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Chapter 1

Introduction

1.1 Motivation

The incompressible Stokes equations are a fundamental model in fluid me-
chanics, describing the motion of viscous fluids in the absence of external
forces. They consist of the conservation of mass equation and the momen-
tum equation and play an essential role in understanding a wide range of
fluid flows. However, the numerical solution to these equations is challeng-
ing. One aspect is that pairs of velocity and pressure finite element spaces
that lead to well-posed problems lead simultaneously to solutions that violate
the conservation of mass.
The grad-div stabilization method is an e↵ective approach to address this
issue, as it reduces the divergence of velocity and enhances the mass con-
servation properties, resulting in a more accurate numerical solution. This
method is typically applied in the Taylor-Hood finite element space, which
consists of continuous piecewise polynomial functions for velocity and pres-
sure. The e↵ectiveness of this method is highly dependent on the choice of
stabilization parameter. Furthermore, the value of viscosity also has an im-
pact on the numerical solution.
In this thesis, we investigate the application of grad-div stabilization to the
incompressible Stokes equations, with a focus on its impact on the accuracy
and mass conservation properties of the numerical solutions. We provide er-
ror estimates for di↵erent grad-div stabilization methods in the Taylor-Hood
finite element space, to compare their performance. Additionally, we analyze
the e↵ect of the di↵erent factors on the numerical solutions.
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1.2 Structure

This thesis is organized as follows:

• Chapter 2 begins with a physical derivation of the incompressible Navier-
Stokes equations and their non-dimensionalization for numerical anal-
ysis. The Stokes equations are also introduced.

• Chapter 3 starts with the weak formulation of the Stokes equations,
followed by the inf-sup condition and the construction of finite element
spaces. A detailed explanation of the Galerkin finite element method
and standard error analysis is also provided. Then, an example of the
inf-sup stable pairs on finite element spaces, specifically the Taylor-
Hood elements, is given which will be used as the basis for the numerical
experiments in later chapters.

• Chapter 4 introduces two grad-div stabilization methods, namely the
standard and sparse methods, with a summary of the properties of the
sparse method. The impact of these methods on the accuracy of the
finite element solution and the convergence properties of the Taylor-
Hood finite element space is analyzed.

• Chapter 5 presents the results of several numerical experiments con-
ducted on 2D and 3D examples. The experiments focus on three main
aspects: the performance of di↵erent grad-div stabilization methods,
the impact of varying degrees of the Taylor-Hood spaces, and the influ-
ence of di↵erent values of viscosity. Furthermore, the e�ciency of two
grad-div stabilization methods is compared in a 3D example.

• Chapter 6 concludes with a discussion of the main findings and poten-
tial future research directions.
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Chapter 2

Incompressible Navier-Stokes
Equations and their Finite
Element Discretization

2.1 Derivation of Navier-Stokes Equations

Fluid mechanics has numerous applications in fields such as environmental
science, marine engineering, and atmospheric science. The Navier-Stokes
equations, which were introduced in the 19th century, are dynamic conserva-
tion equations used to describe viscous incompressible fluids. The equations
can be derived from the fundamental principles of conservation of mass and
momentum.

2.1.1 The Conservation of Mass

Remark 2.1.1 (The conservation of mass) Consider a control volume
⌦ Ä R

d
, d “ 2, 3, with a su�ciently smooth surface B⌦, the flow velocity

vector is vpt,xq and density is ⇢pt,xq. According to the conservation of
mass, it states that the change of mass in time plus the flow of mass through
the boundary equals 0,

B

Bt

ª

⌦

⇢d⌦ `

ª

B⌦
⇢v ¨ ndS “ 0, (2.1.1)

where n is the outward pointing unit normal on S P B⌦.
Since all functions and B⌦ are assumed to be su�ciently smooth, we can
apply the divergence theorem to transform a surface integral into a volume
integral. The divergence theorem states that:
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ª

⌦

r ¨ p⇢vqd⌦ “

ª

B⌦
⇢v ¨ ndS. (2.1.2)

So the final di↵erential form can be written asª

⌦

pBt⇢ ` r ¨ p⇢vqq d⌦ “ 0. (2.1.3)

Since the choice of ⌦ is arbitrary, then (2.1.3) becomes

Bt⇢ ` r ¨ p⇢vq “ 0. (2.1.4)

This equation (2.1.4) is the di↵erential form of the conservation of mass, also
known as the continuity equation for fluids. ˝

Remark 2.1.2 (Incompressible, Homogeneous Fluids) Assuming that
the fluid is incompressible and homogeneous, meaning that its density re-
mains constant and is represented as ⇢0 ° 0, it can be observed by expand-
ing the divergence operator in equation (2.1.4) that the velocity divergence
is zero as follows

r ¨ v “ pBxv1 ` Byv2 ` Bzv3qpt,xq “ 0, (2.1.5)

where v “ pv1, v2, v3q. On the other hand, the divergence of velocity is 0, if
the fluid is incompressible and homogeneous. ˝

Remark 2.1.3 (Time-Dependent Domain) Let F px, tq be some field
variable defined as a function of space and time, ⌦ptq be a time-dependent
control volume that encloses some finite region in space at each instant
of time, the time-dependent surface of the control volume is S, then the
Reynolds transport theorem has the form

d

dt

ª

⌦ptq
Fd⌦ “

ª

⌦ptq
BtFd⌦ `

ª

B⌦ptq
Fv ¨ ndS. (2.1.6)

Let F “ ⇢, where ⇢ is the density of the fluid. The conservation of mass and
the divergence theorem gives

d

dt

ª

⌦ptq
⇢d⌦ “

ª

⌦ptq
pBt⇢d⌦ ` r ¨ p⇢vqq d⌦. (2.1.7)

The left-hand side of the equation is the rate of change of the total mass
inside the control volume. If there is no source of mass within the control
volume, the left-hand side of the equation must equal zero. Since the choice
of the control volume is arbitrary, the kernel of the right-hand side of the
equation must therefore equal to zero at every point in the flow. Thus the
continuity equation in the absence of mass sources has the same form as
(2.1.4). ˝
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2.1.2 The Conservation of Momentum

Remark 2.1.4 (Conservation of Momentum)Newton’s second law states

the rate of a change of momentum “ force “ mass ˆ acceleration.

By the conservation of momentum, it reformulates as

B

Bt

ª

⌦

⇢vd⌦ `

ª

B⌦
p⇢vqpv ¨ nqdS “

ª

B⌦
T dS `

ª

⌦

fbd⌦, (2.1.8)

where fb is the body force, � is the symmetric Cauchy stress tensor, and T is
the stress vector, T “ n ¨ �, depending on the outward pointing unit normal
vector n. Applying Reynolds’ transport theorem and divergence theorem,
then ª

⌦

⇢pBtv ` pv ¨ rqvd⌦ “

ª

⌦

r ¨ �d⌦ `

ª

⌦

fbd⌦. (2.1.9)

Since ⌦ is arbitrary, we have

⇢pBtv ` pv ¨ rqvq “ r ¨ � ` fb. (2.1.10)

˝

Remark 2.1.5 (Decomposition of the Cauchy Stress Tensor) The
Cauchy stress tensor can be decomposed into the isotropic part and anisotropic
part:

� “ ´PI ` ⌧, (2.1.11)

where tracep⌧q “ 0, the pressure is defined as P . The parameter ⌧ usually
depends on the rate of strains and the spatial derivative of velocity. In the
case of a Newtonian fluid,

⌧ “ µprv ` rvT
q, (2.1.12)

where µ is the viscosity, then (2.1.10) is reduced to

⇢pBtv ` pv ¨ rqvq “ ´rP ` µ4v ` fb. (2.1.13)

Assume the parameters µ and ⇢ are positive constants, the Navier-Stokes
equations are

Btv ´ ⌫4v ` pv ¨ rqv ` r
P

⇢
“

fb

⇢
,

r ¨ v “ 0,
(2.1.14)

where ⌫ “ µ{⇢ is the kinematic viscosity of the fluid. ˝
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2.1.3 Dimensionless Equations

Dimensionless quantities make it easier to define scales in some cases, such
as Navier-Stokes equations, which allow us to derive physical meaning more
easily. In addition, they are well suited for numerical simulations, see [1].

Remark 2.1.6 (The Navier–Stokes Equations in Dimensionless Form)
With length scale L, time scale T and velocity scale U , the dimensionless
variables are introduce as following

v1
“

v

U
, t

1
“

t

T
, x1

“
x

L
. (2.1.15)

The Navier-Stokes equations (2.1.14) become

L

TU
Btv

1
´

2⌫

UL
4v1

` pv1
¨ rqv1

`
1

⇢U2
rP “

L

⇢U2
fb,

r ¨ v1
“ 0.

(2.1.16)

Define the Strouhal number and Reynolds number

L

TU
“ Strouhal numer “ St,

UL

⌫
“ Reynolds number “ Re,

(2.1.17)

and introduce pressure and body force scales as

p “
P

⇢U2
, f “

L

⇢U2
fb. (2.1.18)

For simplicity of notation, the variables are renamed again. With x
1

“ x,
t

1
“ t, v1

“ u, one gets the dimensionless Navier-Stokes equations

StBtu ´
1

Re
4u ` pu ¨ rqu ` rp “ f,

r ¨ u “ 0.
(2.1.19)

In order to simplify (2.1.19) again, one chooses the characteristic time scale
T “ L{U and ⌫ “ Re

´1, then gets

Btu ´ ⌫4u ` pu ¨ rqu ` rp “ f,

r ¨ u “ 0.
(2.1.20)

˝
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2.1.4 Special Cases for Incompressible Flow

Remark 2.1.7 (Steady-State Navier-Stokes Equation) The flow of a
fluid is steady if its velocity and pressure are independent of the time at
every point in the flow field. Hence one can skip the time derivative to get
the steady-state Navier-Stokes equations as follows

´⌫4u ` pu ¨ rqu ` rp “ f,

r ¨ u “ 0.
(2.1.21)

˝

Remark 2.1.8 (Stokes Equation) The Stokes equations describe the flow
of a viscous and incompressible fluid at small Reynolds numbers, which can
be obtained by neglecting the nonlinear convection term in (2.1.21). The full
Stokes equations take the form as

´⌫4u ` rp “ f,

r ¨ u “ 0.
(2.1.22)

˝

Remark 2.1.9 (Oseen Equation)As a model problem for linearized Navier-
Stokes equations, the most general form of the Oseen equation is written as

´⌫4u ` pb ¨ rqu ` rp ` cu “ f,

r ¨ u “ 0,
(2.1.23)

where c • 0 and b is a known convection field. ˝

2.2 Galerkin Discretization with Inf-Sup Sta-
ble Pairs of Finite Element Spaces

In the previous section, we derived the Navier-Stokes equations, however, due
to the nonlinear terms it contains, the equations are di�cult to solve exactly,
except under specific conditions. In practical situations, simplification of the
equations can be achieved by neglecting certain terms. For instance, when
the Reynolds number is small, the inertial forces in the equations can be
considered negligible in comparison to the viscous forces, thus reducing the
equations to the Stokes equations. The study of the numerical solutions
of the Stokes equations not only o↵ers insight into certain aspects of fluid
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dynamics, but also serves as a foundation for further research on the Navier-
Stokes equations, see [2].
To approximate the numerical solutions of the Stokes equations, the Galerkin
finite element method can be employed to discretize the variables of the
weak formulation using standard finite element spaces. In this section, we
first derive the weak formulation of the Stokes equations, and subsequently
apply this formulation to obtain the so-called inf-sup condition, which is
utilized to analyze the well-posedness of the Stokes problem. Furthermore,
we demonstrate the discrete inf-sup condition within finite element spaces,
and derive standard error estimates for the analysis. Finally, a typical family
of inf-sup stable finite element spaces is presented.

