf
ũh∈V h

div

||∇(u − ũh)||L2(Ω) + ν−1 inf
qh∈Qh

||p− qh||L2(Ω). (3.29)

■
Error estimate for the divergence of velocity. (based on Sect.3 [14] and Ch. 4.2 [13])

The error in the divergence is bounded by the same estimate (3.29), since from Lemma 3.179 [13]

||∇ · v||L2(Ω) ≤ ||∇v||L2(Ω) ∀v ∈ H1
0 (Ω), (3.30)
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so it holds that
||∇ · (u − uh)||L2(Ω) ≤ ||∇(u − uh)||L2(Ω).

Moreover, since ∇ · u = 0, ||∇ · (u − uh)||L2(Ω) = ||∇ · uh||L2(Ω) and the divergence error estimate
can be written as

||∇ · uh||L2(Ω) ≤ 2 inf
ũh∈V h

div

||∇(u − ũh)||L2(Ω) + ν−1 inf
qh∈Qh

||p− qh||L2(Ω). (3.31)

■
Using the estimate (3.29) together with similar tools to the ones used in its derivation above, errors
in terms of the best approximations can be derived for pressure and velocity. In case of the former,
the inf-sup condition is also used and in case of the latter — a formulation of a dual problem
introduced in (3.33). Here only the results are presented, with a reference to proofs of Theorems
4.25 and 4.28 in [13] for the full derivation.

Error estimate for pressure. (Theorem 4.25 in [13])

||p− ph||L2(Ω) ≤ 2ν
β

inf
vh∈V h

div

||∇(u − vh)||L2(Ω) +
(

1 + 2
β

)
inf

qh∈Qh
||p− qh||L2(Ω) (3.32)

□
Error estimate for velocity. (Theorem 4.28 in [13])

Let (ϕf̂ , ξf̂ ) be the solution of the dual Stokes problem for a velocity in Vdiv: For a given f̂ ∈ L2(Ω),
find (ϕf̂ , ξf̂ ) ∈ V ×Q such that

−ν∆ϕf̂ − ∇ξf̂ = f̂ in Ω,
∇ · ϕf̂ = 0 in Ω.

(3.33)

Then the following error estimate for velocity holds

||u − uh||L2(Ω) ≤
(

||∇(u − uh)||L2(Ω) + ν−1 inf
qh∈Qh

||p− qh||L2(Ω)

)
× sup

f̂∈L2(Ω)\{0}

1
||f̂ ||L2(Ω)

[
inf

ϕh∈V h
div

||∇(ϕf̂ − ϕh)||L2(Ω) + inf
rh∈Qh

||ξf̂ − rh||L2(Ω)

]
.

(3.34)

□
Using interpolation errors to estimate the best approximation errors, the expressions (3.29)-(3.32)
and (3.34) can be transformed to include convergence orders. The results are presented below.

Error expressions with interpolation estimates.(Corollary 4.30 in [13])
Let (u, p) be the solution to the Stokes equations with u∈ Hk+1(Ω)∩V and p ∈ Hk(Ω)∩Q. Then,
the error estimates (3.35)-(3.38) hold for the following inf-sup stable pairs of finite element spaces

(i) The MINI element P bubble
1 /P1;

(ii) The Taylor-Hood element Pk/Pk−1, k ≥ 2;

(iii) The elements P bubble
2 /P disc

1 , P bubble
3 /P disc

2 , PBR
2 /P disc

1 and Qk/P
disc
k−1 for k ≤ 2.

||∇(u − uh)||L2(Ω) ≤ Chk(||u||Hk+1(Ω) + ν−1||p||Hk(Ω)), (3.35)
||∇ · uh||L2(Ω) ≤ Chk(||u||Hk+1(Ω) + ν−1||p||Hk(Ω)), (3.36)
||p− ph||L2(Ω) ≤ Chk(ν||u||Hk+1(Ω) + ||p||Hk(Ω)), (3.37)

||u − uh||L2(Ω) ≤ Chk+1(||u||Hk+1(Ω) + ν−1||p||Hk(Ω)), (3.38)

with the constant C being dependent on the inverse of the inf-sup constant β.
The estimate (3.38) requires in addition a regular solution to the Stokes dual problem (3.33). The
meaning of regular in this context is defined in Remark 4.27 of [13], but for the purpose of this
work it will be assumed given, as the two-dimensional domain from the numerical studies in Ch.
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4 is bounded, convex and polyhedral. □

The error estimates (3.35), (3.36) and (3.38) show a scaling of the velocity errors with pressure
and the inverse of viscosity. Therefore, in problems where the values of either pressure and/or vis-
cosity are much larger than velocity, the second term in the error estimate dominates and the value
of obtained velocity scales the same way as pressure and/or inversely proportional to viscosity.
This phenomenon is identified as lack of pressure robustness and is closely linked to the fact that
the functions in the finite element space are not weakly divergence-free V h ̸⊂ Vdiv, i.e., conserva-
tion of mass is not ensured. If this were not the case, i.e., if V h ⊂ Vdiv, the second term on the
right hand-side in (3.28) would vanish and the error estimate (3.29) would not contain the best
approximation of the pressure. As a result, the best approximation of pressure would have not
been inherited by expressions (3.35), (3.36) and (3.38), so the velocity errors would not contain
the pressure term, making the method pressure robust.

3.3 Techniques for reducing the violation of mass conserva-
tion

The presentation in this section is based on Chapter 4.6 from [13].

1. The Grad-Div Stabilization
This method consists in adding a penalty term with user-chosen parameters. These param-
eters depend on the mesh size and on the problem at hand, and they have to be carefully
chosen to yield the optimal order of convergence. Based on the weak form of the Stokes prob-
lem (3.13) and (3.14) with g = 0, the grad-div stabilization method in case of conforming
finite element spaces is: Find (uh, ph) ∈ V h ×Qh such that

ν(∇uh,∇vh) − (∇ · vh, ph) +
∑

K∈T h

µK(∇ · uh,∇ · vh)K = (f ,vh) ∀vh ∈ V h,

−(∇ · uh, ph) = 0 ∀qh ∈ Qh,

(3.39)

with the stabilization parameters {µK}, µK ≥ 0.
The bilinear form ah(·, ·) is defined in the expression below

ah(uh,vh) = ν(∇ · uh,∇ · vh) +
∑

K∈T h

µK(∇ · uh,∇ · vh)K ∀uh,vh ∈ V h.

Since the first term is symmetric and positive definite and the second is symmetric and pos-
itive semi-definite, the bilinear form ah(·, ·) is V h − elliptic and, in particular, V h

div − elliptic.
So, the existence and uniqueness of a solution for pairs of the finite element spaces that satisfy
the discrete inf-sup condition (3.17) is ensured. In practice, a good choice of stabilization
parameters is determined by optimal error estimates with respect to some norm. Ultimately,
the dependence of the error bound (3.41) on the parameter µ is determined by whether the
sequence of divergence-free subspaces of the velocity space has the so-called optimal approx-
imation property (3.40) defined below.

Optimal Approximation Property of a Sequence of Divergence-free Subspaces.
Let us consider a quasi-uniform family of triangulations {T h}h>0 with characteristic mesh
size h. If for all v ∈ Vdiv ∩Hk+1(Ω) there exists a sequence {vh} ∈ V h

div,div, where V h
div,div =

Vdiv ∩ V h
div, with

||∇(v − vh)||L2(Ω) ≤ Cdivh
k||v||Hk+1(Ω) (3.40)

and Cdiv independent of h, then the sequence of spaces V h
div,div possesses the optimal approx-

imation property with respect to the space Vdiv. □

The pair of inf-sup stable finite element spaces and the triangulation of the domain influence
whether the optimal approximation property holds. Special cases exist such as Taylor-Hood
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pairs of spaces Pk/Pk−1 with k ≥ d on barycentric-refined simplicial grids or the MINI ele-
ment on Union Jack grids. In the general case, however, sequences with such a property are
not expected to exist.

