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1 Introduction

Physical and engineering problems are often modelled by partial differential
equations (PDEs) and solved by numerical simulations. However, uncer-
tainty in the available data in these problems such as coefficients, forcing
terms, boundary conditions and geometry affects the results of the computer
simulations and contributes to a discrepancy in the simulation outputs and
the observations (see [14, p. 524]). In the last few years research about how
uncertainty in the available data affects the outputs has grown. There are a
variety of methods for solving the arising stochastic PDEs, for example spec-
tral Galerkin approximations or the stochastic collocation method. Here,
the stochastic collocation method will be considered as the numerical proce-
dure for solving a stochastic PDE. As in spectral Galerkin approximations,
the spatial variables are approximated by standard approximations such as
finite element methods, and the stochastic variable is approximated by poly-
nomials. Its advantage, in contrast to the spectral Galerkin approximation,
is a decoupling of spatial and stochastic variables. The stochastic PDE in
consideration here is an elliptic problem describing diffusion in a stationary
system.

The organisation of the thesis is the following. In Section 2 the elliptic
problem and its weak formulation are given, and its parametric formulation
is derived.

In Section 3 the focus is on the diffusion problem and its mixed form. The
mixed form is worthwhile considering because it is of interest in applica-
tions. For instance, in modelling a groundwater flow problem the flux is of
importance and by the mixed form a more accurate approximation may be
achieved. The diffusion problem and its mixed form are subsequently defined
for a random force term and diffusion coefficient. Existence, uniqueness and
the regularity of a weak solution are investigated in the case of a uniformly
bounded diffusion coefficient as well as of a diffusion coefficient bounded by
random variables only. The latter poses several significant difficulties in the-
ory and is highly relevant for applications, in particular with lognormal fields.
This thesis aims to give an overview of and to consistently present existing
results on the diffusion problem and its mixed form. Some remaining gaps
are filled as to give an entire review for the diffusion problem and its mixed
form with uniformly diffusion coefficients and diffusion coefficients bounded
by random variables. In the literature, for example in [1], [7] and [8], results
about existence and uniqueness of a weak solution of the diffusion problem
can be found for the case of a uniformly bounded diffusion coefficient. In
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addition, results about the analytic extension to the complex domain are
given. In this thesis the results are derived by the same procedure as in [11],
where only the diffusion coefficient bounded by random variables and the
mixed form is examined. Two different analyticity results are given. These
are subsequently used to derive error estimates of the stochastic collocation
method with a tensor product or a sparse grid interpolation. To derive addi-
tional regularity statements of the diffusion problem with uniformly bounded
diffusion coefficient [2] is consulted. They are required in the multilevel ap-
proach in Section 5. The results for the other relevant problem settings are
then derived in a similar manner.
In Section 4, the collocation method is described by approximations on tensor
product as well as on sparse grids and it is related to numerical quadrature.
Existing theorems on error estimates for the tensor product grid and the
Smolyak sparse grid are given and discussed. These can be found in the
literature in [1], [15] and [22].
The multilevel approximation and quadrature is introduced in Section 5 as
another kind of sparse grid method, for which the results of the previous
sections can be reused. The error estimates given for the multilevel approxi-
mation of the diffusion problem’s weak solution are according to [24]. They
are stated for the quadrature in the same manner. Likewise, results for the
mixed form are derived.
Section 6 gives an outlook and conclusions.
In the Appendices B and C basics of functional analysis and of analytic
functions needed in this thesis can be found. Appendix D contains a list of
notations, mainly those appearing in different sections of the thesis.
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2 The elliptic problem and its parametric for-

mulation

The problem setting is given in this section. In the first part the problem is
described on an infinite-dimensional probability space. Then, it is reduced to
an N -dimensional probability space by introducing N independent random
variables as “coordinates”. The parametrization is an important step in
approximating the solution numerically.
A formulation is given which is as general as possible in order to cover a
wider range of problems. Such problems are considered in Section 3.

2.1 Elliptic problem

Let D ⊂ Rd, d ∈ {1, 2, 3}, be a spatial domain with Lipschitz-boundary ∂D.
Let (Ω,F ,P) be a complete probability space (i.e., for all A ⊂ B with B ∈ F
and P(B) = 0 it follows A ∈ F) with

• Ω being the set of events or outcomes ω ∈ Ω,

• F ⊂ 2Ω being the σ-algebra of outcomes and

• P : F → [0, 1] being a probability measure.

Let

a : Ω×D → R
(ω,x) 7→ a(ω,x)

be a random coefficient with ω ∈ Ω and x ∈ D. Similarly, a force term f is
defined by

f : Ω×D → Rm

(ω,x) 7→ f(ω,x),

where m ∈ N. A solution w : Ω × D̄ → Rn is sought with n ∈ N such that
P-almost everywhere (P-a.e.) in Ω (i.e., the set of elements in Ω for which
the equations do not hold has measure zero) it holds

L(a)(w) = f in D (2.1)

with additional equations for suitable boundary conditions, where L is a
(possibly nonlinear) elliptic operator. The problem will be referred to as the
stochastic elliptic boundary value problem.
Some examples of specific problems described by the former general problem
setting will be presented.
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Example 2.1:
The first example is a linear second-order elliptic problem with scalar force
term and solution (i.e., f = f and w = u).

−∇ · (a(ω,x)∇u(ω,x)) = f(ω,x) in Ω×D,P-a.e.

u(ω,x) = g(ω,x) on Ω× ∂D,P-a.e..

The linear operator is given by L(a)(u) = −∇ · (a∇u). Note that through-
out the thesis the divergence operator ∇· and the gradient operator ∇ are
understood with respect to the spatial domain only, i.e., ∇ = ∇x,x ∈ D. �

Example 2.2:
In [10] the solution w = (p,u) : Ω × D̄ → Rd+1 of the mixed form of the
linear second order elliptic problem, that is,

1

a(ω,x)
u(ω,x)−∇p(ω,x) = 0 in Ω×D,P-a.e.

∇ · u(ω,x) = −f(ω,x) in Ω×D,P-a.e.

p(ω,x) = g(ω,x) on Ω× ∂D,P-a.e.,

is sought. The force term is given by f = (0,−f) : Ω × D̄ → Rd+1 and the
diffusion coefficient a enters nonlinearly into the first equation. The linear
operator is defined as

L(a)(p,u) =

(
1
a
u−∇p
∇ · u

)
.

�

Example 2.3:
This example is not relevant in the sequel of the thesis, but it is introduced
to illustrate a case of a nonlinear second order elliptic problem. Let k ∈ N.
Then consider

−∇ · (a(ω,x)∇u(ω,x)) + u(ω,x)|u(ω,x)|k = f(ω,x) in Ω×D,P-a.e.

u(ω,x) = g(ω,x) on Ω× ∂D,P-a.e..

Again, it is f = f and w = u and the nonlinear operator is defined by
L(a)(u) = −∇ · (a∇u) + u|u|k. �

A function space for the functions occurring in the elliptic problem formula-
tion will be introduced. Let (W (D), ‖v‖W (D)) be an arbitrary Banach space
of functions v : D → Rn with corresponding norm ‖v‖W (D).
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Definition 2.4 – The LqP(Ω;W (D))-space:
The space LqP(Ω;W (D)), 1 ≤ q ≤ ∞, is the space of measurable functions
v : Ω→ W (D) such that the corresponding norm is finite, where

‖v‖LqP(Ω;W (D)) =


(∫

Ω

‖v(ω, ·)‖qW (D)dP(ω)

)1/q

for 1 ≤ q <∞,

ess sup
ω∈Ω

‖v(ω, ·)‖W (D) for q =∞.

�

Remark 2.5:
Whenever a vector-valued function v = (v1, . . . , vn) ∈ W (D) is considered,
where for instance W (D) = Lp(D), the Lp(D)-norm of v, ‖v‖Lp(D), can be
understood as

‖v‖Lp(D) =

( n∑
i=1

‖vi‖pLp(D)

)1/p

for 1 ≤ p <∞,

‖v‖L∞(D) = max
i=1,...,n

‖vi‖L∞(D) for p =∞.

Note that the norm ‖v‖W (D) is finite if and only if the norms ‖vi‖W (D) of
each entry of v are finite. �

Weak formulation

The weak formulation of (2.1) is:

Find a function w ∈ LqP(Ω;W (D)) such that for any v ∈ LqP(Ω;W (D))∫
Ω

∫
D

L
(
a(ω,x)

)(
w(ω,x)

)
v(ω,x) dx dP(ω) =

∫
Ω

∫
D

f(ω,x)v(ω,x) dx dP(ω)

(2.2)

with additional equations for suitable boundary conditions.

The following assumption includes that the weak formulation (2.2) has a
unique solution in the space L2

P(Ω;W (D)). This fact is needed later on.

Assumption 2.6 – On the solution w of (2.1):
Let the following conditions hold true

• The solution w of (2.1) is in W (D), i.e., w(ω, ·) ∈ W (D) almost every-
where,
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• there is a constant C(ω) which may depend on ω ∈ Ω such that P-a.e.
the stability result

‖w(ω, ·)‖W (D)≤ C(ω)‖f(ω, ·)‖W ∗(D)

holds, where W ∗(D) is the dual space of W (D) and

• f ∈ L2
P(Ω;W ∗(D)) and the boundary condition are such that the solu-

tion w is unique and bounded in L2
P(Ω;W (D)). �

2.2 Derivation of the parametric formulation

In order to obtain a parametric formulation, assumptions have to be made
on both, the probability space as well as the data. During the derivation,
this formulation will be defined on another probability space.

Assumption 2.7 – On the probability space:
According to [14] the random fields a(ω,x) and f(ω,x) are in general not
correlated. Consequently the probability space (Ω,F ,P) might be consid-
ered as a product space of independent probability spaces (Ωa,Fa,Pa) and
(Ωf ,Ff ,Pf ), on which a(ωa,x) and f(ωf ,x) are defined, respectively. �

In order to state the assumption on the input data, the following definition
is needed.

Definition 2.8 – σ-measurability:
Let (Ω,F), (Ω′,F ′), (A,A) and (B,B) be measure spaces.
Let σ(h) = {h−1(C) : C ∈ B} be the sigma algebra generated by the function
h : A→ B. A function g : Ω→ Ω′ is called σ(h)-measurable if g−1(F ) ∈ σ(h)
for any F ∈ F ′. �

Assumption 2.9 – On the input data:
Let the input data a(ωa,x), f(ωf ,x) fulfil the following so-called finite-
dimensional noise assumptions

1. a(ωa,x) = ã(ya(ωa),x) and ã(ya(ωa),x) is σ(ya)-measurable,

2. f(ωf ,x) = f̃(yf (ωf ),x) and f̃(yf (ωf ),x) is σ(yf )-measurable,

where the vectors

ya(ωa) = (ya,1(ωa), . . . , ya,Na(ωa)) and yf (ωf ) = (yf ,1(ωf ), . . . , yf ,Nf
(ωf ))

consisting of real-valued random variables are of dimension Na ∈ N and
Nf ∈ N. Further let y = (ya,yf ) = (y1, . . . yN) with N = Na +Nf .
By abuse of notation, the functions ã(ya(ωa),x) and f̃(yf (ωf ),x) will be
denoted in the following by a(ya(ωa),x) and f(yf (ωf ),x). �
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For many applications the assumption of the dependence on only a finite
number N of random variables is reasonable. These N random variables are
those capturing sufficient variability of the data. An example is given now.

Example 2.10 – Karhunen-Loève expansion:
In the literature and applications a truncated Karhunen-Loève expansion is
often chosen to approximate the random coefficient a(ω,x) by a finite number
of random variables, as required in Assumption 2.9.
The Karhunen-Loève expansion of a(ω,x) is given by

a(ω,x) =
∞∑
n=1

√
λnbn(x)yn(ω),

where {yn(ω)}∞n=1 are uncorrelated random variables with mean value 0 and
variance 1, and {λn, bn(x)}∞n=1 is a sequence of pairs of the eigenvalues and
eigenfunctions of the covariance function

COVa(x,x
′) =

∞∑
n=1

λnbn(x)bn(x′).

The sequence consists of nonnegative and decreasing eigenvalues. A trun-
cated Karhunen-Loève expansion is given when the above sum is truncated
such that it has a finite number of terms, i.e., ∞ is replaced by N :

aN(ω,x) =
N∑
n=1

√
λnbn(x)yn(ω)

and

COVaN (x,x′) =
N∑
n=1

λnbn(x)bn(x′).

For a more detailed description see [14]. �

Remark 2.11:
By Assumption 2.9 no truncation occurs, i.e., a truncation error has not to
be considered. �

By the σ-measurability in Assumption 2.9 it can be ensured by the Doob-
Dynkin lemma that the functions a(ya(ωa),x) and f(yf (ωf ),x) are Borel-
measurable functions (and consequently integrable) of ya and yf , respec-
tively. The integrability will be needed later on, to define integrals on the
parametrized functions.
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Theorem 2.12 – Doob-Dynkin lemma:
Let (Ω,F) and (Ω′,F ′) be measure spaces and let the function h : Ω→ Ω′ be a
F-F ′ measurable function. Then the following two properties are equivalent.

• The function b : Ω→ R is σ(h)−measurable.

• There exists a measurable function g : Ω′ → R such that b = g ◦ h. �

Setting now (Ω′,F ′) = (RNa ,B(RNa)), h = ya with ya : Ω → RNa (which
is measurable as being a vector of random variables) and b = ã ◦ ya with
ã ◦ ya : Ω → R, it follows the existence of a Borel-measurable function
g : RNa → R such that ã ◦ ya = g ◦ ya. By construction, it holds necessarily
g = ã and consequently ã(ya(ωa),x) = a(ya(ωa),x) is Borel-measurable
with respect to ya. The same argument can be used for the input data f by
applying the above theorem to each entry in the vector f .
Still, the aim is to parametrize the stochastic elliptic problem. By the above
defined vector of independent random variables

y : Ω→ Γ ⊂ RN , N ∈ N with yn : Ω→ Γn ⊂ R

the parameter domain Γ is given by the product of the one-dimensional
images of each random variable

Γ = Γ1 × · · · × ΓN =
N∏
n=1

ΓN .

Further, the following assumption will be needed.

Assumption 2.13 – Joint probability density function:
Let the image measure of y be given by a joint density function ρ(y) with
respect to the Lebesgue measure dy

ρ(y) : Γ→ R+ with ρ(y) ∈ L∞(Γ).

For example, this assumption is fulfilled if the random variables are inde-
pendent or if y(ω) is absolutely continuous with respect to the Lebesgue
measure. As needed later for the collocation method (see Section 4.1), the
density ρ is assumed to factorize, i.e.,

ρ(y) =
N∏
n=1

ρn(yn).

�
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Remark 2.14:
Note that here the density ρ is assumed to factorize. In the case of a non
factorizing density ρ it is described in [1, p. 1011] that an auxiliary proba-
bility density function ρ̂ : Γ→ R+ is introduced which factorizes and is such
that ‖ρ

ρ̂
‖L∞(Γ) <∞. �

Now, it has to be described how the probability space (Ω,F ,P) can be trans-
ferred to a probability space on the parameter domain Γ, denoted in the
following by (Γ,B(Γ), ρ(y) dy).
Given the three assumptions stated above, it is possible to map the proba-
bility space (Ω,F ,P) to the space (Γ,B(Γ), ρ(y) dy) by using the concept of
the image measure.

Definition 2.15 – Image measure:
Let (Ω,F , µ) be a measure space, let (Ω′,F ′) be a measurable space, and let
h : Ω→ Ω′ be a F-F ′ measurable function. Then

ν(F2) = µ(h−1(F2)) with F2 ∈ F ′

defines a measure (called image measure or pushforward measure) ν = µ◦h−1

on (Ω′,F ′). �

The function y is the measurable function of the above definition from the
measure space (Ω,F ,P) to (Γ,B(Γ)). Again, it is measurable because the yi
are random variables defined on Ω with image in R.
Further, the measure P ◦ y−1 is an image measure on (Γ,B(Γ)), where
B(Γ) ⊂ B(RN). In Assumption 2.13 this image measure was assumed to be
given by ρ(y) with respect to the Lebesgue measure, i.e., P ◦ y−1 = ρ(y) dy.
Thus, the space (Γ,B(Γ), ρ(y) dy) is obtained.

The last step to obtain the parametric formulation is the following: Show
that under certain conditions the solution w(ω,x) can be represented by a
finite number of random variables too, i.e., w(ω,x) = w̃(y(ω),x). As before,
w(y(ω),x) will be written instead of w̃(y(ω),x).
With this, problem (2.1) would be given by:
Find a solution w : Γ × D̄ → Rn such that almost everywhere in Γ the
following holds

L(a(y,x))(w(y,x)) = f(y,x) in D, (2.3)

with additional equations for suitable boundary conditions.
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In order to verify w(ω,x) = w(y(ω),x), the weak forms of the stochastic
and parametric problem as well as a result from measure theory on the image
measure given in Theorem 2.20 are of importance .
Before giving the weak formulation and applying the theorem, function spaces
have to be defined. Define the following Bochner-Lebesgue-spaces, where,
as before, v : D → Rn with corresponding norm ‖v‖W (D). The following
definition is required although it can be shown by Theorem 2.20 to be the
same as Definition 2.4.

Definition 2.16 – The Lqρ(Γ;W (D))-space:
The space Lqρ(Γ;W (D)), 1 ≤ q ≤ ∞, is the space of measurable functions
v : Γ→ W (D) such that the corresponding norm is finite, where

‖v‖Lqρ(Γ;W (D)) =


(∫

Γ

‖v‖qW (D)ρ(y) dy

)1/q

for 1 ≤ q <∞,

ess sup
y∈Γ

‖v‖W (D) for q =∞.
�

Remark 2.17:
Note that in the case q = 2 (which will be the relevant case in this thesis)
and if W (D) is a Hilbert space, the spaces L2

ρ(Γ;W (D)) and L2
ρ(Γ)⊗W (D)

are isomorphic. �

Multiplying the equation (2.3) by a function v ∈ Lqρ(Γ;W (D)) the weak
formulation is obtained.

Weak formulation of (2.3)

Find a function w ∈ Lqρ(Γ;W (D)) such that for any v ∈ Lqρ(Γ;W (D)) it
holds∫

Γ×D
L
(
a(y,x)

)(
w(y,x)

)
v(y,x)ρ(y)dx dy =

∫
Γ×D

f(y,x)v(y,x)ρ(y)dx dy

(2.4)

with additional equations for suitable boundary conditions.

Assumption 2.18 – Uniqueness of w on Γ×D:
Let the same assumptions as in Assumption 2.6 hold true on the solution w
to (2.4), where Ω is replaced by Γ and ω by y. In particular it is assumed that
the solution is unique. Further, assume that w(y(ω),x) is σ(y)-measurable.�
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Remark 2.19:
The assumption that w(y(ω),x) is σ(y)-measurable ensures – analogue to
the data – via the Doob-Dynkin lemma the Borel-measurability and the
integrability of w(y(ω),x). Consequently it is possible to set up the weak
formulation. �

With the following Theorem 2.20 (see for example in [9, p. 191]) two things
can be clarified:

• The weak formulation (2.2) of (2.1) depending on functions defined
on the probability space (Ω,F ,P) equals the weak formulation (2.4)
of the parametrized stochastic problem (2.3) of functions defined on
(Γ,B(Γ), ρ(y) dy).

• The solution w(ω,x) can also be represented by a finite number of
random variables, i.e., w(ω,x) = w(y(ω),x).

Theorem 2.20:
Let µ ◦ h−1 be the image measure as in Definition 2.15. Let g : Ω′ → Rn

be a F ′– B(Rn) measurable function. Then µ ◦ h−1 almost everywhere the
following equality holds (where F2 ⊂ F ′)∫

h−1(F2)

g ◦ h dµ =

∫
F2

g d(µ ◦ h−1).

�

Making the ansatz

w(ω,x) = w(y(ω),x) (2.5)

the integrals in (2.2) can be transformed to the integrals in (2.4) by Theorem
2.20.
For this purpose, the function g which appears in the theorem is chosen to
equal f(y,x) or L

(
a(y,x)

)
(w
(
y,x)

)
. The transformation will be given for f

and can be performed equivalently for L(a)(w).
As above, it is h = y : Ω → Γ, dµ = dP(ω), d(µ ◦ h−1) = ρ(y)dy. Then it
follows ∫

D

∫
Ω

f(ω,x)v(ω,x) dP(ω) dx

=

∫
D

∫
y−1(Γ)

f(y(ω),x)v(y(ω),x) dP(ω) dx

=

∫
D

∫
Γ

f(y,x)v(y,x)ρ(y) dy dx.
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The first equality holds by assumption, the second by application of Theorem
2.20.
The solutions coincide and thus the ansatz (2.5) is confirmed because 1. the
integrals of both weak formulations are equal to each other (note that by the
Fubini lemma, the order of integration can be interchanged) and 2. w(ω,x)
is the unique solution of (2.2) and w(y,x) is the unique solution of (2.4).
Therefore, the parametric formulation as given in (2.3) holds.
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3 Diffusion problem and its mixed form – Ex-

istence, uniqueness and analytic extension

In this section assumptions on the data in the diffusion problem and its mixed
form are formulated. With these assumptions the respective problem admits
a unique solution. The mixed form of the diffusion problem is considered
because in many applications the flux of the solution is the quantity of interest
(see [11], p. 2), often more than the solution itself.
The analytic extension of the solution will be crucial to derive approximation
error estimates. The approximations considered further in this thesis (see
Section 4) are the tensor product approximation and the sparse grid Smolyak
approximation via the collocation method (see Section 4.1). The same grid
constructions are considered for numerical quadrature (see Section 4.2). In
both approaches the best-approximation error has to be bounded and the
analytic extension is needed.
Depending on the grid choice (tensor product or sparse grid) different results
on the extensibility of the solution to the complex plane are required. For
the first grid, the solution has to be extended in one coordinate direction,
for the second in all coordinate directions simultaneously. The results on the
analytic extensibility are of relevance for the error estimates in Section 4.4.
The last part of this section states additional regularity assumptions which
are of relevance in the multilevel method examined in Section 5.

3.1 The diffusion problem and its mixed form

Consider the stochastic diffusion problem in standard form, which was al-
ready given in Example 2.1,

−∇ · (a(ω,x)∇u(ω,x)) = f(ω,x) in Ω×D, P-a.e.,

u(ω,x) = g(ω,x) on Ω× ∂D, P-a.e.,

and its parametric equivalent (the parametric diffusion problem)

−∇ · (a(y,x)∇u(y,x)) = f(y,x) in Γ×D, ρ(y)dy,

u(y,x) = g(y,x) on Γ× ∂D, ρ(y)dy.
(3.1)

Remark 3.1:
From now on only the parametric diffusion problem is considered. According
to the parametric diffusion problem, the same properties can be derived for
the stochastic diffusion problem. �
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The mixed form of the diffusion problem was given in Example 2.2. It
is equivalent with the diffusion problem as the following reasoning shows.
Hence, it seems to be natural to consider in the analysis of this section both,
the diffusion problem and its mixed form, and to identify similarities.
Consider the parametrized form of the diffusion problem’s mixed form

1

a(y,x)
u(y,x)−∇p(y,x) = 0 in Γ×D, ρ(y) dy-a.e.,

∇ · u(y,x) = −f(y,x) in Γ×D, ρ(y) dy-a.e.,

p(y,x) = g(y,x) on Γ× ∂D, ρ(y) dy-a.e..

(3.2)

The first line yields 1
a(y,x)

u(y,x) = ∇p(y,x). Substituting a(y,x)∇p(y,x)

for u(y,x) in the second equation and multiplying by −1 leads to

−∇ · (a(y,x)∇p(y,x)) = f(y,x) in Γ×D, ρ(y) dy-a.e.,

p(y,x) = g(y,x) on Γ× ∂D, ρ(y) dy-a.e.,

which equals the diffusion problem described in (3.1), with p = u.