2.2.1 Weak Formulation and Inf-Sup Condition

Remark 2.2.1 (The Stokes Equations in Weak Form) Consider the
Stokes equations with homogenous Dirichlet boundary conditions

´⌫4u ` rp “ f in ⌦,

r ¨ u “ 0 in ⌦,

u “ 0 on B⌦,

(2.2.1)

where u is the velocity field of an incompressible fluid motion, p is the asso-
ciated pressure. It is obvious that all the solutions to the Stokes equations
(2.2.1) should fulfill u P C

2
p⌦q X Cp⌦̄q and p P C

1
p⌦q. However, the pres-

sure is not unique since only the pressure gradient enters the equation, not
the absolute value of p. Hence, the pressure solution is only unique up to
a constant. One can fix this by demanding

≥
⌦ pdx “ 0, define the pressure

space consisting of functions with zero mean value on ⌦.
Multiplying a test function v P H

1
0 p⌦q

d and q P L
2
0p⌦q in (2.2.1), integrating

over ⌦, and using integration by parts, we obtain the corresponding weak
formulation of the Stokes equations: Find a pu, pq P V ˆ Q in a Lipschitz
domain with the polyhedral boundary ⌦ Ä R

d, for all pv, qq P V ˆ Q such
that

p⌫ru,rvq ´ pp,r ¨ vq “ F pvq,

pr ¨ u, qq “ 0,
(2.2.2)

where the operator F : H´1
p⌦q

d
fiÑ R, F pvq “ xf ,vy “

≥
⌦ f ¨ v, and V “

H
1
0 p⌦q

d, Q “ L
2
0p⌦q. Since it requires ru P L

2
p⌦q, the velocity u should

satisfy the Dirichlet boundary condition, and the pressure p has to be unique.
The setting for the Stokes equations is:
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‚ Space:

V “ H
1
0 p⌦q

d with norm }v}V “ }rv}L2p⌦q,

Q “ L
2
0p⌦q “

"
q : q P L

2
p⌦q,

ª

⌦

qdx “ 0

*
with norm }q}L2p⌦q,

V
1

“ H
´1 is the dual space of V,

Q
1

“ Q is the dual spcae of Q.

‚ Bilinear forms :

ap¨, ¨q : V ˆ V Ñ R , bp¨, ¨q : V ˆ Q Ñ R,

apu,vq “

ª

⌦

⌫pru : rvqdx ,with norm }a} “ sup
v,wPV,v,w‰0

apv,wq

}v}V }w}Q

,

bpv, qq “ ´

ª

⌦

pr ¨ vqqdx, with norm }b} “ sup
vPV,qPQ,v,q‰0

bpv, qq

}v}V }q}Q

.

‚ Operators :

A P LpV, V
1
q, A

1
P LpV

1
, V q,

defined by xAu, vy
V

1
,V

“ xu,A
1
vy

V,V
1 “ apu, vq “ ⌫pru,rvq.

B P LpV,Q
1
q, B

1
P LpQ, V

1
q,

defined by xBv, qy
Q

1
,Q

“ xv, B
1
qy

V,V
1 “ bpv, qq “ pr ¨ v, qq.

Two continuous bilinear form ap¨, ¨q and bp¨, ¨q mentioned above are bounded,

apu,vq § C1kukV kvkV , (2.2.3)

bpv, qq § C2kvkV kqkQ, (2.2.4)

for all u,v P V and q P Q.
Using the bilinear form, the weak formulation (2.2.2) can be written as

apu,vq ` bpv, pq “ F pvq,

bpu, qq “ 0.
(2.2.5)

With the introduced operators, the weak formulation (2.2.2) also has an
equivalent form as follows:

Au ` B
1
p “ f,

Bu “ 0.
(2.2.6)

˝
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Remark 2.2.2 In order to investigate whether there is a unique solution
pu, pq to the Stokes equations (2.2.1), we first restrict ourselves to a divergence-
free velocity space to consider the velocity u and then prove that there exists
a corresponding pressure p satisfying the Stokes equations (2.2.1). ˝

Lemma 2.2.1 Let � be an linear operator, from V ˆ Q onto V
1
ˆ Q

1,

�pv, qq “ pAv ` B
1
q, Bvq.

Thus, (2.2.6) is called well-posedness if � is an isomorphism. ˝

Remark 2.2.3 (Divergence-Free Space) For incompressible flow prob-
lems, the mass conservation property is described by

ª

⌦

r ¨ uqdx “ 0, @q P L
2
0p⌦q, (2.2.7)

in the weak formulation. Hence, r ¨u “ 0 holds on ⌦ in L
2 sense. Then, the

space of vector fields in L
2
p⌦q where the divergence also belongs to L

2
p⌦q,

is defined as
Hpdiv,⌦q “ tv P L

2
p⌦q : r ¨ v P L

2
p⌦qu.

A particular space of divergence-free functions is defined by

Hdiv,⌦ “ tv P Hpdiv,⌦q : r ¨ v “ 0 and v ¨ n “ 0 on B⌦

in the sense of tracesu.

The function  P L
1
loc

p⌦q is called the weak divergence of v P L
p
p⌦q such

that ª

⌦

 �dx “ ´

ª

⌦

r� ¨ vdx, @� P C
8
0 p⌦q.

Then, the vector field v P L
p
p⌦q is called weakly divergence-free if

ª

⌦

r� ¨ vdx “ 0, @� P C
8
0 p⌦q.

Using the above operator, the space of weakly divergence-free functions is
defined as follows, @v P H

1
0 p⌦q

d,

V
div : “ tbpv, qq “ 0, @q P L

2
0p⌦qu,

“ tBv “ 0u “ KerpBq,

where the KerpBq is the kernel of operator B .
The orthogonal complement of V div in H

1
0 p⌦q

d is denoted as

V
div,K :“ tw P H

1
0 p⌦q

d
, apv,wq “ 0, @v P V

div
u. (2.2.8)

˝
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Lemma 2.2.2 V
div is a linear, closed subspace of V , it is also a Hilbert

space.

Proof: By the definition of V div, it is a subset of V .
Since 0 P V

div, V div
‰ H. Consider any two vectors v, w P V

div, and any
two scalars ↵, � P R, then the linear combination

bp↵v ` �wq “ ´

ª

⌦

r ¨ p↵v ` �wqqdx

“ ´↵

ª

⌦

pr ¨ vqqdx ´ �

ª

⌦

pr ¨ wqqdx

“ ↵bpv, qq ` �bpw, qq “ 0,

(2.2.9)

also belongs to the space V
div. Thus, the space V

div is linear.
Let tvnu

8
n“1 be an arbitrary Cauchy sequence with vn P V

div. Since V is
complete, there exists a v P V , such that limnÑ8 vn “ v. To show the
closeness of V div, one has to show that v P V

div. By the continuity of the
bilinear form bp¨, ¨q, we have

bpv, qq “ bp lim
nÑ8

vn, qq “ lim
nÑ8

bpvn, qq “ 0. (2.2.10)

Hence, v P V
div.

As a linear, closed subspace of a Hilbert space is a Hilbert space itself, thus,
V

div is a Hilbert space. ⌅
Theorem 2.2.1 (Lax-Milgram Theorem) For a bilinear form ap¨, ¨q on
V ˆ V , if it satisfies

1) Continuity: apu,vq § �kukV kvkV , � P R,

2) Coercivity : apu,uq • ↵kuk2
V
, ↵ ° 0,

then for any f P V
1, there exists a unique u P V such that

apu,vq “ xf,vy, (2.2.11)

and

kukV §
1

↵
kfkV 1 . (2.2.12)

Proof: Applying the Riesz Representation Theorem, the existence and unique-
ness of u P V satisfying (2.2.11) can be proved in [3] on pages 315 and 316.
For (2.2.12), we have

↵kuk2
V

§ apu,uq “ xf,uy § kfkV 1kukV ,

which completes the proof of the Lax-Milgram Theorem.
⌅
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Remark 2.2.4 For (2.2.5), we remove the pressure term and consider only
the velocity u P V

div. For a given f P H
´1

p⌦q, find u P V
div such that

apu,vq “ xf,vy, @v P V
div

. (2.2.13)

Since V
div is a Hilbert space with the inner product, the bilinear form ap¨, ¨q

is bounded and coercive which fulfills the conditions in the Lax-Milgram
theorem. Thus, there exists a unique solution to (2.2.13). The remaining
question about the well-posedness of (2.2.5) is whether there exists a unique
p such that pu, pq is a solution to (2.2.5) when u P V

div solving (2.2.13)
exists.
Assume u P V

div is the solution to (2.2.13), the first equation of (2.2.5) can
be written as

bpv, pq “ ´apu,vq ` F pvq, @v P V. (2.2.14)

Problem (2.2.14) also has the following form,

bpv, pq “ F̃ pvq, @v P V, (2.2.15)

where F̃ pvq “ 0, for all v P V
div.