Finite Element Error Estimate for the L2(Ω) Norm of the Gradient of Velocity
Given the assumptions of the Theorem 4.21 from [13], let (u, p) be the solution of (3.13)-
(3.14) and let (uh, ph) be the solution of (3.39). Then, the error in the L2(Ω) norm of the
gradient of velocity is bounded by

||∇(u − uh)||2L2(Ω) ≤ inf
vh∈V h

div

(
4||∇(u − vh)||2L2(Ω) + 2µ

ν
||∇ · vh||2L2(Ω)

)
+ 2
µν

inf
qh∈Qh

||p− qh||2L2(Ω).

(3.41)

The proof can be found in [13] on pages 222 and 223. □

When determining the error bounds in cases of Taylor-Hood pairs or the MINI element, a-
priori estimates of (3.41) can be computed for cases in which {V h

div,div} possesses the optimal
approximation property or not (the estimates and the proofs can be found in Corollaries
4.124 and 4.126 from [13]). By choosing the optimal parameters in all cases (Remarks 4.125
and 4.127 in [13]), one can see to what extent the violation of conservation of mass is reduced
using this technique. Overall, in comparison to the Galerkin discretization, the impact of the
inverse of the viscosity and of the pressure on the error bounds is reduced. Nevertheless, it
does not remove these problems nor lead to weakly divergence-free discrete solutions. Still,
it is a popular stabilization method for incompressible flow problems due to its simplicity.

2. Choosing Appropriate Test Functions
The goal of this technique is to obtain a finite element velocity error estimate ||u − uh||V h

that is independent of pressure and viscosity. i.e., achieve pressure robustness. In that con-
text, the analysis of the Stokes equations for the Crouzeix-Raviart finite element Pnc

1 /P0 will
be discussed.

Error Estimate for the V h Norm of the Velocity.
Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain with polyhedral and Lipschitz continuous
boundary and let (u, p) be a unique and sufficiently smooth solution of the Stokes problem.
Consider a quasi-uniform family of triangulations and let (uh, ph) ∈ Pnc

1 × P0 be the unique
solution of the Stokes finite element problem, then the following error estimate holds

||u − uh||V h ≤ Ch(|u|H2(Ω) + ||∇p||L2(Ω)), (3.42)

with the constant Ω depending on the regularity of the family of triangulations.
Proof.
The expression (3.42) is found by substituting the Best Approximation Error Estimate for
V h

div (Lemma 4.53, page 167 in [13])

inf
vh∈V h

div

||u − vh|| ≤ Ch|u|H2(Ω), (3.43)

and the Consistency Error Estimate (Lemma 4.55, page 168 in [13])

|ah(u,v) − (f ,v)| ≤ Ch(|u|H2(Ω) + ||∇p||L2(Ω))||v||V h , (3.44)

in the Abstract Error Estimate or Second Lemma of Strang (Lemma 4.51, page 167 in [13])

||u − uh||V h ≤ 2 inf
vh∈V h

div

||u − vh||V h + inf
vh∈V h

div,||vh||
V h =1

|ah(u,vh) − (f ,vh)|. (3.45)

■
Upon a detailed inspection of the proof of the Consistency Error Estimate (Lemma 4.55,
page 168 in [13]), one can see that the pressure term does not vanish because a term coming
from (f ,v)K does not become zero for functions v ∈ V h

div. If the function v is chosen from
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an appropriate space, this term vanishes and a pressure robust method is obtained. In par-
ticular, v ∈ Vdiv ⊕ V h

Hdiv, where V h
Hdiv is the appropriate space, a subspace of Hdiv(Ω), and

moreover a subspace of H(div,Ω). In the first presentation of the method in the literature
[1], it was proposed to use on the right-hand side of the Stokes equations a test function from
the Raviart-Thomas space of the lowest order RT0, which is an appropriate projection of the
Crouzeix-Raviart test function. The following modified problem is therefore obtained:

The modified problem.
Find (uh, ph) ∈ V h ×Qh = Pnc

1 × P0 such that

νah(uh,vh) + bh(vh, ph) = (f , PE,RT0vh), ∀vh ∈ V h,

bh(uh, qh) = 0, ∀qh ∈ Qh,
(3.46)

with the bilinear forms

ah(uh,wh) =
∑

K∈T h

(∇vh,∇wh)K and bh(vh, qh) = −
∑

K∈T h

(∇ · vh, qh)K ,

and the interpolation operator given by Ph
E,RT0

: V ∪ V h → RT0,

(Ph
E,RT0

v · nE)(mE) =
{

1
|E|

∫
E

v · nEds, if E ∈ Eh,

0, if E ∈ Eh\Eh,

with constant values for the normal component on each face E. □

Indeed, the analysis of the modified problem yields a consistency error estimate (3.47) with
no terms involving pressure, which then leads to a velocity error estimate (3.48) with the
same property.

Lemma: Consistency Error Estimate in Case of the Modified Problem.
Let (u, p) be a sufficiently smooth solution of the Stokes equations with u ∈ C1(Ω) ∩ V ,
p ∈ C(Ω) ∩ Q. Consider a family of quasi-uniform triangulations, then it holds for all
v ∈ Vdiv ⊕ V h

div
|νah(u,v) − (f , Ph

E,RT0
v)| ≤ Cνh|u|H2(Ω)||v||V h . (3.47)

The proof can be found in [13] at Lemma 4.136, page 232. □

Theorem: Error Estimate for the V h Norm of the Velocity in Case of the Modified
Problem.
Assuming the domain Ω and the pair (u, p) defined for the estimate (3.42), consider a quasi-
uniform family of triangulations and let (uh, ph) ∈ Pnc

1 × P0 be the unique solution of the
finite element problem (3.46) with modified test function on the right-hand side. Then the
following error estimate is valid

||u − uh||V h ≤ Ch|u|H2(Ω). (3.48)

Proof.
By inserting the best approximation error estimate (3.43) and the consistency error estimate
of the modified problem (3.47) into the abstract error estimate (2nd Lemma of Strang) (3.45),
one obtains the expression (3.48). ■

It must be noted that the velocity solution uh of (3.46) is not divergence free in the sense of
Hdiv(Ω) since it is a function from V h

div. It becomes so only after applying as post-processing
the operator PH

E,RT0
(for details, see (4.175) in [13]).

3. Constructing Divergence-Free and Inf-Sup Stable Pairs of Finite Element Spaces
In this section, approaches for constructing pairs of finite elements that satisfy the inf-sup
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condition, and lead to weakly divergence-free velocities, i.e., ||∇·uh||L2(Ω) = 0, are presented.
The latter property is achieved if ∇ · V h ⊂ Qh holds. Namely, by taking the test function
qh = ∇ · uh in the discrete continuity equation one can obtain

(∇ · uh,∇ · uh) = ||∇ · uh||2L2(Ω) = 0.

□
The Smooth de Rham Complex or Stokes Complex in Two Dimensions.
A de Rham complex is a sequence of mappings and the one needed for the Stokes problem
is called the smooth de Rham complex and is given by

R → H2(Ω) curl−−−→ H1(Ω) div−−→ L2(Ω) → 0. (3.49)

A de Rham complex is called to be exact if the range of each operator is the kernel of the
succeeding operator. The exactness of the de Rham complex (3.49) implies:

(i) If w ∈ H2(Ω) is curl-free, then w is a constant function;
(ii) If v ∈ H1(Ω) is divergence-free then, v = curl w for some w ∈ H2(Ω);
(iii) The map div : H1(Ω) → L2(Ω) is surjective, since the kernel of the last operator is

L2(Ω).

It can be shown that the smooth de Rham complex (3.49) is exact on bounded, simply con-
nected domains Ω ⊂ R2 with Lipschitz boundary. □

A Finite Element Subcomplex.
A finite element subcomplex of (3.49) with finite element spaces Wh ⊂ H2(Ω), V h ⊂ H1(Ω),
and Qh ⊂ L2(Ω) is given by

R → H2(Ω) curl−−−→ V h(Ω) div−−→ Qh(Ω) → 0. (3.50)

If the finite element subcomplex (3.50) is exact, it implies the following properties:

(i) The pair of finite element spaces V h/Qh satisfies the discrete inf-sup condition (3.18)
given that the mapping div has a right inverse that is bounded independently of the
mesh width;

(ii) Computations with the finite element spaces V h/Qh give weakly divergence-free velocity
fields, since it holds that div V h = Qh.

