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1 Introduction Marco Rösler

1 Introduction

1.1 Overview

Section 1 gives a short introduction to turbulent flows. Subsection 1.5 ex-
plains the difficulties in the simulation of turbulent flows.
Section 2 introduces large-eddy simulations (LES) and the Smagorinsky
model. The derivation and mathematical aspects of the model are discussed.
Section 3 presents numerical studies: Turbulent flow around a cube was
simulated using the Smagorinsky model. Various formulas for the lift and
drag coefficients of the cube are derived. The lift and drag coefficients from
the simulations are compared to other studies.
In Section 4, the major results and conclusions are summarized.
Additional information can be found in the Appendix.

1.2 Notation

If not otherwise specified, the Einstein notation is used. Angle brackets
mean a statistical average. ∂i is a shorthand for ∂

∂xi
and ∂t for ∂

∂t . See p. 38
for the nomenclature.

1.3 Turbulent flows

Turbulent flows can be encountered in nature and as a result of the work of
man, such as a river or the smoke from a chimney. The study of such flows
is important for aeronautics, meteorology and engineering, among others.
The Reynolds number

Re =
UL

ν
=
ρUL

µ
(1.1)

(with characteristic velocity U , characteristic length L, kinematic viscosity
ν, density ρ and dynamic viscosity µ) is a measure for the turbulence of a
flow. Reynolds’ pipe-flow experiment for example, a flow with a Reynolds
number above 4000, is turbulent [1, p. 6].

1.4 Navier-Stokes equations

In this bachelor thesis the Navier-Stokes equations (NSE) play a central role
as they describe the motion of fluids. For incompressible and homogeneous
fluids1, they are given as

∂tuj + ui∂iuj = 2ν∂iSij −
1

ρ
∂jP + fj in Ω× (0, T ], j = 1, 2, 3, (1.2)

∂iui = 0 in Ω× [0, T ], (1.3)

1A fluid is incompressible if the density remains constant and homogeneous if the
viscosity is constant. Both is always assumed in this thesis.
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where u(x, t) = (u1, u2, u3)(x, t) is the velocity field depending on the posi-
tion in space and time, ν the kinematic velocity,

Sij = Sij(u) :=
1

2
(∂iuj + ∂jui) (1.4)

the rate-of-strain tensor representing friction between particles [2, p. 12],
f = (f1, f2, f3) forces per unit mass acting on the fluid, ρ the density of
the fluid, P the pressure, (0, T ] and [0, T ] time intervals and Ω ⊆ R3 the
domain [1, pp. 14-17]. The momentum equation (Eq. (1.2)) is based on the
conservation of momentum and the continuity equation (Eq. (1.3)) on the
conservation of mass.

1.5 Problems simulating turbulent flows

The assumptions that led to the NSE are well-founded, but we are never-
theless working with a model. One difficulty is the coupling of the velocity
and pressure and another the non-linearity of the convective term ui∂iuj
[2, p. 15].
Numerically solving the NSE in the case of turbulent flows is difficult because
of the vastness of the information that is contained in the velocity field.
The equations can be solved with direct numerical simulations (DNS), but
the computational cost is a rapidly increasing (polynomial) function of the
Reynolds number [1, pp. 339 and 349]. For example, a DNS of a turbulent
flow at Re = 106 would require Re3 = 1018 uniformly distributed mesh
points in space-time [3]. Thus, those calculations with very high Reynolds
numbers are not even feasible in the near future, despite Moore’s law.
A method other than DNS of non-averaged values is to focus on the mean
values, a statistical approach. A large-eddy simulation (LES), which can
be implemented using the Smagorinsky model, is such an approach. It is
cheaper than DNS and seeks to alleviate the limitations of DNS by only ex-
plicitly computing the dynamics of the larger-scale motions and representing
the influence of smaller scales through simple models [1, p. 558].
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2 Fundamentals

2.1 Introduction to large-eddy simulations

In large-eddy simulations (LES) large-scale motions are represented directly
and smaller-scale motions are modeled. Pope [1, pp. 558f.] mentions four
conceptual steps:

1. The velocity u is split between a filtered component u and a residual
(subgrid-scale) component u′ = u − u. The former represents the
motion of large eddies.

2. In order to compute the evolution of the filtered velocity field, the
filtered Navier-Stokes equations are derived from the Navier-Stokes
equations (NSE). They have the same form as the unfiltered Navier-
Stokes equations except a residual stress tensor arising from the resid-
ual motions.

3. The residual stress tensor has to be modeled in order to achieve closure
of the equations.

4. The filtered equations are then solved numerically for the filtered ve-
locity.

The filtering operation is defined as

u(x, t) :=

∫
G∆(r,x) u(x− r, t) dr

with integration over the flow domain and the filter function G∆ (often
dependent on the filter width ∆) satisfying the normalization condition∫

G∆(r,x) dr = 1

[1, pp. 561f.]. If not otherwise defined, an overline on a variable denotes a
filtered value.
A filter is called uniform if G∆ does not depend on x, and isotropic if G∆

depends on r only through r = |r| [1, pp. 575f.].
It is easy to see that the filtering operation preserves constants and is linear.
Filtering also commutes with differentiating with respect to time and it
commutes with taking the mean [1, p. 562]. However, only certain filters
commute with differentiating with respect to xj [4, pp. 14f]. A common
isotropic filter is a Gaussian

G∆(r) =

(
6

π∆2

) 1
2

exp

(
−6|r|2

∆2

)

3
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[5, p. 996], [1, p. 563].
There are many different filter functions with different properties. We only
consider filters who commute with differentiating.
Filtering the NSE (Eqs. (1.2) and (1.3)) yields:

∂tuj + ui∂iuj = ∂i
(
2νSij − τ rij

)
− ∂j p̄+ f j in Ω× (0, T ], j = 1, 2, 3,

(2.1)

∂iui = 0 in Ω× [0, T ]. (2.2)

While the derivation of the filtered continuity equation is trivial, the deriva-
tion of the filtered momentum equation requires some work (see Section
5.A). The anisotropic residual-stress tensor τ rij (Eq. (5.2)) and the modified
filtered pressure p̄ (Eq. (5.3)) were introduced to achieve a resemblance to
the unfiltered momentum equation (Eq. (1.2)).