The Lax-Milgram theorem cannot be applied to prove the existence problem
of the solution to this equation, because the bilinear form bp¨, ¨q is not coer-
cive. Therefore, we introduce the equivalent condition to solve this problem,
namely the inf-sup condition. ˝

Definition 2.2.1 (Inf-Sup Condition) Consider the bilinear form bp¨, ¨q :
V ˆ Q Ñ R, if there exists a constant � ° 0 such that

inf
qPQzt0u

sup
vPV zt0u

bpv, qq

kvkV kqkQ
• � ° 0, (2.2.16)

then this is the so-called inf-sup condition. ˝

Remark 2.2.5 The equation (2.2.16) can be written as that for all q P Q

�kqkQ § sup
vPV zt0u

bpv, qq

kvkV
,

this inequality relates to the coercivity condition (2.2.4),

↵kukV § sup
uPV zt0u

apu,uq

kukV
§ sup

vPV zt0u

apv,uq

kvkV
.

The inf-sup condition (2.2.16) can be regarded as a new coercivity condition
for (2.2.14).
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Lemma 2.2.3 The following properties are equivalent:

(i) There exist a constant � ° 0 such that

inf
qPQzt0u

sup
vPV zt0u

bpv, qq

kvkV kqkQ
• � ° 0. (2.2.17)

(ii) The operator B1 is an isomorphism from Q onto Ṽ
1 and

kB
1
qkV 1 • �kqkQ, @q P Q (2.2.18)

where Ṽ
1 :“ tg P V

1
, xg,vyV 1,V “ 0, @v P V

div
u.

(iii) The operator B is an isomorphism from V
div,K onto Q

1 and

kBvkQ1 • �kvkV , @v P V
div,K

. (2.2.19)

Proof: See [4] on pages 58 and 59. ⌅

Definition 2.2.2 Define a linear continuous operator ⇧ P LpV
1
, pV

div
q

1
q by:

x⇧f,vyV 1,V “ xf,vyV 1,V , @f P V
1
, @v P V

div
. (2.2.20)

This operator ⇧f restrict f from V
1 onto pV

div
q

1. With this operator, we
complete the conditions for satisfying the well-posedness of the Stokes prob-
lem (2.2.6). ˝

Theorem 2.2.2 (Well-posedness of the Stokes Problem (2.2.6)) Prob-
lem (2.2.6) is well-posed (i.e., the operator � is isomorphism) if and only if
the following conditions hold:

(1) the operator ⇧A is an isomorphism from V to V
1,

(2) the bilinear form bp¨, ¨q satisfies the inf-sup condition (2.2.16).

Proof: See [4], page 59. ⌅

Corollary 2.2.1 Assume that the bilinear form bp¨, ¨q is V-elliptic, i.e., there
exists a constant ↵ ° 0 such that

apv,vq • ↵kvk2
V
.

Then, the problem (2.2.6) is well-posed if and only if the bilinear form bp¨, ¨q

satisfies the inf-sup condition (2.2.16).

Proof: See [4], page 61. ⌅
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2.2.2 Finite Element Space and the Discrete Inf-Sup
Condition

The uniqueness and existence of solutions to the Stokes equations were proved
in the previous section. The next step is to find approximate solutions since
the function spaces V and Q are in infinite dimensions, making numerical
computation intractable. Then, a better-suited finite element space will be
introduced.

Remark 2.2.6 (Finite Element) A finite element can be defined as a triple
tK,P ,N u which consists of

• K is a bounded closed set of Rn with nonempty interior and piecewise
smooth boundary.

• P is the finite-dimensional space that consists of polynomials defined
on K.

• N “ tN1, N2, ..., Nku is the set of nodal variables which forms the basis
for the space P

1.

˝

Definition 2.2.3 (Unisolvence) The space P is called unisolvent with re-
spect to functionals N if for each a “ pa1, .., akq P Rk, there is exact one
p P P such that

Nippq “ ai. (2.2.21)

˝

Definition 2.2.4 (Local Nodal Basis) By the meaning of unisolvence,
there exists a set of t�ku

k

i“1 such that

Nip�jq “ �ij, (2.2.22)

which is called local nodal basis. ˝

Definition 2.2.5 (Triangulation) Let Th be a triangulation of ⌦. The
domain is subdivided into a finite number of subsets K in such a way that:

• ⌦ “
î

KPTh K.

• Each K P Th is a closed polyhedron and K̊ is nonempty.

• For any two elements K1, K2 we have either K1 “ K2 or K̊1 “ K̊2 “ H.
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• If e “ K1 X K2 ‰ H, then e is either a common face, edge, or vertex
of K1 and K2.

• For every K P Th, the boundary BK is Lipschitz continuous.

˝

Definition 2.2.6 (Finite Element Space, Global Basis) In order to
uniquely determine a finite element space, continuity requirements between
mesh cells must be specified as follows: the function v defined on finite
element space ⌦ with v |KP P for all K P Th is called continuous with
respect to the functional Ni P N : ⌦ fiÑ R if

Nipv |K1q “ Nipv |K2q, @K1, K2 P wi, (2.2.23)

where wi is the union of all mesh cells Kj, for which there is a p P PpKjq

with Nippq ‰ 0.
The space

S “ tv P L
8

p⌦q : v |KP P and v is continuous with respect to Ni, i “ 1, ..., ku,

is called the finite element space.
The global basis t�iu

k

i“1 of S is defined by the condition

�i P S, Njp�iq “ �ij, i, j “ 1, ..., k.

In each cell, a global basis function coincides with a local basis function,
which implies the uniqueness of the global basis function.
The continuity of the finite element functions is not always guaranteed by
the continuity of the global functionals tNiu

k

i“1, as it is determined by the
definition of the functionals defining the finite element space. ˝

Remark 2.2.7 (Piecewise Polynomial Spaces) Let PK be the set of all
polynomials whose degree is less than or equal to k with variables x1, ..., xd.
Then, for any p P PK is defined as following:

ppx1, x2, ..., xdq “

ÿ
C↵x

↵1
1 x

↵2
2 ...x

↵d
d
, ↵1 ` ... ` ↵d § k, (2.2.24)

where ↵ “ p↵1, ...,↵dq. Thus the number of di↵erent terms is the same as the
number of choosing k elements from the set t1, x1, ..., x ` du with repetition
allowed. Thus

dimPk “

ˆ
d ` k

k

˙
. (2.2.25)

The functional variables Nk P N that uniquely determine the function in the
space PK are called the degrees of freedom, and we often use

∞
K

to denote
the set of the degrees of freedom. ˝

17



Definition 2.2.7 (The Finite Element Discretization of the Stokes
Equations) Finite element methods for solving the Stokes equation can
be viewed as a specific application of the Galerkin method. This involves
choosing subspaces Vh Ä V and Qh Ä Q based on a triangulation Th of
the domain ⌦, and considering the variational problem (2.2.5) in a finite-
dimensional setting. Specifically, the goal is to find puh, phq P Vh ˆ Qh such
that for all pvh, qhq P Vh ˆ Qh:

ahpuh,vhq ` bhpph,vhq “ F pvhq,

bhpuh, qhq “ 0,
(2.2.26)

with bilinear forms:

ah : Vh ˆ Vh fiÑ R, ahpuh,vhq “

ÿ

KPTh
⌫pruh,rvhqK ,

bh : Vh ˆ Qh fiÑ R, bhpvh, qhq “ ´

ÿ

KPTh
prvh, qhqK .

˝

Remark 2.2.8 Regarding the existence and uniqueness of solutions to the
Stokes problem, Theorem 2.2.2 and Corollary 2.2.1 state that the variational
problem (2.2.5) needs to satisfy the requirement that bilinear form ap¨, ¨q is
coercive and bp¨, ¨q fulfills the inf-sup condition (2.2.16). Similarly, the same
conditions should be satisfied for the discrete problem (2.2.26). Since the
subspace Vh Ä V and Qh Ä Q, the bilinear form bhp¨, ¨q is identical to the
bilinaer form bp¨, ¨q. ˝

Theorem 2.2.3 (The Discrete Inf-Sup Condition) The discrete inf-sup
condition for the finite element approximation is defined as follows:

inf
qhPQhzt0u

sup
vhPVhzt0u

bpvh, qhq

kvhkVh
kqhkQh

“ �h ° 0. (2.2.27)

˝

Remark 2.2.9 If the bilinear form ahp¨, ¨q is Vh-elliptic, and the bilinear
form bhp¨, ¨q satisfies the discrete inf-sup condition (2.2.27), the finite element
Stokes equations (2.2.26) has a unique solution. ˝
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2.2.3 Galerkin Finite Element Method and Standard
Error Analysis

Remark 2.2.10 (Galerkin Discretization of the Stokes Problem) Con-
sider a finite-dimensional subspace Vh and Qh, let

Vh “ spant�
j
u
3N
j“1

“ span

$
’&

’%

$
&

%

¨

˝
�j

0
0

˛

‚

,
.

-

N

j“1

Y

$
&

%

¨

˝
0
�j

0

˛

‚

,
.

-

N

j“1

Y

$
&

%

¨

˝
0
0
�j

˛

‚

,
.

-

N

j“1

,
/.

/-
,

be the basis of the vector-valued velocity space. Each basis function has
non-zero coe�cients in more than one component.
Let t u

M

i“1 be the basis of the pressure finite element spaces Qh. Hence,
dimpVhq “ 3N, dimpQhq “ M . Then, for any function uh P Vh and ph P Qh

there is a unique representation:

uh “

3Nÿ

j“1

↵j�j
,

ph “

Mÿ

k“1

�k k.

(2.2.28)

Then, taking them to the finite-dimensional variational problem (2.2.26) to
get

3Nÿ

j“1

ap�j,�iq↵j `

Mÿ

k“1

bp�
i
, kq�k “ pfh,�i

q, i “ 1, 2, ..., 3N,

3Nÿ

j“1

bp�
j
, iq↵j “ 0, i “ 1, 2, ...,M.