□
An example of such a sub-complex of finite elements is the Scott-Vogelius SVk family. For
instance, the pair in two dimensions P2/P

disc
1 satisfies the inf-sup condition on special grids

like the barycentric-refined grids (Example 4.144 in [13]). Other pairs of spaces for the Stokes
equations can be constructed with different H2(Ω) conforming finite element spaces. How-
ever, they are of little importance in practice since they involve high order polynomial degrees
of basis functions or degrees of freedom that aren’t convenient to implement.

Weakly Divergence-free Velocity Solutions with Lower Order Spaces.
It turns out that there are no lower order pairs of conforming spaces that can be used in
practice, so the conformity of the finite element velocity space has to be abandoned, i.e.
V h ̸⊂ H1(Ω). Since the desired property remains ||∇ · uh||L2(Ω) = 0, the divergence of the
velocity space still has to be in L2(Ω). The latter property is given for V h ⊂ H(div,Ω). The
simplest choice of such a space on simplicial meshes is V h = RT0, the Raviart-Thomas space
of the lowest order, which in combination with P0 can be shown to satisfy a discrete inf-sup
condition (Section 7.1.2. in [4]). However, the non-conformity of V h requires a piecewise
definition of the problem, which yields a large consistency error for RT0/P0 and the solutions
do not converge. To achieve convergence, modifications of the method are required, which
will be examined in Chapter 3.4. □
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3.4 H(div)-Conforming Methods
This section introduces H(div)-conforming spaces as inf-sup stable and divergence-free finite el-
ement spaces, which ensure properties like conservation of mass and pressure robustness for the
approximated velocity solution, with the disadvantage of non-conformity to the H1 space. The
reasons and implications of these properties are here elaborated upon, and examples of such spaces
are provided. Ultimately, error estimates are presented and discussed. The structure of this section
follows closely the contents in section 4.4 of [14] and the proofs from chapters 1, 2, 6 in [21].

3.4.1 H(div)-conforming inf-sup stable pairs of spaces
The finite element method is defined on the triangulation T h of the domain Ω, with K ∈ T h being
the set of mesh cells and Eh ∈ ∂K — the set of facets (edges in 2d and faces in 3d, for simplicity
it will further be referred to the 2d case). The set of boundary and interior edges are denoted by
Eh

B ∈ Eh, with the property that ∀E ∈ Eh
B , E ∩ ∂Ω ̸= ∅, and Eh

I := Eh\Eh
B , respectively.

The finite element spaces V h and Qh, discussed in this section, contain functions that are discon-
tinuous across interior edges from the set Eh

I . If two mesh cells K1 and K2 are neighbors and share
one common side E, there are two traces of the function vh ∈ V h along E. Using the values from
both sides, the average and a jump functions for vh are defined, assuming that the normal vector
to the edge nE is oriented from K1 to K2:

{vh} = 1
2(vh|K1) + 1

2(vh|K2), [vh] = (vh|K1) − (vh|K2) ∀E = ∂K1 ∩ ∂K2.

The extension of the definition above to the boundary edges E ∈ Eh
B is given by

{vh} = [vh] = (vh|K1) ∀e = ∂K1 ∩ Eh
B .

Lemma 3.66 of [13] presented below gives a criterion for ensuring that the finite element space is a
subspace of H(div,Ω), namely that a function from a H(div,Ω) space is continuous with respect
to its normal component across the interior edges Eh

I .

Sufficient and Necessary Condition for a Finite Element Function to be in H(div,Ω).
A finite element function vh ∈ L2(Ω) belongs to H(div,Ω) (2.34), if and only if vh ·nE is continuous
across all edges E ∈ Eh

I of the triangulation.
Proof.
By definition, ∇ · vh ∈ L2(Ω) if and only if there exists a function w ∈ L2(Ω) such that

−
∫

Ω
vh(x) · ∇ϕ(x)dx =

∫
Ω
w(x)ϕ(x)dx, ∀ϕ ∈ C∞

0 (Ω). (3.51)

Using integration by parts

−
∫

Ω
vh(x) · ∇ϕ(x)dx = −

∑
K∈T h

∫
K

vh(x) · ∇ϕ(x)dx

=
∑

K∈T h

(∫
K

∇ · vh(x)ϕ(x)dx −
∫

∂K

ϕ(s)vh(s) · n∂Kds

)
=

∑
K∈T h

∫
K

∇ · vh(x)ϕ(x)dx −
∑

K∈T h

∑
E∈∂K

∫
E

ϕ(s)vh(s) · nEds

=
∫

Ω
∇ · vh(x)ϕ(x)dx −

∑
E∈Eh

I

∫
E

ϕ(s)[vh · nE ]E(s)ds

−
∑

E∈Eh
B

∫
E

ϕ(s)vh(s) · nEds, ∀ϕ ∈ C∞
0 (Ω).

The last term vanishes since the test functions are zero on the boundary of Ω. Then, (3.51) is
satisfied if and only if all the integrals on the interior edges vanish for all test functions. Therefore,
the jumps [vh ·nE ]E are zero, which is equivalent to the normal component of vh being continuous
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across all interior edges. ■

Examples of spaces that satisfy this condition and will be used in numerical studies are the
Raviart-Thomas space of order k ≥ 0

RTk := {vh ∈ H0(div,Ω) : vh|T ∈ RTk(T ), ∀T ∈ T h}, (3.52)

where the local Raviart-Thomas space is defined as

RTk(T ) := P k(T ) + xPk(T ), ∀T ∈ T h, (3.53)

and the Brezzi-Douglas-Marini space of degree k ≥ 1

BDMk := {vh ∈ H0(div,Ω) : vh|T ∈ P k(T ), ∀T ∈ T h}. (3.54)

Here, the following definition for H0(div,Ω) holds

H0(div,Ω) = {vh ∈ H(div,Ω) : v · n|∂Ω = 0}.

These spaces form inf-sup stable pairs with the discontinuous piecewise polynomial spaces with
vanishing mean — Qh = P disc

k for V h = RTk and Qh = P disc
k−1 for V h = BDMk, i.e., the condition

(3.17) holds in the following form

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

∫
Ω(∇ · vh)qhdx

||vh||H(div,Ω)||qh||L2(Ω)
≥ βh > 0. (3.55)

From their definition it is clear that the relation ∇ ·V h ⊆ Qh is satisfied, thus making the approx-
imated solution globally divergence-free. So, in this case the discretely divergence-free functions
are also weakly divergence-free, i.e., V h

div ⊂ Vdiv.

However, these pairs of spaces cannot be used directly in the Stokes finite element problem
(3.15)-(3.16) since the resulting system is not well-defined. The reason is that the spaces V h =
BDMk or RTk are non-conforming, i.e., V h ̸⊂ V = H1

0 and the gradient of functions does not
exist globally. Even if a piecewise gradient is defined, the method would not be consistent with
the continuous Stokes problem (3.13)-(3.14), i.e., for u∈ H2(Ω) ∩H1

0 (Ω) and vh ∈ V h

−
∫

Ω
∆u · vhdx ̸= a(u,vh),

and the solution would not converge. To fix these problems, two modifications can be made —
either change the bilinear forms in (3.15)-(3.16) using techniques from discontinuous Galerkin (DG)
methods or impose continuity of the tangential components in a weak sense. Here only the former
method in 2d will be discussed and implemented, the latter being referred to pages 519-521 of [14]
for further details.

3.4.2 DG formulation of the Stokes problem
Using interior-penalty methods of the discontinous Galerkin formulation, the bilinear form a(·, ·)
in (3.15) is modified to ensure consistency with the Laplace operator.

Derivation of the DG bilinear form aϵ(·, ·).(based on Section 4.4 in [14] and Chapter 1.2
of [21])
The first step consists in multiplying the Laplacian term from the continuous problem (2.15)
by a test function from one of the above defined discontinuous finite element spaces vh ∈ V h ⊂
H0(div,Ω) and integrating over a mesh cell K. From the Green’s theorem, it follows that ∀vh ∈ V h

−
∫

K

∆u · vhdx =
∫

K

∇u : ∇vh −
∫

∂K

∇unK · vhds.