2.2 The Smagorinsky model

In order to close the equations and thereby determine the filtered velocity
field u(x, t) and the modified filtered pressure p̄(x, t), we need to model
the anisotropic residual-stress tensor τ rij(x, t). The Smagorinsky model2 is
the most simple model and has been proven to perform reasonably well
[1, pp. 587-603].
In this model, the anisotropic residual-stress tensor τ rij is related to the
filtered rate-of-strain

Sij = Sij(u) := Sij(u) =
1

2
(∂jui + ∂iuj) (2.3)

as

τ rij = −2νrSij (2.4)

[1, p. 587], [6, p. 48]. This is the mathematical realization of the Boussinesq
hypothesis, that turbulent fluctuations are dissipative in the mean [7, p. 74].
The mathematical structure is similar to that of molecular diffusion [4, p. 81].
Substituting Eq. (2.4) into Eq. (2.1), the filtered momentum equation can
be written as

∂tuj + ui∂iuj = 2 ∂i
(
(ν + νr)Sij

)
− ∂j p̄+ f j , j = 1, 2, 3.

The residual subgrid-scale eddy viscosity νr acts as an artificial viscosity
[6, p. 48] and represents the eddy viscosity of the residual motions. It is
modeled as

νr = `2S
(
2SlkSlk

) 1
2 = (CS∆)2

(
2SlkSlk

) 1
2 (2.5)

2Named after American meteorologist Joseph Smagorinsky. It is also known as the
Smagorinsky-Lilly model after his colleague Douglas Lilly.
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[1, p. 587], [4, p. 95]. Here, we have the Smagorinsky lengthscale `S = CS∆,
the Smagorinsky coefficient CS and the filter width ∆.
Finally, we can write the filtered momentum equation as

∂tuj + ui∂iuj = 2 ∂i

((
ν + `2S

(
2SlkSlk

) 1
2

)
Sij

)
− ∂j p̄+ f j , j = 1, 2, 3.

The model for the eddy viscosity (Eq. (2.5)) is called Smagorinsky model,
which is derived in Section 2.3.
The Smagorinsky model has some drawbacks. They are summarized as
follows in [6, p. 49]:

• “The Smagorinsky model constant CS is an a priori input. This single
constant is incapable to represent correctly various turbulent flows.

• The eddy viscosity does not vanish for a laminar flow.

• The backscatter of energy is prevented completely since

(CS∆)2
(
2SlkSlk

) 1
2 ≥ 0.

• The Smagorinsky model introduces, in general, too much diffusion into
the flow.3”

2.3 Derivation of the Smagorinsky model

According to [9, p. 279], the Smagorinsky model“can be derived in a number
of ways including heuristic methods, for example, by equating production
and dissipation of subgrid-scale turbulent kinetic energy, or via turbulence
theories.” A derivation that was adapted from [4] is shown here. Both
heuristic methods and turbulent theories are taken into consideration.
Kolmogorov [10] (cited in [7, pp. 44-46]) derived the universal form of the
energy spectrum function

E(k) = K〈ε〉
2
3k−

5
3 , K ≈ 1.4, (2.6)

where

ε(t) :=
ν

|Ω|

∫
Ω
|∇u|2(x, t) dx (2.7)

is the energy dissipation rate, K a constant and angle brackets mean a
statistical average. In short, this means that there is an energy cascade from
the large scales to the smaller scales. This has been famously summarized
in a poem by mathematician and meteorologist L. F. Richardson, as quoted
in [7, p. 46]:

3The formula and the variables were adjusted to reflect this thesis’ nomenclature. Note
that the source cites [8].
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Big whirls have little whirls what feed on their velocity,
little whirls have smaller whirls, and so on to viscosity.

Dimensional analysis shows that

∂iτ
r
ij

[
m

s2

]
⇔ τ rij = −2νrSij

[
m2

s2

]
⇔ νr

[
m2

s

]
.

Therefore, it is assumed that the residual subgrid-scale eddy viscosity νr is
proportional to ε̃

1
3 ∆

4
3 , with ε̃

[
m2/s3

]
the kinetic energy transfer rate [4,

p. 85]. Using Eq. (2.6) and the so-called two-fluid model (TFM) or eddy-
damped quasinormal Markovian (EDQNM) model, we get:

〈νr〉 =
A

π4/3K
〈ε̃〉

1
3 ∆

4
3 , (2.8)

where A is a constant, which is is 0.438 according to the TFM and 0.441
according to the EDQNM theory [11] (as cited in [4, p. 85]).
Furthermore, in the isotropic homogeneous case,

〈2SlkSlk〉 =

∫ π
∆

0
2k2E(k) dk (2.9)

is true [4, p. 85]. Substituting Eq. (2.6) into Eq. (2.9) yields

〈2SlkSlk〉 =

∫ π
∆

0
2k2K〈ε〉

2
3k−

5
3 dk

= 2K〈ε〉
2
3

∫ π
∆

0
k

1
3 dk

=
3

2
K〈ε〉

2
3π

4
3 ∆−

4
3 .

This is equivalent to(
3K

2

) 3
2

〈ε〉π2∆−2 = 〈2SlkSlk〉
3
2

⇐⇒ 〈ε〉 =
1

π2

(
3K

2

)− 3
2

∆2〈2SlkSlk〉
3
2 . (2.10)

The local equilibrium hypothesis states that the flow is in constant spectral
equilibrium. As a result, energy does not accumulate at any frequency and
the shape of the energy spectrum remains invariant in time. As a result,
the production, dissipation and energy flux through the cutoff are equal [4,
p. 86]:

〈εI〉 = 〈ε̃〉 = 〈ε〉. (2.11)
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Using the last equation, we can insert Eq. (2.10) into Eq. (2.8) and get:

〈νr〉 =
A

π4/3K
〈ε̃〉

1
3 ∆

4
3

=
A

π4/3K
〈ε〉

1
3 ∆

4
3

=
A

π4/3K

(
1

π2

(
3K

2

)− 3
2

∆2〈2SlkSlk〉
3
2

) 1
3

∆
4
3

=
A

π2K

(
3K

2

)− 1
2

∆2〈2SlkSlk〉
1
2 .

Defining the Smagorinsky coefficient as

CS :=

√
A

π
√
K

(
3K

2

)− 1
4

≈ 0.148, (2.12)

we can write

〈νr〉 = (CS∆)2〈2SlkSlk〉
1
2 . (2.13)

The Smagorinsky model is then expressed as

νr(x, t) = (CS∆)2
(
2Sij(x, t)Sij(x, t)

) 1
2 . (2.14)

Sagaut admits that there is no particular justification for this except that it
is true on average as seen in Eq. (2.13) [4, p. 95]. The model is vindicated
by its performance; at least Pope calls it satisfactory, but points out poor
performances in certain situations [1, pp. 601ff.].

The Smagorinsky coefficient
The Smagorinsky coefficient CS was evaluated in Eq. (2.12) but is adjusted
to improve results. Through different analyses, the values 0.17 [1, p. 588],
[7, p. 76], 0.18 [4, p. 86] and 0.15 [1, p. 590] were obtained as well. The
constant is typically between 0.1 and 0.2 [4, p. 95]. It might even be better
if CS is a function of space and time instead of a constant. See Section 2.4
for more details.