3.2 Different forms of the diffusion coefficient

Two different forms of the diffusion coefficient a(ω,x) (or a(y,x) in the
parametrized form) will be considered: Either the diffusion coefficient is uni-
formly bounded, i.e., there are 0 < amin and amax <∞ such that

0 < amin ≤ a(ω,x) ≤ amax <∞, (3.3)

or the diffusion coefficient is only bounded by random variables 0 < amin(ω)
and amax(ω) <∞ such that

0 < amin(ω) = ess inf
x∈D

a(ω,x) ≤ a(ω,x) ≤ ess sup
x∈D

a(ω,x) = amax(ω) <∞.

(3.4)

Bounded by random variables will in the following be referred to asD-bounded
as the diffusion coefficient a(ω,x) is bounded in the spatial variable.

Remark 3.2:
Strictly speaking, a uniformly bounded is also a D-bounded diffusion coeffi-
cient. Nevertheless, both cases are considered on their own as more assump-
tions on the data need to be stated for a D-bounded diffusion coefficient. �
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Example 3.3 – Uniformly bounded diffusion coefficient:
Assume that a > amin > 0. Consider the Karhunen-Loève expansion (see
Example 2.10) for log(a− amin), where E[log

(
a(ω,x)

)
] = 0. It holds

log(a(ω,x)− amin) =
N∑
n=1

√
λnbn(x)yn(ω),

and consequently

a(ω,x) = amin + exp

( N∑
n=1

√
λnbn(x)yn(ω)

)
.

Due to the last expression a(ω,x) is uniformly bounded away from zero
for any choice of random variables {yn(ω)}Nn=1. It is uniformly bounded if
for instance the yn are uniformly distributed in [−1; 1] and bn ∈ L∞(D) (see
Definition B.1). For standard normally distributed yn, however, the diffusion
coefficient cannot be uniformly bounded from above. �

Remark 3.4 – Lognormal diffusion coefficient:
The coefficient is often lognormally distributed in applications, i.e., its loga-
rithm is normally distributed, log

(
a(ω,x)

)
∼ N (µ, σ2). This is a special case

of a D-bounded diffusion coefficient which becomes clear by the following
example. �

Example 3.5 – Lognormal diffusion coefficient:
Assume that log

(
a(ω,x)

)
∼ N (0, σ2). Consider the following lognormal dis-

tributed diffusion coefficient, obtained through the Karhunen-Loève expan-
sion (see Example 2.10),

a(ω,x) = exp

( N∑
n=1

√
λnbn(x)yn(ω)

)
,

where the yn ∼ N (0, 1), n ∈ {1, . . . , N}, are independent and identically
distributed. Since the yn are in (−∞,∞), the exponent cannot be uniformly
bounded by a constant bigger than zero. �

The last example shows that for a lognormal distribution it holds no longer
a(ω,x) ≥ amin > 0. Rather, the diffusion coefficient is in that case assumed
to fulfil the condition on a D-bounded diffusion coefficient (3.4).
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Remark 3.6:
Consider again the previous example. Let the functions bn ∈ L∞(D). Then
(after parametrizing), the bounds of (3.4) are satisfied because

0 < exp

(
−

N∑
n=1

√
λn‖bn‖L∞(D)|yn|

)
≤ amin(y) = ess inf

x∈D
a(y,x)

and

ess sup
x∈D

a(y,x) = ‖a(y, ·)‖L∞(D) ≤ exp

( N∑
n=1

√
λn‖bn‖L∞(D)|yn|

)
<∞. �

3.2.1 Different forms of the parameter domain

The form of the diffusion coefficient as well as the choice of the distribution
of the random variables give implications on the parameter space Γ. The
cases whether Γ is bounded or unbounded have to be distinguished.

For a lognormal diffusion coefficient in the form as in Example 3.5 the param-
eter space Γn equals R, i.e., it is unbounded and so is the whole parameter
space Γ. This is because the random variables yn, n ∈ {1, . . . , N}, areN (0, 1)

distributed, i.e., ρn(yn) = 1
2π

exp(−y
2
n

2
). For other forms of D-bounded diffu-

sion coefficients a bounded Γ might be possible.

In the case of a uniformly bounded diffusion coefficient several choices are
possible as well, depending on the form of the approximation of the random
field. Taking the approximation as in Example 3.3, for a uniform distribution
in some closed interval of the random variables yn the parameter space Γn is
bounded.

Hence it is of interest to consider bounded and unbounded parameter spaces.

In the case of Γ bounded it is assumed (without loss of generality), that
Γ = [−1, 1]N because every interval [a, b] can be transformed to [−1, 1] by
the mapping t 7→ 2(t− a+b

2
)/(b− a).

In order to treat bounded and unbounded parameter domains, introduce –
as described in [1] – a weight

σ : Γ→ R+

with σ(y) =
∏N

n=1 σn(yn) ≤ 1, and σn(yn) = 1 if Γn is bounded.

Based on this weight, the following function space is defined.
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Definition 3.7:
The space C0

σ(Γ;W (D)) ={
v : Γ→ W (D) : v continuous in y,max

y∈Γ
‖σ(y)v(y)‖W (D) <∞

}
with norm ‖v‖C0

σ(Γ;W (D)) = max
y∈Γ
‖σ(y)v(y)‖W (D)

consists of continuous functions v : Γ→ W (D) whose norm ‖·‖C0
σ(Γ;W (D)) is

finite. �

Remark 3.8:
Note that the functions in the above definition are understood as functions
from Γ to W (D). Subsequently – if no ambiguity arises – sometimes v(y)
will be written instead of v(y, ·), and the function v will be understood as a
function from Γ to W (D). �

Remark 3.9:
If Γn is bounded, it is σn(yn) = 1. Consequently, if the whole parame-
ter space Γ is bounded, it holds σ(y) = 1, and the just defined space
C0
σ(Γ;W (D)) equals the space C0(Γ;W (D)) of continuous functions with

bounded maximum-norm. �

3.3 Existence and uniqueness results

While existence, uniqueness, and continuity results on the parameter space
Γ in RN are sufficient for deriving an analytic extension in one direction,
results on parameter spaces extended to CN are required to get an analytic
extension in all variables simultaneously. An analytic extension in all vari-
ables simultaneously is necessary for approximations or quadratures based
on Smolyak sparse grids and quasi-optimal sparse grids (see Section 4.1.3),
while an analytic extension in one direction suffices on tensor-product grids.
Thus, the diffusion problem and its mixed form are examined on the more
general space CN . Conditions on the data and spaces are stated in order to
obtain existence and uniqueness of the weak solution. Also, to motivate the
approximation by global polynomials in the parameter domain and to derive
analyticity, a continuity result for the solution is shown.
This subsection will be concluded by Section 3.3.3, where the connection to
the problems defined in the real plane will be pointed out. Also, it will be
shown that the solution exists in L2

ρ(Γ;W (D)) with Γ ⊂ RN under certain
conditions.
Before examining the diffusion problem and its mixed form, the data are
assumed to be extendible to the complex plane.
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Let z = (z1, . . . , zN) ∈ CN be a complex valued variable with Re(z) = y.
The following assumption on the data has to be fulfilled.

Assumption 3.10 – Extensions of the data to complex plane:
Let a(·,x) and f(·,x) have extensions to the complex plane CN , i.e., for all
z ∈ CN the data a(z,x) and f(z,x) are defined taking values in C. �

Remark 3.11 – On the procedure:
For the uniformly bounded diffusion coefficient and the diffusion coefficient
bounded by random variables the procedure is as follows.

1. Parameter spaces being subsets of CN are defined on which the subse-
quent analysis will be performed.

2. For the diffusion problem

a. existence and uniqueness of a weak solution with corresponding
stability condition under certain assumptions on the data and
spaces are shown, and

b. a continuous solution is obtained under continuity assumptions on
the data.

3. For the diffusion problem’s mixed form the previous steps a. and b.
are carried out too. �

The cases of a uniformly bounded and a D-bounded diffusion coefficient
are now distinguished, and similarities of both problem formulations become
clear and are pointed out.

3.3.1 Uniformly bounded diffusion coefficient in CN

Throughout the entire subsection the following assumption should hold.

Assumption 3.12 – Diffusion coefficient uniformly bounded:
Let the diffusion coefficient a(y, ·) be uniformly bounded, i.e., there exist
amin, amax ∈ (0,∞) such that ρ(y) dy-a.e. it holds

amin ≤ a(y,x) ≤ amax for all x ∈ D̄.

�

The spaces needed for the analysis will be defined. This is step 1 of the
procedure described in Remark 3.11.
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Definition 3.13 – The set ΣU :
Let 0 < āmin ≤ amin and amax ≤ āmax <∞ with amin, amax as in Assumption
3.12. Define the set ΣU – the index U indicates the uniformly bounded case
– as

ΣU =
{
z ∈ CN : āmin ≤ Re(a(z,x)) ≤ |a(z,x)| ≤ āmax ∀x ∈ D̄

}
. �

Remark 3.14 – Γ ⊂ ΣU :
The previous assumption implies Γ ⊂ ΣU . Since for every y ∈ Γ it is y ∈
RN ⊂ CN , Re(a(y,x)) = a(y,x) and |a(y,x)| = a(y,x), it follows

āmin ≤ amin ≤ Re(a(y,x)) = a(y,x) ≤ amax ≤ āmax ∀x ∈ D̄,

and thus y ∈ ΣU . �

The space of continuous functions of Γ to the Banach space W (D) is extended
to functions from ΣU to W (D).

Definition 3.15 – The space C0
σ(ΣU ;W (D)):

For a weight function σ : RN → R+, let

C0
σ(ΣU ;W (D)) = {v : ΣU → W (D) : v continuous in z,

max
z∈ΣU
‖σ(Re z)v(z)‖W (D) <∞}

be the space of continuous functions from ΣU to the Banach space W (D) with
norm

‖v‖C0
σ(ΣU ;W (D)) = max

z∈ΣU
‖σ(Re z)v(z)‖W (D). �

Subsequently, the steps 2 and 3 – each with the parts a and b – as stated in
Remark 3.11 are carried out, for the diffusion problem and its mixed form.

3.3.1.1 Diffusion problem
As mentioned before, results on subspaces of CN are of interest. Hence, the
values in the stochastic variable are taken in CN .

Assumption 3.16 – Spaces of the diffusion problem:
Let W (D) = H1

0 (D) and q = 2. Then Lqρ(Γ;W (D)) = L2
ρ(Γ;H1

0 (D)) with
corresponding norm ‖v‖L2

ρ(Γ;H1
0 (D)).

The assumption means that the solution equals zero on the boundary, i.e.,
g = 0. The space H1

0 (D) with its norm is defined in Remark B.4. �
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Remark 3.17:
It is sufficient to consider only the diffusion problem with a homogeneous
Dirichlet boundary condition. A problem with a non-homogeneous Dirichlet
boundary condition can be transformed into a problem with homogeneous
Dirichlet boundary condition. Let

∇ ·
(
a(z,x)∇w(z,x)

)
= f̃(z,x) on Γ×D,

w(z,x) = g(z,x) on Γ× ∂D

be the original problem. Let v be an arbitrary function on Γ× D̄ such that
v|∂D = g. Then, inserting w = v + u, the following equations

∇ ·
(
a(z,x)∇(v + u)(z,x)

)
= f̃(z,x) on Γ×D,

(v + u)(z,x) = g(z,x) on Γ× ∂D

are obtained, which are due to the linearity of the divergence and the gradient
operator equal to

∇ ·
(
a(z,x)∇u(z,x)

)
=

f(z,x)︷ ︸︸ ︷
f̃(z,x)−∇ ·

(
a(z,x)∇v(z,x)

)
on Γ×D,

u(z,x) = g(z,x)− v(z,x) = 0 on Γ× ∂D.

With the solution to

∇ ·
(
a(z,x)∇u(z,x)

)
= f(z,x) on Γ×D,

u(z,x) = 0 on Γ× ∂D

at hand, the solution of the original problem is given by w = v + u. �

The weak formulation of the diffusion problem in CN with z ∈ CN reads as
follows: Find a function u(z, ·) ∈ H1

0 (D) such that ρ(z) dz-a.e.∫
D

a(z,x)∇u(z,x)∇v(x) dx =

∫
D

f(z,x)v(x) dx ∀v ∈ H1
0 (D). (3.5)

Remark 3.18:
Note that the form (3.5) is equivalent to (2.4). The equivalence will be
discussed in Section 4.1 in more detail. �

In order to obtain existence and uniqueness of the weak solution for each
z ∈ ΣU (step 2a) let the following assumption on the data f hold.
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Assumption 3.19 – Force term of the diffusion problem:
Let ρ : ΣU → R+ be a probabilistic density function. Then assume that the
force term f(z, ·) with z ∈ ΣU is ρ(z) dz-a.e. in L2(D). �

Remark 3.20:
No assumption on the diffusion coefficient in CN is given as it is indirectly
done by the definition of ΣU . �

Theorem 3.21 – Existence of a unique solution of (3.5):
With Assumption 3.10, i.e., the assumption on the extension of the data to
the complex plane, and the Assumptions 3.12, 3.16, 3.19 on the data and the
spaces, for every z ∈ ΣU there exists a unique solution u(z, ·) in H1

0 (D) of
(3.5) satisfying ρ(z) dz - a.e.

‖u(z, ·)‖H1
0 (D) ≤

CP
āmin
‖f(z, ·)‖L2(D), (3.6)

where CP is the Poincaré constant (see Lemma B.9). �

Proof: For the proof a complex valued version of the Lemma of Lax-Milgram,
see Lemma B.8, on the bilinear form B(u, v) =

∫
D
a(z,x)∇u(z,x) ·∇v(x) dx

has to be applied. The inequality follows from the Poincaré inequality given
in Lemma B.9. �

Remark 3.22:
A slightly different formulation was given in [1], where the coefficient was only
assumed to be bounded from below (and only the real case was considered).
In [1], similar results are given for a space equipped with some energy norm.�

Remark 3.23:
Assumption 3.19 on f to be in L2(D) is more specific than the assumption
on f with respect to the spatial variable given in the general Assumption 2.6
because L2(D) ⊂ H−1(D). H−1(D) is the dual space of W (D) = H1

0 (D).
For the norms it holds

‖f‖H−1(D) ≤ CP‖f‖L2(D),

where CP , again, is the Poincaré constant of D.
Later, in the lemmas of Section 3.3.3 on the results in RN , all points of
Assumption 2.6 are fulfilled on the smaller space L2(D). �

The case of the diffusion problem with uniformly bounded diffusion coefficient
is concluded by step 2b from Remark 3.11.
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Assumption 3.24 – Continuous data:
Let f ∈ C0

σ(ΣU ;L2(D)) and a ∈ C0(ΣU ;L∞(D)). �

The following result is needed when stating the existence of an analytic ex-
tension. It also ensures that the approximation of the solution by global
polynomials makes sense.

Lemma 3.25 – Continuous solution of (3.5):
With the assumptions of Theorem 3.21 and Assumption 3.24 the solution of
(3.5) satisfies u ∈ C0

σ(ΣU ;H1
0 (D)). �

Proof: The continuity of the solution u(z) with respect to z ∈ ΣU follows by
the continuity of the data. The proof is similar to the proof with deterministic
force term given in [7, pp. 20–21]. Due to the continuity of the data, for each
ε there exists δ such that for all z, z̃ ∈ ΣU with |z− z̃| ≤ δ it holds

‖a(z)− a(z̃)‖L∞(D) ≤ C
ε

2
and (3.7)

‖f(z)− f(z̃)‖L2(D) ≤
āmin
CP

ε

2
, (3.8)

where the choice of the constant C =
ā2min

CP ‖f(z̃)‖L2(D)
becomes clear subse-

quently. Denote by u = u(z) the solution of the diffusion problem (3.5) with
data a = a(z) and f = f(z) and by ũ = u(z̃) the solution of the diffusion
problem with data ã = a(z̃) and f̃ = f(z̃).
Subtract the weak form with the solution ũ from the weak form with solution
u. Then it is for all v ∈ H1

0 (D)∫
D

(f − f̃)v dx =

∫
D

a∇u · ∇v dx−
∫
D

ã∇ũ · ∇v dx

=

∫
D

a(∇u−∇ũ) · ∇v dx +

∫
D

a∇ũ · ∇v dx−
∫
D

ã∇ũ · ∇v dx

=

∫
D

a∇(u− ũ) · ∇v dx +

∫
D

(a− ã)∇ũ · ∇v dx.

The function w = u− ũ is the solution of∫
D

a∇w · ∇v dx =

∫
D

(f − f̃)v dx +

∫
D

(ã− a)∇ũ · ∇v dx = L(v)

and the stability estimate

‖w‖H1
0 (D) ≤

‖L‖H1
0 (D)∗

āmin
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holds. Since

‖L‖H1
0 (D)∗ = max

‖v‖
H1
0(D)

=1
|L(v)| ≤ ‖a− ã‖L∞(D)‖ũ‖H1

0 (D) + CP‖f − f̃‖L2(D)

and by Theorem 3.21 the stability estimate (3.6)

‖ũ‖H1
0 (D) ≤

CP
āmin
‖f̃‖L2(D)

holds, the following inequality is obtained:

‖L‖H1
0 (D)∗ ≤ ‖a− ã‖L∞(D)

CP‖f̃‖L2(D)

āmin
+ CP‖f − f̃‖L2(D).

This gives

‖w‖H1
0 (D) ≤

‖L‖H1
0 (D)∗

āmin
≤ ‖a− ã‖L∞(D)

CP‖f̃‖L2(D)

ā2
min

+
CP‖f − f̃‖L2(D)

āmin
,

and for all z, z̃ ∈ ΣU such that |z− z̃| ≤ δ it holds by (3.7) and (3.8)

‖u(z)− u(z̃)‖H1
0 (D) = ‖w‖H1

0 (D) ≤ ε,

and hence the solution u is continuous in ΣU . With (3.6), σ(Re z) constant
with respect to ‖·‖H1

0 (D), and f ∈ C0
σ(ΣU ;L2(D)) it follows

‖u‖C0
σ(ΣU ;H1

0 (D)) = max
z∈ΣU

‖σ(Re z)u(z)‖H1
0 (D) ≤ max

z∈ΣU

(
σ(Re z)

CP
āmin
‖f(z)‖L2(D)

)
≤ CP
āmin
‖f‖C0

σ(ΣU ;L2(D)) <∞.

Hence, u ∈ C0
σ(ΣU ;L2(D)). �

3.3.1.2 Mixed form of the diffusion problem

Now, step 3 of Remark 3.11 is performed for the uniformly bounded diffusion
coefficient. Begin with step 3a.

Assumption 3.26 – Data in the mixed form:
For some given density function ρ : ΣU → R+ the data f and g should fulfil

• ρ(z) dz-a.e. it is f(z) ∈ L2(D), where z ∈ ΣU , and

• g = 0. �
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Remark 3.27:
Note that these assumptions are the same as for the diffusion problem, see
Assumption 3.19. Only the assumption on the boundary condition is added.
For the diffusion problem in standard form the boundary condition was con-
tained in the assumption on the spaces (see Assumption 3.16). �

Introduce the following space (recall that d = dim(D))

H(div;D) = {v ∈ [L2(D)]d : ∇ · v ∈ L2(D)}

equipped with the norm

‖v‖H(div;D) =
√
‖v‖2

L2(D) + ‖∇ · v‖2
L2(D).

Assumption 3.28 – Spaces of the mixed form:
Let W (D) = L2(D)×H(div;D) and again q = 2. Then it is

Lqρ(Γ;W (D)) = L2
ρ(Γ;L2(D)×H(div;D)).

�

The weak formulation (extended to CN) of the diffusion problem in mixed
form reads: Find a function (p(z),u(z)) ∈ L2(D)×H(div;D) such that for
any (q,v) ∈ L2(D)×H(div;D) ρ(z) dz-a.e. it holds∫

D

1

a(z,x)
u(z,x)v(x) dx +

∫
D

p(z,x)∇ · v(x) dx = 0,∫
D

q(x)∇ · u(z,x) dx = −
∫
D

f(z,x)q(x) dx.

(3.9)

Define

Az(u,v) =

∫
D

1

a(z,x)
u(x) · v(x) dx,

B(v, q) =

∫
D

q(x)∇ · v(x) dx,

hz(q) = −
∫
D

f(z,x)q(x) dx.

Equation (3.9) is equivalent to

Az(u(z, ·),v) +B(v, p(z, ·)) = 0 ∀v ∈ H(div;D),

B(u(z, ·), q) = hz(q) ∀q ∈ L2(D).
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Theorem 3.29 – Existence of a unique solution of (3.9):
With Assumptions 3.10, 3.26, and 3.28 on the extension of the data, the data
itself and on the spaces of the mixed form, for all z ∈ ΣU there exists a unique
solution (p(z),u(z)) ∈ L2(D)×H(div;D) of (3.9) satisfying ρ(z) dz-a.e.

‖u(z)‖H(div;D) ≤ C

(
āmax
āmin

)
‖f(z)‖L2(D),

‖p(z)‖L2(D) ≤ C2

(
āmax
ā2
min

)
‖f(z)‖L2(D)

with a constant C > 0 depending on the domain only. �

Proof: The proof is similar to [5, pp. 2045–2046] (where it is only stated for
a deterministic force term and a general boundary condition g) and almost
the same as in [11, pp. 6–7] (there for the D-bounded case). For the proof
it will be shown that all conditions of Theorem B.10 (inf-sup condition for
the existence and uniqueness of a saddle point problem) are fulfilled with
u, v ∈ V = H(div;D) and p, q ∈ Q = L2(D).

1. Az and B are continuous linear forms and hz is a bounded linear
functional.
It is ‖ 1

a(z)
‖L∞(D) ≤ 1

āmin
because for all z ∈ ΣU it holds āmin ≤ a(z,x) for all

x ∈ D. Hence,

|Az(u,v)| =
∣∣( 1
a(z)

u,v
)∣∣ ≤ ∥∥∥∥ 1

a(z)

∥∥∥∥
L∞(D)

‖u‖H(div;D)‖v‖H(div;D)

≤ 1

āmin
‖u‖H(div;D)‖v‖H(div;D),

|B(v, q)| = |(q,∇ · v)| ≤ ‖q‖L2(D)‖v‖H(div;D),

|hz(q)| = |(f(z), q)| ≤ ‖f(z)‖L2(D)‖q‖L2(D).

Note that the continuity of Az and B follows from the boundedness and the
linearity from the linearity of the integrals. Further, it is ‖Az‖ = 1

āmin
.

2. The inf-sup condition holds.
Define the space

V 0 = {v ∈ H(div;D) : B(v, q) = (q,∇ · v) = 0 ∀q ∈ L2(D)}
= {v ∈ H(div;D) : ‖∇ · v‖L2(D) = 0}.

Then (see [18, pp. 40–41] or [11, p. 6]), for each q in L2(D) there exists a
unique vq in V 0,⊥, the orthogonal complement of V 0, where the orthogonality
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is understood with respect to the inner product of H(div;D), such that

∇ · vq = q and ‖vq‖H(div;D) ≤ C‖q‖L2(D).

The constant C depends only on the domain D. Note that V 0,⊥ ⊂ H(div;D)
because of the orthogonal decomposition

V 0 ⊕ V 0,⊥ = H(div;D)

of the space H(div;D), and hence vq ∈ H(div;D).

It follows

sup
v∈H(div;D)

B(v, q)

‖v‖H(div;D)

= sup
v∈H(div;D)

(q,∇ · v)

‖v‖H(div;D)

v=vq

≥ (q,∇ · vq)
‖vq‖H(div;D)

∇·vq=q
=

‖q‖2
L2(D)

‖vq‖H(div;D)

≥ 1

C
‖q‖L2(D).

Note that the constant k0 from Theorem B.10 is given by k0 = 1
C

.