(2.2.29)

It reveals that the Galerkin method transforms the problem of solving partial
di↵erential equations into finding the coe�cient vector t↵ju

3N
1“0 and t�ku

M

k“1

so that the (2.2.29) is satisfied.
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By introducing

Ah “ paijqNˆN with aij :“ ap�
j
,�iq “

ÿ

KPTh
⌫pr�

j
,r�

i
qK ,

Bh “ pbijqMˆN with bij :“ bp�
j
, iq “ ´

ÿ

KPTh
pr�

j
,r iqK ,

pfqi “ fi “

ÿ

KPTh
pfh,�i

q, f P R3N
,

puqj “ ↵j, u P R3N
, ppqk “ �k, p P RM

,

the coe�cient vector can be obtained by solving the following linear system
of block matrix form as follows

ˆ
Ah B

T

h

Bh 0

˙ ˆ
u

p

˙
“

ˆ
f

0

˙
. (2.2.30)

˝

Remark 2.2.11 The previous section shows ahp¨, ¨q is coercive and bhp¨, ¨q

satisfies the discrete inf-sup condition, thereby proving the existence and
uniqueness of solutions for the discrete Stokes equation. ˝

Definition 2.2.8 The Ah block represents the contributions of velocity with
the momentum equations’ test functions. They have interactions ofr�

j
with

r�
i
only if i “ j. Thus, the Ah is a block-diagonal matrix. Moreover, the

non-zero components of r�
j
with r�

i
have the same value. Hence, the

matrix Ah has the structure

Ah “

¨

˝
A11 0 0
0 A11 0
0 0 A11

˛

‚. (2.2.31)

˝

Lemma 2.2.4 (Properties of the Matrix Ah) Ah is symmetric and pos-
itive definite.

Proof: From the definition of Ah, it is easy to prove the symmetry.
In order to prove the positive definiteness, one can choose an arbitrary vh P
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Vh with vh ‰ 0 which is defined as vh “
∞3N

j“1 vj�j
with v

h
P R3N

z t0u, then

v
T

h
Ahvh “

3Nÿ

i,j“1

vjvi

ÿ

KPTh
⌫pr�

j
,r�

i
qK

“

ÿ

KPTh
⌫p

3Nÿ

i,j“1

vjr�
j
,

3Nÿ

i,j“1

vir�
i
qK

“

ÿ

KPTh
⌫prvh,rvhq

“ apvh,vhq

“ kvhk
2
Vh

° 0.

⌅

Lemma 2.2.5 (Properties of the Matrix Bh) The discrete inf-sup condi-
tion (2.2.27) implies that the matrixBh has full rank and dimpVhq • dimpQhq.

Proof: The matrix Bh P RMˆ3N is defined as

pBhqij “ bp�
j
, iq.

From the discrete inf-sup condition (2.2.27), it follows that for every  h P

Qh, h ‰ 0, there exists �
h

P Vh such that bp�
h
, hq ‰ 0. Thus for every y P

RM
, y ‰ 0, there exists x P R3N such that yTBhx ‰ 0, and also x

T
B

T

h
y ‰ 0.

This means that all columns of BT

h
and all rows of Bh are independent. A

necessary condition for this is M § 3N . ⌅

Remark 2.2.12 Lemmas 2.2.4 and 2.2.5 guarantee the solvability of the
linear equation system described in (2.2.30). The application of the Galerkin
finite element method to solve the Stokes equations is complicated by the
coupling of pressure and velocity spaces. Lemma 2.2.5 provides guidance
on suitable choices for finite element spaces, based on the discrete inf-sup
condition, indicating that the velocity space Vh should be larger than the
pressure space Qh.
To analyze the errors in the velocity and pressure solutions of the Stokes
equations, a discrete divergence-free space can be introduced. ˝

Remark 2.2.13 (Discrete Divergence-Free Space) In the discrete prob-
lem, with the finite element spaces Vh and Qh for velocity and pressure re-
spectively, one obtains the variational equation

ª

⌦

r ¨ uhqhdx “ 0, @qh P Qh, (2.2.32)

21



where the discrete velocity solution uh P Vh, such uh is called discretely
divergence-free. The space V

div

h
of discretely divergence-free functions is de-

fined as follows:

V
div

h
“ tvh P Vh : bpvh, qhq “ 0, @qh P Qhu, (2.2.33)

which is the kernel of Bh. The operator Bh maps from Vh to Qh, such that
pBhvh, qhq “ bpvh, qhq. Usually this does not imply r ¨ uh “ 0 in ⌦ due to
Qh ‰ L

2
0p⌦q. It means a discrete divergence-free function may not be exactly

divergence-free, i.e., V div

h
Ç V

div. This will lead to the violation of mass
conservation which we have to be aware of in finite element discretization. ˝

Theorem 2.2.4 (Error Estimate for the Gradient of Velocity) Let
pu, pq be the unique solution of the Stokes equation (2.2.5). This problem is
discretized to (2.2.26) using the inf-sup stable finite element space Vh ˆQh Ä

V ˆ Q, with the velocity solution represented by uh P V
div

h
. Then, the

following error estimate holds

krpu ´ uhqkL2p⌦q § 2 inf
vhPV div

h

krpu ´ vhqkL2p⌦q ` ⌫
´1 inf

qhPQh

kp ´ qhkL2p⌦q.

(2.2.34)

Proof: Firstly, one needs to choose a proper test function to formulate weak
equations. With the property in Remark 2.2.13, the discretely divergence-
free functions from V

div

h
P V can be used in both original (2.2.5) and discrete

(2.2.26) problem, then subtract one from the other to obtain

apu ´ uh,vhq ` bpvh, pq “ 0, @vh P V
div

h
, (2.2.35)

due to the discretely divergence free bpvh, phq “ 0. Moreover, the pressure
term cannot be removed from the equation since V div

h
Ç V

div. Then, add the
term bpvh, qhq to the left-hand side of the equation, and the error estimate is
reduced to

apu ´ uh,vhq ` bpvh, p ´ qhq “ 0, @vh P V
div

h
. (2.2.36)

For arbitrary vh P V
div

h
, the error is decomposed into

u ´ uh “ pu ´ vhq ´ puh ´ vhq :“ ⌘ ´ �
h
.

Since �
h

P V
div

h
, it can be used as a test function that takes the place of vh.

Thus, by taking the error decomposition and using the test function vh “ �
h

in (2.2.36), one obtains

⌫kr�
h
k
2
L2p⌦q “ ⌫pr⌘,r�

h
q ´ pr ¨ �

h
, p ´ qhq. (2.2.37)
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Using the Cauchy-Schwarz inequality to the first term and the second term
on the right-hand side, yields

⌫kr�
h
k
2
L2p⌦q § ⌫kr⌘kL2p⌦qkr�hkL2p⌦q

` kr ¨ �
h
kL2p⌦qkpp ´ qhqkL2p⌦q.

(2.2.38)

Applying the divergence estimate kr¨�
h
kL2p⌦q § kr�

h
kL2p⌦q by the gradient

of functions from H
1
0 p⌦q, see [5], then (2.2.37) is divided by ⌫k�

h
kL2p⌦q ‰ 0

which leads to

kr�
h
kL2p⌦q § kr⌘kL2p⌦q ` ⌫

´1
kpp ´ qhqkL2p⌦q. (2.2.39)

This estimate trivially holds if kr�
h
kL2p⌦q “ 0. With the triangle inequality

of the gradient of the error decomposition, it gives

krpu ´ uhqkL2p⌦q § kr�
h
kL2p⌦q ` kr⌘kL2p⌦q

§ 2kr⌘kL2p⌦q ` ⌫
´1
kpp ´ qhqkL2p⌦q.

The resulting estimate in terms of the best approximation errors is obtained
in (2.2.34). ⌅
Remark 2.2.14 The error estimate (2.2.34) shows that the velocity error
krpu ´ uhqkL2p⌦q is bounded by the best approximation error of pressure,
which is scaled with the inverse of the viscosity. The error estimate would
be large if the viscosity is small. ˝

Corollary 2.2.2 (Error Estimate for the Divergence of Velocity)
From (2.2.34), one obtains

kr ¨ uhkL2p⌦q § 2 inf
vhPV div

h

krpu ´ vhqkL2p⌦q ` ⌫
´1 inf

qhPQh

kp ´ qhkL2p⌦q.

(2.2.40)

Proof: Combining with the r ¨ u “ 0 and the divergence estimate by the
gradient, gives

kr ¨ uhkL2p⌦q “ kr ¨ pu ´ uhqkL2p⌦q § krpu ´ uhqkL2p⌦q.

Thus the estimate in (2.2.40) is obtained. ⌅
Theorem 2.2.5 (Error Estimate of Pressure) The finite element error
estimate for the L2 norm of the pressure is

kp ´ phkL2p⌦q §
2⌫

�h
inf

vhPV div
h zt0u

kr ¨ pu ´ vhqkL2p⌦q`

ˆ
1 `

2

�h

˙
inf

qPQhzt0u
kp ´ qhkL2p⌦q.

(2.2.41)
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Proof: Choosing the test function pvh, qhq P Vh ˆ Qh, one gets the following
with the triangle inequality

kp ´ phkL2p⌦q § kp ´ qhkL2p⌦q ` kph ´ qhkL2p⌦q. (2.2.42)

By subtracting the first equations in each of Stokes equations (2.2.5) and
discrete problem (2.2.26), one finds the relation

apu ´ uh,vhq “ bpvh, p ´ phq. (2.2.43)

With the inf-sup condition and the Cauchy-Schwarz inequality, one gets

kph ´ qhkL2p⌦q

§
1

�h
sup

vhPVhzt0u

bpvh, ph ´ qhq

krvhkL2p⌦q

“
1

�h
sup

vhPVhzt0u

bpvh, ph ´ pq ` bpvh, p ´ qhq

krvhkL2p⌦q

“
1

�h
sup

vhPVhzt0u

apu ´ uh,vhq ` bpvh, p ´ qhq

krvhkL2p⌦q

§
1

�h
sup

vhPVhzt0u

⌫krpu ´ uhqkL2p⌦qkrvhkL2p⌦q ` krvhkL2p⌦qkp ´ qhkL2p⌦q
krvhkL2p⌦q

§
1

�h

`
⌫krpu ´ uhqkL2p⌦q ` kp ´ qhkL2p⌦q

˘
.

Inserting the error estimate (2.2.34) and plugging it into (2.2.42), we obtain
the resulting error estimate for the L2 norm of the pressure (2.2.41). ⌅

Theorem 2.2.6 (Error Estimate for the Velocity in L
2
p⌦q) To obtain

the optimal error estimate for velocity in L
2
p⌦q, we introduce the dual Stokes

equations. For given ˆf P L2p⌦q, find p�f̂ , ⇠f̂ q P V ˆ Q such that

´⌫4�f̂ ´ r⇠f̂ “ f̂ in ⌦, (2.2.44)

r ¨ �f̂ “ 0 in ⌦. (2.2.45)

Then the following error estimate for the velocity holds

ku ´ uhkL2p⌦q §

ˆ
krpu ´ uhqkL2p⌦q ` ⌫

´1 inf
qhPQh

kp ´ qhkL2p⌦q

˙

ˆ sup
f̂PL2p⌦qz0

1

kf̂kL2p⌦q

„
inf

�hPV div
h

krp�f̂ ´ �
h
qkL2p⌦q ` inf

rhPQh

k⇠f̂ ´ rhkL2p⌦q

⇢
.