2.4 The dynamic Smagorinsky model

It was proposed by Germano et al. [12] (as cited in [6, p. 49]) to view the
Smagorinsky coefficient as a function of space and time (c.f. paragraph on
p. 7). Lilly [13] developed a form of this idea that is presented here.

7
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Using a so-called test filter ∆̂ > ∆, the filtered NSE (Eqs. (2.1) and (2.2))
are filtered again:

∂tûj + ∂i(ûiuj) = ∂i

(
2νŜij − τ̂ rij

)
− ∂ĵ̄p+ f̂ j , j = 1, 2, 3, in Ω× (0, T ],

∂j ûj = 0, in Ω× [0, T ],

with hats denoting the second filtering (see also Eq. (5.5)).
Just as the residual-stress tensor τRij is defined as

τRij := uiuj − uiuj

(see Eq. (5.1)), the subtest-scale stress tensor Kij is defined as

Kij = ûiuj − ûiûj , (2.15)

such that

Lij := Kij − τ̂Rij = ûiuj − ûiûj . (2.16)

Lij is called the Germano identity [14]. We denote the Smagorinsky parame-

ter with C̃S (instead of CS). It is written in the ansatz without an exponent,
unlike the Smagorinsky coefficient in the Smagorinsky model (Eq. (2.5)).
The ansatz is (c.f. Eqs. (2.4) and (2.5)):

τ rij := τRij −
1

3
τRkkδij = −2C̃S(x, t)∆2

(
2SlkSlk

) 1
2 Sij ,

Kij −
1

3
Kkkδij = −2C̃S(x, t)∆̂2

(
2ŜlkŜlk

) 1
2
Ŝij .

In order to obtain an equation for C̃S(x, t), it is necessary to approximate

τ̂ rij ≈ −2C̃S(x, t)∆2
̂[(

2SlkSlk
) 1

2 Sij

]
. (2.17)

We have equality, if the Smagorinsky parameter is independent of x [6, p. 50].
For i, j ∈ {1, 2, 3}, the system

Lij −
1

3
Lkkδij = Kij −

1

3
Kkkδij − τ̂ rij

≈ −2C̃S

(
∆̂2
(

2ŜlkŜlk

) 1
2
Ŝij −∆2

̂(
2SlkSlk

) 1
2 Sij

)
= −2C̃SMij

with

Mij := ∆̂2
(

2ŜlkŜlk

) 1
2
Ŝij −∆2

̂(
2SlkSlk

) 1
2 Sij

8
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is an over-determined system which C̃S cannot satisfy exactly [13, p. 633].
Lilly therefore proposes a least-square method minimizing the square of the
error

Q =

(
Lij −

1

3
Lkkδij + 2C̃SMij

)2

,

meaning the sum over all i, j. Since

∂Q

∂C̃S
= 2

(
Lij −

1

3
Lkkδij + 2C̃SMij

)
2Mij

= 4LijMij −
4

3
LkkδijMij + 8C̃SMijMij

= 4LijMij −
4

3
LkkMll + 8C̃SMijMij

= 4LijMij + 8C̃SMijMij ,

∂2Q

∂C̃2
S

= 8MijMij > 0,

the Smagorinsky parameter minimizes the error if we set

C̃S(x, t) = − LijMij

2MijMij
(x, t) (2.18)

[14, p. 1286]. (Note that Mll = 0 because Ŝll = 0 and Sll = 0, see Eq. (2.2).)
Now the twice filtered NSE can be be rewritten analogous to Section 5.A
and the model can be applied.
Since the Smagorinsky parameter is not squared like the Smagorinsky coef-
ficient in the Smagorinsky model (Eq. (2.14)), this remark from [6, p. 51] is
especially interesting:

The dynamic subgrid scale model can predict negative values
for C̃S(x, t). This is an advantage since the model allows thus
backscatter of energy, in contrast to the Smagorinsky model.
However, numerical tests show that C̃S(x, t) can vary strongly
in space and may contain negative values with a very large ampli-
tude. These two properties may strongly destabilize the numer-
ical solution process. In practice, the nominator and denomina-
tor of (2.18) are averaged, often in time, to compute a smoother
function C̃S(x, t), e.g., see Lesieur [15, p. 405], Breuer [14] or
Sagaut [4, Sect. 4.3.3].4

4The literature references, equation reference and the variable name in the quote were
adjusted to reflect this thesis’ reference list and nomenclature.
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2.5 Mathematical formulation of the Smagorinsky model

For a mathematical analysis of the Smagorinsky model, we need the problem
to be well defined. The vector spaces are defined in the Appendix (see
Section 5.B).

2.5.1 Strong and weak formulation of the problem

Consider the NSE with the conditions

∂tu + (u · ∇)u = ν∇ · ∇u− 1

ρ
∇P + f in Ω× (0, T ],

∇ · u = 0 in Ω× [0, T ],

u(x, 0) = u0(x) in Ω,

u = 0 on Γ× [0, T ],∫
Ω
P dx = 0 in (0, T ].

(2.19)

with Γ = ∂Ω. Note that

2∂iSij = ∂i(∂iuj + ∂jui) = ∂i∂iuj + ∂i∂jui

= ∂i∂iuj + ∂j(∂iui) = ∂i∂iuj = ∇ · ∇u.

The first and second equations are the momentum equation (Eq. (1.2)) and
continuity equation (Eq. (1.3)) from above. The initial flow field u0(x) is
also divergence-free, i.e. ∇ · u0 = 0 in Ω. The fourth equation is the no slip
boundary condition. It is based on the assumption that the fluid neither
penetrates nor slips along the wall. Without the last equation, the pressure
P would only be determined up to a constant (cf. [2, p. 17]).
Filtering Eqs. (2.19) and using a similar condition for the modified filtered
pressure, we get

∂tu + (u · ∇)u = ∇ · (ν + νr)∇u−∇p̄+ f in Ω× (0, T ],

∇ · u = 0 in Ω× [0, T ],

u(x, 0) = u0(x) in Ω,

u = 0 on Γ× [0, T ],∫
Ω
p̄ dx = 0 in (0, T ].