3. A is coercive on V 0.

For all z ∈ ΣU it is 1
āmax

≤ 1
a(z,x)

because a(z,x) ≤ āmax. Hence, it is

ess infx∈D
1

a(z,x)
≥ 1

āmax
.

Let v ∈ V 0. Then,

Az(v,v) =

(
1

a(z)
v,v

)
≥ ess inf

x∈D

1

a(z,x)
‖v‖2

L2(D) ≥
1

āmax
‖v‖2

L2(D) =
1

āmax
‖v‖2

H(div;D),

where the last equality holds due to

‖v‖2
H(div;D) = ‖v‖2

L2(D) + ‖∇ · v‖2
L2(D) = ‖v‖2

L2(D) for v ∈ V 0.

For the constant α0 from Theorem B.10 it holds α0 = 1
āmax

.

Since all conditions of Theorem B.10 are fulfilled, a unique solution for each
z ∈ ΣU is obtained.

The stability estimates follow by inserting the calculated constants in the
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estimates given in Theorem B.10 and using āmin
āmax

≤ 1

‖p‖L2(D) ≤
‖A‖
k2

0

(
‖A‖
α0

+ 1

)
‖f‖L2(D)

=
1

āmin
C2

(
1

āmin
āmax + 1

)
‖f‖L2(D)

=
āmax
ā2
min

C2

(
1 +

āmin
āmax

)
‖f‖L2(D)

≤ āmax
ā2
min

C̃2‖f‖L2(D)

and

‖u‖H(div;D) ≤
(
‖A‖
α0

+ 1

)
1

k0

‖f‖L2(D)

=

(
āmax
āmin

+ 1

)
C‖f‖L2(D)

=
āmax
āmin

C

(
1 +

āmin
āmax

)
‖f‖L2(D)

≤ āmax
āmin

C̃‖f‖L2(D). �

Due to step 3b of Remark 3.11, it has to be shown that the solution (p,u) is
contained in C0

σ(ΣU ;L2(D)×H(div;D)). Note that the following assumption
is the same (except it is stated on 1

a
and not on a) as the one for the diffusion

problem.

Assumption 3.30 – Continuous data in the mixed form:
Let f ∈ C0

σ(ΣU ;L2(D)), 1
a
∈ C0(ΣU ;L∞(D)). �

Lemma 3.31 – Continuous solution of (3.9):
With the assumptions of Theorem 3.29 and with Assumption 3.30 the solution
(p(z),u(z)) of the mixed form (3.9) is in C0

σ(ΣU ;L2(D) × H(div;D)), i.e.,
(p,u) ∈ C0

σ(ΣU ;L2(D)×H(div;D)). �

Proof: The continuity follows from the continuity of the data and can be
shown by a similar argument as in [7, pp. 20–21], which has been given
in the proof of Lemma 3.25. The result follows by estimating (using the
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stability estimates given in Theorem 3.29)

‖p‖C0
σ(ΣU ;L2(D)) = max

z∈ΣU
‖σ(Re z)p(z)‖L2(D) = max

z∈ΣU
σ(Re z)‖p(z)‖L2(D)

3.29

≤ C2

(
āmax
ā2
min

)
max
z∈ΣU

σ(Re z)‖f(z)‖L2(D)

≤ C2

(
āmax
ā2
min

)
‖f‖C0

σ(ΣU ;L2(D))

< ∞,

which is finite by the assumptions on the data, and in the same way it is

‖u‖C0
σ(ΣU ;H(div;D)) <∞. �

3.3.2 D-bounded diffusion coefficient in CN

Throughout this subsection the following assumption should hold.

Assumption 3.32 – D-bounded diffusion coefficient:
Let the diffusion coefficient be D-bounded (see (3.4)), i.e., ρ(y) dy-a.e. it
holds

0 < amin(y) = ess inf
x∈D

a(y,x) ≤ ess sup
x∈D

a(y,x) = amax(y) <∞.

�

Once more, the line of reasoning is started with step 1 of Remark 3.11 by
defining relevant subspaces of the complex plane.

Definition 3.33 – The set ΣD:
Let the set ΣD – the index D denotes the D-bounded case – be defined as

ΣD = {z ∈ CN : 0 < āmin(z) ≤ Re a(z,x) ≤ āmax(z) <∞},

where

āmin(z) = ess inf
x∈D

Re a(z,x), āmax(z) = ess sup
x∈D

Re a(z,x).

�

The space C0
σ(Γ;W (D)) is extended to functions defined from ΣD to W (D).
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Definition 3.34 – The space C0
σ(ΣD;W (D)):

The space C0
σ(ΣD;W (D)) ={

v : ΣD → W (D) : v continuous in z,max
z∈ΣD
‖σ(Re z)v(z)‖W (D) <∞

}
with norm ‖v‖C0

σ(ΣD;W (D)) = max
z∈ΣD
‖σ(Re z)v(z)‖W (D)

consists of continuous functions v : ΣD → W (D) whose norm ‖·‖C0
σ(ΣD;W (D))

is finite. �

Remark 3.35 – Γ ⊂ ΣD:
Γ ⊂ ΣD holds in the case of a D-bounded diffusion coefficient as in Assump-
tion 3.32. It is Re a(y,x) = a(y,x) for all y ∈ Γ, and āmin(y) = amin(y) by
the equalities āmin(y) = ess infx∈D Re a(y,x) = ess infx∈D a(y,x) = amin(y).
Similarly it holds āmax(y) = amax(y). Thus, each y ∈ Γ is an element of
ΣD. �

3.3.2.1 Diffusion problem

The same procedure employed for the diffusion problem with a uniformly
bounded diffusion coefficient will be repeated, i.e., the two parts of step 2 of
Remark 3.11 will be carried out. Begin with step 2a.

Theorem 3.36 – Existence of a unique solution of (3.5):
Let Assumptions 3.10 and 3.32 on the extension of the data to CN and on
the diffusion coefficient and Assumption 3.16 on the spaces and Assumption
3.19 on the force term hold. Then, for every fixed z ∈ ΣD the diffusion
problem in weak form (3.5) admits a unique solution u(z) in H1

0 (D) such
that ρ(z) dz - a.e.

‖u(z)‖H1
0 (D) ≤

CP
āmin(z)

‖f(z)‖L2(D) (3.10)

with the Poincaré constant CP depending only on the domain D. �

Proof: A complex valued version of the Lemma of Lax-Milgram B.8 has to
be applied again. The stability estimate follows by the Poincaré inequality
B.9. �

For step 2b of Remark 3.11 the following assumption is stated.

Assumption 3.37 – Continuous data:
Let f ∈ C0√

σ
(ΣD;L2(D)), 1

āmin
∈ C0√

σ
(ΣD;R), and a ∈ C0(ΣD;L∞(D)). �
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Note that this assumption is stricter than Assumption 3.24 on the force term
in ΣU . Since σ ≤

√
σ by the assumption σ ≤ 1 on the weight function, and

if f ∈ C0√
σ
(ΣD;L2(D)), it follows f ∈ C0

σ(ΣD;L2(D)) from

‖f‖C0
σ(ΣD;L2(D)) = max

z∈ΣD
σ(Re z)‖f‖L2(D)

≤ max
z∈ΣD

√
σ(Re z)‖f‖L2(D) = ‖f‖C0√

σ
(ΣD;L2(D)).

Additionally, an assumption on 1
āmin

is stated. These differences are based
on the different forms of the diffusion coefficient.

Lemma 3.38 – Continuous solution of (3.5):
Let the assumptions of the previous Theorem 3.36 and Assumption 3.37 hold.
Then, it is u ∈ C0

σ(ΣD;H1
0 (D)). �

Proof: Similarly to the proof in the case of a uniformly bounded coefficient
(see the proof of Lemma 3.25), u ∈ C0

σ(ΣD;H1
0 (D)) will be shown. The

solution u(z) is continuous with respect to z ∈ ΣD by the same steps as in
the proof of Lemma 3.25 using the stability estimate

‖u(z)‖H1
0 (D) ≤

CP
āmin(z)

‖f(z)‖L2(D)

and the assumption on the data to be continuous with respect to z ∈ ΣD.
Additionally, Assumption 3.37 on the data yields

‖u‖C0
σ(ΣD;H1

0 (D)) = max
z∈ΣD
‖σ(Re z)u(z)‖H1

0 (D) = max
z∈ΣD

σ(Re z)‖u(z)‖H1
0 (D)

(3.10)

≤ CP max
z∈ΣD

√
σ(Re z)

āmin(z)

(√
σ(Re z)‖f(z)‖L2(D)

)
≤ CP

∥∥∥∥ 1

āmin

∥∥∥∥
C0√

σ
(ΣD;R)

‖f‖C0√
σ

(ΣD;L2(D)) <∞. �

3.3.2.2 Mixed form of the diffusion problem

The distinctions of cases are completed by the steps 3a and 3b for the mixed
form.

Theorem 3.39 – Existence of a unique solution of (3.9):
Let Assumptions 3.10, 3.32, 3.26, and 3.28, i.e., the assumptions on the
extendibility of the data to CN , the diffusion coefficient, the data itself and
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the spaces of the mixed form, hold. Then, for each z ∈ ΣD there exists a
unique solution (p(z),u(z)) of (3.9) satisfying ρ(z) dz-a.e.

‖u(z)‖H(div;D) ≤ C

(
āmax(z)

āmin(z)

)
‖f(z)‖L2(D),

‖p(z)‖L2(D) ≤ C2

(
āmax(z)

ā2
min(z)

)
‖f(z)‖L2(D)

with a constant C > 0 depending on the domain only. �

Proof: A proof can be found in [11, pp. 6–7]. It is almost identical to the
procedure used for the uniformly bounded coefficient of Theorem 3.29, where
āmin is replaced by āmin(z). �

Step 3b needs the following continuity assumptions on the data.

Assumption 3.40 – Continuous data:
Assume that f ∈ C0

4√σ(ΣD;L2(D)), a ∈ C0
4√σ(ΣD;L∞(D)), āmax ∈ C0

4√σ(ΣD;R),

and 1
āmin
∈ C0

4√σ(ΣD;R). �

Lemma 3.41 – Continuous solution of (3.9):
Let the assumptions of the previous Theorem 3.39 hold. Further, let Assump-
tion 3.40 hold. Then, (p,u) ∈ C0

σ(ΣD;L2(D)×H(div;D)). �

Proof: A proof can be found in [11, p. 7]. Note that Assumption 3.40 is
formulated here as to fulfil (p,u) ∈ C0

σ(ΣD;L2(D) × H(div;D)) while the
assumptions given in [11, p. 6] are for σ4 instead of σ. Again, continuity
follows by the assumptions on the data. The result can be obtained by
estimates similar to those in the previous proofs on continuity. �

3.3.3 Results in RN

Not only the results in CN are of interest, but also results in RN ensuring
existence and uniqueness of the diffusion problem and its mixed form in the
space L2

ρ(Γ;W (D)).
That is, a unique weak solution of both problems now stated in the form of
(2.4) is sought. Both problem formulations are given for the sake of com-
pleteness.
Find a function u ∈ L2

ρ(Γ;H1
0 (D)) such that for any v ∈ L2

ρ(Γ;H1
0 (D)) it

holds∫
Γ

∫
D

a(y,x)∇u(y,x)∇v(y,x)ρ(y)dx dy =

∫
Γ

∫
D

f(y,x)v(y,x)ρ(y)dx dy

(3.11)
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where u(y,x) = 0 on Γ× ∂D has been used.
And: Find a function (p,u) ∈ L2

ρ(Γ;L2(D) × H(div;D)) such that for any
(q,v) ∈ L2

ρ(Γ;L2(D))⊗ L2
ρ(Γ;H(div;D)) it holds∫

Γ

∫
D

1

a(y,x)
u(y,x)v(y,x)−∇p(y,x)v(y,x)ρ(y)dx dy = 0∫

Γ

∫
D

∇ · u(y,x)q(y,x)ρ(y)dx dy =

∫
Γ

∫
D

−f(y,x)q(y,x)ρ(y)dx dy

(3.12)
where p(y,x) = 0 on Γ× ∂D has been used.

The results given in the previous two subsections for subsets of CN defined
by a uniformly bounded and a D-bounded diffusion coefficient can be under-
stood in the subsets Γ ⊂ ΣU or Γ ⊂ ΣD (with the stricter bounds amin and
amax as well as amin(y) and amax(y)). The results of the diffusion problem
and its mixed form with uniformly bounded diffusion coefficient in Γ ⊂ RN

can be derived as in Section 3.3.1 and with D-bounded diffusion coefficient
as in Section 3.3.2.
Hence, for each case (i.e., diffusion problem and its mixed form with uni-
formly bounded diffusion coefficient or with D-bounded diffusion coefficient)
only the additional assumptions to obtain the respective solution in the space
L2
ρ(Γ;W (D)) have to be stated.

Assumption 3.42 – Integrability of the force term:
Let the force term satisfy that f(y, ·) is square integrable with respect to
ρ(y) dy, i.e., ∫

D

∫
Γ

(
f(y,x)

)2
ρ(y) dy dx <∞.

This means f ∈ L2
ρ(Γ;L2(D)). �

Lemma 3.43 – Uniformly bounded a, u ∈ L2
ρ(Γ;H1

0(D)):
Let the result of Theorem 3.21 for Γ ⊂ ΣU hold. Let Assumption 3.42 on
the force term hold. Then, the diffusion problem (3.11) has a unique weak
solution u ∈ L2

ρ(Γ;H1
0 (D)). �

Proof: The property u ∈ L2
ρ(Γ;H1

0 (D)) follows by

‖u‖2
L2
ρ(Γ;H1

0 (D)) =

∫
Γ

‖u(y)‖2
H1

0 (D)ρ(y) dy
(3.6)

≤
∫

Γ

C2
P

a2
min

‖f(y)‖2
L2(D)ρ(y) dy

=
C2
P

a2
min

∫
Γ

‖f(y)‖2
L2(D)ρ(y) dy <∞

because by assumption f is in L2
ρ(Γ;L2(D)). �
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Lemma 3.44 – Unif. bdd. a, (p, u) ∈ L2
ρ(Γ;L2(D)×H(div;D)):

Let the result of Theorem 3.29 for Γ ⊂ ΣU hold. Let Assumption 3.42 on
the force term hold. Then, the unique weak solution (p,u) of the diffusion
problem’s mixed form (3.12) is in L2

ρ(Γ;L2(D)×H(div;D)). �

Proof: As earlier stated in Lemma 3.43 for the diffusion problem in standard
form, by integration of ‖p‖2

L2(D) and ‖u‖2
H(div;D) over Γ it can be shown that

the solution (p,u) is in L2
ρ(Γ;L2(D)×H(div;D)). �

Assumption 3.45 – D-bounded a, data of standard form:
Let for the data hold f ∈ L4

ρ(Γ;L2(D)) and 1
amin
∈ L4

ρ(Γ;R). �

The former assumption ensures that the solution u is in the right space.

Lemma 3.46 – D-bounded a, u ∈ L2
ρ(Γ;H1

0(D)):
Let Assumption 3.45 and the assumptions on Theorem 3.36 hold for Γ ⊂ ΣD.
Then, the diffusion problem in weak form (3.11) has a unique weak solution
u ∈ L2

ρ(Γ;H1
0 (D)). �

Proof: By equation (3.10), the Cauchy-Schwarz inequality (see Lemma B.2)
and Assumption 3.45 it is∫

Γ

‖u(y)‖2
H1

0 (D)ρ(y) dy
(3.10)

≤ CP

∫
Γ

1

amin(y)
‖f(y)‖2

L2(D)ρ(y) dy

Lemma B.2

≤ CP

(∫
Γ

ρ(y)

a4
min(y)

dy
) 1

2
(∫

Γ

‖f(y)‖4
L2(D)ρ(y) dy

) 1
2

Ass. 3.45
< ∞.

Therefore, u ∈ L2
ρ(Γ;H1

0 (D)). �

Assumption 3.47 – D-bounded a, data of mixed form:
Assume that a ∈ Lsρ(Γ;L∞(D)) for s ∈ [1,∞), 1

amin
∈ Lsρ(Γ;R) for s ∈ [1,∞)

and f ∈ Lq∗ρ (Γ;L2(D)) for some q∗ > 2. �

Lemma 3.48 – D-bounded a, (p, u) ∈ L2
ρ(Γ;L2(D)×H(div;D)):

With Assumption 3.47 on the data and the assumptions of Theorem 3.39 for
Γ ⊂ ΣD there exists a unique weak solution (p,u) ∈ L2

ρ(Γ;L2(D)×H(div;D))
of (3.12). �

Proof: Since the statement is required on Γ ⊂ RN , it can be referred to the
proof in [11, pp. 6–7] for Γ ⊂ CN which is more general than Γ ⊂ RN . A
proof with slightly different norms and estimates is given in [10, pp. 5–7]. �
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3.4 Analytic extension

As mentioned above, the analytic extension of the solution is required to
bound the best approximation error occurring in the estimate of the stochas-
tic approximation error (see Section 4.4) or to construct a quasi-optimal
sparse grid. Subsequently, the analytic extension of the solution in one di-
rection and in all directions simultaneously are given for the diffusion problem
and its mixed form.
Denote

b(y) = a(y), y ∈ RN and b(z) = a(z), z ∈ CN (3.13)

in the diffusion problem and

b(y) =
1

a(y)
, y ∈ RN and b(z) =

1

a(z)
, z ∈ CN (3.14)

in the mixed form.
Further, some relevant notions of an analytic function are given.

Definition 3.49 – Analytic function of several variables:
A function h : W → C is called analytic or holomorphic on an open domain
W ⊂ CN if there is for any point w ∈ W an open region U = U(w) ⊂ W
and a power series which converges for all z in U to h(z), i.e.,

h(z) =
∑
ν≥0

wν(z − w)ν . �

Remark 3.50:
For N = 1 the definition of an analytic function in only one variable is given.�

Definition 3.51 – Partial differentiable and weakly holomorphic:
A function h is partial differentiable in w if the partial derivatives ∂nh(w)
exist for n ∈ {1, . . . , N}.
The function h is called weakly holomorphic in U if h is continuous in U and
partial differentiable.
For z = (z1, . . . , zn) ∈ U and n ∈ {1, . . . , N} the mapping

ζ → h(z1, . . . , zn−1, ζ, zn+1, . . . , zN)

is a holomorphic function of one variable. �

Note that by the Theorem of Osgood (given in Theorem C.2) the notions of
analytic/holomorphic and weakly holomorphic are equivalent.

Definition 3.52 – Analytic extension:
Let W ⊂ CN be an open subset. A function h : W → C has an analytic
extension (or continuation) to the open domain M ⊂ CN with W ⊂ M if
h̃ : M → C is analytic and h̃(z) = h(z) ∀z ∈ W . �
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3.4.1 Analytic extension – one-dimensional result

To obtain the one-dimensional analyticity result, the following notation is
introduced:

Γ∗n =
N∏

j=1,j 6=n

Γj, σ∗n =
N∏

j=1,j 6=n

σj.

Assumption 3.53 – Differentiability of b and f:
Let b(y) and the force term f(y) be infinitely many times differentiable
with respect to y, i.e., for each direction yn the k-th derivatives ∂kynb(y) and
∂kynf(y) exist for every k ∈ N0. Additionaly, if b(y) = 1

a(y)
, let the input data

1
a(y)

and f(y) be analytic on Γ. �

For the diffusion problem and its mixed form the following statement holds
(see [1, p. 1016] and [10, p. 7]).

Lemma 3.54 – Analytic extension of w in one dimension to C:
Let Assumption 3.53 and the assumptions for existence and uniqueness of a
continuous solution of the diffusion problem and its mixed form in Γ ⊂ RN

hold, i.e., the assumptions of Lemma 3.25 and 3.43, 3.31 and 3.44, 3.38
and 3.46, 3.41 and 3.48, respectively. Then, if for every y ∈ Γ there exists
γn <∞ such that for every k ∈ N0∥∥∥∥∂kynb(y)

b(y)

∥∥∥∥
L∞(D)

≤ γknk! and
‖∂kynf(y)‖L2(D)

1 + ‖f(y)‖L2(D)

≤ γknk!,

the solution w(y,x) = w(y1, . . . , yn, . . . , yN ,x) as a function of yn, i.e.,

w|n : Γn → C0
σ∗n

(Γ∗n;W (D))

admits an analytic extension w(y1, . . . , yn−1, zn, yn+1, . . . yN ,x) = w|n(zn),
zn ∈ C, in the region of the complex plane

Σ(Γn; τn) = {zn ∈ C : dist(zn,Γn) ≤ τn}

with 0 < τn <
1

2γn
.

Moreover, if σn is chosen such that a growth condition of the form

σn(Re zn) ≤ Cn(τn)σn(yn) ∀ |zn − yn| ≤ τn

holds for all yn ∈ Γn, where the constant Cn(τn) depends on n and τn only,
then the following bound on the solution

‖σn(Re zn)w|n(zn)‖C0
σ∗n

(Γ∗n;W (D)) ≤ CP (τn, a, f)

is satisfied, where the constant CP (τn, a, f) depends on the domain D, the
direction n, τn and the data a and f . �
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Proof: A proof for the diffusion problem with uniformly bounded diffusion
coefficient can be found in [1, pp. 1016 – 1017]. If the proof is slightly
changed by considering amin(y) instead of amin and uses the assumptions on
the continuity of the data belonging to a D-bounded diffusion coefficient,
the case of a D-bounded diffusion coefficient can be proved using analogous
steps.
The steps of a proof for the mixed form with D-bounded diffusion coefficient
can be found in [10, pp. 8 – 11]. The norms and therefore the stability
estimates of the solution are slightly different there. If the diffusion coef-
ficient is uniformly bounded, the proof can be slightly modified by taking
the constants amin and amax instead of amin(y) and amax(y) as well as the
assumptions on the data belonging to this case. �

Remark 3.55 – Analyticity result for Smolyak approximations:
As discussed in [11, p. 14] the previous result – allowing only analytic ex-
tensions to a subset of the complex plane with respect to one variable and
not to several variables at the same time – is not enough to bound the errors
when using a Smolyak sparse grid (see Section 4.1.3).
Therefore, the results of this section have to be ”improved”, as it has been
done in [11] for the mixed formulation. The results related to the diffusion
problem in its standard form are given following closely the procedure in
[11]. �

3.4.2 Analytic extension – product subdomain result

3.4.2.1 Uniformly bounded diffusion coefficient
In order to derive the analyticity of the solution, analyticity assumptions on
the data are necessary.

Assumption 3.56 – Analytic data – uniformly bdd. coefficient:
Let b : CN → L∞(D) be analytic on CN , and let f : CN → L2(D) be analytic
on int(ΣU), the interior of ΣU . �

Theorem 3.57 – Analytic extension of w to subdomain of CN :
Let Assumption 3.56 hold, assume that Γ ⊂ int(ΣU), and let the assumptions
of Lemma 3.25 and 3.31, respectively hold, i.e., there exists a continuous
solution w ∈ C0

σ(ΣU ;W (D)) of the diffusion problem and its mixed form.
Further, let there exist a unique solution w ∈ L2

ρ(Γ;W (D)), i.e., let the
assumptions of Lemma 3.43 and 3.44, respectively, hold.
Then, the function z 7→ w(z) for the diffusion problem and its mixed form,
is analytic in int(ΣU), hence w : Γ → W (D) has an analytic extension to
the space int(ΣU). �
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Proof: The proof will be given for the diffusion problem. It follows closely
the lines of [8, pp. 9–12], which is extended here for the case of a stochastic
force term, and [11, pp. 7–8], where it is given for the mixed form of the
diffusion problem with D-bounded coefficient. The two main steps are

1. int(ΣU) is an open set.

2. z 7→ u(z) is analytic in int(ΣU).

The first step follows automatically because the interior of some set, here
ΣU , is defined as the biggest open set contained in ΣU .