Further, by summing over all the mesh cells K in the triangulation T h of the domain Ω the
following expression is obtained

−
∫

Ω
∆u · vhdx =

∫
Ω

∇hu : ∇hvh −
∑

K∈T h

∫
∂K

∇unK · vhds,
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where ∇h is the piecewise gradient operator. The sum over the mesh cells K in the last term can
be substituted with the sum over the line integrals along edges E ∈ Eh and the piecewise continuity
of vh requires a formulation involving the jump function

−
∫

Ω
∆u · vhdx =

∫
Ω

∇hu : ∇hvh −
∑

E∈Eh

∫
E

[∇unK · vh]ds.

The following identity can be applied to the last term:

[∇unK · vh] = {∇unK}[vh] + {vh}[∇unK ].

Since u is twice continuously differentiable, the jump vanishes across all edges and the last term
is zero. The resulting equality below can be used to construct a DG bilinear form for the finite
element method, which is consistent with the Laplace operator:

−
∫

Ω
∆u · vhdx =

∫
Ω

∇hu : ∇hvh −
∑

E∈Eh

∫
E

{∇unK}[vh]ds ∀vh ∈ V h.

Such a bilinear form, while consistent, would lack the properties of symmetry and coercivity that
the continuous equation possesses. To compensate for this lack, two trivial terms are added to the
above relation that take advantage of the continuity of u: a transposed expression of the second
term to ensure symmetry and a so-called penalty term to ensure coercivity

aϵ(u,vh) : =
∫

Ω
∇hu : ∇hvh −

∑
E∈Eh

∫
E

{∇unE}[vh] − ϵ
∑

E∈Eh

∫
E

{∇vhnE}[u]ds+
∑

E∈Eh

σ

hE

∫
E

[vh][u]

= −
∫

Ω
∆u · vhdx ∀vh ∈ V h ⊂ H0(div,Ω).

(3.56)

The additional parameters serve to control the type of desired symmetry, ϵ = {−1, 1, 0} for an
antisymmetric, symmetric or incomplete bilinear form, ensure coercivity of aϵ(·, ·) (2.26), via an
appropriate choice of σ and the scaling factor hE is the diameter of the edge E. ■

Derivation of bh(·, ·) for the DG case. (based on the contents in Chapter 6.3 from [21])
Using a similar procedure on the pressure term in the Stokes approximation of momentum equation
from (2.15), an expression for the DG velocity-pressure bilinear form can be derived. To that end,
the pressure term is multiplied by the test function vh ∈ V h ⊂ H0(div,Ω), then integrated over
the mesh cell K and the Green’s theorem is applied, resulting in∫

K

∇p · vh = −
∫

K

p∇ · vh +
∫

∂K

pvh · nK .

Summing over all the mesh cells K, or equivalently over mesh edges Eh, and expressing the dis-
continuous terms with the help of the jump function gives∑

K∈T h

∫
K

∇p · vh = −
∑

K∈T h

∫
K

p∇ · vh +
∑

E∈Eh
B

∪Eh
I

∫
E

[pvh · nE ].

Next, the jump function in the last term can be rewritten using the identity below

[pvh · nE ] = [p]{vh · nE} + {p}[vh · nE ].

The term [vh · nE ] vanishes on the interior edges Eh
I , because of the normal continuity of the

functions in the H(div,Ω) space and on the boundary edges Eh
B , because the test functions are

from the space H0(div,Ω) with the property vh · nE |∂Ω = 0. Moreover, the pressure solution to
the Stokes equations is continuous, so [p] = 0, making the first term vanish as well.
As a result, the DG velocity-pressure bilinear form can be defined as follows

bh(vh, p) := −
∑

K∈T h

∫
K

p∇ · vh =
∑

K∈T h

∫
K

∇p · vh ∀vh ∈ V h ⊂ H0(div,Ω). (3.57)
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■
The DG Stokes finite element problem.
The discontinuous Galerkin finite element method that approximates the solution to the Stokes
problem is then formulated using (3.56) and (3.57) in the following way:
Find the pair (uh, ph) ∈ V h ×Qh, where V h⊂ H0(div,Ω) and Qh is chosen such that the discrete
inf-sup stability (3.17) is satisfied, that is the solution to the system

νaϵ(uh,vh) + bh(vh, ph) = (f ,vh), ∀vh ∈ V h, (3.58)
bh(uh, qh) = 0, ∀qh ∈ Qh. (3.59)

□
As a result, the obtained finite element method is consistent with the continuous Stokes problem
(3.13)-(3.14) and satisfies the requirement of inf-sup stability for well-posedness through the choice
of pair of finite element spaces. The additional requirement of coercivity (2.26) of aϵ(·, ·) is not
automatically ensured, but depends on the choice of parameter σ for the symmetry type of aϵ(·, ·),
specified by the parameter ϵ= {−1, 1, 0}.

Conditions for coercivity of the bilinear form aϵ(·, ·). (based on Chapter 2.7 in [21])
Applying the definition (2.26) to the DG problem (3.58)-(3.59), the bilinear form aϵ(·, ·) is coercive
if there exists a positive constant m > 0, such that

m||vh||2E ≤ aϵ(vh,vh), ∀vh ∈ V h ⊂ H0(div,Ω), (3.60)

where the energy norm || · ||E is defined in following expression with σ> 0

||vh||2E : =
∑

K∈T h

∫
K

∇vh : ∇vh +
∑

E∈Eh

σ

hE

∫
E

[vh] · [vh]

=
∑

K∈T h

||∇vh||2L2(K) +
∑

E∈Eh

σ

hE
||[vh]||2L2(E).

(3.61)

In what follows, values of σ for which (3.60) holds true will be determined for each symmetry type
of aϵ(·, ·).

(i) In the case of an antisymmetric bilinear form for ϵ = −1, i.e., a−1(uh,vh) = −a−1(vh,uh),
the bilinear form becomes

a−1(vh,vh) : =
∫

Ω
∇hvh : ∇hvh −

∑
E∈Eh

∫
E

{∇vhnE}[vh] + {∇vhnE}[vh]ds+
∑

E∈Eh

σ

hE

∫
E

[vh][vh].

The two middle terms vanish and the coercivity property (3.60) holds for m = 1, namely,

||vh||2E = a−1(vh,vh) ∀vh ∈ V h ⊂ H0(div,Ω). (3.62)

(ii) The case of the symmetric bilinear form with ϵ = 1, i.e., a1(uh,vh) = a1(vh,uh), or the
incomplete bilinear form a0 with ϵ = 0:
Using Cauchy-Schwarz’s inequality, an upper bound of the term

∑
E∈Eh

∫
E

{∇vhnE} · [vh]
can be found:∑

E∈Eh

∫
E

{∇vhnE} [vh] ≤
∑

E∈Eh

||{∇vhnE}∥|L2(E)||[vh]||L2(E)

≤
∑

E∈Eh

||{∇vhnE}||L2(E) ||[vh]||L2(E)

(
1

hE
β0

)1/2−1/2
.

(3.63)

For an interior edge E shared by two mesh cells K1 and K2, the triangle inequality gives the
following relation:

||{∇vhnE}||L2(E) ≤ 1
2 ||(∇vh)|K1nE ||L2(E) + 1

2 ||(∇vh)|K2nE ||L2(E).