(2.20)

By multiplying the first equation with v ∈ V and integrating over time and
space, we achieve a weak formulation:
Let f ∈ L2(0, T ;L2(Ω)). Find u ∈ V that satisfies u(0,x) = u0 ∈ W 1,3

0,div(Ω)
and ∫ T

0
(∂tu + (u · ∇)u,v) + ((ν + νr)∇u,∇v) dt =

∫ T

0
(f ,v) dt (2.21)

10
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for all v ∈ V , with (·, ·) denoting the L2(Ω) scalar product. Let n be the
outward unit surface normal to Γ = ∂Ω. Note that by using integration by
parts, we can derive

(∇ ·w,v) =

∫
Ω

(∇ ·w) · v dx =

∫
Γ
(w · n) · v ds−

∫
Ω

w · (∇v) dx

= −
∫

Ω
w · (∇v) dx = −(w,∇v),

because v = 0 on Γ. In this case, we used w = (ν + νr)∇u. The pressure
term vanishes because

(∇p̄,v) =

∫
Ω
∇p̄ · v dx =

∫
Γ
p̄ (v · n) ds−

∫
Ω
p̄ (∇ · v) dx = 0,

as ∇ · v = 0.
Another similar variation of this formulation is:
Find (w, q) : [0, T ]→ X ×Q satisfying w(x, 0) = u0(x) and

(∂tw,v) + a(w,w,v) + b(w,w,v) + (λ,∇ ·w)− (q,∇ · v) = (f ,v) (2.22)

for all (v, λ) ∈ X ×Q with

a(u,w,v) := α(∇ ·w,∇ · v)

+
((

2Re−1 + C̃S∆2
(
Slk(u)Slk(u)

) 1
2

)
S(w), S(v)

)
b(u,w,v) :=

1

2
(u · ∇w,v)− 1

2
(u · ∇v,w)

(with the Smagorinsky parameter C̃S =
√

2C2
S) [5, p. 1002].

2.6 Existence and uniqueness of solutions

It has been shown by Ladyzhenskaya [16], [17] (see also [6, pp. 74ff.]) that
the Smagorinsky model has a unique and stable solution under certain
conditions. She considers the Smagorinsky model with no slip boundary
conditions (Eqs. (2.20)) and derives the weak formulation of the problem
(Eqs. (2.21)).
Ladyzhenskaya then proves the solvability of this equation with the Galerkin
method: A sequence of functions in V is constructed that solves finite-
dimensional approximations of the equation. If f ∈ L2

(
0, T ;L2(Ω)

)
and

u0 ∈W 1,3
0,div(Ω), a subsequence converges to a solution u ∈ V of the equation

that is also unique and stable.
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2.7 Numerical analysis of the Smagorinsky model

John and Layton [5] provide an analytic approach to error estimates in
LES. They consider the NSE with initial and no-slip boundary conditions
(Eqs. (2.19)). (To be precise, they use slip with linear friction, but the for-
mulas can be interpreted to mean no-slip condition as well.) After applying
the filter, the resulting system is (2.20). For simplicity, the inflow velocity
is set to zero.
The following problem is discussed:
Find solutions (w, q) ∈ X×Q (see Eqs. (5.10) and (5.11)) that approximate
(u, p̄). The properties of (u, p̄) (e.g. smoothness) do not necessarily have to
apply to the approximations (w, q) [5, p. 998].
The solution is approximated with a finite element method. For the rep-
resentative mesh width h, the respective solution for a variational problem
(Eq. (2.22)) is (wh, qh) ∈ Xh × Qh with appropriate finite element spaces
Xh ⊂ X and Qh × Q. Du and Gunzburger have proven that the discrete
solutions converge to the solution of the continuous problem under minimal
regularity assumption on the solution [18] (as cited in [6, p. 126]).
In order for the Smagorinsky term to be well defined, the natural regularity
of the weak solution of the Smagorinsky model is

∇w ∈ L3(0, T ;L3(Ω)) (2.23)

[6, p. 136]. As mentioned in Section 2.6, the solution is unique.
John and Layton’s [5] (see also [6, pp. 126-158]) error estimate analysis
does not work if the only assumption is (2.23). However, they do find a
ν-independent error estimate, if the residual subgrid-scale eddy viscosity
νr(∆,w) has another term a0(∆) > 0 [6, p. 136].
Alternatively, for a0(∆) = 0, the assumption

∇w ∈ L2(0, T ;L∞(Ω))

is needed for such an error estimate [6, pp. 149-152].
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3 Numerical Studies

3.1 The benchmark problem: surface mounted cube

We consider the benchmark problem of flow of an incompressible Newtonian
fluid around a surface mounted cube, examined by Hoffmann and Johnson
[3, pp. 12ff.] and others [19], [20]. Hoffman and Johnson [3, p. 12] describe
the channel and cube as follows:

The cube side length is H = 0.1, and the cube is centrally
mounted on the floor of a rectangular channel of length 15H,
height 2H, and width 7H, at a distance of 3.5H from the inlet.

Figures 1 to 3 illustrate this. These figures also show the pressure building
up in front of the cube.

Figure 1: View from below the channel.

Figure 2: View of the side of the channel.
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Figure 3: View from an angle.

We choose the characteristic velocity, characteristic length and kinetic vis-
cosity

U = 1
m

s
, L = H = 0.1 m, ν = 2.5 · 10−6 m2

s
,

such that the Reynolds number equals

Re =
UL

ν
=

1 m
s · 0.1 m

2.5 · 10−6 m2

s

= 40 000.

Hoffman [19, pp. 191f.] describes further conditions:

The inlet velocity profile is interpolated from experiments, and
we use no slip boundary conditions on the cube and the verti-
cal channel boundaries, slip boundary conditions on the lateral
channel boundaries, and a transparent outflow boundary condi-
tion.

The mean inlet velocity is 1, the same as the characteristic velocity U . See
Section 5.C for more information.
We are interested in the drag and lift coefficients corresponding to the drag
and lift force on the cube, which is discussed in Section 3.2.

3.1.1 Implementation of the Smagorinsky model

Using finite elements, the Smagorinsky model was implemented in its weak
form (Eq. (2.22)) with the code MooNMD (see also [21]). The grid was
uniformly refined 3 or 4 times; thus we call them level 3 or level 4 simulations.
The degrees of freedom of velocity and pressure for both simulation types
are shown in Table 1.
The turbulent viscosity constant

νturb = C̃S∆2 (3.1)

14
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velocity pressure

level 3 134 739 20 224

level 4 1 023 651 161 792

Table 1: The degrees of freedom of velocity and pressure.

was chosen between 0.005 and 0.1. The filter width ∆ is the shortest edge.
Five seconds of the flow was simulated, with time step lengths 0.005, 0.01
or 0.02.
Figures 1 to 5 show how the pressure is distributed. In this particular
simulation, the turbulent viscosity constant was νturb = 0.055, the time step
length was 0.005 and the grid was refined 4 times. The last time frame was
chosen. As was to be expected, pressure builds up in front of the cube. This
pressure plays an important part in the drag and lift forces on the cube.

Figure 4: View of the front of the channel.