The second step, i.e., the analyticity of the map z 7→ u(z), is subdivided into
four steps (denoted by 2a - 2d). The goal is to show the existence of the par-
tial derivatives ∂nu(z) for n ∈ {1, . . . , N}. The solution u(z) is continuous in
ΣU (see Lemma 3.25) and thus in int(ΣU). By the Theorem of Osgood (see
Theorem C.2) the analyticity of u as a function of all N complex variables
follows.

Step 2a: Define difference quotient.

Let z ∈ int(ΣU), h ∈ C \{0} and en be the n-th unity vector in RN . Consider
the difference quotient

qh(z) =
u(z + hen)− u(z)

h
. (3.15)

Since the set int(ΣU) is an open set, for every z ∈ int(ΣU) there is εz > 0
such that z + hen ∈ int(ΣU) for |h| < εz. Thus, u(z + hen) exists and the
quotient is well defined if h is chosen small enough.

Step 2b: Define linear equation.

Denote by Az : H1
0 (D)→ H1

0 (D)∗ the linear mapping defined by

[Azu](v) = (a(z)∇u(z),∇v) (3.16)

and by fz a linear functional with fz(v) = (f(z), v). These definitions give

Azu = fz. (3.17)
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Let zh = z + hen. Then,

[Azqh](v)
(3.15)
=

(
a(z)∇u(z + hen)

h
,∇v

)
−
(
a(z)∇u(z)

h
,∇v

)
(3.16)
=

(
a(z)∇u(zh)

h
,∇v

)
− 1

h
[Azu](v)

(3.17)
=

1

h
(a(z)∇u(zh),∇v)− 1

h
fz(v)

=
1

h
(a(z)∇u(zh),∇v)− 1

h
fz(v)

−1

h
(a(zh)∇u(zh),∇v) +

1

h
(a(zh)∇u(zh),∇v)︸ ︷︷ ︸

=0

=
1

h
(−[a(zh)− a(z)]∇u(zh),∇v) +

1

h

(
(a(zh)∇u(zh),∇v)− fz(v)

)
(3.17)
=

1

h
(−[a(zh)− a(z)]∇u(zh),∇v) +

1

h
(fzh(v)− fz(v))

(3.16)
=
−[(Azh − Az)u(zh)](v)

h
+
fzh(v)− fz(v)

h
.

Let

Lh =
−(Azh − Az)u(zh)

h
+
fzh − fz

h
.

Consequently, qh solves equation (3.17) for the right-hand side Lh.

Step 2c: Show that Lh → L0 as h→ 0.
Let

L0 = −∂nAzu(z) + ∂nfz,

where [∂nAz∇u](v) = (∂na(z)∇u,∇v) and ∂nfz(v) = (∂nf(z), v).
It will be shown that

lim
h→0
‖Lh − L0‖H1

0 (D)∗ ≤ lim
h→0

∥∥∥∥Azh − Az

h
u(zh)− ∂nAzu(z)

∥∥∥∥
H1

0 (D)∗

+ lim
h→0

∥∥∥∥fzh − fzh
− ∂nfz

∥∥∥∥
H1

0 (D)∗
= 0.

Since f is analytic in int(ΣU), it is

∂nfz = lim
h→0

fzh − fz
h

∈ L2(D)∗ ⊂ H1
0 (D)∗,
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and it follows with Remark 3.23 (as L2(D)∗ = L2(D) and H1
0 (D)∗ = H−1(D)

– see Remark B.7)

lim
h→0

∥∥∥∥fzh − fzh
− ∂nfz

∥∥∥∥
H1

0 (D)∗
≤ CP lim

h→0

∥∥∥∥fzh − fzh
− ∂nfz

∥∥∥∥
L2(D)∗

= 0.

Further, it is∥∥∥∥Azh − Az

h
u(zh)− ∂nAzu(z)

∥∥∥∥
H1

0 (D)∗

=

∥∥∥∥Azh − Az

h
u(zh) +

Azh − Az

h
(−u(z) + u(z))− ∂nAzu(z)

∥∥∥∥
H1

0 (D)∗

≤
∥∥∥∥Azh − Az

h
(u(zh)− u(z))

∥∥∥∥
H1

0 (D)∗
+

∥∥∥∥(Azh − Az

h
− ∂nAz

)
u(z)

∥∥∥∥
H1

0 (D)∗

≤
∥∥∥∥Azh − Az

h

∥∥∥∥‖u(zh)− u(z)‖H1
0 (D) +

∥∥∥∥Azh − Az

h
− ∂nAz

∥∥∥∥‖u(z)‖H1
0 (D).

(3.18)

The first term in (3.18) tends to 0: Since u ∈ C0
σ(ΣU ;H1

0 (D)), i.e., the
solution is by assumption continuous in z ∈ ΣU , thus also in z ∈ int(ΣU), it
is

lim
h→0
‖u(zh)− u(z)‖H1

0 (D) = 0.

Additionally,

∥∥∥∥Azh − Az

h

∥∥∥∥ = sup
u,v∈H1

0 (D),u,v 6=0

∥∥∥[
Azh
−Az

h
u](v)

∥∥∥
H1

0 (D)

‖u‖H1
0 (D)‖v‖H1

0 (D)

≤ sup
u,v∈H1

0 (D),u,v 6=0

∫
D

∣∣a(zh)−a(z)
h

∇u∇v
∣∣ dx

‖u‖H1
0 (D)‖v‖H1

0 (D)

≤
∥∥∥∥a(zh)− a(z)

h

∥∥∥∥
L∞(D)

→ ‖∂na(z)‖L∞(D) <∞,

which is bounded by the analyticity of the diffusion coefficient, i.e.,

a(zh)− a(z)

h
→ ∂na(z) ∈ L∞(D), h→ 0.
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The second term in (3.18) tends to 0 as well: The operator norm can be
bounded by

∥∥∥∥Azh − Az

h
− ∂nAz

∥∥∥∥ = sup
u,v∈H1

0 (D),u,v 6=0

∣∣∣[Azh
−Az

h
u](v)− [∂nAzu](v)

∣∣∣
‖u‖H1

0 (D)‖v‖H1
0 (D)

≤ sup
u,v∈H1

0 (D),u,v 6=0

∣∣∫
D
a(zh)−a(z)

h
∇u∇v − ∂na(z)∇u∇v dx

∣∣
‖u‖H1

0 (D)‖v‖H1
0 (D)

= sup
u,v∈H1

0 (D),u,v 6=0

∣∣∫
D

(a(zh)−a(z)
h

− ∂na(z))∇u∇v dx
∣∣

‖u‖H1
0 (D)‖v‖H1

0 (D)

≤
∥∥∥∥a(zh)− a(z)

h
− ∂na(z)

∥∥∥∥
L∞(D)

→ 0, h→ 0.

‖u(z)‖H1
0 (D) is bounded by

‖u(z)‖H1
0 (D) ≤

CP
amin(z)

‖f(z)‖L2(D) <∞

by the assumptions on the data. Thus, it is Lh → L0 as h→ 0.

Step 2d: Show that the partial derivative ∂nu(z) exists.
For the right-hand side of Azqh = Lh it is Lh → L0 as h → 0. Since qh
depends continuously on Lh, it is qh → q0 = ∂nu(z) as h→ 0 with

Az∂nu = L0.

Therefore, the partial derivative ∂nu(z) of u(z) exists. �

Remark 3.58 – Proof for the mixed form:
The proof for the mixed form is similar to the proof given above. The first
part, i.e., int(ΣU) is open, is the same. The second part follows the same
steps as the proof for the diffusion problem and is similar to the proof given
in [11, pp. 7–8] (only on the space int(ΣU) instead of ΣD), and is therefore
omitted here. �

Remark 3.59 – Relevance of the solution’s continuity:
In the proof, the continuity of the solution in int(ΣU) was used. The conti-
nuity was shown in Lemma 3.25 based on Assumption 3.24 on the data in
CN .
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A similar result – without assuming a continuous solution – can be obtained
by applying the Theorem of Hartogs (see Theorem C.4). This theorem en-
sures the continuity of the solution u in z ∈ int(ΣU) if the analyticity of
zn 7→ u(z1, . . . , zn−1, zn, zn+1, . . . , zN) can be verified.
If the existence of limh→0 qh(z) can be shown, differentiability in direction
n is ensured, and with the Theorem of Osgood (see Theorem C.2), applied
to a function in one variable, holomorphy in this direction. This means,
zn 7→ u(z1, . . . , zn−1, zn, zn+1, . . . , zN) is analytic. Hence, by the Theorem of
Hartogs u is continuous in int(ΣU). Since u is also partial differentiable, it is
weakly holomorphic and by the Theorem of Osgood analytic.
This strategy was applied in [8, p. 10]. �

3.4.2.2 D-bounded diffusion coefficient In the case of a D-bounded
diffusion coefficient similar assumptions on the analyticity of the data as in
the bounded case have to be stated.

Assumption 3.60 – Analytic data – D-bounded coefficient:
Let the functions b : ΣD → L∞(D) and f : ΣD → L2(D) be analytic in ΣD.�

Theorem 3.61 – Analyticity of w in product domain of CN :
Let Assumption 3.60 and the assumptions of Lemma 3.38 and 3.41 be fulfilled,
respectively, i.e., there exists a unique solution w ∈ C0

σ(ΣD;W (D)).
Further, let there exist a unique solution w ∈ L2

ρ(Γ;W (D)), which is fulfilled
by the assumptions of Lemma 3.46 and 3.48, respectively.
Then, also the mapping z 7→ w(z) is analytic in ΣD. Hence the solution
w ∈ L2

ρ(Γ;W (D)), w : Γ→ W (D) can be analytically extended to ΣD. �

Proof: The proof is similar to the proof of Theorem 3.57. It consists in
showing that the set ΣD is an open set and that the map z 7→ w(z) is
analytic in ΣD.
First, it will be shown that ΣD is an open set. By Definition 3.33 for āmin(z)
and āmax(z) the functions āmin(z) and āmax(z) are continuous in z ∈ CN . By
the property that a function from X → Y is continuous if and only if the
preimage of open sets in Y are open sets in X, the functions āmin(z) as well
as āmax(z) are continuous functions in z ∈ CN . The set (0,∞) is open in
R, and so is the set {z ∈ CN : 0 < āmin(z)}. Since (−∞,∞) is open in R,
the set {z ∈ CN : āmax(z) < ∞} is open. The intersection of the open sets
{z ∈ CN : 0 < āmin(z)} and {z ∈ CN : āmax(z) < ∞} is again open (while
non-empty because āmin(z) ≤ āmax(z) by assumption) and therefore,

ΣD = {z ∈ CN : 0 < āmin(z)} ∩ {z ∈ CN : āmax(z) <∞}
= {z ∈ CN : 0 < āmin(z) ≤ āmax(z) <∞}
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is an open set.

The analyticity of the diffusion problem can be shown as before by substi-
tuting ΣD for ΣU . The proof for the mixed form has a similar structure and
can be found in [11, pp. 7–8]. �

Remark 3.62:
All the results given in this section could have been shown in the same way
for f in H−1(D), the dual space of H1

0 (D). �

3.5 Additional regularity results

In order to derive error estimates of the spatial discretization and in partic-
ular of the multilevel method (see Section 5), where spatial and stochastic
variables are coupled, additional results on the regularity of the solution are
required.

3.5.1 Diffusion problem

In order to derive H2-regularity of the weak solution of (3.5) with a uniformly
bounded diffusion coefficient the following assumption needs to be fulfilled.

Assumption 3.63 – Data to derive u ∈ H2(D), a uniformly bdd.:
Assume that f ∈ Lrρ(Γ;L2(D)) for some 2 ≤ r < ∞ and a(y) ∈ W 1,∞(D)
(see Definition B.3) for every y ∈ Γ. Further, let ∇a ∈ L∞(Γ;L∞(D)). �

Before stating the regularity result, for simplicity of notation, introduce the
space W defined as

W = H2(D) ∩H1
0 (D)

equipped with norm

‖u‖W = ‖u‖H1
0 (D) + ‖∆u‖L2(D).

The following theorem can be found in [2, pp. 129 – 130], where only
‖a‖L∞(Γ;W 1,∞(D)) instead of ‖∇a‖L∞(Γ;L∞(D)) is used.

Theorem 3.64 – Solution in H2(D), uniformly bounded a:
Let Assumption 3.63 hold. Then, the weak solution u of the diffusion problem
(3.5) with uniformly bounded diffusion coefficient (i.e., the assumptions of
Theorem 3.21 should hold) is for all y ∈ Γ in H2(D) and hence in W.
Further, it is u ∈ Lrρ(Γ;W).
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For 2 ≤ r <∞ as in Assumption 3.63 the following estimate can be derived

‖u‖Lrρ(Γ;W) ≤ C(a)‖f‖Lrρ(Γ;L2(D)),

where C(a) > 0 is a constant only depending on amin and ‖∇a‖L∞(Γ;L∞(D)),
but not on y ∈ Γ. �

Proof: The sketch of the proof in [2, pp. 129 – 130] is carried out in more
detail. It holds for all y ∈ Γ, x ∈ D

f(y,x) = −∇ · (a(y,x)∇u(y,x)) = −∇a(y,x) · ∇u(y,x)− a(y,x)∆u(y,x)

and hence,

f(y,x) +∇a(y,x) · ∇u(y,x) = −a(y,x)∆u(y,x)

⇔ 1

a(y,x)

(
f(y,x) +∇a(y,x) · ∇u(y,x)

)
= −∆u(y,x).

By this equation ∆u exists and

‖∆u(y, ·)‖L2(D) =

∥∥∥∥ 1

a(y, ·)
(
f(y, ·) +∇a(y, ·) · ∇u(y, ·)

)∥∥∥∥
L2(D)

≤
∥∥∥∥ 1

a(y, ·)

∥∥∥∥
L∞(D)

‖f(y, ·) +∇a(y, ·) · ∇u(y, ·)‖L2(D)

≤ 1

amin

(
‖f(y, ·)‖L2(D) + ‖∇a(y, ·) · ∇u(y, ·)‖L2(D)

)
.

Using equation (3.6) for Γ ⊂ RN it holds

‖∇a(y, ·) · ∇u(y, ·)‖L2(D) ≤ ‖∇a(y, ·)‖L∞(D)‖u(y, ·)‖H1
0 (D)

(3.6)

≤ ‖∇a(y, ·)‖L∞(D)
CP
amin
‖f(y, ·)‖L2(D)

and it follows

‖∆u(y, ·)‖L2(D) ≤
amin + CP‖∇a(y, ·)‖L∞(D)

a2
min

‖f(y, ·)‖L2(D) (3.19)

which is finite for each y ∈ Γ because ∇a(y, ·) ∈ L∞(D) and f(y, ·) ∈ L2(D).
u(y, ·) ∈ H1

0 (D) has already been shown in Theorem 3.21. Thus, u(y, ·) ∈ W .
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The second statement of the theorem is obtained through the definition of the
norm ‖·‖W , the stability estimate (3.6) of the solution ‖u(y, ·)‖r

H1
0 (D)

given

in Theorem 3.21, equation (3.19) with

‖∇a(y, ·)‖L∞(D) ≤ ‖∇a‖L∞(Γ;L∞(D)) (3.20)

and the assumptions f ∈ Lrρ(Γ;L2(D)) and ∇a ∈ L∞(Γ;L∞(D))

‖u‖rLrρ(Γ;W)

=

∫
Γ

‖u(y, ·)‖rWρ(y) dy

=

∫
Γ

(
‖u(y, ·)‖H1

0 (D) + ‖∆u(y, ·)‖L2(D)

)r
ρ(y) dy

(3.6)

≤
∫

Γ

(
CP
amin
‖f(y, ·)‖L2(D) + ‖∆u(y, ·)‖L2(D)

)r
ρ(y) dy

(3.19)

≤
∫

Γ

(
CP
amin

+
amin + CP‖∇a(y, ·)‖L∞(D)

a2
min

)r
‖f(y, ·)‖rL2(D)ρ(y) dy

(3.20)

≤
(
CP
amin

+
amin + CP‖∇a‖L∞(Γ;L∞(D))

a2
min

)r ∫
Γ

‖f(y, ·)‖rL2(D)ρ(y) dy

≤ C(a)r‖f‖rLrρ(Γ;L2(D)) <∞. �

The next aim is to derive a similar result for the diffusion problem with a D-
bounded diffusion coefficient. As the lower and upper bound of the coefficient
depend on the stochastic variable y ∈ Γ, slightly different assumptions on
the data are required.

Assumption 3.65 – Data to derive u ∈ H2(D), a D-bounded:
Assume that f ∈ Lsρ(Γ;L2(D)) for some 1 < s < ∞, a(y) ∈ W 1,∞(D) for
every y ∈ Γ and ∇a ∈ L∞(Γ;L∞(D)). Further, let 1

amin
∈ Lqρ(Γ;R) for some

q ∈ [1,∞) chosen according to s. �

Theorem 3.66 – Solution in H2(D), a D-bounded:
Let Assumption 3.65 on the data hold. Then, with the assumptions of Theo-
rem 3.36 the weak solution u of the diffusion problem (3.5) with D-bounded
diffusion coefficient is for all y ∈ Γ in H2(D) and hence in W.
Further, it is u ∈ Lrρ(Γ;W) for 2 ≤ r <∞.
For 2 ≤ r <∞ and 1 < s <∞ the following estimate can be derived

‖u‖Lrρ(Γ;W) ≤ C(a)‖f‖Lsrρ (Γ;L2(D)),

where C(a) is a constant independent of y ∈ Γ, depending on ‖ 1
amin
‖
Lq
∗
ρ (Γ;R)

for values of q∗ in [1,∞), ‖∇a‖L∞(Γ;L∞(D)) and r. �
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Proof: The first part of the proof is similar to the proof of the previous
theorem, yielding

‖∆u(y, ·)‖L2(D) ≤
amin(y) + CP‖∇a(y, ·)‖L∞(D)

a2
min(y)

‖f(y, ·)‖L2(D), (3.21)

which is finite for each y ∈ Γ because ∇a(y, ·) ∈ L∞(D), amin(y) > 0
and f(y, ·) ∈ L2(D). Due to Theorem 3.36 it is u(y, ·) ∈ H1

0 (D). Hence,
u(y, ·) ∈ W for all y ∈ Γ .

The second part of the theorem follows by equation (3.21), the stability esti-
mate on the solution derived in Theorem 3.36 as well as the Hölder inequality
(see Lemma B.2) with s, q > 1 and 1

s
+ 1

q
= 1

‖u‖rLrρ(Γ;W)

≤
∫

Γ

(
‖u(y, ·)‖H1

0 (D) + ‖∆u(y, ·)‖L2(D)

)r
ρ(y) dy

(3.21)

≤
∫

Γ

(
CP

amin(y)
+
amin(y) + CP‖∇a‖L∞(Γ;L∞(D))

a2
min(y)

)r
‖f(y, ·)‖rL2(D)ρ(y) dy

=

∫
Γ

cr(a)‖f(y, ·)‖rL2(D)ρ(y) dy

Lemma B.2

≤
(∫

Γ

crq(a)ρ(y) dy

)1/q

· ‖f‖rLrsρ (Γ;L2(D))

which gives the result by defining C(a) =
(∫

Γ
crq(a)ρ(y) dy

)1/rq
, where the

constant C(a) depends on 1
amin(y)

, ‖∇a‖L∞(Γ;L∞(D)) and r. �

3.5.2 Mixed form of the diffusion problem

Now, conditions on p are stated in the same way as in the previous subsec-
tion. In Section 5 the solution (p,u) will be assumed to be in the right space
because for u no references concerning the regularity are known to the author.

The following theorem and the proof are stated similarly to the one for the
diffusion problem, where H1(D)-regularity (instead of H2(D)-regularity) is
required in Section 5 for p.

Theorem 3.67 – p in H1(D), a uniformly bdd.:
Let f ∈ Lrρ(Γ;L2(D)) for some 2 ≤ r <∞ and the assumptions of Theorem
3.29 on Γ hold.
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Then, the part of the unique weak solution p of the diffusion problem’s mixed
form (3.9) with uniformly bounded diffusion coefficient is for all y ∈ Γ in
H1(D). Further, it is p ∈ Lrρ(Γ;H1(D)). �

Proof: In a first step, it has to be shown that for all y ∈ Γ it is p(y) ∈ H1(D).
Since p(y) ∈ L2(D) by Theorem 3.29, it suffices to show ‖∇p(y)‖L2(D) <∞.
It is by the first line of (3.2) on page 14 and ‖ 1

a(y)
‖L∞(D) ≤ 1

amin

‖∇p(y)‖L2(D) =

∥∥∥∥ 1

a(y)
u(y)

∥∥∥∥
L2(D)

≤ 1

amin
‖u(y)‖L2(D). (3.22)

Since u(y) ∈ H(div;D), it is in particular u(y) ∈ [L2(D)]d by the definition
of H(div;D). Thus, it holds ‖u(y)‖L2(D) <∞ and p(y) ∈ H1(D).

To derive the second statement, i.e., p ∈ Lrρ(Γ;H1(D)), the crucial step is to
use the estimates given in Theorem 3.29. Further, the assumption on f and
the just given estimates on the norm have to be applied. Note that

‖p(y)‖2
L2(D) + ‖∇p(y)‖2

L2(D)

(3.22)

≤ ‖p(y)‖2
L2(D) + C

(
1

amin

)2

‖u‖2
L2(D)

Thm. 3.29

≤ C

(
amax
a2
min

)2

‖f(y)‖2
L2(D) + C

(
1

amin

)2(
amax
amin

)2

‖f(y)‖2
L2(D),

where ‖u(y)‖L2(D) ≤ ‖u(y)‖H(div;D) has been used from the second to the
last line to apply the first estimate of Theorem 3.29.
With the previous estimate, the estimate for p ∈ Lrρ(Γ;H1(D)) follows by

‖p‖rLrρ(Γ;H1(D)) =

∫
Γ

‖p(y)‖rH1(D)ρ(y) dy

=

∫
Γ

(
‖p(y)‖2

L2(D) + ‖∇p(y)‖2
L2(D)

)r/2
ρ(y) dy

≤
∫

Γ

Cr

(
amax
a2
min

)r
‖f(y)‖rL2(D)ρ(y) dy

= Cr

(
amax
a2
min

)r
‖f‖rLrρ(Γ;L2(D)) <∞.

Hence, p ∈ Lrρ(Γ;H1(D)). �

Assumption 3.68 – For additional regularity, a D-bounded:
Let 2 ≤ r <∞. Assume for the Lrρ(Γ;H1(D))-regularity of p that for q > 1
it holds f ∈ Lrqρ (Γ;L2(D)), for some s > 2r it holds 1

amin
∈ Ls(Γ;R) and let

amax ∈ Ls
∗
ρ (Γ;L∞(D)) for s∗ > 1 chosen according to s. �
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Remark 3.69:
The previous assumption can be specified when it is clear which specific
regularity of the solution p is necessary. For an increasing number of r the
Hölder inequality has to be applied several times. This determines the values
of s∗. The previous assumption is stated in a more general way in order to
reduce the notation. �

Theorem 3.70 – p in H1(D), D-bounded a:
Let Assumption 3.68 as well as the assumptions of Theorem 3.39 on the
existence of a unique solution (p(y),u(y)) for y ∈ Γ hold.
Then, p(y) of the diffusion problem’s mixed form (3.9) with D-bounded diffu-
sion coefficient is for all y ∈ Γ in H1(D). Further, it is p ∈ Lrρ(Γ;H1(D)).�

Proof: The first part of the theorem, i.e., p(y) in H1(D) for all y ∈ Γ follows
straightforward from the proof with a uniformly bounded diffusion coefficient
by equation (3.22) adjusted for a D-bounded diffusion coefficient, i.e.,

‖∇p(y)‖L2(D) ≤
1

amin(y)
‖u(y)‖L2(D). (3.23)

The assumption on the data give the result.