Proof: See [5], Theorem 4.28. ⌅
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2.2.4 The Inf-Sup Stable Pairs of the Finite Element
Spaces

The Taylor-Hood pairs which have been introduced firstly in [6] are a popular
choice for solving incompressible fluid problems, as they have been proven to
satisfy the discrete inf-sup condition (2.2.27) in two and three dimensions,
see Theorems 8.1 and 8.2 of [7].

Definition 2.2.9 (The Family of Taylor–Hood Finite Element Spaces)
Given a triangulation Th of the domain ⌦ P Rd

, d “ 2, 3. The family of Tay-
lor–Hood finite element spaces on triangular grids is given by Pk{Pk´1, the
k-th piecewise continuous polynomial spaces for the velocity space, and the
pk ´ 1q-th continuous piecewise polynomial spaces for the pressure space,
which consist of

PkpThq “
 
vh P Cp⌦̄q : vh |KP Pk, @K P Th

(
, (2.2.46)

Pk´1pThq “
 
qh P Cp⌦̄q : qh |KP Pk´1, @K P Th

(
, (2.2.47)

where k • 2. ˝
Remark 2.2.15 (Error Estimates for Taylor-Hood Pairs of Finite
Element Spaces) Consider the discrete Stokes equation (2.2.26) with Taylor-
Hood pairs of Finite Element Spaces, assume the unique solution pu, pq of
(2.2.5) lies in H

m
p⌦q ˆ H

m´1
p⌦q, then the following errors hold

krpu ´ uhqkL2p⌦q § Ch
k

`
kukHk`1p⌦q ` ⌫

´1
kpkHkp⌦q

˘
, (2.2.48)

kr ¨ uhkL2p⌦q § Ch
k

`
kukHk`1p⌦q ` ⌫

´1
kpkHkp⌦q

˘
, (2.2.49)

ku ´ uhkL2p⌦q § Ch
k`1

`
kukHk`1p⌦q ` ⌫

´1
kpkHkp⌦q

˘
, (2.2.50)

kp ´ phkL2p⌦q § Ch
k

`
⌫kukHk`1p⌦q ` kpkHkp⌦q

˘
, (2.2.51)

with a constant C depends on the inverse of constant �h in the discrete
inf-sup condition (2.2.27).

Remark 2.2.16 The error estimates (2.2.48), (2.2.49), and (2.2.50) reveal
that when the viscosity is small, the error estimate for velocity will become
large, while the error estimate for pressure will be small, as shown in (2.2.51).
The pressure terms in the velocity error estimates arise due to the fact that
the discrete finite element space is not weakly divergence-free, i.e., V div

h
Ç

V
div, which means that the conservation of mass cannot be guaranteed. This

leads to a pressure-dependent consistency error that a↵ects the computed
velocity and is known as the lack of pressure-robustness, as discussed in [8].
To address this issue, we introduce the grad-div stabilization method, which
is applied to the Taylor-Hood finite element method. In the next chapter, we
will present a discretization that improves the mass conservation property. ˝
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Chapter 3

Grad-Div Stabilizations for the
Stokes Problem

3.1 Standard Grad-Div Stabilization

In fluid mechanics, the mass conservation is a fundamental law. A numerical
algorithm used to solve fluid problems should satisfy this property in order to
obtain physically accurate results. Therefore, in this chapter, we investigate
the use of the grad-div stabilization method which is known to improve the
mass conservation property of the numerical solution.
In recent decades, the grad-div stabilization method has been extensively re-
searched in theoretical and computational aspects, see [9], [10] and [11]. This
simple and practical technique was first proposed for the incompressible flow
in [12], and it adds a stabilization term �rr ¨u to the momentum equation,
which does not a↵ect the solution of the continuum problem since the stabi-
lization term is zero. Utilizing the Galerkin finite element method mentioned
in the last chapter, the term �pr ¨ uh,r ¨ uhq is obtained by replacing the
infinite-dimensional space with the finite-dimensional space through integra-
tion by parts in the weak formulation. For most of the common choices of
finite element pairs like Taylor-Hood, r ¨uh ‰ 0, thus the grad-div stabiliza-
tion term is not zero in the finite element discretization. It can influence the
discrete solution, which in turn improves the mass conservation in the finite
element method, and also further increases the accuracy of the approximate
solution of the Stokes equations by reducing the e↵ect of pressure on the
velocity error, see [10] and [13].

Definition 3.1.1 (The Grad-Div Stabilization ) The weak formulation
of the Stokes equations (2.2.2) is extended with the grad-div stabilization
term. Then, the stabilized finite element discretization is represented as
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follows: for fixed � ° 0, find the solution puh, phq P Vh ˆQh, for all pvh, qhq P

Vh ˆ Qh such that

⌫pruh,rvhq ` �pr ¨ uh,r ¨ vhq ´ pr ¨ vh, phq “ pf ,vhq,

pr ¨ uh, qhq “ 0.
(3.1.1)

Here, � is the stabilization parameter. ˝

Remark 3.1.1 Let

ãhpuh,vhq “ ⌫pruh,rvhq ` �pr ¨ uh,r ¨ vhq, (3.1.2)

on the left-hand side of the (3.1.1), the first term is positive definite, and
the second term is semi-positive definite. Thus, the bilinear form ãhp¨, ¨q is
coercive. The existence and uniqueness of the solution of (3.1.1) could be
proved in a similar way as Corollary 2.2.1. ˝

Remark 3.1.2 (The linear system of the Stokes Problem) Assembling
the discretized equations

ãhpuh,vhq ` bhpph,vhq “ F pvhq,

bhpuh, qhq “ 0,
(3.1.3)

which results in a linear system of the form like (2.2.30),
ˆ
Ãh B

T

h

Bh 0

˙ ˆ
u

p

˙
“

ˆ
f

0

˙
, (3.1.4)

where

Ãh “ pãijqNˆN with

pãijq :“ ap�
j
,�

i
q “

ÿ

KPTh
⌫pr�

j
,r�

i
qK `

ÿ

KPTh
�Kpr ¨ �

j
,r ¨ �

i
qK ,

where i, j “ 1, .., 3N , and the stabilization parameters are t�Ku with �K ° 0.
Applying the grad-div stabilization, the matrix Ãh has the following form

Ãh “

¨

˝
A11 0 0
0 A11 0
0 0 A11

˛

‚`

¨

˝
Ã11 Ã12 Ã13

Ã21 Ã22 Ã23

Ã31 Ã32 Ã33

˛

‚, (3.1.5)

where the matrix entries are

pÃklqij “ �pBl�j, Bk�iq, k, l “ 1, ¨ ¨ ¨ , d, i, j “ 1, ¨ ¨ ¨ , 3N.

The symmetry of the o↵-diagonal blocks of Ãh follows directly from the
symmetry of the grad-div term. The grad-div term a↵ects only the velocity-
velocity coupling, and thus using this term will make Ah block-full. ˝
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Lemma 3.1.1 (Stability of the Solution) The solution of the Stokes
equation with the grad-div stabilization (3.1.1) exists uniquely and satisfies

⌫kruhk
2
L2p⌦q ` 2�kr ¨ uhk

2
L2p⌦q § ⌫

´1
kfk2

H´1p⌦q. (3.1.6)

Proof: Choosing the test function vh “ uh in (3.1.1) yields

⌫kruhk
2
L2p⌦q ` �kr ¨ uhk

2
L2p⌦q “ pf ,uhq. (3.1.7)

On the right-hand side of the equation, using Cauchy-Schwarz and Young’s
inequality, one obtains

⌫kruhk
2
L2p⌦q ` �kr ¨ uhk

2
L2p⌦q §

⌫
´1

2
kfk2

H´1p⌦q `
⌫

2
kruhk

2
L2p⌦q. (3.1.8)

Eliminating the same term and multiplying both sides by 2, the final result
is proved. ⌅
Remark 3.1.3 The Lemma 3.1.1 indicates that the grad-div stabilization
with the parameter � can e↵ectively control the divergence error. ˝

Definition 3.1.2 (Optimal Approximation Property of a Sequence
of Divergence-free Subspaces) Consider a sequence of triangulations tThu

with characteristic mesh size h and the corresponding space Vh,0 :“ tvh P

Vh,r ¨ vh “ 0u. If for all the solenoidal vh P Vh X H
k`1

p⌦q,

inf
vhPVh.0

krpv ´ vhqkL2p⌦q § Cdiv inf
vhPVh

krpv ´ vhqkHk`1p⌦q, (3.1.9)

where the constant Cdiv is independent of h, then the sequence of spaces Vh,0

is said to possess optimal approximation properties.

Remark 3.1.4 Whether the sequence possesses the optimal approximation
property influenced by the pair of inf-sup stable finite element spaces and
the triangulation of the domain, which is not expected to exist in the general
case. However, there are special cases such as Taylor–Hood pair of spaces
Pk{Pk´1 with k • d on barycentric-refined simplicial grids in [14].

˝

Theorem 3.1.1 (Error Estimate for the Velocity in Standard Grad-
Div Stabilization) Let puh, phq P Vh ˆ Qh be the discrete approximation
solution to the Stokes equation (2.2.1) with grad-div stabilization. The finite
element error in the L

2 norm of the velocity gradient and the divergence is

krpu ´ uhqk
2
L2p⌦q `

�

2⌫
kr ¨ pu ´ uhqk

2
L2p⌦q §

inf
vhPV div

h

ˆ
4krpu ´ vhqk

2
L2p⌦q `

3�

⌫
kr ¨ pu ´ vhqk

2
L2p⌦q

˙
`

4

⌫�
inf

qhPQh

kp ´ qhk
2
L2p⌦q.

(3.1.10)
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Proof: Consider u ´ uh “ pu ´ vhq ` pvh ´ uhq “: ⌘ ` �
h
, for all vh P V

div

h
,

one obtains the following equation by subtracting discrete equations (3.1.1)
from the original (2.2.5),

⌫pr�
h
,rvhq ` �pr ¨ �

h
,r ¨ vhq “ ´ ⌫pr⌘,rvhq ´ �pr ¨ ⌘,r ¨ vhq

` pr ¨ vh, pq.