Figure 5: View of the back of the channel.
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3.2 Lift and drag

There are two ways to calculate the drag and lift coefficients: using area
integrals and using volume integrals. In the literature, the drag and lift
coefficients are defined as area integrals. Therefore, the first method is
presented in Section 3.2.3. The second method was used in the simulations
we present here, as it is known to perform better numerically. It is presented
in Section 3.2.4.

3.2.1 Lift and drag forces

The drag and lift force on a body such as the cube is given by

Fw = −
∫

Γcube

Sijnjwi ds = −
∫

Γcube

(2µSij − Pδij)njwi ds

= −
∫

Γcube

(µ(∂iuj + ∂jui)− Pδij)njwi ds [N ]

with the stress tensor

Sij = 2µSij − Pδij (3.2)

and n = (n1, n2, n3)T the unit vector which points outward with respect to
the flow domain Ω. The unit vector w points in the direction of the flow for
the drag force and perpendicular to it for the lift force [3, Eq. (6)].
The dimensionless version is

Fw = −L2

∫
Γcube

(
µU

L
(∂ivj + ∂jvi)− ρU2p̂δij

)
njwi ds

= −ρU2L2

∫
Γcube

(
µ

ρUL
(∂ivj + ∂jvi)− p̂δij

)
njwi ds

= −ρU2L2

∫
Γcube

(
Re−1(∂ivj + ∂jvi)− p̂δij

)
njwi ds (3.3)

with the characteristic length L, characteristic velocity U , dimensionless
velocity vi = ui/U and dimensionless pressure

p̂ =
P

ρU2
. (3.4)

In the first line, the factor L2 before the integral comes from the transform of
the integral and the factor 1/L in the integral comes from the transformation
of the spatial derivatives.
With w = (1, 0, 0)T or w = (0, 1, 0)T respectively, we now have:

Fdrag = −ρU2L2

∫
Γcube

(
Re−1(∂1vj + ∂jv1)− p̂δ1j

)
nj ds, (3.5)

Flift = −ρU2L2

∫
Γcube

(
Re−1(∂2vj + ∂jv2)− p̂δ2j

)
nj ds. (3.6)
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3.2.2 Simplifying the equations for a wall-mounted cube

Since u = 0 on the cube surface Γcube, tangential derivatives vanish. We
will split the integral into 5 parts, one for each side.
Let Γcube = Γ1 ∪ Γ2 ∪ Γ3 with intersections of different Γi having zero area.
Let Γ1 be the two sides of the cube where the unit normal vector only takes
the values n = (±1, 0, 0)T (front and back side), Γ2 the two sides where
the unit normal vector only takes the values n = (0,±1, 0)T (right and left
side) and Γ3 the top side, i.e. the unit normal vector only takes the value
n = (0, 0,−1)T .
To use a simple notation, we write∫

Γ1

±2Re−1∂1v1 ∓ p̂ ds,

when we mean
∫

Γ1
2Re−1∂1v1 − p̂ ds evaluated on the back side of the cube

plus
∫

Γ1
−2Re−1∂1v1 + p̂ ds evaluated on the front side.

Then the forces are

Fdrag = −ρU2L2

(∫
Γ1

±2Re−1∂1v1 ∓ p̂ ds+

∫
Γ2

±Re−1(∂1v2 + ∂2v1) ds

−
∫

Γ3

Re−1(∂1v3 + ∂3v1) ds

)
,

Flift = −ρU2L2

(∫
Γ1

±Re−1(∂2v1 + ∂1v2) ds+

∫
Γ2

±2Re−1∂2v2 ∓ p̂ ds

−
∫

Γ3

Re−1(∂2v3 + ∂3v2) ds

)
.

Taking into account that the tangential derivatives vanish:

∇vi · (1, 0, 0)T = ∂1vi = 0 for Γ2,Γ3, i = 1, 2, 3,

∇vi · (0, 1, 0)T = ∂2vi = 0 for Γ1,Γ3, i = 1, 2, 3,

∇vi · (0, 0, 1)T = ∂3vi = 0 for Γ1,Γ2, i = 1, 2, 3,

the equations simplify to

Fdrag = −ρU2L2

(∫
Γ1

±2Re−1∂1v1 ∓ p̂ ds+

∫
Γ2

±Re−1∂2v1 ds

−
∫

Γ3

Re−1∂3v1 ds

)
,

Flift = −ρU2L2

(∫
Γ1

±Re−1∂1v2 ds+

∫
Γ2

±2Re−1∂2v2 ∓ p̂ ds

−
∫

Γ3

Re−1∂3v2 ds

)
.
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3.2.3 Lift and drag coefficients

The lift and drag equations are

cdrag =
2Fdrag

ρAV 2
, clift =

2Flift

ρAV 2
(3.7)

with V being the speed of the fluid and A being the reference area. Here
the mean inflow is V = U = 1 m

s and the reference area is one side of the
cube A = H2 = 0.001 m2.
The factor in the equations for the drag and lift force is −ρU2L2, the factor
for the lift and drag coefficients is therefore

−2ρU2L2

ρAV 2
= −2U2L2

AV 2
= −2U2H2

H2U2
= −2. (3.8)

Finally, the drag and lift coefficients are

cdrag = −2

∫
Γcube

(
Re−1(∂1vj + ∂jv1)− p̂δ1j

)
nj ds

= −2

(∫
Γ1

±2Re−1∂1v1 ∓ p̂ ds+

∫
Γ2

±Re−1∂2v1 ds

−
∫

Γ3

Re−1∂3v1 ds

)
,

clift = −2

∫
Γcube

(
Re−1(∂2vj + ∂jv2)− p̂δ2j

)
nj ds

= −2

(∫
Γ1

±Re−1∂1v2 ds+

∫
Γ2

±2Re−1∂2v2 ∓ p̂ ds

−
∫

Γ3

Re−1∂3v2 ds

)
.

3.2.4 Alternative calculation for lift and drag

Alternatively, the lift and drag force (and lift and drag coefficients) can be
computed using volume integrals. First, we rewrite the dimensionless version
of the drag and lift force (Eq. (3.3)) as

Fw = −ρU2L2

∫
Γcube

((
2Re−1S(v)− p̂I

)
n
)
·w ds. (3.9)

We will use the momentum equation to find another expression for the in-
tegral. If the cube was not attached to the rest of the boundary, that
is Γcube ∩ Γ\Γcube = ∅, one could extent w to a function in Ω such that
w ∈ H1(Ω) and w vanishes at Γ\Γcube. In practice, this is done despite
the body (such as the cube) being attached to the rest of the boundary [22,
p. 848], [23, pp. 6007-6009].
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We take the dimensionless version of the momentum equation (Eq. (1.2)):

∂tv + (v · ∇)v = 2Re−1∇ · S(v)−∇p̂+ f .