For the second part of the theorem ‖p‖Lrρ(Γ;H1(D)) has to be bounded. This
is done by applying the same estimates as in the proof for the uniformly
bounded diffusion coefficient – but now the coefficient depends on y – on
‖p(y)‖H1(D) and by applying the Hölder inequality (see Lemma B.2).

‖p‖rLrρ(Γ;H1(D)) =

∫
Γ

‖p(y)‖rH1(D)ρ(y) dy

prev. proof

≤
∫

Γ

Cr

(
amax(y)

a2
min(y)

)r
‖f(y)‖rL2(D)ρ(y) dy

Lemma B.2

≤ Cr

(∫
Γ

(
amax(y)

a2
min(y

)rs
ρ(y) dy

)1/s

‖f‖rLrq(Γ;L2(D)).

With a Hölder inqequality on
∫

Γ

(amax(y)

a2min(y

)rs
ρ(y) dy the result follows. �
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4 Single-level sparse grid approximations and

quadrature

So far, the regularity of the diffusion problem’s and its mixed form’s solution
have been discussed. This section’s content is how such a solution – as no
closed form is known – can be numerically approximated. As mentioned in
the introduction, the solution might be approximated by applying a spectral
stochastic Galerkin method or stochastic collocation. Also, an approxima-
tion by a Monte-Carlo method is possible.

The focus in this thesis is on the collocation method. Stochastic Galerkin
and stochastic collocation methods differ in the coupling of the spatial and
stochastic variable. In stochastic Galerkin approximations the variables are
coupled, while they are uncoupled by construction in the stochastic colloca-
tion method (see below). The collocation method is a sampling method as
Monte-Carlo methods. In contrast to them, in stochastic collocation meth-
ods the stochastic problem is transformed into a deterministic problem. This
is done by choosing a deterministic grid as the required point set instead of
generating the point set from a certain probability distribution. The ap-
proximations in the spatial variable are collocated in the chosen point set.
Therefore, the method is called collocation method. The collocation leads
to an uncoupling of spatial and stochastic variables. Different kinds of grids,
like tensor product grids or sparse grids, can be used in the stochastic collo-
cation method for approximating the solution. An approximation with a full
tensor product grid is given in [1]. Since the computational complexity of full
tensor product approximations grows exponentially with increasing number
of dimensions N of Γ, approximations on sparse grids are often applied. In
[22] and [11] isotropic Smolyak sparse grids are considered, while anisotropic
ones in [23]. Isotropic means that all directions are weighted equally, while
in anisotropic grids the directions are weighted differently. The stochastic
collocation method beats the Monte-Carlo method for a moderate number
of dimensions N (see [22, pp. 2339 – 2340]). The construction of so-called
quasi-optimal grids is given in [4] and [21].

Quadrature is of interest when determining the mean value, variance or
higher moments of the solution. A quadrature method can also be consid-
ered on tensor product and sparse grids. If the deterministic grid is chosen
in a certain way, the expected value of the approximated solution obtained
by the collocation method turns out to be equivalent to directly applying
quadrature for obtaining the solution’s expected value.
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The section shortly presents the collocation method and quadrature on tensor
product and sparse grids. The connection of numeric quadrature to stochastic
collocation is pointed out, and a choice of abscissae of the deterministic grid
is given to derive the equivalence of both methods when the expected value
of the solution is the value of interest. The section is concluded by the error
estimates on the tensor product and Smolyak sparse grid approximations,
and an error estimate on the tensor product quadrature formula.

4.1 Approximations by Stochastic Collocation

In the sequel, the collocation method used to solve a stochastic elliptic bound-
ary value problem is presented. It gives insight why the fully weak, i.e., with
respect to spatial and stochastic domain, or just the weak solution, i.e., the
solution with respect to the spatial domain, can be considered in the analysis
when deriving results of the existence and uniqueness of a solution.

It is proceeded as follows: A discretization of the stochastic and spatial
domain is given, the semidiscrete approximation is defined, and then, the
method itself is specified. The latter consists of 3 steps:

1. selection of a point set,

2. computation of the semidiscrete solution in the just selected point set,

3. approximation of the solution.

In order to compute the weak solution (2.4) a discretization of the function
space is necessary. In the following, the space Lqρ(Γ;W (D)) is assumed to
factorize in Lqρ(Γ) ⊗ W (D), which is the case for the spaces mentioned in
Remark 2.17. Consequently, the spatial and the parameter space can be
discretized by their own. Denote

• Th – regular triangulation of D with maximal mesh-spacing h > 0,

• Wh(D) ⊂ W (D) – conforming finite element space of dimension Nh,

• {φi(x)}Nhi=1 – basis of Wh(D).

For the parameter domain Γ denote

• P(Γ) ⊂ Lqρ(Γ) – polynomial subspace of finite dimension η,

• {ψi(y)}ηi=1 – basis of P(Γ).
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Recall the formulation of the weak solution: Find w(y,x) ∈ Lqρ(Γ)⊗W (D)
such that for all v(y,x) ∈ Lqρ(Γ)⊗W (D) it holds∫

Γ

∫
D

L
(
a(y,x)

)(
w(y,x)

)
v(y,x)ρ(y) dx dy =

∫
Γ

∫
D

f(y,x)v(y,x)ρ(y) dx dy

with additional equations for suitable boundary conditions.
Since the space Lqρ(Γ;W (D)) factorizes in Lqρ(Γ)⊗W (D), an equivalent form
is given by: Find w(x,y) ∈ Lqρ(Γ)⊗W (D) such that for all v(x) ∈ W (D) it
holds ρ-a.e. in Γ∫

D

L
(
a(y,x)

)(
w(y,x)

)
v(x) dx =

∫
D

f(y,x)v(x) dx (4.1)

with additional equations for suitable boundary conditions.
Now, using formulation (4.1), only the spatial variable can be discretized,
and the so-called semidiscrete approximation wh ∈ Lqρ(Γ)⊗Wh(D) given by

wh(y,x) =

Nh∑
j=1

cj(y)φj(x) (4.2)

is obtained. The cj(y) are coefficients which can be determined by solving
for all j′ ∈ {1, . . . , Nh} the problem∫

D

L
(
a(y,x)

)( Nh∑
j=1

cj(y)φj(x)

)
φj′(x) dx =

∫
D

f(y,x)φj′(x) dx. (4.3)

Note that this system of equations consists of Nh equations to be solved.
The semidiscrete approximation (4.2) is used in the collocation method whose
above mentioned steps are explicated. After

1. having selected a point set {yi : yi ∈ Γ ⊂ RN}ηi=1,

2. the semidiscrete solution wh(yi,x) is computed for all yi in the selected set
{yi : yi ∈ Γ ⊂ RN}ηi=1, where wh(yi,x) =

∑Nh
j=1 cj,iφj(x). The coefficients

cj,i = cj(yi) are obtained by solving the weak formulation (4.3), where the
random variable y is constant, namely yi, such that∫

D

L
(
a(yi,x)

)( Nh∑
j=1

cj,iφj(x)

)
φj′(x) dx =

∫
D

f(yi,x)φj′(x) dx (4.4)

for j′ ∈ {1, . . . , Nh}
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with a boundary condition on
∑Nh

j=1 cj,iφj(x). Integrals in (4.4) are for in-
stance computed by a suitable quadrature rule depending on the triangula-
tion Th.

3., the solution is approximated by some approximation rule called A, i.e.,
wh,η(y,x) = A({wh(yi,x)}ηi=1, {ψj(y)}ηj=1).

The choice of the point set {yi : yi ∈ Γ ⊂ RN}ηi=1 will be described in the
following. It depends on the one hand on the selection of abscissae (see Sec-
tion 4.1.1) and on the other hand on the kind of approximation A, e.g., a full
tensor product or a sparse grid approximation (see Sections 4.1.2 and 4.1.3).

The approximation of the solution might be performed by several different
polynomial spaces and approximation rules applied to the semidiscrete so-
lution. In the following, the tensor product grid and Smolyak sparse grid
approximation based on Lagrangian polynomials will be specified.

Throughout the rest of the section, the semidiscrete approximation in the
spatial variable, wh(y,x) =

∑Nh
j=1 cj(y)φj(x), is assumed to be given. Thus,

the interest is in the approximation in the parameter space which is approx-
imated by global polynomials here.

4.1.1 Abscissae

Let i = (i1, . . . , iN) with in ∈ N, in ≥ 1 for all n ∈ {1, . . . N}, be a multi-
index. This index is introduced here because it will be needed later on in the
definition of the sparse grid approximation.
Fix n ∈ {1, . . . , N}, and denote the abscissae in direction n related to the
index in by

θin = {θin1 , θin2 , . . . , θinm(in)} ⊂ Γn, (4.5)

where m : N → N is a ”level-to-nodes function”, strictly increasing with
m(0) = 0,m(1) = 1, m(in) < m(in + 1), with m(in) denoting the number of
collocation points for the in-th index on which the interpolant will be defined
later.
The abscissae {θin1 , . . . , θinm(in)} have to be determined for a concrete choice

of the collocation points, i.e., the point sets {yi : yi ∈ Γ ⊂ RN}ηi=1. Here,
possible choices are presented. Principally, nested and non-nested point sets
are distinguished. A point set is called nested if θin ⊂ θin+1, and non-nested
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otherwise. The points themselves are chosen depending on the parameter
space Γ and the probability measure ρ(y) dy on the parameter space.
For the parameter spaces being relevant here, i.e., [−1, 1]N and (−∞,∞)N ,
the following choices can be mostly found in the literature: For the bounded
space [−1, 1]N with uniform measure the abscissae are either so-called Gauss-
Legendre or so-called Clenshaw-Curtis points. In the case of the unbounded
parameter space (−∞,∞)N with Gaussian measure the abscissae are so-
called Gauss-Hermite points.
The Clenshaw-Curtis points are the extrema of the Chebychev polynomials,
and they are given by

θink = − cos

(
π(k − 1)

m(in)− 1

)
, k ∈ {1, . . . ,m(in)}.

For the following choice, they are even nested: If m(in) = 1, let θin1 = 0, and
define the function m as

m(1) = 1 and m(in) = 2in−1 + 1, in > 1. (4.6)

The Gaussian points are the zeros of polynomials q in Pm(in) which are or-
thogonal to Pm(in)−1 with respect to the density ρn in L2

ρn for each direction
n ∈ {1, . . . , N} (recall that the density function ρ is assumed to factorize),
i.e., these are all zeros of q with

0 =

∫
Γn

q(y)r(y)ρn(y) dy ∀ r ∈ Pm(in)−1.

For the uniform density Legendre polynomials are chosen. The points are
called Gauss-Legendre points. For the Gaussian density and Hermite poly-
nomials they are called Gauss-Hermite points. The resulting point sets are
in general non-nested.

In Figure 1 on page 58 in the first column and the first row for the case
N = 2 the Clenshaw-Curtis abscissae in direction 1 and 2 can be found for
i1, i2 ∈ {1, . . . , 4}. The number of points m(in) is determined by the rule
given in (4.6). The Clenshaw-Curtis points are chosen because the idea is
the same as for Gaussian points, but the implementation is more straight
forward.

4.1.2 Tensor product approximation

By choosing different basis functions of the polynomial space, different col-
location methods can be constructed. Here, a Lagrange basis is considered.
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The Lagrange basis of the space Pm(in)−1(Γn) is given by {λinj (y)}m(in)
j=1 , where

λinj (y) =

m(in)∏
m=1,m 6=j

y − θinm
θinj − θinm

with the θinm chosen according to the parameter space as described in the
previous subsection.
Let

Vm(in)(Γn;W (D)) ={
v ∈ C0

σ(Γn;W (D)) : v(y,x) =

m(in)∑
k=1

ṽk(x)λink (y), {ṽk}m(in)
k=1 ∈ W (D)

}
.

(4.7)
Further, denote by U in the one-dimensional Lagrange interpolation operator
related to index in with

U in : C0
σ(Γn;W (D))→ Vm(in)(Γn;W (D))

and

U in [wh](y) =

m(in)∑
j=1

wh(θ
in
j )λinj (y) ∀wh ∈ C0

σ(Γn;W (D)). (4.8)

It is well known that this interpolation is exact for all polynomials of degree
less than m(in).

Let i be a fixed multi-index. The tensor product approximation based on
Lagrangian polynomials, where wh ∈ C0

σ(Γ;W (D)), is defined by

Ai
N [wh](y) = (U i1 ⊗ · · · ⊗ U iN )[wh](y)

=

m(i1)∑
j1=1

· · ·
m(iN )∑
jN=1

wh(θ
i1
j1
, . . . , θiNjN )(λi1j1 ⊗ · · · ⊗ λ

iN
jN

)(y).

In order to simplify notation let

J = {1, . . . ,m(i1)} × · · · × {1, . . . ,m(iN)}

be the set of all possible combinations of indices j1, . . . , jN .
Let for all j in J

yj = (θi1j1 , . . . , θ
iN
jN

).
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With this definition the collocation point set is given by

{yi : yi ∈ Γ ⊂ RN}ηi=1 = {yj}j∈J = (θi1 × · · · × θiN ),

where for the dimension η it holds

η = |J | =
N∏
n=1

m(in).

Further, let

λj(y) = (λi1j1 ⊗ · · · ⊗ λ
iN
jN

)(y) =
N∏
k=1

λikjk(yik).

The basis {ψi(y)}ηi=1 which was defined in Section 4.1 is given by

{ψi(y)}ηi=1 = {λj(y)}j∈J .

With this, the above tensor product approximation can be written as

Ai
N [wh](y) = (U i1 ⊗ · · · ⊗ U iN )[wh](y) =

∑
j∈J

wh(yj)λj(y), (4.9)

and the approximated solution is given by

wh,η(y) = Ai
N [wh](y).

4.1.3 Sparse grid approximations

The main idea of sparse grid approximations is not to evaluate the function
on a single tensor product set as described in Section 4.1.2, but on the union
of several smaller tensor product sets which are determined by a rule on the
multi-index i = (i1, . . . , iN). Subsequently, the Smolyak sparse grid will be
considered in more detail, in particular the so-called isotropic Smolyak sparse
grid. Its construction is given and illustrated with an example. The idea of
a quasi optimal sparse grid is shortly pointed out at the end of this subsection.

The Smolyak sparse grid is built via the difference operator

∆in = U in − U in−1,

where U in was defined in (4.8), and U0 = 0.
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Let ` ∈ N denote the level. Denote by I(`) ∈ NN the index set corresponding
to the level ` with

I(`) ⊂ I(`+ 1), I(0) = {1} and ∪`∈N I(`) = NN .

The hierarchical surplus operator is defined by

∆i =
N⊗
n=1

(
U in − U in−1

)
.

The sparse grid approximation of a function wh ∈ L2
ρ(Γ;W (D))∩C0

σ(Γ;W (D))
at some level ` ∈ N is given by

AI(`) : L2
ρ(Γ;W (D)) ∩ C0

σ(Γ;W (D))→ L2
ρ(Γ;W (D)),

with

AI(`)[wh](y) =
∑
i∈I(`)

∆m(i)[wh](y).

The approximated solution is defined as

wh,η = AI(`)[wh](y).

In the following, only the isotropic Smolyak sparse grid is considered in de-
tail. Recall that isotropic means that every direction n is equally weighted.
For a study of the anisotropic sparse grid it is referred to [23] as it is out of
the scope of the thesis.

The isotropic Smolyak approximation is a sparse grid method, which is used
in, for example, [22] and [11].
By the choice

I(`) = X(`,N) =
{

i ∈ NN , i ≥ 1 :
N∑
n=1

(in − 1) ≤ `
}

the isotropic Smolyak formula

AI(`) = AX(`,N) =
∑

i∈X(`,N)

(∆i1 ⊗ · · · ⊗∆iN ) (4.10)

is obtained. The equivalence of AX(`,N) to

AY (`,N) =
∑

i∈Y (`,N)

(−1)`+N−|i|
(

N − 1
`+N − |i|

)
· (U i1 ⊗ · · · ⊗ U iN )
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is shown in [25, p. 13–14], where

Y (`,N) =
{

i ∈ NN , i ≥ 1 : `−N + 1 ≤
N∑
n=1

(in − 1) ≤ `
}
.

Note that AY (`,N) contains the tensor product U i1 ⊗ · · · ⊗ U iN for every
index i ∈ Y (`,N). Because of the equivalence of AX(`,N) and AY (`,N), for
the computation of the isotropic Smolyak formula AX(`,N) it is sufficient to
evaluate the function in question on the sparse grid

H(`,N) =
⋃

i∈Y (`,N)

(θi1 × · · · × θiN ) ⊂ Γ,

which is the union of tensor product sets (θi1 × · · · × θiN ) with indices in
Y (`,N).

In Figure 1 an example for the construction of the tensor products for N = 2,
namely θi1 × θi2 , is given. The abscissae θi1 , θi2 are built on the Clenshaw-
Curtis points with the number of abscissae in each directionm(in) determined
by (4.6). Each picture in the figure represents θi1 × θi2 for the indices (i1, i2)
given above each picture. For the level ` = 3, the pairs of indices (i1, i2)
which belong to the set Y (`,N) = Y (3, 2) and their tensor grids are high-
lighted in black.

As the pictures highlighted in black indicate, the grid points belonging to the
pairs (1, 3), (2, 2), (3, 1) are again grid points belonging to the pairs (1, 4)∗,
(2, 3)∗, (3, 2)∗ due to the nestedness of the Clenshaw-Curtis abscissae. Thus,
to build the sparse grid on Y (`,N) it is sufficient to consider a smaller set of
indices (i1, i2) which will be specified in the following.

In general, if the abscissae for the collocation points are nested, the function
in question has only to be evaluated on the grid

H(`,N) =
⋃

i∈X̃(`,N)

(θi1 × · · · × θiN ) ⊂ Γ,

with

X̃(`,N) =
{

i ∈ NN , i ≥ 1 :
N∑
n=1

(in − 1) = `
}
.
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Figure 1: Tensor product grids (θi1 × θi2 ) based on Clenshaw-Curtis points for N = 2, indices
i1, i2 ∈ {1, . . . , 4} and the rule for m(in) as in equation (4.6).

In the example given in Figure 1, X̃(`,N) = X̃(3, 2) is the set of indices
(i1, i2)∗ marked with a ∗.

The set of collocation points for some level ` equals the points of the sparse
grid H(`,N). The number of collocation points η of a fixed level ` is given
by

η = |H(`,N)|,

and the set of collocation points by

{yi : yi ∈ Γ ⊂ RN}ηi=1 = H(`,N),
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where the set H(`,N) has to be chosen according to the case of nested or
non-nested abscissae.

In Figure 2, the sparse grid H(`,N) = H(3, 2) is depicted on the left. It is
the union of the sets (θi1×θi2) belonging to the pairs of indices (1, 4)∗, (2, 3)∗,
(3, 2)∗, and (4, 1)∗. Note that this grid itself is not again a tensor product
grid. By comparing the grid H(3, 2) with the tensor product grid with the
pair of indices (4, 4) (depicted in the right), which has the same number of
maximal grid points in each direction, the reduction of grid points as a result
of a sparse grid construction becomes obvious.

-1

0

1

-1 0 1

-1

0

1

-1 0 1

Figure 2: Comparison of sparse grid (left) and tensor product grid (right).

The idea of a quasi optimal grid consists in the construction of the index
set I(`). The index set is constructed by a greedy algorithm as to minimize
the approximation error. Hence, the problem of building a sparse grid is
reformulated to a knapsack problem [21, p. 2].

4.2 Numerical integration

Often, it is more of interest to compute the expected value or other statistical
quantities like the variance or higher moments of some solution than the
solution itself. In these cases, instead of approximating the solution and
then taking its expected value, it is possible to directly apply a quadrature
rule to determine the expected value.
In this section, in analogue to the approximation of the previous section, ten-
sor product and sparse grid quadrature formulae are introduced. The focus
is on the computation of the expected value because formulae for the other
moments can be obtained in a similar manner.
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Let the function w be defined on C0
σ(Γ;W (D)). Its expected value is given

by

E[w](x) =

∫
Γ

w(y,x)ρ(y) dy ∈ W (D).

Quadrature formulae are applied to functions w which should be integrated
over some N -dimensional domain Γ, i.e.,

INw =

∫
Γ

w(y) dy.

First, consider the one-dimensional case with a univariate function w

I1w =

∫
Γn

w(y) dy

with n ∈ {1, . . . , N}.
Since quadrature in the stochastic variable should be applied, let

θin = {θin1 , θin2 , . . . , θinm(in)} ⊂ Γn

be a quadrature point set for each index in.
Let

Qin
1 : C0

σ(Γn;W (D))→ W (D)

be the quadrature formula corresponding to the index in given by

Qin
1 [w] =

m(in)∑
jn=1

ωinjnw(θinjn)

with the weights ωinjn , which will be specified later. If the point sets θin ⊂ θin+1

are nested, one also speaks of a nested quadrature formula.
Two multi-dimensional quadrature formulae shall be given, the tensor prod-
uct of N quadrature formulae and the Smolyak sparse grid formula. For
both, the connection to approximation is pointed out in Section 4.3. Assume
that w is a function depending on N directions. The tensor product of N
quadrature formulae

Qi
N = (Qi1

1 ⊗ · · · ⊗Q
iN
1 ) : C0

σ(Γ;W (D))→ W (D)

is defined by

Qi
N [w] = (Qi1

1 ⊗ · · · ⊗Q
iN
1 )[w] =

m(i1)∑
j1=1

· · ·
m(iN )∑
jN=1

ωi1j1 · · · · · ω
iN
jN

w(θi1j1 , . . . , θ
iN
jN

).
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Also sparse grid quadrature formulae exist. Define the difference quadrature
formula by

∆in
1 = Qin

1 −Qin−1
1 ,

with Q0
1 = 0. Then, the Smolyak quadrature formula for functions w de-

pending on N dimensions is given by

Q
X(`,N)
N : C0

σ(Γ;W (D))→ W (D),

with

Q
X(`,N)
N [w] =

∑
i∈X(`,N)

(∆i1
1 ⊗ · · · ⊗∆iN

1 )[w].

Note that here the level may start at 0 and not at 1. This is in contrast
to [13], where the general construction of the formulae is taken from and
adjusted to the approximations given in the previous subsection.
The quadrature formula Q

X(`,N)
N is, as before in Section 4.1.3, equivalent to

Q
Y (`,N)
N [w] =

∑
i∈Y (`,N)

(−1)`+N−|i|
(

N − 1
`+N − |i|

)
· (Qi1

1 ⊗ · · · ⊗Q
iN
1 )[w].

The two former formulae, i.e., the tensor product and the Smolyak sparse grid
quadrature formula, have the same form as the tensor product and Smolyak
sparse grid approximation, except that they are formulated for quadrature
rules (i.e., U in is replaced by Qin

1 ).

4.3 Connection of collocation and quadrature

In the following, the connection of collocation techniques to quadrature is
pointed out. For the choice of Gaussian collocation points, both, the tensor
product of N quadrature formulae and the Smolyak quadrature, are shown
to be equal to the expected value of the solution determined by a tensor
product and Smolyak approximation, respectively.
For this, before showing the equivalence for the tensor product and the
Smolyak quadrature to the expected value of the respective approximation,
the multi-dimensional Gaussian quadrature is introduced.

The multi-dimensional Gaussian quadrature is based on the one-dimensional
Gaussian quadrature which is therefore the starting point.
Let the collocation point set (4.5)

θin = {θin1 , θin2 , . . . , θinm(in)} ⊂ Γn
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consist of Gaussian points. For example, for the case of the bounded param-
eter space Γn = [−1, 1] with uniform density the set can be chosen as the
roots of the Legendre polynomials of degree m(in), and for the case of the
unbounded parameter space Γn = (−∞,∞) with normal density as the roots
of the Hermite polynomials of degree m(in); see Section 4.1.1 for Gaussian
points. Based on these points a Gaussian quadrature can be applied to com-
pute the expectet value. The Gaussian quadrature is known to be exact for
all polynomials of degree 2(m(in)− 1) + 1 = 2m(in)− 1.