(3.1.11)

Since pr ¨ vh, qhq “ 0, @qh P Qh, this term can be added in the right-hand
side of the equation (3.1.11). Choosing vh “ �

h
, then (3.1.11) becomes

⌫kr�
h
k
2
L2p⌦q ` �kr ¨ �

h
k
2
L2p⌦q “ ´ ⌫pr⌘,r�

h
q ´ �pr ¨ ⌘,r ¨ �

h
q

` pr ¨ �
h
, p ´ qhq.

(3.1.12)

Applying the Cauchy-Schwarz and Young’s inequality (p “ q “
1
2), one

obtains

⌫kr�
h
k
2
L2p⌦q ` �kr ¨ �

h
k
2
L2p⌦q §⌫kr⌘k2

L2p⌦q ` �kr ¨ ⌘k2
L2p⌦q

` 2kp ´ qhkL2p⌦qkr ¨ �
h
kL2p⌦q.

(3.1.13)

The right-hand side of the equation can be estimated by the Peter-Paul
inequality, then

2kp ´ qhkL2p⌦qkr ¨ �
h
kL2p⌦q § 2�´1

kp ´ qhk
2
L2p⌦q `

�

2
kr ¨ �

h
k
2
L2p⌦q.

(3.1.14)

which results

kr�
h
k
2
L2p⌦q `

�

2⌫
kr ¨ �

h
k
2
L2p⌦q § kr⌘k2

L2p⌦q `
�

⌫
kr ¨ ⌘k2

L2p⌦q

`
2

�⌫
inf

qhPQh

kp ´ qhk
2
L2p⌦q.

(3.1.15)

By the triangle inequality and Young’s inequality (p “ q “
1
2), one gets

krpu ´ uhqk
2
L2p⌦q `

�

2⌫
kr ¨ pu ´ uhqk

2
L2p⌦q §

inf
vhPV div

h

ˆ
4kr⌘k2

L2p⌦q `
3�

⌫
kr ¨ ⌘k2

L2p⌦q

˙
`

4

⌫�
inf

qhPQh

kp ´ qhk
2
L2p⌦q.

(3.1.16)

which gives the final error estimate, for all vh P V
div

h
. ⌅
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Remark 3.1.5 If the grad-div stabilization finite element method with the
Taylor-Hood pairs possesses the optimal approximation property. By stan-
dard approximation theory in [15], we have that

krpu ´ uhqk
2
L2p⌦q `

�

2⌫
kr ¨ pu ´ uhqk

2
L2p⌦q §Ch

2k

ˆ
|u|

2
k`1 `

1

⌫�
|p|

2
k

˙
.

(3.1.17)

The error estimate (3.1.17) suggests that the choice of the parameter � can
influence the error bound. A larger value of � can be chosen without increas-
ing the error bound. Moreover, as the value of � increases, the impact of the
pressure term on the error can be reduced to some extent. ˝

Theorem 3.1.2 (Error Estimate for the Pressure) Let puh, pq P VhˆQh

be the discrete approximation solution of the Stokes equation (2.2.1) with
grad-div stabilization and assume the inf-sup constant 0 † � § Op1q. For
vh in the discretely divergence-free space V0,h, the pressure error is bounded
by

kp ´ phk
2
L2p⌦q § Cp�

´1
q

#˜
1 `

ˆ
⌫

�

˙1{2¸
inf

qhPQh

kp ´ qhkL2p⌦q

` inf
vhPV0,h

´
⌫ ` p⌫�q

1{2
¯
krpu ´ vhqkL2p⌦q

`

´
p⌫�q

1{2
` �

¯
kr ¨ vhqkL2p⌦q

)
.

(3.1.18)

Proof: See [11]. ⌅

Remark 3.1.6 The paper [11] analyzes the optimal choices of the grad-div
stabilization parameters based on (3.1.11) and (3.1.18). By possessing opti-
mal properties, one can see to what extent the violation of the conservation
of mass is reduced using the grad-div stabilization method.
Overall, the grad-div stabilization method reduces the impact of the inverse
of the viscosity and pressure on the error bound compared to Galerkin dis-
crete methods. However, it does not entirely eliminate this e↵ect. Too large
values of the stabilization parameter can lead to over-stabilizing the problem,
resulting in increased computational time in solving the corresponding linear
algebraic system. ˝
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3.2 Sparse Grad-Div Stabilization

Although the standard grad-div stabilization is considered e↵ective in im-
proving the mass conservation of the finite element method, the fully coupled
block matrices (i.e., block-full) produced by it increase the coupling in the
linear system. And the matrix arising from the stabilization terms is singular,
which leads to a linear algebraic system that is more di�cult to solve in [16].
In order to increase the sparsity of the matrix and reduce the coupling of
the velocity coe�cient matrix generated by the stabilization terms, a sparse
grad-div stabilization method is proposed, see [17] and [18]. This new diver-
gence operator, which has a similar positive e↵ect on the error as standard
grad-div stabilization, penalizing the lack of mass conservation, reduces the
e↵ect of the pressure error on the velocity error. It can improve the e�ciency
of the solution compared to the standard grad-div operator since the matrix
is sparse.

Definition 3.2.1 Let ⌦ P Rd, d “ 2 or 3 be a bounded domain, and
u,v P H

1
p⌦q. The sparse grad-div stabilization (i.e., divergence penaliza-

tion) operator g is defined by

g2dpu,vq “

ª

⌦

pu1xv1x ` u2yv2y ` 2u2yv1xq, (3.2.1)

g3dpu,vq “

ª

⌦

pu1xv1x ` u2yv2y ` u3zv3z

` 2u2yv1x ` 2u3zv1x ` u3zv2y ` u2yv3zq.

(3.2.2)

There is no interaction between the u1 and v2 functions in (3.2.1), which
means the resulting matrix is upper triangular. In (3.2.2), the u1 function
has no interaction with v2 or v3, which reveals the 2,1 and 3,1 blocks are
empty of the formed 3 ˆ 3 block matrix. This is di↵erent from the standard
grad-div operator

grad-divpu,vq “

ª

⌦

pu1x ` u2y ` u3zqpv1x ` v2y ` v3zq, (3.2.3)

which gives the full block matrix. ˝

Lemma 3.2.1 Define the L
2
p⌦q inner product pu,vq :“

≥
⌦ uvdx. The op-

erator g has the following properties which imply the positive impact it has
on the incompressible flow simulation:
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1. The operator g can be written as

g2dpu,vq “ pr ¨ u,r ¨ vq ´ pu1x , v2yq ` pu2y , v1xq, (3.2.4)

g3dpu,vq “ pr ¨ u,r ¨ vq ´ pu1x , v2yq ` pu2y , v1xq

´ pu1x , v3zq ` pu3z , v1xq.
(3.2.5)

2. The operator g satisfied

gpu,uq “ kr ¨ uk2, (3.2.6)

in 2d and 3d.

3. If r ¨ u “ 0, then in 2d or 3d

gpu,vq “ ´pu1x ,r ¨ vq. (3.2.7)

Proof: Using the definition (3.2.1) of sparse grad-div stabilization, combing
the L

2
p⌦q inner product, one can easily get the (3.2.4) and (3.2.5). For

(3.2.6), let u “ v, the result is trivially obtained.
For (3.2.7) in 2d form, since r ¨ u “ 0, let u1x “ ´u2y , we have

g2dpu,vq “ pr ¨ u,r ¨ vq ´ pu1x , v2yq ` pu2y , v1xq

“ ´pu1x , v2yq ` pu2y , v1xq

“ ´pu1x , v2yq ` p´u1x , v1xq

“ ´pu1x ,r ¨ vq.

To prove (3.2.7) in 3d form, we use a similar way as in the 2d form. Let
u1x “ ´u2y ´ u3z , we get

g3dpu,vq “ pr ¨ u,r ¨ vq ´ pu1x , v2yq ` pu2y , v1xq ´ pu1x , v3zq ` pu3z , v1xq

“ ´pu1x , v2yq ` pu2y , v1xq ´ pu1x , v3zq ` pu3z , v1xq

“ pu2y ` u3z , v1xq ´ pu1x , v2yq ´ pu1x , v3zq

“ p´u1x , v1xq ´ pu1x , v2yq ´ pu1x , v3zq

“ ´pu1x ,r ¨ vq

Thus, Lemma 3.2.1 is now completely proved. ⌅

Remark 3.2.1 From Lemma 3.2.1, the results suggest that the sum of grad-
div stabilization and the gradient of u1x in the weak formulation interprets
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the operator g in another way. For divergence-free u and v P H
1
0 p⌦q, it holds

that

´rpr ¨ uq,vq ` pru1x ,vq “ pr ¨ u,r ¨ vq ´ pu1x ,r ¨ vq “ gpu,vq. (3.2.8)

In this case, the gradient terms can be added to the true pressure to create a
modified pressure P “ p ` �u1x that has no impact on the velocity solution.
The most common use is the Bernoulli pressure PBernoulli “ p ` |u|

2
{2 when

computing with rotation form of the Navier-Stokes equations, see [19]. ˝

Remark 3.2.2 By analysing (3.2.8), the gradient term of u1x could be re-
place by the u2y in 2d, u2y or u3z in 3d as follows by defining

g2dpu,vq “

ª

⌦

pu1xv1x ` u2yv2y ` 2u1xv2yq, (3.2.9)

g3dpu,vq “

ª

⌦

pu1xv1x ` u2yv2y ` u3zv3z

` 2u1xv2y ` 2u3zv2y ` u3zv1x ` u1xv3zq,

(3.2.10)

or

g3dpu,vq “

ª

⌦

pu1xv1x ` u2yv2y ` u3zv3z

` 2u1xv3z ` 2u2yv3z ` u2yv1x ` u1xv2yq

(3.2.11)

The (3.2.9), (3.2.10) and (3.2.11) also have the same properties in Lemma
3.2.1:

1. The operator can be written as

g2dpu,vq “ pr ¨ u,r ¨ vq ´ pu2y , v1xq ` pu1x , v2yq,

g3dpu,vq “ pr ¨ u,r ¨ vq ´ pu2y , v1xq ´ pu2y , v3zq

` pu1x , v2yq ` pu3z , v2yq,

or

g3dpu,vq “ pr ¨ u,r ¨ vq ´ pu3z , v1xq ´ pu3z , v2yq

` pu1x , v3zq ` pu2y , v3zq.
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2. The operator g satisfied

gpu,uq “ kr ¨ uk2, (3.2.12)

in 2d and 3d.

3. If r ¨ u “ 0, then in 2d or 3d

gpu,vq “ ´pu2y ,r ¨ vq, (3.2.13)

or

gpu,vq “ ´pu3z ,r ¨ vq (3.2.14)

in 3d.