By using the trace inequality below (Chapter 2.1.4 in [21])

||∇v · nE ||L2(E) ≤ CthK
−1/2||∇v||L2(K), ∀v ∈ Pk(K), (3.64)
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with Ct being dependent on the polynomial degree k, applied to vectors of higher dimension,
the expression below is obtained

||{∇vhnE}||L2(E) ≤ Ct

2 h
−1/2
K1

||∇vh||L2(K1) + Ct

2 h
−1/2
K2

||∇vh||L2(K2). (3.65)

Since hE is the length of an edge in 2d (d = 2) and the area of a face in 3d (d = 3), the
following relation holds

hE ≤ hE
d−1 ≤ hd−1, (3.66)

where h is the largest hE in the mesh T h.
By combining the relation (3.63) with the estimate (3.65) and using (3.66) one obtains the
following relation∫

E

{∇vhnE} · [vh] ≤ CthE
β0/2

2

(
h

−1/2
K1

||∇vh||L2(K1) + h
−1/2
K2

||∇vh||L2(K2)

) (
1

hE
β0

)1/2
||[vh]||L2(E)

≤ Ct

2

(
h

β0
2 (d−1)− 1

2
K1

+ h
β0
2 (d−1)− 1

2
K2

) (
||∇vh||2L2(K1) + ||∇vh||2L2(K2)

)1/2

×
(

1
hE

β0

)1/2
||[vh]||L2(E)

≤ Ct

(
||∇vh||2L2(K1) + ||∇vh||2L2(K2)

)1/2
(

1
hE

β0

)1/2
||[vh]||L2(E),

if β0 satisfies the condition β0(d− 1) ≥ 1 and if it is assumed, without loss of generality, that
h ≤ 1. A similar bound is obtained for E being a boundary edge. In that case, the value
of the average reduces to {∇vh} = ∇vh. Let n0 denote the maximum number of neighbors
an element can have. So, for a conforming mesh, n0 = 3 for a triangle and n0 = 4 for a
quadrilateral or tetrahedron. By summing the estimate above over all edges, one obtains the
following expression

∑
E∈Eh

∫
E

{∇vhnE} · [vh] ≤ Ct

 ∑
E∈Eh

1
hE

β0
||[vh]||2L2(E)

1/2

×

 ∑
E∈Eh

I

(||∇vh||2L2(K1) + ||∇vh||2L2(K2)) +
∑

E∈Eh
B

||∇vh||2L2(K1)

1/2

≤ Ct
√
n0

 ∑
E∈Eh

1
|e|β0

||[vh]||2L2(E)

1/2  ∑
K∈T h

||∇vh||2L2(K)

1/2

.

Using Young’s inequality with δ > 0 gives∑
E∈Eh

∫
E

{∇vhnE} · [vh] ≤ δ

2
∑

K∈T h

||∇vh||2L2(K) + C2
t n0

2δ
∑

E∈Eh

1
hE

β0
||[vh]||2L2(E).

So, the following lower bound for aϵ(vh,vh) is obtained

aϵ(vh,vh) ≥
(

1 − δ

2 |1 + ϵ|
) ∑

K∈T h

||∇vh||2L2(K) +
∑

E∈Eh

σ − C2
t n0
2δ |1 + ϵ|
hE

β0
||[vh]||2L2(E).

By choosing δ = 1 if ϵ = 0 and δ = 1/2 if ϵ = 1 and choosing σ large enough (for instance,
σ ≥ C2

t n0 if ϵ = 0 and σ ≥ 4C2
t n0 if ϵ = 1), the coercivity property (3.60) holds with m = 1/2

aϵ(vh,vh) ≥ 1
2 ||vh||2E . (3.67)

A summary of the above results with their classification in literature is presented below:
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(i) The antisymmetric bilinear form a−1 is coercive for any choice of σ> 0 and the method is
called nonsymmetric interior penalty Galerkin (NIPG);

(ii) For the symmetric a1 and incomplete a0 bilinear forms, coercivity is ensured if β0(d− 1) ≥ 1
and if σ is bounded below by a large enough constant and the methods are called sym-
metric interior penalty Galerkin (SIPG) and incomplete interior penalty Galerkin (IIPG),
respectively.

■
Further, error estimates will be presented for the case of the symmetric interior penalty Galerkin
(SIPG), as this is the method for which the numerical studies in Chapter 4 are performed.

Error estimates for the SIPG method. (based on contents from Section 4.4 of [14])
Using the approximation properties of the finite element spaces (3.52), (3.54) and the weakly
divergence-free property of the H0(div,Ω) space in the derivation of error estimates of the solutions
approximating u ∈ Hs(Ω) and p ∈ Hr(Ω), leads to the following results:

||u − uh||1,h ≤ C inf
vh∈V h

||u − vh||1,h ≤ Chl−1||u||Hl(Ω), (3.68)

||p− ph||L2(Ω) ≤ C

(
inf

qh∈Qh
||p− qh||L2(Ω) + ν||u − vh||1,h

)
≤ C

(
hm||p||Hm(Ω) + νhl−1||u||Hl(Ω)

)
,

(3.69)

where l = min{s, k+ 1}. If V h ×Qh is the Raviart-Thomas pair, then m = min{r, k+ 1} and if it
is the BDM pair, then m = min{r, k}.
The discrete H1-norm is defined as

||vh||21,h :=
∑

K∈T h

||∇vh||2L2(K) +
∑

E∈Eh

hE ||{∇vhnE}||L2(E) +
∑
EEh

hE
−1||[vh]||L2(E).

□
Alternative theorem for RTk/Pk (Theorems 5.2.6 and 5.3.8 from [16])
For the Raviart-Thomas pair RTk/Pk, k ≥ 1, it holds that

||u − uh||1,h ≤ hk|u|k+1, (3.70)
||p− ph||L2(Ω) ≤ hk(|u|k+1 + |p|k), (3.71)

∇ · uh = 0. (3.72)

The L2-norm of the velocity error requires, similarly to the estimate for the Galerkin discretization
(3.38), a regular solution to the dual Stokes problem (3.33) and is given in the expression below

||u − uh||L2(Ω) ≤ Chk+1|u|k+1. (3.73)

□
The pressure-robust and mass conserving properties of the H(div)-conforming methods can be seen
in the velocity error estimates (3.68), (3.70), (3.73). Thus, they are the by-product of vanishing de-
pendence of the velocity error on pressure and viscosity observed in estimates of the H1-conforming
methods (3.35), (3.36), (3.38).
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Chapter 4

Numerical Studies

In this chapter, the properties of the implemented H(div)-conforming finite element methods for
the Stokes equations are discussed. This includes comparisons of their results with both the an-
alytical convergence orders (section 4.3), and with the results from the H1-conforming elements
(sections 4.3, 4.4), as well as a study of an appropriate penalty parameter choice to ensure a well-
conditioned problem (section 4.2).
To this end, the DG interior-penalty method for Stokes equations (3.58)-(3.59) was implemented
in the program package ParMooN [25]. Then, computations for concrete examples of problems
with analytical solutions (introduced in section 4.1) were performed. With the given boundary
conditions and the right hand-side values determined by the problem of choice, the linear system
of equations was assembled using degrees of freedom determined by the H(div)- or H1- conforming
pairs of velocity/pressure finite element spaces, and solved with a direct solver from the UMFPACK
library, for various values of viscosity ν, penalty parameters σ, and refinement levels. Ultimately,
relevant quantities like the condition number and errors in respective norms were obtained indi-
rectly or directly from the data given in output by the program. All of the figures in this work
were created using the package Matplotlib [9], unless indicated otherwise.

4.1 Examples
4.1.1 Harmonic solution
This example was taken from the program package ParMooN [25] as a prescribed solution for
testing two-dimensional steady-state Navier Stokes equations. The domain of definition is the unit
square Ω = (0, 1)2 with homogeneous Dirichlet boundary conditions u = 0 on ∂Ω. The velocity
field is given by

u =
(

sin(πx)
−πy cos(πx)

)
. (4.1)

It is easy to verify that the velocity field is divergence-free

∇ · u = ∂xu1 + ∂yu2 = π cos(πx) − π cos(πx) = 0.

The pressure is in L2
0(Ω) and is chosen to be the following expression

p = sin(πx) cos(πy). (4.2)

The plotted functions in Mathematica [10] can be seen in figure 4.1.
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(a) |u(x,y)| (b) p(x,y)

(c) u(x,y)

Figure 4.1: Plots of the ’Harmonic solution’ example using [10]

4.1.2 Polynomial solution
This two-dimensional, steady-state example is introduced as Example D.3 in [13] and can also be
found in the package ParMooN [25]. It is defined on the unit square domain Ω = (0, 1)2 with
homogeneous Dirichlet boundary conditions u = 0 on ∂Ω. The velocity field is defined using the
stream function

ϕ = 1000x2(1 − x)4y3(1 − y)2,

and is given by
u =

(
∂yϕ

−∂xϕ

)
= 1000

(
x2(1 − x)4y2(1 − y)(3 − 5y)

−2x(1 − x)3(1 − 3x)y3(1 − y)2

)
. (4.3)

Using the Theorem of Schwarz, one can verify that this velocity is divergence-free:

∇ · u = ∂xu1 + ∂yu2 = ∂xyϕ− ∂yxϕ = ∂xyϕ− ∂xyϕ = 0.