The weights in one dimension are given by

ωinj =

∫
Γn

λinj (y)ρn(y) dy.

Recall that

J = {1, . . . ,m(i1)} × · · · × {1, . . . ,m(iN)}.

The tensor product weights for all j in J are given by

ωj =
N∏
k=1

ωikjk with
∑
j∈J

ωj = 1.

For the multi-dimensional integral it follows

ωj =

∫
Γ

λj(y)ρ(y) dy. (4.11)

The property ∫
Γn

λink (y)λinj (y)ρn(y) dy = ωinj δi,j

holds, where δi,j is the Kronecker delta, and similarly, in the multi-dimensional
case, ∫

Γ

λj(y)λj′(y)ρ(y) dy = ωjδj,j′ ,

which means that the Lagrange polynomials are orthogonal to each other.
The latter is necessary for a Gaussian quadrature.

Now, the equivalence of collocation and quadrature for the computation of
the expected value of the solution with Gaussian points as collocation and
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quadrature points will be shown. First, consider the tensor product ap-
proximation (4.9) by Lagrange polynomials in the parameter direction as in
Section 4.1.2, i.e.,

wh,η(y) = Ai
N [wh](y) = (U i1 ⊗ · · · ⊗ U iN )[wh](y) =

∑
j∈J

wh(yj)λj(y),

with a continuous function wh in C0
σ(Γ;R).

After having obtained the semidiscrete solution wh, see (4.2), and the semidis-
crete approximations wh(yj,x), the expected value can be computed. The
expected value E[wh,η](x) can by definition of wh,η and by definition of the
weights (4.11) also be obtained by applying a quadrature rule on the semidis-
crete approximation:

E[wh,η](x) = E[Ai
N [wh]](x) =

∑
j∈J

wh(yj,x)

∫
Γ

λj(y)ρ(y) dy

(4.11)
=
∑
j∈J

wh(yj,x)ωj = Qi
N [wh](x),

which is exactly the tensor product of N quadrature formulae.

In the case of a Smolyak approximation of the semidiscrete solution wh, i.e.,

wh,η(y,x) = AY (`,N)[wh](y,x)

=
∑

i∈Y (`,N)

(−1)`+N−|i|
(

N − 1
`+N − |i|

)
· (U i1 ⊗ · · · ⊗ U iN )[wh](y,x),

the expected value E[wh,η](x) is given by

E[wh,η](x) =
∑

i∈Y (`,N)

(−1)`+N−|i|
(

N − 1
`+N − |i|

)
· E[(U i1 ⊗ · · · ⊗ U iN )wh](x)

=
∑

i∈Y (`,N)

(−1)`+N−|i|
(

N − 1
`+N − |i|

)
· (Qi1

1 ⊗ · · · ⊗Q
iN
1 )[wh](x)

= Q
Y (`,N)
N [wh](x).

The latter is the above defined Smolyak quadrature formula applied to the
semidiscrete solution.
Using the result of the tensor product approximation the explicit rule for
computing the Smolyak quadrature is obtained:

Q
Y (`,N)
N [wh](x) =

∑
i∈Y (`,N)

(−1)`+N−|i|
(

N − 1
`+N − |i|

)∑
j∈J

wh(yj,x)ωj.
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Remark 4.1 – Variance and higher order moments:
The variance of wh,η is given by

V[w](x) = E[w2](x)− (E[w](x))2.

With the above derived connections of the approximations to quadrature for
the variance of wh,η it follows

V[wh,η](x) = V[Ai
N [wh]](x) =

∑
j∈J

w2
h(yj,x)ωj −

(∑
j∈J

wh(yj,x)ωj

)2

= Qi
N [w2

h](x)−
(
Qi
N [wh](x)

)2
,

and

V[wh,η](x) = V[AY (`,N)[wh]](x)

= Q
Y (`,N)
N [w2

h](x)−
(
Q
Y (`,N)
N [wh](x)

)2

.

Similarly, formulae for higher order moments can be derived, see [15, p. 18].�

4.4 Error estimates

This section gives error estimates for the tensor product and for the Smolyak
approximation presented before as well as for the tensor product of N quadra-
ture formulae. These estimates are valid for solutions admitting certain an-
alyticity results. They hold in particular for the solution of the diffusion
problem and its mixed form.

The error estimates of the approximations are a priori estimates for the total
error

w −wh,η

in the norm of the space L2
ρ(Γ;W (D)) which has to be specified with respect

to the Banach space W (D) for the problem that is considered. Note that the
results are not derived for the more general space Lqρ(Γ;W (D)), but only for
the case q = 2, where the space factorizes.
The total error can be split into the discretization error in space and an
approximation or interpolation error in the stochastic variable, respectively,
i.e.,

w −wh,η = (w −wh) + (wh −wh,η).
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Section 4.3 dealt with the connection to quadrature, and the collocation
method could be understood as a quadrature under certain conditions on
the collocation and quadrature points. Hence, in the following the results for
w−wh,η will be given using grids in the collocation method that are quadra-
ture points. More precisely, grids with Gaussian abscissae are used. Then, all
estimates which are available on the total error, where the approximated so-
lution is obtained by the collocation method, i.e., ‖w−wh,η‖L2

ρ(Γ;W (D)), build
an upper bound for the quadrature error. This is a result of the following
lemma.

Lemma 4.2 – Approximation of expected value:
Let W (D) = L2(D) or W (D) = H1(D). Then

‖E[w −wh,η]‖W (D) ≤ ‖w −wh,η‖L2
ρ(Γ;W (D)).

�

Proof: The lemma will be proven for W (D) = L2(D). For W (D) = H1(D)
the statement follows by the same steps.

It is

‖E[w −wh,η]‖2
L2(D) =

∥∥∥∥∫
Γ

(w −wh,η)ρ(y) dy

∥∥∥∥2

L2(D)

=

∫
D

∣∣∣∣∫
Γ

(w −wh,η)ρ(y) dy

∣∣∣∣2 dx

≤
∫
D

(∫
Γ

|w −wh,η|ρ(y) dy

)2

dx

=

∫
D

(∫
Γ

|w −wh,η| · 1 ρ(y) dy

)2

dx.

Denoting
(∫

Γ
|w−wh,η| · 1 ρ(y) dy

)2
= ‖|w−wh,η| · 1‖2

L1
ρ(Γ) and applying the

Cauchy-Schwarz inequality (see Lemma B.2) with the functions |w − wh,η|
and 1, it follows

‖|w −wh,η| · 1‖2
L1
ρ(Γ) ≤ ‖|w −wh,η|‖2

L2
ρ(Γ) ‖1‖2

L2
ρ(Γ), (4.12)
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and hence

‖E[w −wh,η]‖2
L2(D) ≤

∫
D

‖|w −wh,η| · 1‖2
L1
ρ(Γ) dx

(4.12)

≤
∫
D

‖|w −wh,η|‖2
L2
ρ(Γ) ‖1‖2

L2
ρ(Γ) dx

=

∫
D

(∫
Γ

|w −wh,η|2ρ(y) dy ·
∫

Γ

12ρ(y) dy︸ ︷︷ ︸
=1

)
dx

=

∫
D

∫
Γ

|w −wh,η|2ρ(y) dy dx

=

∫
Γ

∫
D

|w −wh,η|2 dx ρ(y) dy

= ‖w −wh,η‖2
L2
ρ(Γ;L2(D)),

which concludes the proof. The second to the last equality (i.e., the change
of the order of integration) holds true by the Theorem of Fubini. �

Remark 4.3:
As shown in Section 4.3, the expected value of the solution wh,η equals a
Gaussian quadrature rule if the collocation points are chosen to be Gaus-
sian quadrature points, and if the polynomials in the approximation are of
Lagrangian type. Hence, by the previous lemma, one gets the following es-
timate on the Gaussian quadrature, called Q, either being a tensor product
or a sparse grid approximation

‖E[w]−Q[wh]‖L2(D) = ‖E[w −wh,η]‖L2(D) ≤ ‖w −wh,η‖L2
ρ(Γ;L2(D))

and the same for functions on H1
0 (D).

Moreover, since H(div;D) ⊂ [L2(D)]d, the estimates also hold on H(div;D).
Hence, the estimates are valid for both, the diffusion problem and its mixed
form. �

Although it is of interest to determine the total error w−wh,η or E[w]−Q[wh]
in the respective norm, the following error estimates are only considered
for the approximation or quadrature error in the stochastic variable, i.e.,
wh−wh,η or E[wh]−Q[wh]. Results on the spatial discretization error follow
by finite element theory, see Lemma 5.3 below for the diffusion problem, and
Lemma 5.8 for its mixed form. Notice that the derived analyticity results on
the solution w of the diffusion problem and its mixed form also hold on the
discretized solution wh, as it is discretized only in the spatial variable while
the stochastic variable stays unchanged (cf. e.g. [24, p. 15]).
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4.4.1 Estimate for a tensor product approximation and for a ten-
sor product quadrature

This section gives two estimates, one for a tensor product approximation and
the other for a tensor product quadrature, where the abscissae or quadra-
ture points are assumed to be of Gaussian type. Both estimates are valid
for bounded or unbounded parameter space Γ, and they are afterwards com-
pared to each other.

The result on the tensor product approximation can be found in [1] and will
be stated subsequently. In [1], the approximation quality of the diffusion
problem’s solution with a uniformly bounded diffusion coefficient is consid-
ered. Investigating the steps of the derivation of an estimate it turns out that
the result can be generalized to solutions which are functions in L2

ρ(Γ;W (D))
as long as they fulfil certain analyticity conditions. The following theorem is
thus formulated in the more general manner. Notice that the result holds in
particular true for the diffusion problem and its mixed form.
Before stating the theorem on the tensor product approximation, some nec-
essary preliminaries are given. In the tensor product approximation by poly-
nomials the maximal degree of each polynomial in direction n ∈ {1, . . . , N}
is contained in the vector m(i) − 1 = (m(i1) − 1, . . . ,m(iN) − 1). Assume
that all collocation points θin ⊂ Γn, n ∈ {1, . . . , N}, are of Gaussian type.
Recall that these points θink for k ∈ {1, . . . ,m(in)} are the zeros of polynomi-
als q ∈ Pm(in)(Γn) which are orthogonal to Pm(in)−1(Γn) with respect to the
density ρn in L2

ρn(Γn). Further, let for all yn ∈ Γn

ρn(yn) ≤ CMe
−(δnyn)2

with CM > 0 and {
δn > 0 if Γn is unbounded

δn = 0 if Γn is bounded
,

and assume that

σn(yn) ≥ Cme
−(δnyn)2/4

with Cm > 0 (recall that σn(yn) = 1 for bounded Γn).

Theorem 4.4 – Estimate for tensor product approximation:
Assume that the discretized solution wh is in C0

σ(Γ;W (D)) and satisfies
the assumptions of Lemma 3.54, i.e., it admits an analytic continuation
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wh(y1, . . . , yn−1, zn, yn+1, . . . , yN ,x), zn ∈ C, in the region of the complex
plane

Σ(Γn; τn) = {zn ∈ C : dist(z,Γn) ≤ τn}

with 0 < τn <
1

2γn
, and its norm

‖σn(Re zn)wh(zn)‖C0
σ∗n

(Γ∗n;W (D)) ≤ CP (τn, a, f , g)

is bounded by a constant CP (τn, a, f , g).
Then, there exist positive constants rn, n ∈ {1, . . . , N}, and a positive con-
stant C, which does not depend on the mesh size h and the vector containing
the approximation polynomial’s degree in each direction m(i) − 1 such that
the total error can be bounded by

‖wh−wh,η‖L2
ρ(Γ;W (D)) = ‖wh −Ai

N [wh]‖L2
ρ(Γ;W (D))

≤ C
N∑
n=1

βn(m(in)− 1)e−rn(m(in)−1)θn max
zn∈Σ(Γn;τn)

σn(Re zn)‖wh(zn)‖W (D),

where  θn = βn = 1,

rn = log

(
2τn
|Γn|

(
1 +

√
1 + |Γn|2

4τ2n

))
if Γn is bounded,

and {
θn = 1

2
, βn = O(

√
m(in)− 1),

rn = τnδn
if Γn is unbounded.

�

Proof: A proof with uniformly bounded diffusion coefficient a and the Banach
space W (D) = H1

0 (D) can be found in [1, pp. 1019–1024]. This proof can be
generalized for Banach spaces W (D) by substituting the spaces in the proof
in [1] by the Banach space W (D). The formulation on the discretization
error given here allows the theorem to hold also for D-bounded diffusion
coefficients.
The analyticity assumption on the discrete solution wh is required when the
best approximation error in each dimension separately is estimated, i.e., for
bounded Γ

inf
v∈Pm(in)−1⊗W (D)

‖wh − v‖C0(Γn;W (D)) ≤ Ce−rn(m(in)−1) max
zn∈Σ(Γn;τn)

‖wh(zn)‖W (D),
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and for unbounded Γ

inf
v∈Pm(in)−1⊗W (D)

‖wh − v‖C0
σ(Γn;W (D))

≤ CO(
√
m(in)− 1)e−rn

√
m(in)−1 max

zn∈Σ(Γn;τn)
σn(Re zn)‖wh(zn)‖W (D). �

It was pointed out in Remark 4.3 that the quadrature error by Gaussian
quadrature can be estimated from above by the corresponding estimate of
an approximation obtained by the collocation method. Nevertheless it is
not advisable to make use of this estimate to, for example, determine the
number of quadrature points in order to achieve a certain accuracy. This is
because it is not used that Gaussian quadrature (in one direction) is exact
for polynomials of degree 2 · m̃− 1, where m̃ denotes the number of quadra-
ture points. The following theorem on an estimate for the tensor product
quadrature allows to compare both ways.

Theorem 4.5 – Estimate for tensor product quadrature:
Let the same assumptions as in Theorem 4.4 hold. Let (m̃(i1), . . . , m̃(iN))
denote a vector containing the number of quadrature points of Gaussian type
in directions n ∈ {1, . . . , N}. Then, there exists a constant C independent of
m̃(i1), n ∈ {1, . . . , N}, and the quadrature error is bounded by

‖E[wh]−Qi
N [wh]‖W (D)

≤ C
N∑
n=1

βn(2m̃(in)− 1)e−rn(2m̃(in)−1)θn max
zn∈Σ(Γn;τn)

σn(Re zn)‖wh(zn)‖W (D),

where  θn = βn = 1,

rn = log

(
2τn
|Γn|

(
1 +

√
1 + |Γn|2

4τ2n

))
if Γn is bounded,

and {
θn = 1

2
, βn = O(

√
2m̃(in)− 1),

rn = τnδn
if Γn is unbounded. �

Proof: A proof for Γn unbounded is to be found in [15, pp. 12 – 13]. The
result for bounded Γn is obtained by analogous steps, where only the best ap-
proximation error minv∈P2m̃(in)−1⊗W (D)‖wh−v‖ is differently estimated from
above (as in the corresponding proof for the tensor product approximation
in [1]). �
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Remark 4.6 – Number of quadrature and of collocation points:
Let as in [15, p. 12] ε =

∑N
n=1 εn with εn > 0. Assume that Γ is unbounded,

i.e., Γn is unbounded for all n ∈ {1, . . . , N}. In order to bound the quadrature
error by ε, every term of the sum

∑N
n=1 βn(2m̃(in)− 1)e−rn(2m̃(in)−1)θn has to

be bounded by εn. It is

βn(2m̃(in)− 1)e−rn(2m̃(in)−1)θn =
√

2m̃(in)− 1 e−τnδn
√

2m̃(in)−1

≤ Cn · e−(1−c)τnδn
√

2m̃(in)−1

for all c > 0 and a constant Cn > 0 independent of m̃(in), in particular for
c ∈ (0, 1). To achieve an accuracy εn the following number of quadrature
points is required (note that c 6= 1):

e−(1−c)τnδn
√

2m̃(in)−1 ≤ εn ⇔ m̃(in) ≥ 1

2

(
(log εn)2

(1− c)2(τnδn)2
+ 1

)
.

Hence

‖E[w]−Qi
N [w]‖W (D) ≤ C

N∑
n=1

Cnεn ≤ C̃ε.

If the same accuracy should be gained by applying as upper bound the es-
timate obtained by the approximation of the collocation method, the sum∑N

n=1 βn(m(in) − 1)e−rn(m(in)−1)θn given in Theorem 4.4 has to be bounded
in the same way. Recall that m(in) is the number of collocation points in
direction n. For every n ∈ {1, . . . , N} it holds

βn(m(in)− 1)e−rn(m(in)−1)θn =
√
m(in)− 1e−τnδn

√
m(in)−1

≤ Cne
−(1−c)τnδn

√
m(in)−1

for all c > 0 and a constant Cn > 0 independent of m(in), again in particular
for c ∈ (0, 1). The determination of the number of collocation points to
bound the term by εn gives (note again that c 6= 1)

e−(1−c)τnδn
√
m(in)−1 ≤ εn ⇔ m(in) ≥ (log εn)2

(1− c)2(τnδn)2
+ 1.

Compared to the required number of quadrature points, this number is twice
as high.
Hence, to achieve a certain accuracy in estimating the expected value of
some solution w when using collocation points that are Gaussian quadrature
points, it is more advisable to use a quadrature formula. �

The remark, indeed, motivates to take quadrature into consideration when
computing the expected value of some solution, at least when the abscissae
are of Gaussian type.
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4.4.2 Estimate for a Smolyak approximation

In this subsection two estimates when using a Smolyak approximation will
be given. The first is for a bounded parameter space, the second for an un-
bounded one. In both cases results on Gaussian abscissae are given.

The following lemma is a modified version of [22, p. 2331, Lemma 3.12].
The modification is necessary because of the reason that has before been
mentioned in Remark 3.55. In the proof the term∥∥(I −AX(`,N))[wh]

∥∥
L2
ρ(Γ;W (D))

has to be estimated. The dependence on the parameter space is in N dimen-
sions and not only in one dimension. Therefore, the analyticity result on a
product subdomain of CN is required which was given in Section 3.4.2. The
necessary changes in comparison to the proof of Lemma 3.12 in [22, p. 2331]
are to be found in Appendix A.

Remark 4.7:
In the following lemma the semidiscrete solution is assumed to factorize,
i.e., wh = wh,1 ⊗ · · · ⊗ wh,N . Note that for all functions being finite linear
combinations of such functions the lemma can be applied to each summand.
The sum of the estimates of each single factorizing function is obtained. �

Lemma 4.8 – Convergence of Smolyak approximation – bdd. Γ:
Let W (D) be a Hilbert space, i.e., a Banach space with a norm induced by a
scalar product. Let wh ∈ C0(Γ;W (D)) factorize, i.e., wh = wh,1⊗· · ·⊗wh,N ,
and admit an extension in the region of the complex plane

Σ(Γ; τ ) = {z ∈ CN : dist(zn,Γn) ≤ τn, n = 1, . . . , N},

where τ = (τ1, . . . , τN) > 0. Then, the isotropic Smolyak formula (4.10) with
Gaussian abscissae chosen according to (4.6) satisfies

‖wh −AX(`,N)[wh]‖L2
ρ(Γ;W (D)) ≤

C1(r)

2

1− C1(r)N

1− C1(r)
max

z∈Σ(Γ;τ )
‖wh(z)‖W (D)

×

{
e−re log(2)` if 0 ≤ ` ≤ N

log(2)

e−rN2`/N otherwise.

Hereby, it is

C1(r) = 4 · 8

e2r − 1
C2

(
1 +

1

log(2)

√
π

2r

)
,
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where

C2 = max
n=1,...,N

√∫
Γn

ρn(y) dy

( N∏
n=k+1

√∫
Γn

ρn(y)dy

)1/k

and

r = min
n=1,...,N

1

2
log

(
2τn
|Γn|

+

√
1 +

4τ 2
n

|Γn|2

)
.

�

Remark 4.9:
The statement is given for a density function ρ that factorizes. If ρ does not
factorize, a factorizing auxiliary density function ρ̂ can be introduced. Then,

‖w‖L2
ρ(Γ;W (D)) ≤

∥∥∥∥ρρ̂
∥∥∥∥1/2

L∞(Γ)

‖w‖L2
ρ̂(Γ;W (D)) ∀w ∈ C0(Γ;W (D)),

and the result of the previous lemma has still to be multiplied by
∥∥ρ
ρ̂

∥∥1/2

L∞(Γ)
.�

It is also of interest to have an error bound depending on the number of col-
location points η = η(`,N) = |H(`,N)| of the Smolyak sparse grid. Firstly,
an increasing number of collocation points involves increasing computational
costs. The second reason is a practical issue: It is relevant in the multilevel
method which is defined in the next section.

Theorem 4.10 – Convergence w.r.t. η – bounded Γ:
With the assumptions of the previous lemma, Lemma 4.8, for the number of
collocation points η = η(`,N) = |H(`,N)| of the Smolyak sparse grid, the
following estimates hold

‖wh −AX(`,N)[wh]‖L2
ρ(Γ;W (D)) ≤ C1(r)

max{1, C1(r)}N

|1− C1(r)|
max

z∈Σ(Γ;τ )
‖wh(z)‖W (D)

×

{
ere log(2)η−µ1 if 0 ≤ ` ≤ N

log(2)

e
− Nσ

21/N
ηµ2

otherwise,

where

µ1 =
re log(2)

ζ + log(N)
and µ2 =

log(2)

N(ζ + log(N))

with ζ = 1 + (1 + log2(1.5)) log(2). �
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Remark 4.11 – On the convergence:
Note that for ` > N

log(2)
the convergence (with respect to η) is subexponen-

tial, while for 0 ≤ ` ≤ N
log(2)

it is only algebraic. But in order to achieve
the subexponential convergence for a large number N of dimensions in the
parameter space the number of levels has to be quite high. �

The section is concluded by stating a convergence result for an unbounded
parameter space Γ. This can be found in [11, p. 11]. The appendix belonging
to the proof given there, however, is unclear at some points. Applying the
same steps in the proof as given in Appendix A the result of the theorem
stays valid (with the additional assumption on W (D) to be a Hilbert space),
at least for factorizing functions, and is therefore formulated as this.

Theorem 4.12 – Convergence of Smolyak approx. – Γ unbdd.:
Let W (D) be a Hilbert space, and let wh ∈ C0

σ(Γ;W (D)) factorize, i.e.,
wh = wh,1 ⊗ · · · ⊗wh,N , and admit an analytic extension to the space

Σ(Γ; τ ) = {z ∈ CN : dist(zn,Γn) ≤ τn, n = 1, . . . , N},

and let wh ∈ C0
σ(Σ(Γ; τ );W (D)), i.e.,

max
z∈Σ(Γ;τ )

σ(Re z)‖wh(z)‖W (D) <∞

with ρ(y) =
∏N

n=1 ρn(yn) and σ(y) =
∏N

n=1 σn(yn), where for n ∈ {1, . . . , N}
it is ρn(yn) = e−y

2
n/2√
2π
≤ ce−δny

2
nσn(yn) with c > 0 and δn > 0. Then, if the

collocation points are chosen according to the rule (4.6), it holds

‖wh −AX(`,N)[wh]‖L2
ρ(Γ;W (D)) ≤ C(r)

1− C(r)N

1− C(r)
max

z∈Σ(Γ;τ )
σ(Re z)‖wh(z)‖W (D)

×

e
−` log(2)

2
(r e√

2
−1)

if 0 ≤ ` ≤ 2N
log(2)

e
−r N√

2

√
2`/N+`

log(2)
2 otherwise,

where C(r) is a constant depending on r = minn=1,...,N τn.