The proof is similar to that of Lemma 3.2.1. The empty blocks will also
appear in the velocity matrix but in di↵erent locations. In the solution of
practical problems, it is expected to get a better-modified pressure by adding
the smallest term of u1x , u2y , and u3z in [20]. ˝

Remark 3.2.3 As the matrix in (3.1.5), in order to represent the sparse
grad-div matrix Āh, we write the discrete divergence operator in its three
components XT

“ pX
T

1 , X
T

2 , X
T

3 q P RNˆ3N corresponding to the derivatives
in the three spatial directions. For a given non-singular matrix M P RNˆN ,
the matrix Āh has the following form:

Āh “

¨

˝
A11 0 0
0 A11 0
0 0 A11

˛

‚` �

¨

˝
X1M

´1
X

T

1 2X1M
´1
X

T

2 2X1M
´1
X

T

3

0 X2M
´1
X

T

2 X2M
´1
X

T

3

0 X3M
´1
X

T

2 X3M
´1
X

T

3

˛

‚.

In this way, the standard grad-div matrix Ãh can be written as

Ãh “

¨

˝
A11 0 0
0 A11 0
0 0 A11

˛

‚` �XM
´1
X

T
.

˝

Definition 3.2.2 (The Stokes Equation with Sparse Grad-Div Op-
erator g) For the fixed stabilization parameter � ° 0, the weak formulation
of the Stokes equations (2.2.2) with the sparse grad-div operator is given by:
find the solution puh, phq P Vh ˆ Qh, for all pvh, qhq P Vh ˆ Qh such that

⌫pruh,rvhq ` �gpuh,vhq ´ pr ¨ vh, phq “ pf ,vhq, (3.2.15)

pr ¨ uh, qhq “ 0. (3.2.16)
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It needs to be noted that the pressure ph in (3.2.15) is not the approximation
to the Stokes equation, since a modified pressure p`�u1x is created, and this
modified pressure converges optimally to the true Stokes pressure.

Theorem 3.2.1 (Error Estimate for the Velocity in Sparse Grad-
Div Stabilization) Let puh, phq P Vh ˆ Qh be the discrete approximation
solution of the Stokes equation (2.2.1) with sparse grad-div stabilization, the
L
2 norm of the velocity gradient and the divergence is bounded by

krpu ´ uhqk
2
L2p⌦q `

�

⌫
kr ¨ pu ´ uhqk

2
L2p⌦q §

2

�⌫
inf

qhPQh

kp ´ �u1x ´ qhk
2
L2p⌦q

` inf
vhPV div

h

"
2�

⌫
kr ¨ vhk

2
L2p⌦q `

ˆ
6 `

4�2

⌫2

˙
krpu ´ vhqk

2
L2p⌦q

*
.

(3.2.17)

˝

Proof: The proof is similar to Theorem 3.1.1, let u ´ uh “ pu ´ vhq ` pvh ´

uhq “: ⌘ ` �
h
, where vh P V

div

h
.

Add the sparse operator �gpu,vhq to both sides of the variational form of
the Stokes equations (2.2.2). Since r ¨u “ 0, using the property (3.2.7) from
Lemma 3.2.1, one gets

⌫pru,rvhq ` �gpu,vhq ´ pr ¨ vh, pq

“ pf ,vhq ´ �pu1x ,r ¨ vhq.
(3.2.18)

By subtracting (3.2.15) from (3.2.18), one obtains

⌫prpu ´ uhq,rvhq ` �gppu ´ uhq,vhq “ pr ¨ vh, p ´ �u1xq. (3.2.19)

Using the decomposition of u´uh, and choosing vh “ �
h
, So we modify our

error equation as

⌫kr�
h
k
2
L2p⌦q ` �kr ¨ �

h
k
2
L2p⌦q “ ´⌫pr⌘,r�

h
q

´ �gp⌘,�
h
q ` pr ¨ �

h
, p ´ �u1x ´ qhq, @qh P Qh.

(3.2.20)

We will take the absolute value of the right-hand side of (3.2.20) and treat
each term separately.
Then, for the first and third terms on the right-hand side of the equation
(3.2.20), using Cauchy-Schwarz inequality and Young’s inequality, the esti-
mates are obtained as follows

|⌫pr⌘,r�
h
q| § ⌫kr⌘kL2p⌦qkr�

h
kL2p⌦q

§ ⌫kr⌘k2
L2p⌦q `

⌫

4
kr�

h
k
2
L2p⌦q,

(3.2.21)
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|pr ¨ �
h
, p ´ �u1x ´ qhq| § kr ¨ �

h
kL2p⌦qkp ´ �u1x ´ qhkL2p⌦q

§
�

2
kr ¨ �

h
k
2
L2p⌦q `

1

2�
kp ´ �u1x ´ qhk

2
L2p⌦q.

(3.2.22)

To bound the g function on the right-hand side of (3.2.20), we also use the
properties of the g operator from Lemma 3.2.1, to get

|�gp⌘,�hq| § �kr⌘kL2p⌦qkr�
h
kL2p⌦q §

⌫

4
kr�

h
k
2
L2p⌦q

`
�
2

⌫
kr⌘k2

L2p⌦q,
(3.2.23)

and combining this estimate with (3.2.21) and (3.2.22), then it gives

kr�
h
k
2
L2p⌦q `

�

⌫
kr ¨ �

h
k
2
L2p⌦q §

ˆ
2 `

2�2

⌫2

˙
kr⌘k2

L2p⌦q

`
1

�⌫
inf

qhPQh

kp ´ �u1x ´ qhk
2
L2p⌦q.

(3.2.24)

By the triangle inequality and Young’s inequality (p “ q “
1
2), one gets

krpu ´ uhqk
2
L2p⌦q `

�

⌫
kr ¨ pu ´ uhqk

2
L2p⌦q

§ 2kr⌘k2
L2p⌦q ` 2kr�

h
k
2
L2p⌦q `

2�

⌫
kr ¨ ⌘k2

L2p⌦q `
2�

⌫
kr ¨ �

h
k
2
L2p⌦q.

(3.2.25)

Plug the estimate (3.2.24) into (3.2.25), it gives the final result

krpu ´ uhqk
2
L2p⌦q `

�

⌫
kr ¨ pu ´ uhqk

2
L2p⌦q §

ˆ
6 `

4�2

⌫2

˙
kr⌘k2

L2p⌦q

`
2�

⌫
kr ¨ ⌘k2

L2p⌦q `
2

�⌫
inf

qhPQh

kp ´ �u1x ´ qhk
2
L2p⌦q.

(3.2.26)

⌅

Remark 3.2.4 Let pu, pq be the solution of (2.2.5), and the discrete Stokes
equation (2.2.26) is solved by the grad-div stabilization method with Taylor-
Hood pairs. If Vh,0 has optimal approximation properties, we have that

krpu ´ uhqk
2
L2p⌦q `

�

⌫
kr ¨ pu ´ uhqk

2
L2p⌦q

§ Ch
2k

ˆ´
1 `

�

⌫

¯
|u|

2
k`1 `

1

⌫�
|p ´ �u1x |

2
k

˙
.

(3.2.27)
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Proof: The proof closely resembles that of Theorem 3.2.1 until reaching equa-
tion (3.2.20). Then, we take the vh P Vh,0, since r ¨ ⌘ “ 0, for the operator
g, it gives

|�gp⌘,vhq| “ |�p⌘1x ,r ¨ �
h
q| §

�

4
kr ¨ �

h
k
2
L2p⌦q ` 2�kr⌘k2

L2p⌦q. (3.2.28)

The first and third terms on the right-hand side of (3.2.20) are bounded as

|⌫pr⌘,r�
h
q| § ⌫kr⌘kL2p⌦qkr�

h
kL2p⌦q

§
⌫

2
kr⌘k2

L2p⌦q `
⌫

2
kr�

h
k
2
L2p⌦q,

(3.2.29)

and

|pr ¨ �
h
,p ´ �u1x ´ qhq| § kr ¨ �

h
kL2p⌦qkp ´ �u1x ´ qhkL2p⌦q

§
�

4
kr ¨ �

h
k
2
L2p⌦q `

1

�
kp ´ �u1x ´ qhk

2
L2p⌦q.

(3.2.30)

Combining these with (3.2.28), the final estimate is

krpu ´ uhqk
2
L2p⌦q `

�

⌫
kr ¨ pu ´ uhqk

2
L2p⌦q §

ˆ
4 `

8�

⌫

˙
kr⌘k2

L2p⌦q

`
4

⌫�
kp ´ �u1x ´ qhk

2
L2p⌦q.

(3.2.31)

Then, one applies standard approximation theory to get (3.2.27). ⌅

Remark 3.2.5 It is commonly observed that the sparse grad-div stabiliza-
tion parameter reduces the impact of pressure on the velocity error, especially
for scenarios where pressures are large and complex relative to velocities, and
viscosities are small. Additionally, a value of � “ Op1q is often considered a
suitable choice in terms of error scaling with respect to � in [21]. ˝

Remark 3.2.6 The standard and sparse grad-div stabilizations have been
introduced in the projection method for solving the Navier-Stokes equations,
as studied in [17]. Error estimates for the velocity field in the unstabilized,
standard grad-div stabilized, and sparse grad-div stabilized projection meth-
ods have been derived. These estimates demonstrate that either of the sta-
bilized methods can significantly reduce the error, as the divergence term
contributes a significant portion to the total error, which is supported by
numerical evidence. In addition, both stabilized methods reduce the diver-
gence error and yield more accurate solutions than the unstabilized method,
thereby improving the conservation of mass to some extent. To delve deeper
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into these two stabilized methods, let the stabilization parameter � be set as
1, and the Bicgstab method is used to solve the linear systems with di↵er-
ent preconditions (Jacobi, Gauss-Seidel, and approximate block Gauss-Seidel
with varying levels of accuracy). According to the numerical results, the
sparse grad-div stabilization reveals a slight improvement over the standard
grad-div method in terms of the number of iterations required to converge,
as well as a reduction in the average iteration time of approximately 20%
due to the sparser matrix structure. ˝
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Chapter 4

Numerical Studies

This section focuses on presenting the numerical results obtained from a set
of 2D and 3D examples with known solutions. The aim is to compare the
performance of the proposed stabilized methods, including standard grad-
div stabilization and sparse grad-div stabilization, against the unstabilized
method. Error estimates are also supported for the various methods. Addi-
tionally, the impact of the grad-div stabilization parameter on the velocity
divergence error is analyzed. The section proceeds by exploring the char-
acteristics of di↵erent Taylor-Hood finite element spaces with the standard
grad-div method, and the influence of di↵erent values of viscosity ⌫ on the
numerical solutions of the 2D example. Finally, the e�ciency of the two grad-
div stabilization methods is compared through computations performed on a
3D example with analytical solutions. The simulations were performed with
the code MooNMD [22].