The boundary conditions require the pressure to be in L2
0(Ω). In this case, it was chosen

p = π2(xy3 cos(2πx2y) − x2y sin(2πxy)) + 1
8 . (4.4)

The plotted vector field of velocity in figure 4.2 shows that it has a profile of a vortex.
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(a) |u(x,y)| (b) u(x,y)

(c) p(x,y)

Figure 4.2: Plots of the ’Polynomial solution’ example using [10]

4.2 Condition number dependence on σ

This study has the goal of testing the numerical robustness of the symmetric formulation of the
implemented DG interior-penalty method for Stokes equations with the H(div)-conforming finite
element spaces BDM1 and RT1.

Contrary to the analytic prediction of a stable and accurate method for a sufficiently large
penalty parameter σ (equation (3.67)), a dependence of the convergence of the solver on σ was
observed. This phenomenon has been studied by Wang et al. in the article [15], where a linear
dependence of the condition number on σ was concluded, whereas no major differences in errors
were noted after a sufficiently large value of σ.

A similar study to the one in [15] is performed in this section to determine an appropriate choice
of σ for the subsequent calculations, since for meaningful conclusions a converging approximation
to the solution is required. The difficulty inherent to the problem is that the penalty parameter
must not be too small in order to guarantee coercivity of aϵ(·, ·), and at the same time not too large,
to avoid a large condition number of the whole matrix and, thereby, an ill-conditioned problem.

To that end, computations were performed on the grid with the 3rd refinement level, using the
’Polynomial solution’ example. The quantities of interest were the errors in the L2 norm and the
H1 semi-norm, obtained from the program ParMooN [25] in the output, and the condition number
of the matrix of the linear system computed in MATLAB [17] using the cond() command.

The search for an appropriate σ interval was done by first considering a rather extended range
of values for computations σ ∈ [10−7, 107] (tables 4.1 and 4.2), and determining intervals within
those ranges, where the quantities reach optimal approximation properties. Upon a close exami-
nation of the tables, it is clear that the first optimal range is between σ = 10 and σ = 100, because
there the error values reach their minima. The refined studies in this range from tables 4.3 and
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4.4 show that the condition numbers and the errors are smaller for the first values of σ. This is
why, even more detailed results are considered for values of σ between 5 and 35 (tables 4.5 and
4.6). Here one can see that the best overall properties are reached in the case of the RT1 space for
σ = [5, 10], and in the case of BDM1 for the range σ = [1, 15]. For simplicity, the value σ = 10
will be used in further computations, for both types of spaces.

This type of studies show that having to ensure fitting values for the additional parameter
σ can be laborious and is a disadvantage of the SIPG methods for Stokes equations. Moreover,
the values of the condition numbers are rather high, which indicates a risk of the problem being
ill-conditioned and therefore giving non-converging results. However, it will be seen in following
sections that once the parameters are determined, the use of H(div)-conforming space will result
in considerable advantages of mass conservation and pressure robustness.

σ condition ||u − uh||L2 ||∇ · uh||L2 |u − uh|H1 ||p− ph||L2 |p− ph|H1

1.0e-07 1.21e+19 1.63e+01 2.95e-14 2.67e+02 1.06e+01 1.57e+01
1.0e-06 7.08e+20 1.63e+01 2.58e-14 2.67e+02 1.06e+01 1.57e+01
1.0e-05 1.06e+19 1.63e+01 2.82e-14 2.67e+02 1.06e+01 1.57e+01
1.0e-04 3.56e+19 1.62e+01 2.66e-14 2.65e+02 1.05e+01 1.57e+01
1.0e-03 4.32e+19 1.53e+01 2.18e-14 2.49e+02 9.91e+00 1.57e+01
1.0e-02 6.54e+19 1.11e+01 2.07e-14 1.73e+02 6.84e+00 1.57e+01
1.0e-01 4.94e+19 9.86e+00 1.58e-14 1.92e+02 7.96e+00 1.57e+01
1.0e+00 3.70e+19 3.43e+00 4.66e-15 8.21e+01 1.55e+00 1.57e+01
1.0e+01 3.94e+20 3.23e-01 2.05e-15 6.54e+00 8.09e-01 1.57e+01
1.0e+02 9.55e+21 8.60e-01 1.02e-15 8.94e+00 3.16e+00 1.57e+01

1.0e+03 2.21e+22 1.35e+00 4.57e-16 1.26e+01 6.41e+00 1.57e+01
1.0e+04 4.33e+23 1.48e+00 4.22e-16 1.36e+01 7.39e+00 1.57e+01
1.0e+05 7.20e+24 1.49e+00 4.21e-16 1.37e+01 7.52e+00 1.57e+01
1.0e+06 3.90e+24 1.50e+00 4.72e-16 1.37e+01 7.53e+00 1.57e+01
1.0e+07 6.98e+24 1.50e+00 4.75e-16 1.37e+01 7.53e+00 1.57e+01

Table 4.1: First search of optimal σ for BDM1

σ condition ||u − uh||L2 ||∇ · uh||L2 |u − uh|H1 ||p− ph||L2 |p− ph|H1

1.0e-07 1.57e+20 1.63e+01 2.03e-13 2.67e+02 2.66e+01 9.55e+02
1.0e-06 7.04e+18 1.63e+01 1.87e-13 2.67e+02 2.66e+01 9.55e+02
1.0e-05 2.81e+19 1.63e+01 2.00e-13 2.67e+02 2.66e+01 9.54e+02
1.0e-04 3.58e+19 1.62e+01 1.98e-13 2.65e+02 2.64e+01 9.48e+02
1.0e-03 1.55e+19 1.53e+01 1.83e-13 2.49e+02 2.48e+01 8.92e+02
1.0e-02 2.33e+19 1.11e+01 1.37e-13 1.73e+02 1.76e+01 6.51e+02
1.0e-01 5.50e+19 9.86e+00 1.25e-13 1.92e+02 1.56e+01 5.13e+02
1.0e+00 2.46e+19 3.43e+00 3.15e-14 8.21e+01 4.08e+00 1.50e+02
1.0e+01 1.25e+20 3.23e-01 1.48e-14 6.54e+00 6.67e-01 1.14e+01
1.0e+02 7.59e+22 8.60e-01 8.13e-15 8.94e+00 3.16e+00 2.22e+01

1.0e+03 2.13e+22 1.35e+00 1.78e-15 1.26e+01 6.46e+00 4.09e+01
1.0e+04 4.89e+23 1.48e+00 4.99e-16 1.36e+01 7.46e+00 4.77e+01
1.0e+05 5.07e+24 1.49e+00 4.59e-16 1.37e+01 7.58e+00 4.86e+01
1.0e+06 3.58e+25 1.50e+00 4.63e-16 1.37e+01 7.59e+00 4.87e+01
1.0e+07 1.99e+27 1.50e+00 4.87e-16 1.37e+01 7.60e+00 4.87e+01

Table 4.2: First search of optimal σ for RT1
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σ condition ||u − uh||L2 ||∇ · uh||L2 |u − uh|H1 ||p− ph||L2 |p− ph|H1

1.0e+01 3.94e+20 3.23e-01 2.05e-15 6.54e+00 8.09e-01 1.57e+01
2.0e+01 2.50e+20 4.55e-01 2.00e-15 6.84e+00 1.22e+00 1.57e+01

3.0e+01 1.51e+21 5.45e-01 1.82e-15 7.19e+00 1.58e+00 1.57e+01
4.0e+01 3.31e+21 6.14e-01 1.43e-15 7.52e+00 1.89e+00 1.57e+01
5.0e+01 2.80e+21 6.71e-01 1.29e-15 7.81e+00 2.16e+00 1.57e+01
6.0e+01 1.76e+22 7.20e-01 1.27e-15 8.08e+00 2.40e+00 1.57e+01
7.0e+01 9.09e+20 7.62e-01 1.13e-15 8.33e+00 2.62e+00 1.57e+01
8.0e+01 1.14e+22 7.98e-01 9.83e-16 8.55e+00 2.81e+00 1.57e+01
9.0e+01 3.64e+21 8.31e-01 9.86e-16 8.75e+00 2.99e+00 1.57e+01
1.0e+02 9.55e+21 8.60e-01 1.02e-15 8.94e+00 3.16e+00 1.57e+01