In dependence on the number η of collocation points the error can be bounded
by

‖wh −AX(`,N)[wh]‖L2
ρ(Γ;W (D)) ≤ C(r)

1− C(r)N

1− C(r)
max

z∈Σ(Γ;τ )
σ(Re z)‖wh(z)‖W (D)

×

{√
2re/

√
2−1η−ν1 if 0 ≤ ` ≤ 2N

log(2)
η2

N2 e
− r√

2
Nην2

otherwise,
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where

ν1 =
log(2)

2(ζ + log(N))

(
r
e√
2
− 1

)
and ν2 =

log(2)

2N(ζ + log(N))

with ζ = 1 + (1 + log2(1.5)) log(2). �

Remark 4.13:
The statement given here is slightly modified in comparison to [11, p. 11].
There, it was introduced some variable R = N

√
τ1, . . . , τN , and the proof there

uses some lemma [22, Lemma A.1]. However, the requirement of the lemma,
i.e., i∗m− 1 ≤ `, where i∗m = 1 + `/k+ 2

k

∑k
n=1 log2(τn/τm) for m ∈ {1, . . . , k},

k ∈ {1, . . . , N}, is not necessarily satisfied: log2(τn/τm) might be for τn � τm
and small ` such that `/k + 2

k

∑k
n=1 log2(τn/τm) > `.

By introducing r = min1,...,N τn the proof is almost the same as the one given
in their earlier work [10], and the result is obtained by following the steps of
the proof in [10, pp. 15 – 17]. �

Remark 4.14 – Advantage of Smolyak approximation:
A tensor product approximation (or quadrature) suffers from the so-called
curse of dimensionality. This expression describes the drastic rise of com-
putational effort (measured in the number of function evaluations) when
increasing the number of dimensions. As remarked in [22, p. 2329], the ten-
sor product approximation (and hence also the tensor product quadrature)
have a convergence rate bounded by C(r;N)η−

r
N . By increasing the num-

ber of dimensions N the rate of convergence decreases. This phenomenon is
diminished for a Smolyak approximation. Its convergence rate is bounded
by C(r;N)η−

r
logN , and hence the decrease of the convergence rate is slowed

down. For the same accuracy the Smolyak approximation is computationally
less costly than a tensor product approximation.
The same should hold for quadrature. Its error estimates for the tensor
product grid are derived in a similar manner as for the tensor product ap-
proximation, and presumably also the Smolyak sparse quadrature error can
be derived similar to the Smolyak approximation. �
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5 Multilevel approximation and quadrature

In this section another kind of sparse grid will be described. While the
former sparse grids were constructed only on the parameter space Γ, the
discretization of the Banach space W (D) was assumed to be given and was
not considered furthermore.
The idea of multilevel approximation respectively quadrature is to combine
the discretization of the spatial and of the stochastic variable in such a way:
Whenever the spatial variable is evaluated on a coarse grid, for the stochastic
variable an approximation operator respectively quadrature rule with a high
accuracy is applied, and vice versa.

5.1 Discretization of the spatial domain

For both, the multilevel approximation and quadrature the spatial domain
has to be discretized. In Section 4 only one nested subspace Wh(D) ⊂ W (D)
was considered. Now, a family {Whk(D)}k≥0 ⊂ Wh(D) of finite element
spaces with

Whk(D) ⊂ Whk+1
(D), k = 0, 1, 2, . . .

is introduced. Define

Whk(D) = {v continuous on D : v|∂D = 0 and v|τ ∈ Pp for all τ ∈ Thk},

where Pp consists of the polynomials of some total degree p with p ≥ 1 and
Thk for k ≥ 0 is a triangulation of the domain D with the initial coarse grid
triangulation Th0 which is uniformly refined. For example, a refinement is
given with a diameter hk = 2−kh0 of each simplex in Thk .
Let for each discretization level hk and y ∈ Γ

Ghk(y) : W (D)→ Whk(D)

v 7→ vhk

be the Galerkin projection of v(y, ·) to the space Whk(D) yielding the dis-
cretization vhk(y, ·) with respect to the spatial variable.

5.2 Approximation in the stochastic variable

For the approximation in the stochastic variable two possibilities are consid-
ered. Firstly, the approximation by interpolation operators, and secondly by
quadrature rules.
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If the interest is in the solution itself, the approximation by interpolation
operators should be chosen. If the expected value of the solution has to be
approximated, a quadrature rule can be directly applied.
Here, interpolation operators or quadrature formulae depending on the num-
ber of grid points are considered. Let

{Aηk}k≥0

be a sequence of interpolation operators

Aηk : C0
σ(Γ;W (D))→ L2

ρ(Γ;W (D))

using ηk grid points. Possible choices for operators are a tensor product or a
sparse grid approximation operator like a Smolyak approximation operator
(see Section 4.1).
For the choice of a quadrature formula, let

{Qηk}k≥0

be a sequence of quadrature formulae

Qηk : C0
σ(Γ;W (D))→ W (D)

using ηk grid points. The quadrature formulae can be chosen as tensor prod-
uct quadrature formulae or sparse grid formulae (see Section 4.2).

5.3 Multilevel method

The multilevel method can be understood as a sparse grid method, where
the spatial discretization and the approximation in the stochastic variable
are composed such that a sparse grid is constructed.
The multilevel approximation of a function v ∈ Cσ(Γ;W (D)) for K ≥ 0 is
given by

vML
K =

K∑
k=0

AηK−k [vhk − vhk−1
]

=
K∑
k=0

AηK−k [vhk ]−AηK−k [vhk−1
],

(5.1)

where vh−1 = 0 and the AηK−k [vhk ] are the single-level approximations dis-
cussed in Section 4.1. The variable hK indicates the finest grid and ηK the
maximal number of grid points. The superscript ML denotes the multilevel
approximation.

76



The definition of the multilevel method shows that to the solution on the
coarsest grid with respect to the spatial variable (i.e., vh0) the most accurate
approximation in the stochastic variable (namely AηK ) is applied and vice
versa. That is why the multilevel method can be understood as a sparse grid
approximation. This is in contrast to a full approximation, where the most
accurate approximation in the stochastic variable is simply applied to a fine
grid with respect to the spatial variable, i.e., AηK [vhK ].

The multilevel quadrature of a function v ∈ Cσ(Γ;W (D)) for K ≥ 0 is given
by

vMLQ
K =

K∑
k=0

QηK−k [vhk − vhk−1
]

=
K∑
k=0

QηK−k [vhk ]−QηK−k [vhk−1
],

(5.2)

where QηK−k [vhk ] are the single-level quadrature formulae given in Section 4.2
and again vh−1 = 0. The superscript MLQ denotes the multilevel quadrature.

It is easy to see that approximation and quadrature are defined analogously,
as in the case of the single-level methods.

Again, the connection of these methods consists when choosing the points of
the approximations AηK as quadrature points. If then the expected value of
the approximated solution E[vML

K ] is considered, by the results of Section 4.3
it follows

E[vML
K ] = E

[ K∑
k=0

AηK−k [vhk ]−AηK−k [vhk−1
]

]

=
K∑
k=0

E[AηK−k [vhk ]]− E[AηK−k [vhk−1
]]

=
K∑
k=0

QηK−k [vhk ]−QηK−k [vhk−1
]

= vMLQ
K ,

where of course the quadrature formula is chosen adequately to the approxi-
mation operator (i.e., tensor product quadrature if the approximation oper-
ator is a tensor product one, etc.).
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5.4 Error estimates

With the H2(D)-regularity at hand, the following result on the finite element
solution uhk of the diffusion problem (3.5) with uniformly bounded diffusion
coefficient is given in [16, p. 7].

Lemma 5.1 – Galerkin approximation error – a uniformly bdd.:
Let the domain D be polygonal or polyhedral and convex, and let f ∈ L2(D).
Then the unique finite element solution uhk of the diffusion problem (3.5)
admits the following a-priori error bound

‖u(y)− uhk(y)‖H1(D) ≤ C1hk‖u(y)‖H2(D), (5.3)

where the constant C1 > 0 depends on amin and amax, but not on y ∈ Γ. �

Remark 5.2 – Result for D-bounded a:
If the diffusion coefficient isD-bounded, the same error estimate as in the pre-
vious lemma holds with the constant C1 depending on amin(y) and amax(y),
and hence on the stochastic variable y ∈ Γ. Thus C1 = C1(y). In [15, p. 16]

the constant C1(y) is even specified. It is given by C1(y) = C
√

amax(y)
amin(y)

with

a constant C > 0 independent of y, amin(y) and amax(y). �

Lemma 5.3 – Lrρ(Γ;H1
0(D)) approximation error:

Let the assumptions of the previous lemma hold as well as the assumptions
of Theorem 3.64, i.e., it is u ∈ Lrρ(Γ;H1

0 ∩H2). Then,

‖u− uhk‖Lrρ(Γ;H1
0 (D)) ≤ C1hk‖u‖Lrρ(Γ;H2(D)).

Further, for the D-bounded diffusion coefficient, let still the assumptions of
the previous lemma and the assumptions of Theorem 3.66 hold such that the
solution u ∈ Lrsρ (Γ;H1

0 ∩ H2) for some 1 < s < ∞, 2 ≤ r < ∞ and let
amin(y) and amax(y) be regular enough. Then,

‖u− uhk‖Lrρ(Γ;H1
0 (D)) ≤ Chk‖u‖Lrsρ (Γ;H2(D)).

�

Proof: For the uniformly bounded diffusion coefficient it is by equation (5.3)

‖u− uhk‖rLrρ(Γ;H1
0 (D)) =

∫
Γ

‖u(y)− uhk(y)‖rH1
0 (D)ρ(y) dy

(5.3)

≤
∫

Γ

Cr
1h

r
k‖u(y)‖rH2(D)ρ(y) dy

= (C1hk)
r‖u‖rLrρ(Γ;H2(D)).
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This gives the first estimate.
The statement for the D-bounded diffusion coefficient can be similarly de-
rived applying a Hölder inequality (see Lemma B.2) with 1

s
+ 1

q
= 1.

‖u− uhk‖rLrρ(Γ;H1
0 (D)) =

∫
Γ

‖u(y)− uhk(y)‖rH1
0 (D)ρ(y) dy

(5.3)

≤
∫

Γ

Cr
1(y)hrk‖u(y)‖rH2(D)ρ(y) dy

Lemma B.2

≤ hrk

(∫
Γ

Crq
1 (y)ρ(y) dy

)1/q(∫
Γ

‖u(y)‖rsH2(D)

)1/s

≤ hrkC
r‖u‖rLrsρ (Γ;H2(D)),

where the constant C < ∞ is obtained by the assumption on the data
amin(y), amax(y) to be sufficiently regular. �

Assumption 5.4 – Galerkin approximation error estimates:
Assume that there is an a-priori error estimate of the unique finite element
solution (phk ,uhk) of the diffusion problem’s mixed form (3.9) in the form

‖u(y)− uhk(y)‖L2(D) ≤ chk‖u(y)‖H1(D), (5.4)

‖∇ · (u(y)− uhk(y))‖L2(D) ≤ chk|∇ · u(y)|H1(D), (5.5)

‖p(y)− phk(y)‖L2(D) ≤ chk
(
‖u(y)‖H1(D) + ‖p(y)‖H1(D)

)
, (5.6)

where the constant c > 0 depends on amin and amax, and in the case of
a D-bounded diffusion coefficient on amin(y) and amax(y). The semi-norm
|v|H1(D) is defined as |v|2H1(D) =

∑
|α|=1|Dαv|2L2(D). �

Remark 5.5:
The estimates given in the previous assumption are sensible. Examples for
finite element spaces satisfying the above required estimates are to be found
in [6, p. 132, Proposition 3.9, and p. 139, Proposition 1.2]. �

Definition 5.6 – The space H1(div;D):
Define

H1(div;D) = {v ∈ [H1(D)]d : ∇ · v ∈ H1(D)}

equipped with the norm

‖v‖H1(div;D) =
√
‖v‖2

H1(D) + |∇ · v|2H1(D). �
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Remark 5.7:
Actually, an estimate on u(y) in the norm ‖·‖H(div;D) is needed. This can
be derived from the estimates in the previous assumption along with the
definition of the H(div;D)-norm by

‖u(y)− uhk(y)‖H(div;D)

=
√
‖u(y)− uhk(y)‖2

L2(D) + ‖∇ · (u(y)− uhk(y))‖2
L2(D)

(5.4), (5.5)

≤
√
c2h2

k‖u(y)‖2
H1(D) + c2h2

k|∇ · u(y)|2H1(D)

= chk‖u(y)‖H1(div;D). �

Lemma 5.8 – Lrρ(Γ;L2(D)×H(div;D)) approximation error:

Let Assumption 5.4 hold, and let w = (p,u) ∈ L2
ρ(Γ;H1(D) × H1(div;D)).

Then for the mixed form with uniformly bounded diffusion coefficient it is

‖w −whk‖L2
ρ(Γ;L2(D)×H(div;D)) ≤ Chk‖w‖L2

ρ(Γ;H1(D)×H1(div;D)).

For the D-bounded diffusion coefficient let also Assumption 5.4 hold. Let
w = (p,u) ∈ Lsρ(Γ;H1(D)×H1(div;D)) for some s ∈ (2,∞), and let amin(y)
and amax(y) be regular enough. Then,

‖w −whk‖L2
ρ(Γ;L2(D)×H(div;D)) ≤ chk‖w‖Lsρ(Γ;H1(D)×H1(div;D)).

�

Proof: The proof is similar to the proof of Lemma 5.3 for the diffusion prob-
lem. Therefore, it is omitted here. Nevertheless, it shall be noted that the
estimates can be shown to hold for p and u on their own, where in the proof
for p equation (3.22) on page 46 by may be used. �

Remark 5.9:
With the assumptions of Theorems 3.67 and 3.70 the statements of the pre-
vious lemma on p is fulfilled. �

After these preparations the convergence of the multilevel method can be
analysed. This will be done both for the collocation method and quadrature
in the context of the diffusion problem and its mixed form.
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The a-priori error of the multilevel approximation vML
K of the solution v can

be split into the spatial discretization error and the stochastic approximation
error. The latter is measured in the natural norm ‖·‖L2

ρ(Γ;W (D)), i.e.,

‖v − vML
K ‖L2

ρ(Γ;W (D)) ≤ ‖v − vhK‖L2
ρ(Γ;W (D)) + ‖vhK − vML

K ‖L2
ρ(Γ;W (D)).

The first term can be estimated by applying results from finite element theory.
The second term, using the telescopic sum (recall that vh−1 = 0)

vhK =
K∑
k=0

(vhk − vhk−1
)

and recalling the definition of vML
K in equation (5.1), can be estimated by

the triangle inequality as follows (see [24, p. 7])

‖vhK − vML
K ‖L2

ρ(Γ;W (D)) =

∥∥∥∥ K∑
k=0

(vhk − vhk−1
)−AηK−k [vhk − vhk−1

]

∥∥∥∥
L2
ρ(Γ;W (D))

≤
K∑
k=0

‖(vhk − vhk−1
)−AηK−k [vhk − vhk−1

]‖L2
ρ(Γ;W (D)).

Each term of the sum has to be estimated by the error of a single level ap-
proximation of vhk − vhk−1

, where for example the error bounds for a tensor
product or Smolyak approximation given in Section 4.4 can be used. Further
analysis on this for the diffusion problem will be carried out below.

In the same way the a-priori error of the multilevel quadrature vMLQ
k of the

solution v can be split into the spatial discretization error and the stochastic
quadrature error. The latter is measured in the natural norm ‖·‖W (D), i.e.,

‖E[v]− vMLQ
K ‖W (D) ≤ ‖E[v]− E[vhK ]‖W (D) + ‖E[vhK ]− vMLQ

K ‖W (D).

The first term, if W (D) = L2(D) or W (D) = H1(D), can be approximated
by

‖E[v]− E[vhK ]‖W (D) ≤ ‖v − vhK‖L2
ρ(Γ;W (D))

according to Lemma 4.2.
The second term, using again the telescopic sum and the definition of the
multilevel quadrature given in equation (5.2), is estimated by

‖E[vhK ]− vMLQ
K ‖W (D) =

∥∥∥∥ K∑
k=0

E[vhk − vhk−1
]−QηK−k [vhk − vhk−1

]

∥∥∥∥
W (D)

≤
K∑
k=0

‖E[vhk − vhk−1
]−QηK−k [vhk − vhk−1

]‖W (D),
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where as in the multilevel approximation the terms of the sum can be esti-
mated by using single level results.

For the diffusion problem and its mixed form the following theorem can be
concluded by the above given estimates.

Theorem 5.10 – Multilevel approximation and quadrature:
Let w ∈ C0

σ(Γ;W (D)) be the unique weak solution to the diffusion problem
(3.5) or its mixed form (3.9), i.e., W (D) = H1

0 (D) or W (D) = H(div;D).
Let the assumptions of Lemma 5.3 and Lemma 5.8 hold true for r = 2. For
the multilevel approximation, assume that the interpolation operators AηK−k
and the number of collocation points are chosen such that

K∑
k=0

‖(whk −whk−1
)−AηK−k [whk −whk−1

]‖L2
ρ(Γ;W (D)) ≤ chK ,

where c > 0 is a constant independent of the mesh widths hk, k ∈ {0, . . . , K}.
Then, the multilevel approximation error is bounded by

‖w −wML
hK
‖L2

ρ(Γ;W (D)) ≤ ChK

with a constant C > 0 independent of hk, k ∈ {0, . . . , K}.
For the multilevel quadrature, assume that the quadrature formulae QηK−k

and the number of quadrature points are chosen such that

K∑
k=0

‖E[whk −whk−1
]−QηK−k [whk −whk−1

]‖W (D) ≤ chK

with a constant c > 0 independent of hk, k ∈ {0, . . . , K}.
The multilevel quadrature error is bounded by

‖E[w]−wMLQ
hK
‖W (D) ≤ ChK

with another constant C > 0 independent of hk, k ∈ {0, . . . , K}. �

Remark 5.11:
The previous theorem arises the question which interpolation operators and
which quadrature formulae can be chosen to fulfil the assumptions

K∑
k=0

‖(whk −whk−1
)−AηK−k [whk −whk−1

]‖L2
ρ(Γ;W (D)) ≤ chK
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and

K∑
k=0

‖E[whk −whk−1
]−QηK−k [whk −whk−1

]‖W (D) ≤ chK ,

respectively. The inequalities have to be verified for the specific choice of an
operator or quadrature formula. �

Example 5.12 – Approximation with a Smolyak grid, cf. [24]:
An example that fulfils the assumptions of the previous theorem will be
given. Hereby, for the approximation in the stochastic variable a Smolyak
sparse grid is chosen. The example closely follows the procedure in [24].
The diffusion coefficient is assumed to be uniformly bounded, and only the
diffusion problem in its standard form is considered.
The assumption which essentially has to be verified is

K∑
k=0

‖(uhk − uhk−1
)−AηK−k [uhk − uhk−1

]‖L2
ρ(Γ;H1

0 (D)) ≤ chK ,

where AηK−k is chosen as the Smyolak formula AX(`,N) with ηK−k collocation
points which are chosen according to (4.6) given in Section 4.1.3.
In Theorem 4.10 for bounded and in Theorem 4.12 for unbounded Γ the
convergence of the Smolyak approximation with respect to the collocation
points has been shown to be at least algebraically, i.e.,

‖(uhk − uhk−1
)−AηK−k [uhk − uhk−1

]‖L2
ρ(Γ;H1

0 (D))

≤ C1η
−µ
K−k max

z∈Σ(Γ;τ )
σ(Re z)‖uhk(z)− uhk−1

(z)‖H1
0 (D).

Extending estimate (5.3) to variables z ∈ Σ(Γ; τ ) and using the triangle
inequality

‖uhk(z)− uhk−1
(z)‖H1

0 (D) ≤ ‖u(z)− uhk(z)‖H1
0 (D) + ‖u(z)− uhk−1

(z)‖H1
0 (D)

the following estimate is gained:

max
z∈Σ(Γ;τ )

σ(Re z)‖uhk(z)− uhk−1
(z)‖H1

0 (D) ≤ C2hk max
z∈Σ(Γ;τ )

σ(Re z)‖u(z)‖H2(D).

In this estimate the independence on z of the constant C2 > 0 and the mesh
size hk is used. If a D-bounded diffusion coefficient is assumed, the constant
C2 depends on z. Thus, not only σ(Re z)‖u(z)‖H2(D) is maximized, but
C2(z)σ(Re z)‖u(z)‖H2(D). This case is not considered here, but it is referred
to the following Remark 5.13 how this could be handled.
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Hence,

‖(uhk − uhk−1
)−AηK−k [uhk − uhk−1

]‖L2
ρ(Γ;H1

0 (D))

≤ C1η
−µ
K−kC2hk max

z∈Σ(Γ;τ )
σ(Re z)‖u(z)‖H2(D).

If the solution u is in C0
σ(Σ(Γ; τ );H2(D)) – this can be derived stating similar

assumptions as in Assumption 3.24 and using estimate (3.19) in the proof of
Lemma 3.64 - the term

max
z∈Σ(Γ;τ )

σ(Re z)‖u(z)‖H2(D)

can be bounded by another constant C3 > 0 independent of hk, k ∈ {1, . . . , K}.
Thus,

‖(uhk − uhk−1
)−AηK−k [uhk − uhk−1

]‖L2
ρ(Γ;H1

0 (D))

≤ C1η
−µ
K−kC2hkC3.

By choosing

η−µK−k ≤
1

(K + 1)C1C2C3

hK
hk

it is
K∑
k=0

‖(uhk − uhk−1
)−AηK−k [uhk − uhk−1

]‖L2
ρ(Γ;H1

0 (D))

≤
K∑
k=0

hkC1C2C3
1

(K + 1)C1C2C3

hK
hk

= hK .

As by Lemma 5.3 it is ‖u− uhK‖L2
ρ(Γ;H1

0 (D)) ≤ C4hK , the estimate

‖u− uML
hK
‖L2

ρ(Γ;H1
0 (D)) ≤ C4hK + hK = ChK

is obtained. �

Remark 5.13 – Norm definition:
Probably, it is possible to shift the dependence of the constant on amax(y)
and amin(y) to an appropriate norm similar to [20]. Estimates with a con-
stant independent of amax(y) and amin(y) are derived in [20] for the diffusion
problem with a diffusion coefficient which is bounded by random variables.
The norm which is used there is

‖u‖L2
ãρ(Γ;H1

0 (D)) =

(∫
Γ

‖u‖2
H1

0 (D)ã(y)ρ(y) dy

)1/2

,

where ã depends on amin(y) and amax(y). �
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5.5 Computational costs

Computational costs are worthwhile considering in the context of the multi-
level method to compare the performance of multilevel and single-level meth-
ods. Subsequently, it will be shown for the approximation by the collocation
method that the computational cost can be reduced by applying a multilevel
method instead of a single-level method. An analysis on this point was car-
ried out in [24] for a uniformly bounded diffusion coefficient and bounded
parameter space Γ. The results given in [24, p. 8] will be cited below. They
are modified for a discretization and for a Galerkin error linear in the mesh
width hk being the relevant cases here. For the more general result and the
proof the interested reader is referred to [24, pp. 8–10].

Let γ and Cc be positive constants independent of the mesh width hk such
that the cost Ck to compute uhk − uhk−1

at a sample point is bounded by

Cch
−γ
k with k ∈ N, i.e., Ck ≤ Cch

−γ
k .