Here the force f is dimensionless with abuse of notation and we again assume
f ∈ L2(0, T ;L2(Ω)). Testing the equation with w (analogous to Section
2.5.1) gives the weak form

(∂tv,w) + ((v · ∇)v,w) = (2Re−1∇ · S(v),w)− (∇p̂,w) + (f ,w).

Using integration by parts, we get

(∂tv,w) + ((v · ∇)v,w) =

∫
Γ

(
2Re−1S(v) n

)
·w ds− (2Re−1S(v),∇w)

−
∫

Γ
p̂n ·w ds+ (p̂,∇ ·w) + (f ,w).

Since w vanishes on Γ\Γcube, this is equivalent to

(∂tv,w) + ((v · ∇)v,w) + (2Re−1S(v),∇w)− (p̂,∇ ·w)

−(f ,w) =

∫
Γcube

((
2Re−1S(v)− p̂I

)
n
)
·w ds.

We can insert the last equation into Eq. (3.9) such that

Fw = −ρU2L2
[
(∂tv,w) + ((v · ∇)v,w) +

(
2Re−1S(v),∇w

)
− (p̂,∇ ·w)− (f ,w)

]
.

(3.10)

We want to show

(2Re−1S(v),∇w) = (2Re−1S(v), S(w)).

First, we show that

(2Re−1S(v),∇w) =

∫
Ω

2Re−1Sij(v) ∂iwj dx

=

∫
Ω

2Re−1Sji(v) ∂jwi dx

=

∫
Ω

2Re−1Sij(v) ∂jwi dx

=
(
2Re−1S(u), (∇w)T

)
.

The rate-of-strain tensor S(v) is symmetric, which can be easily seen from
the definition. Finally,

(2Re−1S(v),∇w) =

(
2Re−1S(v),

1

2
(∇w +∇w)

)
=

(
2Re−1S(v),

1

2
(∇w +

(
∇w)T

))
= (2Re−1S(v), S(w)).
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Now we can rewrite Eq. (3.10):

Fw = −ρU2L2
[
(∂tv,w) + ((v · ∇)v,w) +

(
2Re−1S(v), S(w)

)
− (p̂,∇ ·w)− (f ,w)

]
.

Choosing the appropriate w as in Section 3.2.1, i.e. wdrag = (1, 0, 0)T on
Γcube for drag and wlift = (0, 1, 0)T on Γcube for lift, we get the drag and lift
forces

Fdrag = −ρU2L2
[
(∂tv,wdrag) + ((v · ∇)v,wdrag) +

(
2Re−1S(v), S(wdrag)

)
− (p̂,∇ ·wdrag)− (f ,wdrag)

]
,

Flift = −ρU2L2
[
(∂tv,wdrag) + ((v · ∇)v,wdrag) +

(
2Re−1S(v), S(wdrag)

)
− (p̂,∇ ·wdrag)− (f ,wdrag)

]
.

With Eqs. (3.7) and (3.8), the drag and lift coefficients can be computed
with

cdrag = −2
[
(∂tv,wdrag) + ((v · ∇)v,wdrag) +

(
2Re−1S(v), S(wdrag)

)
− (p̂,∇ ·wdrag)− (f ,wdrag)

]
, (3.11)

clift = −2
[
(∂tv,wdrag) + ((v · ∇)v,wdrag) +

(
2Re−1S(v), S(wdrag)

)
− (p̂,∇ ·wdrag)− (f ,wdrag)

]
. (3.12)

3.3 Results of numerical simulations

We evaluated the drag and lift coefficients using Eqs. (3.11) and (3.12) and
the implementation mentioned above (see Section 3.1.1). The following fig-
ures always include the mean value (blue line) and the standard deviation
of the data points (blue shade).
The graphs of the lift and drag coefficients (Figures 6 to 12) oscillate, as was
to be expected in a turbulent flow. The graph oscillates around the mean
value in Figures 6 to 9. However, if the turbulent viscosity constant νturb is
below 0.05, the graph shows a different oscillatory pattern that is different
for different time step lengths (Figures 10 to 12).
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Figure 6: Drag coefficient for a level 3 simulation with turbulent viscosity constant
νturb = 0.055 and time step length 0.005.

Figure 7: Drag coefficient for a level 4 simulation with turbulent viscosity constant
νturb = 0.055 and time step length 0.005.
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Figure 8: Lift coefficient for a level 3 simulation with turbulent viscosity constant
νturb = 0.055 and time step length 0.005.

Figure 9: Lift coefficient for a level 4 simulation with turbulent viscosity constant
νturb = 0.055 and time step length 0.005.
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Figure 10: Lift coefficient for a level 4 simulation with turbulent viscosity constant
νturb = 0.005 and time step length 0.005.

Figure 11: Lift coefficient for a level 4 simulation with turbulent viscosity constant
νturb = 0.005 and time step length 0.01.
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Figure 12: Lift coefficient for a level 4 simulation with turbulent viscosity constant
νturb = 0.005 and time step length 0.02.
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3.3.1 Mean drag coefficient

We calculate the arithmetic mean of the drag coefficients in the time interval
I = [2.5, 5], called mean drag coefficient. The mean lift coefficient is not of
interest, as it is always about 0 because of symmetry.
The resulting mean drag values of the MooNMD simulations are shown in
Tables 2 and 3, which are visualized in Figures 13 and 14, respectively.

Level 3
time step length

turbulent

viscosity

constant

0.005 0.010 0.020

0.005 1.16178 1.16146 1.16280

0.010 1.26270 1.26244 1.26378

0.015 1.35410 1.35381 1.35505

0.020 1.44258 1.44225 1.44349

0.025 1.51808 1.51776 1.51897

0.030 1.58505 1.58462 1.58580

0.035 1.64603 1.64557 1.64666

0.040 1.70253 1.70212 1.70313

0.045 1.75556 1.75537 1.75615

0.050 1.80584 1.80554 1.80634

0.055 1.85395 1.85360 1.85433

0.060 1.90029 1.89998 1.90072

0.065 1.94527 1.94490 1.94573

0.070 1.98923 1.98905 1.98955

0.075 2.03230 2.03222 2.03257

0.080 2.07460 2.07440 2.07493

0.085 2.11644 2.11629 2.11672

0.090 2.15782 2.15746 2.15803

0.095 2.19872 2.19843 2.19896

0.100 2.23937 2.23916 2.23945

Table 2: Mean drag values for level 3 simulations. The data is visualized in Fig. 13.