Table 4.3: Second search of optimal σ for BDM1

σ condition ||u − uh||L2 ||∇ · uh||L2 |u − uh|H1 ||p− ph||L2 |p− ph|H1

1.0e+01 1.25e+20 3.23e-01 1.48e-14 6.54e+00 6.67e-01 1.14e+01
2.0e+01 2.76e+20 4.55e-01 1.32e-14 6.84e+00 1.15e+00 1.41e+01

3.0e+01 1.07e+21 5.45e-01 1.32e-14 7.19e+00 1.53e+00 1.56e+01
4.0e+01 8.03e+20 6.14e-01 1.26e-14 7.52e+00 1.86e+00 1.68e+01
5.0e+01 2.70e+20 6.71e-01 1.15e-14 7.81e+00 2.14e+00 1.79e+01
6.0e+01 1.50e+21 7.20e-01 9.96e-15 8.08e+00 2.39e+00 1.88e+01
7.0e+01 1.67e+21 7.62e-01 9.87e-15 8.33e+00 2.61e+00 1.98e+01
8.0e+01 2.21e+21 7.98e-01 8.71e-15 8.55e+00 2.81e+00 2.06e+01
9.0e+01 1.11e+21 8.31e-01 8.24e-15 8.75e+00 2.99e+00 2.14e+01
1.0e+02 7.59e+22 8.60e-01 8.13e-15 8.94e+00 3.16e+00 2.22e+01

Table 4.4: Second search of optimal σ for RT1

σ condition ||u − uh||L2 ||∇ · uh||L2 |u − uh|H1 ||p− ph||L2 |p− ph|H1

5.0e+00 1.20e+20 2.17e-01 2.63e-15 6.82e+00 6.17e-01 1.57e+01
1.0e+01 3.94e+20 3.23e-01 2.05e-15 6.54e+00 8.09e-01 1.57e+01

1.5e+01 4.13e+20 3.97e-01 1.91e-15 6.67e+00 1.02e+00 1.57e+01
2.0e+01 2.50e+20 4.55e-01 2.00e-15 6.84e+00 1.22e+00 1.57e+01
2.5e+01 4.10e+20 5.03e-01 1.76e-15 7.02e+00 1.40e+00 1.57e+01
3.0e+01 1.51e+21 5.45e-01 1.82e-15 7.19e+00 1.58e+00 1.57e+01
3.5e+01 1.14e+21 5.81e-01 1.67e-15 7.36e+00 1.74e+00 1.57e+01

Table 4.5: Third search of optimal σ for BDM1

σ condition ||u − uh||L2 ||∇ · uh||L2 |u − uh|H1 ||p− ph||L2 |p− ph|H1

5.0e+00 3.55e+19 2.17e-01 1.73e-14 6.82e+00 3.72e-01 8.09e+00
1.0e+01 1.25e+20 3.23e-01 1.48e-14 6.54e+00 6.67e-01 1.14e+01
1.5e+01 5.25e+20 3.97e-01 1.35e-14 6.67e+00 9.21e-01 1.30e+01

2.0e+01 2.76e+20 4.55e-01 1.32e-14 6.84e+00 1.15e+00 1.41e+01
2.5e+01 1.90e+21 5.03e-01 1.38e-14 7.02e+00 1.35e+00 1.49e+01
3.0e+01 1.07e+21 5.45e-01 1.32e-14 7.19e+00 1.53e+00 1.56e+01
3.5e+01 2.17e+21 5.81e-01 1.25e-14 7.36e+00 1.70e+00 1.62e+01

Table 4.6: Third search of optimal σ for RT1
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4.3 Convergence order

In this section, the convergence histories of the approximated solutions for velocity, pressure, and
divergence of velocity to problems with analytical solutions are discussed. The results can be
found in Appendix A.1. The Reynolds number was chosen Re = 10 and the penalty parameter
σ = 10, the latter being a result of the study of the previous section 4.2. Then, computations
are performed with the H(div)-conforming finite element spaces BDMk and RTk, k = 1, 2 and 3
on a grid T h with triangular mesh cells at various refinement levels of the grid, i.e., mesh width
hE . The respective errors in the L2 norm were given in the output of the ParMooN [25] program
package, as the analytical solutions were prescribed.
The study aims to verify whether the analytical predictions of convergence orders from the error
estimates in Chapter 3.4 are met. Moreover, a comparison of the error estimates and convergence
orders of the widely used H1-conforming elements is done using similar computations with the
MINI and THk finite element spaces and a Galerkin discretization of the Stokes equation from
the ParMooN [25] package. This allows for a determination of the advantages and limitations of
the newly implemented DG method.

The detailed results from Appendix A.1 are summarized in table 4.7. In the cases of BDMk,
RTk with k = 1, 2, the analytical convergence orders given by (3.73), (3.71) are met and there is
little difference in comparison to the H1-conforming spaces MINI and TH2 of the same order (fig-
ures A.1 and A.4). For the case k = 3 however, some irregularities are observed in the convergence
histories A.1e, A.1f, A.4e and A.4f, which seem to be indicating that the system is ill-conditioned.
Moreover, the results of computations with RT0 don’t converge and have large errors (figures A.2a,
A.2b, A.5a, A.2b).
The Scott-Vogelius element SVk with k > 2 has unstable results with large errors. However, this
behavior is expected from the theory (Chapter 3.2), since the grid used in the simulation is not
barycentric-refined, so the element is not inf-sup stable.

Space L2 error Theory Harmonic sol. Polynomial sol.
RT0 u - <h^2 (large error) no convergence

p - no convergence <h^1 (large error)
MINI u h^2 h^2 h^2

p h^1 >h^1 >h^1
RT1 u h^2 h^2 h^2

p h^1 h^1 h^1
BDM1 u h^2 h^2

p h^1 h^1
TH2 u h^3 h^3 h^3

p h^2 h^2 h^2
RT2 u h^3 h^3 h^3

p h^2 h^2 h^2
BDM2 u h^3 h^3

p h^2 h^2
SV2 u - ∼h^3 (ill-conditioned) <h^3

p - missing (nan result) missing (nan result)
TH3 u h^4 <h^4 <h^4

p h^3 <h^3 <h^3
RT3 u h^4 ∼h^4 (ill-conditioned) ∼h^4 (ill-conditioned)

p h^3 ∼h^3 (ill-conditioned) ∼h^3 (ill-conditioned)
BDM3 u ∼h^4 (ill-conditioned) ∼h^4 (ill-conditioned)

p ∼h^3 (ill-conditioned) ∼h^3 (ill-conditioned)
SV3 u - ∼h^4 (large error) <<h^4 (ill-conditioned)

p - ∼h^3 (large error) ∼h^3 (large error)
SV4 u - ∼h^4 (large error) ∼h^4 (ill-conditioned)

p - ∼h^3 (large error) ∼h^3 (large error)

Table 4.7: Overview of convergence orders for all finite element pairs
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Furthermore, it can be seen in figures A.3 and A.6 that computations with H(div)-conforming
finite element spaces provide great improvement to the ||∇ · uh||L2(Ω) values with H1-conforming
spaces. These errors for computations with RTk and BDMk are essentially zero and, therefore,
the property of mass conservation is ensured, as expected. It may seem problematic that the trend
of convergence for RTk and BDMk is reversed, i.e., the values ||∇ · uh||L2(Ω) become larger with
finer hE , but even at their maximum they reach values of order 10−10 (figures A.3e and A.6e),
which are too small to impact the results in any significant way and can be attributed to round-off
errors.
The computations with the Scott-Vogelius SVk element give mixed results (figures A.3d, A.3f, A.6d
and A.6f) with regard to the convergence of the errors ||∇ · uh||L2(Ω) (with the mesh not being
barycentric-refined). For k = 2, they behave mostly similarly to RTk and BDMk, whereas for
k = 3 and 4, they are similar to TH3. In all cases, however, these results are rather irregular and
large values of errors for SV3 and SV4 can be observed.