The cost of the multilevel method is given by

K∑
k=0

ηK−kCk,

where the cost in order to compute uhk − uhk−1
is multiplied by the number

of collocation points according to this level k, and all levels are summed up.
Further, let for the spatial discretization error

‖u− uhk‖L2
ρ(Γ;H1

0 (D)) ≤ C1hk (5.7)

hold, and let ζ be a function of the space C0
σ(Γ;Whk(D)) ⊂ L2

ρ(Γ;H1
0 (D)) to

R with
‖uhk −Aηkuhk−1

‖L2
ρ(Γ;H1

0 (D)) ≤ C2η
−µ
k ζ(uhk)

ζ(uhk) ≤ C3h0

ζ(uhk − uhk−1
) ≤ C3hk,

(5.8)

where µ > 0. Note that in the previous example, Example 5.12, it was
ζ(uhk) = maxz∈Σ(Γ;τ) σ(Re z)‖uhk(z)‖H1

0 (D). With (5.8), for any ε < e−1 there

exists an integer K such that the cost to achieve ‖u− uML
K ‖L2

ρ(Γ;H1
0 (D)) ≤ ε is

bounded by

CML
ε ≤ C


ε−

1
µ if 1 > µγ

ε−
1
µ |log ε|1+ 1

µ if 1 = µγ

ε−
1
µ
− γµ−1

µ if 1 < µγ.
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For the single-level method, in order to derive the same error estimate, i.e.,
‖u− uh,η‖L2

ρ(Γ;H1
0 (D)) ≤ ε, where the spatial discretization and the stochastic

error are of the same size, the computational cost is given by

Cε ≈ ε−
1
µ
−γ.

The savings when applying the multilevel method in comparison to the single-
level method can be obtained by dividing the multilevel costs by the single
level cost yielding

CML
ε

CSL
ε

≈ C


εγ if 1 > µγ

εγ|log ε|1+ 1
µ if 1 = µγ

ε
1
µ if 1 < µγ.

Since it is ε < e−1 < 1, it becomes clear that the multilevel method (as
being a kind of sparse grid method) saves costs compared to the single-level
method. Therefore, it is preferable to a single-level method if the solution,
of course, fulfils the necessary assumptions to derive the error estimates.

It shall be noted that the same analysis applies to the mixed form of the
diffusion problem with the assumptions on the solution and spaces adjusted
to this case: Instead of H1

0 (D) the space L2(D)×H(div;D), and instead of
the solution u of the diffusion problem the solution (p,u) of its mixed form
have to be considered in the estimates.

Remark 5.14 – Computational costs by quadrature:
Computational costs by the multilevel quadrature might be derived in a
similar manner by changing the assumptions on the functions in the estimates
of the stochastic approximation. If the estimates for the approximation are
replaced by

‖E[u]− E[uhk ]‖H1
0 (D) ≤ C1hk

‖E[uhk ]−Qηk [uhk−1
]‖H1

0 (D) ≤ C2η
−µ
k ζ(uhk)

ζ(uhk) ≤ C3h0

ζ(uhk − uhk−1
) ≤ C3hk,

where µ > 0, (cf. equations (5.7) and (5.8)) the same costs for the multilevel
quadrature can be derived as given in the previous remark for the multilevel
approximation because the upper bounds have the same form as for the
approximations treated in the previous remark. �
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6 Outlook and Conclusions

Some questions arise from this thesis which are worth noting.

Norms for D-bounded diffusion coefficient It has already been men-
tioned in Remark 5.13 that by a different definition of the norm the desired
error estimate of the multilevel method could be derived. This norm has to
be some energy norm incorporating the dependence of the constant on the
stochastic domain. As mentioned in Remark 3.22, results with some energy
norm have been derived in [1] on existence and uniqueness. It might be in-
teresting in the case of a D-bounded diffusion coefficient to carry out the
analysis given in this theses to derive results with constants independent of
the random source.

Order of convergence The results in this thesis on the multilevel method
only consider a linear convergence order. For higher convergence orders hαk
with α > 1 further conditions on the solution and hence on the data are
required.

Choice of the polynomial basis In the collocation method only a global
polynomial basis was considered. A local basis instead of a global one has
the advantage that a disturbance in the data at some point has only local
impact on the solution and hence the error. Lagrange polynomials become
unstable for a high number of interpolation points. This can be overcome by
using a local basis. Research in this direction has already been undertaken
(see [14, pp. 589 – 621] for an overview).

Conclusions The analysis and computation of stochastic PDEs is an active
field of research. In the literature, in general, the diffusion coefficient is either
assumed to be uniformly bounded or bounded by random variables. An
overview of analytical results for both cases is given in this thesis which should
facilitate the comparison of their assumptions on the data. As a possibility
to approximate the solution of the diffusion problem and its mixed form, the
collocation method – as one popular method for the numerical computation of
stochastic PDEs – was introduced. If the main interest consists in computing
the expected value of the solution, the connection to quadrature indicates
that it might be worth only applying a “simple” quadrature rule. The use
of sparse grids – for single-level methods as well as multilevel methods –
reduces the computational costs significantly. Research in this direction will
certainly be continued.
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A Derivation of the estimate in Lemma 4.8

The aim is to show that the estimate given in [22, p. 2331] is still valid.
The authors of [22] do not perform the proof of the estimate given in Lemma
4.8, but they mention on page 2330 that the proof with Gaussian abscissae
is almost the same as with Clenshaw-Curtis abscissae. The difference of the
estimates with Clenshaw-Curtis and Gaussian abscissae are due to the one-
dimensional estimates which have to be applied in the proof, and consists in
the constants and a factor i; compare the estimates given on pages 2323 and
2330. The crucial step, where the analyticity of the solution is important, is
for the Clenshaw-Curtis abscissae given in [22, p. 2323 – 2325, Lemma 3.4].
As this step is except for the estimates of the one-dimensional results for the
Gaussian abscissae identical, the reader should refer to [22, p. 2323 – 2325,
Lemma 3.4] to compare the steps.
Note that here, the focus is on showing that the estimate given in Lemma
3.4 in [22] are valid (except for the constant) when assuming the analyticity
in all directions simultaneously, while the rest of the proof for deriving the
final estimate stays the same and is therefore not given here. In [22] a final
estimate of the form∥∥(I −AX(`,N))[wh]

∥∥
L2
ρ(Γ;W (D))

≤
N∑
k=1

R(`, k) (A.1)

is sought, where R(`, k) = 1
2

∑
i∈X̃(`,k)(2C)ke−σ

∑k
n=1 2in−1

. This estimate will
be shown to hold with the revised assumptions on the solution. According
to page 2324 in [22] it holds∥∥(I −AX(`,N))[wh]

∥∥
L2
ρ(Γ;W (D))

=

∥∥∥∥ N∑
k=2

(
R̃(`, k)

N⊗
n=k+1

I
(n)
1

)
[wh] +

(
I

(1)
1 −AX(`,1)

) N⊗
n=2

I
(n)
1 [wh]

∥∥∥∥
L2
ρ(Γ;W (D))

,

(A.2)

where I
(n)
1 : Γn → Γn is the one-dimensional identity operator. The term

R̃(`, k) is defined as

R̃(`, k) =
∑

i∈X(`,k−1)

k−1⊗
n=1

∆in ⊗ (I
(k)
1 − U îk), (A.3)

with the index îk = 1 + `−
∑k−1

n=1(ik − 1) such that (i1, . . . , ik−1, îk) is in the
set X̃(`, k), for k ∈ {2, . . . , N}. For more details see [22, p. 2324].
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The term (A.2) will be estimated using the analyticity of the function wh

in all N directions. Recall that the solution wh is assumed to factorize, i.e.,
wh = wh,1 ⊗ · · · ⊗wh,N . In a slightly different context in [3, p. 277] results
have been deduced assuming a factorizing function like this.

Step 1: Triangle inequality on (A.2)

∥∥(I −AX(`,N)
)
[wh]

∥∥
L2
ρ(Γ;W (D))

≤
N∑
k=2

∥∥∥∥(R̃(`, k)
N⊗

n=k+1

I
(n)
1

)
[wh]

∥∥∥∥
L2
ρ(Γ;W (D))

+

∥∥∥∥((I(1)
1 −AX(`,1)

) N⊗
n=2

I
(n)
1

)
[wh]

∥∥∥∥
L2
ρ(Γ;W (D))

(A.4)

Step 2: Cross norm property

In [3, p. 278] the cross norm property for functions was applied. Here
the one for continuous linear operators will be used. Since the operators
R̃(`, k)

⊗N
n=k+1 I

(n)
1 and (I

(1)
1 − AX(`,1))

⊗N
n=2 I

(n)
1 are by definition of their

components continuous linear maps in (Γ→ W (D)), the property

(
R̃(`, k)

N⊗
n=k+1

I
(n)
1

)
[wh,1 ⊗ · · · ⊗wh,N ]

= R̃(`, k)[wh,1 ⊗ · · · ⊗wh,k]
N⊗

n=k+1

I
(n)
1 [wh,n] (A.5)

applies. In the same way it follows

(
(I

(1)
1 −AX(`,1))

N⊗
n=2

I
(n)
1

)
[wh,1 ⊗ · · · ⊗wh,N ]

= (I
(1)
1 −AX(`,1))[wh,1]

N⊗
n=2

I
(n)
1 [wh,n]. (A.6)

Step 3a: Estimation of (A.5) in its corresponding norm

Since L2
ρ(Γ;W (D)) is a Hilbert space if W (D) is a Hilbert space (the scalar
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product inducing the norm is given by 〈f, g〉 =
∫

Γ
〈f, g〉W (D)dy), it holds

∥∥∥∥R̃(`, k)[wh,1 ⊗ · · · ⊗wh,k]
N⊗

n=k+1

I
(n)
1 [wh,n]

∥∥∥∥
L2
ρ(Γ;W (D))

=
∥∥R̃(`, k)[wh,1 ⊗ · · · ⊗wh,k]

∥∥
L2
ρ1···ρk (Γ1×···×Γk;W (D))

·
N∏

n=k+1

∥∥I(n)
1 [wh,n]

∥∥
L2
ρn (Γn;W (D))

.

(A.7)

Inserting (A.3) in the first term of (A.7) it is obtained by again applying the
cross norm property∥∥R̃(`, k)[wh,1 ⊗ · · · ⊗wh,k]

∥∥
L2
ρ1···ρk (Γ1×···×Γk;W (D))

(A.3)

≤
∑

i∈X(`,k−1)

∥∥∥∥k−1⊗
n=1

∆in ⊗ (I
(k)
1 − U îk)[wh,1 ⊗ · · · ⊗wh,k]

∥∥∥∥
L2
ρ1···ρk (Γ1×···×Γk;W (D))

=
∑

i∈X(`,k−1)

∥∥∥∥k−1⊗
n=1

∆in [wh,1 ⊗ · · · ⊗wh,k−1]

∥∥∥∥
L2
ρ1···ρk−1

(Γ1×···×Γk−1;W (D))

·
∥∥(I

(k)
1 − U îk)[wh,k]‖L2

ρk
(Γk;W (D))

≤
∑

i∈X(`,k−1)

k−1∏
n=1

∥∥∆in [wh,n]
∥∥
L2
ρn

(Γn;W (D))
·
∥∥(I

(k)
1 − U îk)[wh,k]‖L2

ρk
(Γk;W (D))

≤ R(`, k) max
z1∈Σ(Γ1;τ1)

‖wh,1(z1)‖W (D) · · · max
zk∈Σ(Γk;τk)

‖wh,k(zk)‖W (D). (A.8)

The last step follows using the one-dimensional results given in [22, p. 2330]
in analogue to the proof in [22]. For the second term of (A.7) it holds

∥∥I(n)
1 [wh,n]

∥∥
L2
ρn

(Γn;W (D))
=

(∫
Γn

‖wh,n(yn)‖2
W (D)ρn(yn)dyn

)1/2

≤ max
zn∈Σ(Γn;τn)

‖wh,n(zn)‖W (D) ·

√∫
Γn

ρn(yn)dyn. (A.9)

Inserting (A.8) and (A.9) in (A.7) it follows with

max
z1∈Σ(Γ1;τ1)

‖wh,1(z1)‖W (D) · · · max
zN∈Σ(ΓN ;τN )

‖wh,N(zN)‖W (D) = max
z∈Σ(Γ;τ )

‖wh(z)‖W (D)
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∥∥∥∥R̃(`, k)[wh,1 ⊗ · · · ⊗wh,k]
N⊗

n=k+1

I
(n)
1 [wh,n]

∥∥∥∥
L2
ρ(Γ;W (D))

≤ R(`, k) max
z∈Σ(Γ;τ )

‖wh(z)‖W (D)

N∏
n=k+1

√∫
Γn

ρn(yn)dyn. (A.10)

Step 3b: Estimation of (A.6) in its corresponding norm
By the same proceeding the following estimate is valid:∥∥∥∥(I

(1)
1 −AX(`,1))[wh,1]

N⊗
n=2

I
(n)
1 [wh,n]

∥∥∥∥
L2
ρ(Γ;W (D))

≤ R(`, 1) max
z∈Σ(Γ;τ )

‖wh(z)‖W (D)

N∏
n=2

√∫
Γn

ρn(yn)dyn. (A.11)

Step 4: Final estimate
With the last two estimates (A.10) and (A.11) it follows for (A.2)∥∥(I −AX(`,N))[wh]

∥∥
L2
ρ(Γ;W (D))

≤
N∑
k=1

R(`, k) max
z∈Σ(Γ;τ )

‖wh(z)‖W (D)

N∏
n=k+1

√∫
Γn

ρn(yn)dyn.

Note that this is except for the factor
∏N

n=k+1

√∫
Γn
ρn(yn)dyn, which can

be incorporated in the constant C of R(`, k), see below, and the factor
maxz∈Σ(Γ;τ )‖wh(z)‖W (D) the estimate given in the lemma in [22], see (A.1).
There, the maximal value (but in one direction) was assumed to equal the
constant 1. Therefore, it does not appear in the estimate given there. Notice
as well that the analyticity is required in all directions simultaneously as the
term maxz∈Σ(Γ;τ )‖wh(z)‖W (D) indicates.

The constant C is given on p. 2330 in [22] by C = 8
e2σ−1

√∫
Γk
ρk(y)dy.

Multiplying R(`, k) with
∏N

n=k+1

√∫
Γn
ρn(yn)dyn gives another constant, C1,

with C1 = 8
e2σ−1

√∫
Γk
ρk(y)dy

(∏N
n=k+1

√∫
Γn
ρn(y)dy

)1/k

. This constant is

dependent on k. It gets independent of k by taking the maximal value of
k ∈ {1, . . . , N}:

C1 ≤
8

e2σ − 1
max

k=1,...,N

√∫
Γk

ρk(y)dy

( N∏
n=k+1

√∫
Γn

ρn(y)dy

)1/k

.
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Having obtained this estimate, the rest of the proof follows analogously to
[22]. Hence, the estimate given in Theorem 4.8 with the modified assumptions
holds.
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B Functional Analysis

Definition B.1 – Lebesgue spaces:
Let p ∈ [1,∞). The Lebesgue space

Lp(D) =

{
v : D → R measurable :

∫
D

|v(x)|p dx <∞
}

consists of Lebesgue integrable functions to the power p with finite norm

‖v‖Lp(D) =

(∫
D

|v(x)|p dx <∞
)1/p

.

For p =∞, the Lebesgue space is defined as

L∞(D) =

{
v : D → R measurable : ess sup

x∈D
|v(x)| <∞

}
equipped with norm

‖v‖L∞(D) = ess sup
x∈D

|v(x)|.

�

Lemma B.2 – Hölder and Cauchy-Schwarz inequality:
Let p, q > 1 with 1

p
+ 1

q
= 1. If f ∈ Lpρ(D) and g ∈ Lqρ(D), where ρ is a

density on D, then fg ∈ L1
ρ(D) and it holds

‖fg‖L1
ρ(D) ≤ ‖f‖Lpρ(D)‖g‖Lqρ(D).

For p = q = 2 the so called Cauchy-Schwarz inquality is given as a particular
case by

‖fg‖L1
ρ(D) ≤ ‖f‖L2

ρ(D)‖g‖L2
ρ(D).

�

Definition B.3 – Sobolev-spaces:
Let p ∈ [1,∞], k ∈ N. The Sobolev space W k,p(D) is the space

W k,p(D) = {v ∈ Lp(D) : Dαv ∈ Lp(D) with |α| ≤ k},

of functions in Lp(D) whose weak derivatives Dα of order α with |α| ≤ k
are elements of Lp(D).

α = (α1, . . . , αd), d = dimD
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is a multi-index with

|α| = α1 + · · ·+ αd.

The Sobolev space W k,p(D) is equipped with the norm

‖v‖Wk,p =
∑
|α|≤k

‖Dαv‖Lp(D).

�

Remark B.4:
A special case is the Sobolev space for p = 2 denoted by Hk(D) = W k,2(D).
This space is a Hilbert space with inner product

(u, v)Hk(D) =
∑
|α|≤k

∫
D

Dαu(x)Dαv(x) dx

and norm

‖v‖Hk(D) = (u, v)
1/2

Hk(D)
.

Further, the space H1
0 (D) is of particular interest here. It is defined by

H1
0 (D) = {v ∈ H1(D) : v|∂(D) = 0}

= {v ∈ L2(D) : ∇v ∈ L2(D), v|∂(D) = 0}.

The following norm (which is equivalent to the ”standard” norm on H1
0 (D))

will be considered throughout the thesis

‖v‖H1
0 (D) = ‖∇v‖L2(D).

�

The following definition is necessary to define Sobolev spaces with negative
exponents.

Definition B.5 – The space C∞
0 (D):

The space

C∞0 (D) = {v : v ∈ C∞, supp(v) ⊂ D}

consists of infinitely often differentiable functions whose support in D is com-
pact. �
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Definition B.6 – Sobolev spaces with negative exponents:
Let p ∈ (1,∞), q such that p−1 + q−1 = 1 and k ∈ N. The space

W−k,q(D) = {φ ∈ (C∞0 (D))∗ : ‖φ‖W−k,q(D)} <∞,

where the norm is defined as

‖φ‖W−k,q(D) = sup
v∈C∞0 (D)

〈φ, v〉
‖v‖Wk,p(D)

,

is a Sobolev space with negative exponent −k. �

Remark B.7:
It is W−k,q(D) = (W k,p(D))∗, i.e., W−k,q(D) can be identified with the dual
space of W k,p(D). �

Lemma B.8 – Lemma of Lax-Milgram:
Let V be a Hilbert space and B : V × V → R be a bounded and coercive
bilinear form, i.e., it holds

|B(u, v)| ≤M‖u‖V ‖v‖V ∀u, v ∈ V, M > 0

and

B(u, u) ≥ m‖u‖2
V ∀u ∈ V, m > 0,

where the constants m,M are independent of u and v.
Then, for each bounded functional f ∈ V ∗, where V ∗ is the dual space of V ,
there exists a unique u ∈ V such that B(u, v) = f(v) ∀v ∈ V . �

Lemma B.9 – Poincaré inequality:
Let D ⊂ Rd be a bounded domain with Lipschitz-boundary ∂D. Then it holds

‖v‖L2(D) ≤ CP‖∇v‖L2(D) ∀v ∈ H1
0 (D)

with a constant CP only depending on the diameter of the domain D. �
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Theorem B.10 – Cf. Theorem 1.1, p. 42 in [6] and p. 2059 in [5]:

Let A(·, ·) be a continuous linear form on V × V and B(·, ·) be a contin-
uous linear form on V ×Q, where V and Q are Hilbert spaces. Assume that
there exists k0 > 0 such that the inf-sup-condition

sup
v∈V

B(v, q)

‖v‖V
≥ k0‖q‖Q ∀q ∈ Q

holds. Further, let

A(v,v) ≥ α0‖v‖2
V ∀v ∈ V 0 = {v ∈ V : B(v, q) = 0 ∀q ∈ Q}.

Then, the problem

A(u,v) +B(v, p) = l(v) ∀v ∈ V
B(u, q) = h(q) ∀q ∈ Q,

where l : V → R and h : Q → R are bounded linear functionals, admits
a unique solution (p,u) ∈ Q × V . With l(v) =

∫
∂D
g(x)v(x) · n(x) dx and

h(q) =
∫
D
f(x)q(x) dx the following bounds hold

‖p‖Q ≤
(
‖A‖
α0

+ 1

)
1

k0

‖g‖V ∗ +
‖A‖
k2

0

(
‖A‖
α0

+ 1

)
‖f‖Q∗

‖u‖V ≤
1

α0

‖g‖V ∗ +

(
‖A‖
α0

+ 1

)
1

k0

‖f‖Q∗ .

�

97



C Analytic Functions

Some definitions and results on analytic functions are given.

Definition C.1 – Complex differentiability in several variables:
Let W ⊂ Cn be an open domain, w ∈ W . A function h : W → C is called
complex differentiable in the point w if there exists a map ∆ : W → Cn such
that

1. ∆ is continuous in w and

2. h(z) = h(w) + ∆(z) · (z − w) for z ∈ W .

For ∆ = (∆1, . . . ,∆n) it is

h(z1, . . . , zn) = h(w1, . . . , wn) +
n∑
ν=1

∆ν(z1, . . . , zn) · (zν − wν)

If h is complex differentiable, ∆(w) is called derivative of h in w, and the
numbers ∆ν(w) = eν · ∆(w) = ∂νh(w) = ∂h

∂zν
(w) are the uniquely defined

partial derivatives of h in w. �

Theorem C.2 – Theorem of Osgood:
Let W ∈ Cn be open. Then, for h : W → C the following statements are
equivalent

1. h is holomorphic

2. h is complex differentiable

3. h is weakly holomorphic.

(Therefore, often the notion of holomorphic/analytic and complex differen-
tiable are used synonymously.) �

Remark C.3:
A theorem with fewer requirements (i.e., h is partial differentiable only and
not weakly holomorphic) follows by the Theorem of Hartogs. �

Theorem C.4 – Theorem of Hartogs:
Let W ⊂ Cn be open, h : W → C. If z 7→ h(z1, . . . , zj−1, z, zj+1, . . . , zN)
is an analytic map in z for each fixed set of (z1, . . . , zj−1, z, zj+1, . . . , zN),
where z ∈ {z ∈ C : (z1, . . . , zj−1, z, zj+1, . . . , zN) ∈ D}, then the function h
is continuous on D. �
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D Notations

Notation Description Page
a diffusion coefficient 3
A approximation operator 52
Aηk approximation operator in dependence of the number

ηk of collocation points 76
Ai
N tensor product approximation operator 54
AX(`,N) Smolyak approximation operator on the set X(`,N) 56
C0
σ(Γ;W (D)) space of continuous functions from Γ to W (D)

with norm weighted by σ 17
d dimD 3
D spatial domain, x ∈ D, with boundary ∂D 3
f force term of the diffusion problem & its mixed form 4
f force term of the general elliptic problem 3
Γ parameter space, y ∈ Γ of dimension N 8
Γk parameter space in direction k only 8
H(div;D) space of L2(D) functions w with ∇ ·w ∈ L2(D) 24
L2
ρ(Γ;W (D)) L2-space of functions from Γ to W (D) weighted by ρ 10

(p,u) solution of the diffusion problem’s mixed form 4
Q quadrature formula 66
Qηk quadrature formula in dependence of the number ηk

of quadrature points 76
Qi
N tensor product of N quadrature formulae 60

QX(`,N) Smolyak quadrature formula on the set X(`,N) 61
ρ density function from Γ to R+ 8
σ weight function from Γ to R+ 16
Σ(Γ; τ ) region of the complex plane CN to which the

solution has an analytic continuation 71
ΣD subset of CN , defined by the diffusion coefficient

which is bounded in D 28
ΣU subset of CN , defined by the uniformly bounded

diffusion coefficient 19
u solution of the diffusion problem 4
w solution of the general elliptic problem 3
wh discretization of w in spatial variable 51
wh,η discretization of w in spatial and stochastic variable 52
W H1

0 ∩H2 42
W (D) banach space of functions from D to Rn 4
Ω probability space, ω ∈ Ω 3
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oder inhaltlich aus anderen Schriften entnommen sind, habe ich als solche
kenntlich gemacht.
Diese Arbeit wurde in gleicher oder ähnlicher Form noch bei keiner an-
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