In level 3 simulations, the differences between mean drag values correspond-
ing to the same turbulent viscosity constant νturb but different time step
lengths are less than 0.0015. That is why in Fig. 13, only one graph was
drawn. The highest difference between mean drag values in level 4 simu-
lations (with the same turbulent viscosity constant but different time step
lengths) is 0.01398 (corresponding to νturb = 0.01). However, for choices
of the turbulent viscosity constant between 0.03 and 0.1, the difference is
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Figure 13: Mean drag values for level 3 simulations. The values for the other time
step lengths (0.01 and 0.02) would overlap and were therefore not drawn.

smaller than 0.0015 (see Fig. 14). In essence, the choice of the time step
length does not seem important for mean drag values if the turbulent vis-
cosity constant is equal or higher than 0.03.
Figures 15 and 16 show a comparison between level 3 and level 4 simulations.
The functions f1, g1, f2 and g2 were fitted to the respective curves using the
nonlinear least-squares Marquardt-Levenberg algorithm. We see an obvious
correlation between an increasing turbulent viscosity constant and the mean
drag. The level 4 simulations are not that sensitive to the turbulent viscosity
constant since the ascend of the lines g1 and g2 is smaller than the ascend
of the lines f1 and f2, respectively.
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Level 4
time step length

turbulent

viscosity

constant

0.005 0.010 0.020

0.005 1.44942 1.46193 1.46076

0.010 1.44620 1.44689 1.46018

0.015 1.43123 1.42604 1.43187

0.020 1.41012 1.40847 1.40629

0.025 1.39204 1.39130 1.38867

0.030 1.38287 1.38245 1.38140

0.035 1.37536 1.37482 1.37564

0.040 1.37752 1.37699 1.37716

0.045 1.38623 1.38580 1.38593

0.050 1.39810 1.39766 1.39774

0.055 1.41147 1.41099 1.41101

0.060 1.42584 1.42535 1.42539

0.065 1.44092 1.44043 1.44042

0.070 1.45640 1.45592 1.45587

0.075 1.47209 1.47160 1.47156

0.080 1.48783 1.48734 1.48729

0.085 1.50356 1.50307 1.50301

0.090 1.51921 1.51873 1.51864

0.095 1.53476 1.53427 1.53420

0.100 1.55018 1.54968 1.54874

Table 3: Mean drag values for level 4 simulations. The data is visualized in Fig. 14.
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Figure 14: Mean drag values for level 4 simulations.

Figure 15: A comparison between level 3 and level 4 simulations. The least-square
lines (blue and black) were fitted to the interval [0.04,0.1] of the respective curve.
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Figure 16: A comparison between level 3 and level 4 simulations. The least-square
lines (blue and black) were fitted to the whole interval of the respective curve.
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3.3.2 Comparison with other studies

Figure 17: A comparison between the sources. Note that the values from the
database and from Krajnović and Davidson are not corresponding to the problem
described in Section 3.1 (see quotes).

Hoffman and Johnson [24] calculated mean drag coefficients for the same
problem. They used adaptive DNS/LES, a method that refines the grid,
thus increasing the number of mesh points.
Hoffman and Johnson [24, pp. 3-4] report:

We find that cdrag = 1.48 using about 400 000 mesh points in
space. The only other result (!) available in the literature seems
to be that of [25], where values in the range cdrag = 1.12 −
1.24 are presented. Surprisingly, no measurements seem to be
available, maybe because of lacking motivation because of lacking
computations and little interest from the car industry in cubic
vehicles. A measured value of cdrag = 1.3 is reported [26] for a
box with height-width ratio 5 : 1. It seems very likely that the
cdrag for a cube would be larger than that for a more slender
box.5

Their value of cdrag = 1.48 seems to fit well with our data from level 4
simulations. The values of Krajnović and Davidson [25] only compare to

5The references and the variable name in the quote were adjusted to reflect this thesis’
reference list and nomenclature.
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values we gained from level 3 simulations with very low turbulent viscosity
constant (less than 0.01).
Hoffman and Johnson [24, p. 12] define the mean drag coefficient over the
time interval I = [0, 4] at fully developed flow as

c̄drag =
1

|I|

∫
I
cdrag(t) dt, c̄lift =

1

|I|

∫
I
clift(t) dt. (3.13)

Hoffman and Johnson [24, p. 8] report:

In Figure 3.2 we show the computed values of c̄drag (for a time
interval of length 40H). The approximations of c̄drag approaches
1.45 − 1.5, a value that is well captured already using less than
105 mesh points.

We know of no experimental reference values of c̄drag, but in
[25] c̄drag is approximated computationally. The computational
setup is similar to the one in this paper except the numerical
method, a different length of the time interval, and that we in
this paper use a channel of length 15H, compared to a channel of
length 10H in [25]. Using different meshes and subgrid models,
approximations of c̄drag in the interval [1.14, 1.24] are presented
in [25].6

See Fig. 17 for a comparison of the mean drag coefficients obtained by Hoff-
man and Johnson and the MooNMD simulation. The results from the data-
base and from Krajnović and Davidson are included, but they correspond
to similar, but different problems. The level 4 simulations support the val-
ues obtained by Hoffman and Johnson, especially at a turbulent viscosity
constant around 0.075. The difference of mean drag values is at most about
0.075 at turbulent viscosity constant 0.035.

6The references and the variable names in the quote were adjusted to reflect this thesis’
reference list and nomenclature.
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4 Conclusion

The Smagorinsky model is a very useful model since it is well understood
analytically and produces reasonable results, as seen with the level 4 simu-
lations (Fig. 17).
It is clear that more data on the mean drag coefficients is needed, since there
are only three results. Since Krajnović and Davidson analyzed a slightly
different problem, it further complicates things.
From Fig. 17 it is clear that level 4 simulations are far superior to level 3
simulations over a wide range of turbulent viscosity constants, as they closely
align to the data collected by Hoffman and Johnson.
In both level 3 and 4 simulations, the mean drag values are linearly correlated
with the turbulent viscosity constant. The values obtained from level 3
simulations are much more sensitive with a slope of about 10.7 versus 1.3
(see Fig. 16).
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5 Appendix

5.A Derivation of the filtered momentum equation

The following is adapted from [1, pp. 16f. and 581f.]. When we filter the
momentum equation (Eq. (1.2)), we get (since differentiating and filtering
commutes and linearity applies):

∂tuj + ui∂iuj = 2ν∂iSij −
1

ρ
∂jP + f j in Ω× (0, T ], j = 1, 2, 3.