Therefore, one can conclude that for k = 1 and 2, the H(div)-conforming spaces RTk and
BDMk are an improvement to the classical H1-conforming MINI and THk elements, since the
convergence orders and magnitudes of errors for uh and ph are the same, with the advantage that
the divergence-free property of velocity uh is satisfied exactly.
In the cases of k > 2 and RT0, further investigations are needed to determine whether they can
improve the classical methods, since a seemingly ill-conditioned problem for the former and a lack
of convergence for the latter were observed. Moreover, it was verified that, as expected, the locally
divergence-free element SVk, k > 2 cannot be used to solve the Stokes finite element problem if the
grid is not barycentric-refined. Hence, its theoretical advantages have restricted use in practice.
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4.4 Pressure robustness
In this section, numerical studies that verify the pressure robustness of the H(div) finite element
methods are discussed. The extensive results of the simulations can be found in Appendix A.2.

Computations that approximate solutions to both examples were performed on a mesh T h that
contains triangles, using H1-conforming and H(div)-conforming finite element methods, with the
Galerkin and the SIPG discontinuous Galerkin discretizations of the Stokes equations, respectively,
for different values of the Reynolds number Re (Re ∝ ν−1) and different refinement levels.

The finite element theory from chapters 3.2 and 3.4 predicts that for H1-conforming methods,
the errors of velocity are proportional (or inversely proportional) to the values of pressure (or
viscosity) as observed from (3.36) and (3.38). On the other hand, for H(div)-conforming methods,
this effect vanishes due to the property (3.72), i.e, a divergence-free velocity field is obtained and
the error no longer has the dependence on pressure or viscosity (3.68).

These effects can indeed be observed in practice for both examples in figures A.7, A.8, A.10
and A.11. The results for the MINI and THk elements, with k = 2 and 3, show a lack of
pressure robustness in that the error for the divergence of velocity uh increases proportionally to
Re, and in this way reaches unacceptable values, as, for example, of order 104. The results for
BDMk and RTk spaces (k = 1, 2, 3) are presented in parallel to the MINI and THk elements to
show how efficiently these methods solve this problem. It is clear that for both BDMk and RTk,
k = 1, 2 and 3, the results are equally pressure robust, with whatever existing differences being
attributed to round-off errors.

Even the results for the space RT0, having errors for uh and ph that failed to converge in
section 4.3, can be seen in figures A.9a and A.12a to be pressure robust. The results for the space
SV2 show a tendency towards pressure robustness, but the errors are too large to be useful (figures
A.9b and A.12b). SV3, on the other hand, is not pressure robust at all (figures A.9c and A.12c),
but again, one must bear in mind that the theory predicts accurate results for these elements only
on barycentric-refined grids, which is not the case here.

It can be concluded that all H(div)-conforming spaces from this study are pressure robust, thus
eradicating the unphysical effects of pressure and viscosity on the velocity approximation observed
in H1-conforming methods. Moreover, it was confirmed that with respect to this property as well,
the Scott-Vogelius element SVk, k = 2 and 3 does not yield reliable results on grids that are not
barycentric-refined.
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Chapter 5

Conclusion and Outlook

This thesis aimed to study the properties that H(div)-conforming spaces have in solving the fi-
nite element Stokes problem. To that end, the discontinuous Galerkin formulation of the Stokes
equations was implemented in the program package ParMooN [25] and computations for solutions
of the examples from chapter 4.1 were performed using the Brezzi-Douglas-Marini BDMk and
Raviart-Thomas RTk finite element spaces with k = 1, 2 and 3. Similar computations were done
with the classical H1-conforming spaces like the MINI P bub

1 /P1 and Taylor-Hood THk, which
are neither pressure-robust or mass conserving, and with Scott-Vogelius SVk spaces, which posses
the property of local mass conservation.

In Chapter 3.4 it is stated that the discontinuous Galerkin formulation for the Stokes equations
(3.56)-(3.57) introduced a parameter σ that, at least for the symmetric case (SIPG), must be large
enough to ensure the coercivity of the bilinear form aϵ(·, ·). However, the study of an appropriate
value for this parameter from Chapter 4.2 noted that the condition number, as well as error values,
increase with larger σ and optimal results were found in the range of σ = [5, 15]. The need for
such prior investigations can represent a disadvantage in practice.

The orders of convergence for pressure and velocity computed using BDMk and RTk spaces
for k = 1 and 2, and the magnitude of their errors were similar to the MINI and TH2 elements,
with the supplementary advantage of exactly vanishing error ||∇·uh||L2(Ω), which is also the prop-
erty that ensures mass conservation. The H(div)-conforming spaces for k = 3 showed a behavior
which seemed characteristic to an ill-conditioned system, and therefore needs further investigation
with respect to the choice of the solver of the linear system of equations. The computations of
uh and ph using the TH0 finite element space also presented limitations, as the errors are either
too large or they do not converge. The reasons for such behavior could originate in the theory of
H(div)-conforming spaces for the Stokes equations, since in Theorems 5.2.6 and 5.3.8 from [16],
which give an upper bound for errors in the L2 norm, only the RTk with k > 1 are explicitly stated.

With regard to pressure robustness however, all computations with H(div)-conforming spaces
in this study showed optimal results, thereby eradicating the non-physical dependence of velocity
on both pressure and viscosity in H1-conforming methods.

The computations with SVk spaces for k = 2, 3 and 4 for a regular mesh made of triangles
showed irregularities and large errors. This behavior is not excluded by theory and is just a con-
firmation of the fact that the SVk element is not inf-sup stable on general meshes. A further study
on barycentric-refined grids for both SVk and H(div)-conforming spaces would be of interest, as it
would determine which method has a better-conditioned problem on special grids and, thus, which
method would be more advantageous.

Aside from the above suggested investigations, similar studies could be done on rectangular
mesh cells, as here only triangular mesh cells were considered. Also, a natural continuation of
the study would be to implement the full steady-state incompressible Navier-Stokes equations by
adding the DG discretization of the convective term. Furthermore, an extension of the equations to
3-dimensional domains would allow for studies of more complex phenomena, such as turbulence.
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Appendix A

Numerical Results
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A.1 Convergence histories

(a) (b)

(c) (d)

(e) (f)

Figure A.1: Convergence histories for the ’Harmonic solution’ example
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(a) RT0 (b) RT0

(c) SV2 (d) SV2

(e) SV3 and SV4 (f) SV3 and SV4

Figure A.2: Convergence histories with spaces of non-optimal behavior in comparison to results
from figure A.1
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(a) (b) RT0

(c) (d) SV2

(e) (f) SV3 and SV4

Figure A.3: Convergence histories of the divergence of velocity for the ’Harmonic solution’ example
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(a) (b)

(c) (d)

(e) (f)

Figure A.4: Convergence histories for the ’Polynomial solution’ example
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(a) RT0 (b) RT0

(c) SV2 (d) SV2

(e) SV3 and SV4 (f) SV3 and SV4

Figure A.5: Convergence histories with spaces of non-optimal behavior in comparison to results
from figure A.4
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(a) (b) RT0

(c) (d) SV2

(e) (f) SV3 and SV4

Figure A.6: Convergence histories of the divergence of velocity for the ’Polynomial solution’ ex-
ample
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A.2 Pressure robustness results

(a) MINI (b) BDM1

(c) T H2 (d) BDM2

(e) T H3 (f) BDM3

Figure A.7: Pressure robustness comparison of H1-conforming spaces with BDMk for the ’Har-
monic solution’ example
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(a) MINI (b) RT1

(c) T H2 (d) RT2

(e) T H3 (f) RT3

Figure A.8: Pressure robustness comparison of H1-conforming spaces with RTk for the ’Harmonic
solution’ example
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(a) RT0 (b) SV2

(c) SV3

Figure A.9: Pressure robustness results with spaces of non-optimal behavior for the ’Harmonic
solution’ example
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(a) MINI (b) BDM1

(c) T H2 (d) BDM2

(e) T H3 (f) BDM3

Figure A.10: Pressure robustness comparison of H1-conforming spaces with BDMk for the ’Poly-
nomial solution’ example
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(a) MINI (b) RT1

(c) T H2 (d) RT2

(e) T H3 (f) RT3

Figure A.11: Pressure robustness comparison of H1-conforming spaces with RTk for the ’Polyno-
mial solution’ example

58



(a) RT0 (b) SV2

(c) SV3

Figure A.12: Pressure robustness results with spaces of non-optimal behavior for the ’Polynomial
solution’ example
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