4.1 2D Example

The two-dimensional problem we consider is a steady-state example with the
exact solution as Example D.3 in [5] on the unit square domain ⌦ “ p0, 1q

2

with homogeneous Dirichlet boundary conditions u “ 0 on B⌦. The velocity
field is defined using the stream function

� “ 1000x2
p1 ´ xq

4
y
3
p1 ´ yq

2
,

and given by

u “

ˆ
u1

u2

˙
“

ˆ
By�

´Bx�

˙
“ 1000

ˆ
x
2
p1 ´ xq

4
y
2
p1 ´ yqp3 ´ 5yq

´2xp1 ´ xq
3
p1 ´ 3xqy

3
p1 ´ yq

2

˙
. (4.1.1)
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The velocity is divergence-free which can be verified by the Theorem of
Schwarz as follows

r ¨ u “ Bxu1 ` Byu2 “ Bxy� ´ Byx� “ Bxy� ´ Bxy� “ 0.

Based on the boundary conditions, the pressure must be in L
2
0p⌦q. In this

case, the pressure was chosen as

p “ ⇡
2
pxy

3
cosp2⇡x2

yq ´ x
2
ysinp2⇡xyqq `

1

8
. (4.1.2)

4.1.1 Error Comparision of Di↵erent Grad-Div Stabi-
lization Methods

The approximations for the prescribed solution (4.1.1) and (4.1.2) are com-
puted for ⌫ “ 1, using the unstabilized method (i.e., � “ 0), standard
grad-div stabilization (i.e., � “ 1) and sparse grad-div stabilization method
(i.e., � “ 1, based on u1x) in the finite element spaces P2{P1 of Taylor–Hood
pair. Due to the necessity of the modified pressure in the sparse grad-div
stabilization method, we will restrict our attention to velocity errors.
Figure 4.1 shows that all velocity errors have the orders of convergence as
predicted in the numerical analysis. While no significant di↵erence exists
among the velocity errors obtained by using di↵erent methods in general,
some variations on the coarse levels are noticeable in Figure 4.1c. Then,
the di↵erent stabilization parameters are chosen to compare the divergence
velocity error using P2{P1 Taylor-Hood pairs in di↵erent methods in Figure
4.2. It is evident that, with large parameters, both two stabilization methods
show good performance in minimizing the divergence error of velocity, which
improves the issue of mass conservation on coarse grids. However, as the
mesh is refined, this e↵ect weakens gradually.
Since the simulation results are so close, the standard grad-div stabilization
with parameter � “ 1 is elected to show the magnitude of the velocity ap-
proximation on level 5 for the 2D example in Figure 4.3. As can be seen,
the velocity field is essentially composed of one large vortex, and it is exactly
zero at the boundary.

4.1.2 Comparison of Di↵erent Degrees of the Taylor-
Hood Spaces

In this section, we use two di↵erent Taylor-Hood finite element spaces, namely
P3{P2 and P2{P1, on successively refined irregular triangular meshes from
Figure 4.4 to approximate the solution of the 2D example given by equations

40



(a)

(b)

(c)

Figure 4.1: The L2-norm of velocity error (a), the gradient velocity error (b),
and the divergence velocity error (c) on di↵erent levels for the 2D problem
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Figure 4.2: The divergence error with di↵erent methods and values of stabi-
lization parameter

Figure 4.3: 2D example. Grid (left) and velocity (right) were solved by the
standard grad-div stabilization method on level 5
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(4.1.1) and (4.1.2) with ⌫ “ 1.
Table 4.1 summarizes the comparison of the degrees of freedom, the velocity
error in the L

2 norm, and the convergence order between the two di↵erent
finite element spaces. It is apparent from the table that the P3{P2 space
exhibits higher numerical accuracy and convergence order than the P2{P1

space. However, the former requires more degrees of freedom than the latter.
Therefore, solving large-scale problems using P3{P2 space will demand more
computational resources and time.

Figure 4.4: Initial irregular grid

Table 4.1: Degrees of freedom (dof), the velocity error in the L2 norm pku´

uhkL2p⌦qq and convergence order (Rate) in di↵erent spaces

P2{P1 P3{P2

dof ku ´ uhkL2p⌦q Rate dof ku ´ uhkL2p⌦q Rate
190 1.02E-01 439 3.20E-02
701 2.14E-02 2.2568141 1667 2.22E-03 3.84825958
2695 2.91E-03 2.87908082 6499 1.44E-04 3.95049914
10571 3.71E-04 2.97298003 25667 8.99E-06 3.99732877
41875 4.66E-05 2.99293779 102019 5.63E-07 3.99721235
166691 5.84E-06 2.99784403 406787 3.53E-08 3.99702323
665155 7.30E-07 2.99923684 1624579 2.21E-09 3.99790089

4.1.3 Comparison of Di↵erent Values of the Viscosity

We have obtained error estimates of the following form: (2.2.48) for the un-
stabilized method, (3.1.17) for the standard grad-div stabilization method,
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and (3.2.27) for the sparse grad-div stabilization method. All three error
estimates are in particular for the P2{P1 Taylor-Hood space and with the
inclusion of the viscosity term ⌫

´1. Therefore, we choose di↵erent values of
viscosity to investigate its relationship with velocity errors in di↵erent meth-
ods. It is expected that as ⌫ becomes small, the velocity errors will increase.
Figure 4.5 shows the representative results obtained using the Taylor-Hood
finite element space P2{P1 on the unstructured grid in Figure 4.4 with dif-
ferent methods. The visibility of the dependency of velocity errors on ⌫´1 is
apparent. The velocity error decreases with large ⌫ as predicted. However,
the strength of this e↵ect significantly weakens, when the value of viscosity
increases to a certain degree. In general, the three methods exhibit good con-
vergence properties with respect to the velocity errors of the solution for the
2D examples. However, both grad-div stabilization methods typically have
smaller errors in the solution approximation than the unstabilized method
with a small value of viscosity (i.e., ⌫ “ 10´5).

4.2 3D Example

Let ⌦ “ p0, 1q
3 be a domain and consider a family of velocity and pressure

fields as follows:

u “

¨

˝
u1

u2

u3

˛

‚“

¨

˝
fpxqBygpyqhpzq ` fpxqgpyqBzhpzq

´Bxfpxqgpyqhpzq ` fpxqgpyqBzhpzq

´Bxfpxqgpyqhpzq ´ fpxqBygpyqhpzq

˛

‚, (4.2.1)

with

fpxq “ sin
2
p⇡xq, gpyq “ sin

2
p2⇡yq, hpzq “ z

2
p1 ´ zq

2

and

ppxq “ 3x ´ sinpy ` 4zq ` C, (4.2.2)

where the constant C has to be chosen so that the integral mean of p vanishes
under Dirichlet boundary conditions at B⌦. The approximations computed
by the sparse grad-div stabilization method in P2{P1 Taylor-Hood finite ele-
ment space are shown in Figure 4.6.
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(a)

(b)

(c)

Figure 4.5: 2D Example. The L
2-norm of the velocity error with di↵erent

values of viscosity using the unstabilized method (a), standard grad-div sta-
bilization method with � “ 1 (b), and sparse grad-div stabilization method
with � “ 1 (c)
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(a) (b)

Figure 4.6: 3D Example. The solution of velocity (a) and pressure (b) on
level 3

4.2.1 E�ciency of Di↵erent Grad-Div Methods in 3D
Example

The main advantage of the sparse grad-div stabilization method over the
standard is that the linear system matrix can be explicitly decoupled as we
mentioned before. Thus, the standard grad-div stabilization and sparse grad-
div stabilization (based on u3z) are used in solving a same 3D problem with
solution (4.2.1) and (4.2.2) in the P2{P1 Taylor-Hood space. The parameter
� and the value of viscosity ⌫ are set as 1 for both stabilized methods, then
the computation time for each level that uses the geometric multigrid solver
of MooNMD is compared in Table 4.2. It is obvious that the computational
advantage of the sparse grad-div method becomes more prominent, as the
grid is refined.

Table 4.2: 3D example. Solve time for the sparse and standard grad-div
stabilized method

Level Solve time for sparse grad-div Solve time for standard grad-div

0 0.215996 0.186439

1 2.42281 2.50395

2 33.3776 36.6226

3 404.782 436.483

4 3190.02 3492.43
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Chapter 5

Summary

In this thesis, the existence and uniqueness of solutions to the Stokes equa-
tions were proved. We proposed di↵erent grad-div stabilization methods to
improve the mass conservation of the solution and estimated the error and
convergence rate of these methods.
The errors were compared in the 2D example for three di↵erent methods,
namely unstabilized, standard grad-div stabilization, and sparse grad-div
stabilization, which all demonstrated good convergence rates. We also found
that the addition of the grad-div stabilization term can decrease the error
of the divergence of the velocity, especially on coarser grids. However, as
the grid became finer, the reduction of the divergence velocity error was less
significant. Additionally, we found that a higher-order Taylor-Hood finite
element space resulted in more accurate solutions but with higher computa-
tional costs. Further investigation was the sensitivity of the velocity error
to the value of viscosity and found that all methods decreased the velocity
error as the viscosity increased. But, this reduction became less significant
at a certain point. Moreover, for small viscosity values, the velocity errors of
the two grad-div stabilization methods are significantly smaller than those
of the unstabilized method. Finally, we have compared the e�ciency of the
sparse grad-div stabilization method with that of the standard grad-div sta-
bilization method in the 3D example and found that the sparse way is more
e�cient.
In conclusion, the grad-div method has been shown to be e↵ective in improv-
ing the mass conservation of solutions, particularly when the viscosity value
is small or the grad-div stabilization parameter is large. The sparse method
is also a more e�cient approach than the standard grad-div method.
The comparison of velocity errors for the three methods in the first part of
the numerical study did not show clear di↵erences, which may be due to the
limited complexity of the test example. This suggests that further research is
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needed to explore more complex scenarios. Specifically, concerning the selec-
tion of the grad-div stabilization parameters for di↵erent values of viscosity,
we did not investigate their optimal range. Therefore, future research can
delve into this issue, particularly in more complex models, to obtain more
universal conclusions.
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