We define the residual-stress tensor, anisotropic residual-stress tensor and
modified filtered pressure:

τRij := uiuj − uiuj , (5.1)

τ rij := τRij −
1

3
τRkkδij , (5.2)

p̄ :=
1

ρ
P +

1

3
τRkk. (5.3)

By using the continuity equation (Eq. (1.3)) and filtered continuity equation
(Eq. (2.2)), we get

∂i(uiuj) = (∂iui)uj + ui∂iuj = ui∂iuj , (5.4)

∂i(uiuj) = (∂iui)uj + ui∂iuj = ui∂iuj . (5.5)

Using the last two equations and the definition of the residual-stress tensor
τRij , we obtain

∂tuj + ui∂iuj = ∂tuj + ∂i(uiuj)

= ∂tuj + ∂i(uiuj)

= ∂tuj + ∂i(uiuj) + ∂iτ
R
ij

= ∂tuj + ui∂iuj + ∂iτ
R
ij .

Now using all three definitions from above, we get

−∂iτRij −
1

ρ
∂jP = −∂iτ rij − ∂i

1

3
τRkkδij −

1

ρ
∂jP

= −∂iτ rij − ∂j
1

3
τRkk −

1

ρ
∂jP

= −∂iτ rij − ∂j
(

1

ρ
P +

1

3
τRkk

)
= −∂iτ rij − ∂j p̄.

Thus, the filtered momentum equation can be expressed as:

∂tuj + ui∂iuj = ∂i
(
2νSij − τ rij

)
− ∂j p̄+ f j , j = 1, 2, 3.
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5.B Vector spaces

The Lebesgue space Lp(Ω), p ∈ [1,∞], is the Banach space of measurable
functions v on Ω which satisfy

‖v‖Lp(Ω) :=

(∫
Ω
|v(x)|p dx

)1/p

<∞ if p ∈ [1,∞),

‖v‖L∞(Ω) := ess sup
x∈Ω

|v(x)| <∞ if p =∞.
(5.6)

For p = 2, the Lebesgue space is also a Hilbert space with the scalar product

(v,w) =

∫
Ω

v(x) ·w(x) dx.

For one-dimensional functions, the dot represents simple multiplication.
Otherwise it represents the dot product for vectors or Frobenius inner prod-
uct for matrices. For two matrices A = (aij)1≤i,j≤3 and B = (bij)1≤i,j≤3,
the Frobenius inner product is

A : B := aijbij .

We write Lp (a, b;V ) for the Lebesgue space of functions from the interval
(a, b) to the Banach space V . The same kind of notation is used for respective
Sobolev spaces.
The Sobolev space Wm,p is the Banach space of functions for which

‖v‖Wm,p :=

 ∑
0≤|α|≤m

‖Dαv‖pLp(Ω)

1/p

<∞ if p ∈ [1,∞),

‖v‖Wm,∞ := max
0≤|α|≤m

‖Dαv‖Lp(Ω) <∞ if p =∞

holds true, i.e. it can be defined as

Wm,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) ∀ |α| ≤ m} . (5.7)

Let

W 1,3
0,div(Ω) :=

{
v ∈W 1,3(Ω) : v|Γ = 0, ∇ · v = 0 in Ω

}
(5.8)

be the divergence-free Sobolev space where functions vanish on the boundary
Γ = ∂Ω,

H1
(
0, T ;L2(Ω)

)
:= W 1,2

(
0, T ;L2(Ω)

)
a Sobolev space that is also a Hilbert space and

V := H1
(
0, T ;L2(Ω)

)
∩ L3

(
0, T ;W 1,3

0,div(Ω)
)

(5.9)
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a Banach space with the norm

‖v‖V = ‖∇v‖L3(0,T ;L3(Ω)) + ‖∂tv‖L2(0,T ;L2(Ω)).

For Section 2.7, we also need the vector spaces

X := W 1,3
0 (Ω) =

{
v ∈W 1,3 : v|Γ = 0

}
, (5.10)

Q := L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q dx = 0

}
. (5.11)

5.C Inlet velocity profile

The following code is from the implementation of the wall-mounted cube
problem. Depending on z = x3 and independent of y = x2, the velocity is
interpolated from specific values. The inlet velocity is perturbed with white
noise, i.e. a small random number is added to each value.

176 double um[65] = {

177 0,

178 0.2166 ,

179 0.6292 ,

180 0.6926 ,

181 0.7307 ,

182 0.7671 ,

183 0.7941 ,

184 0.8191 ,

185 0.8466 ,

186 0.8716 ,

187 0.8931 ,

188 0.9168 ,

189 0.9367 ,

190 0.9586 ,

191 0.9787 ,

192 0.9986 ,

193 1.0153 ,

194 1.0315 ,

195 1.0461 ,

196 1.0587 ,

197 1.0661 ,

198 1.0723 ,

199 1.0770 ,

200 1.0813 ,

201 1.0843 ,

202 1.0868 ,

203 1.0890 ,

204 1.0890 ,

205 1.0890 ,

206 1.0890 ,

207 1.0900 ,
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208 1.0930 ,

209 1.0930 ,

210 1.0930 ,

211 1.0928 ,

212 1.0924 ,

213 1.0921 ,

214 1.0911 ,

215 1.0898 ,

216 1.0885 ,

217 1.0869 ,

218 1.0835 ,

219 1.0796 ,

220 1.0747 ,

221 1.0679 ,

222 1.0606 ,

223 1.0527 ,

224 1.0388 ,

225 1.0222 ,

226 1.0083 ,

227 0.9871 ,

228 0.9654 ,

229 0.9445 ,

230 0.9229 ,

231 0.9029 ,

232 0.8814 ,

233 0.8622 ,

234 0.8360 ,

235 0.8091 ,

236 0.7851 ,

237 0.7582 ,

238 0.7199 ,

239 0.6857 ,

240 0.4141 ,

241 0.1327};

242 double noise =0.1, z0, z1, h;

243 int i;

244
245 i f ((fabs(x)<1e-6))

246 {

247 // compute l ow e r i n d e x f o r z v a l u e
248 i = ( int )(320*z);
249 // l i n e a r i n t e r p o l a t i o n
250 i f (i<64)

251 {

252 z0 = i / 320.0;

253 z1 = (i+1) /320.0;

254 h = z1 - z0;

255 value = (z1 -z)*um[i] + (z-z0) * um[i+1];

256 value /= h;
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257 }

258 e l se
259 value = um[i];

260 // add n o i s e
261 i f ((fabs(z)>1e-6) &&(( fabs(z-0.2) >1e-6)))

262 value += noise * ((double)rand()/RAND_MAX -0.5);
263 }

264 e l se
265 {

266 value = 0;

267 }
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Nomenclature

Upper-case Roman

A constant in the derivation of the Smagorinky model (Eq. (2.8))

CS Smagorinsky coefficient (Eq. (2.12))

C̃S Smagorinsky parameter (see Section 2.4)

E(k) energy spectrum function (Eq. (2.6))

G∆ filter function (Section (2.1))

Fdrag drag force (Eq. (3.5))

Flift lift force (Eq. (3.6))

H cube side length in the benchmark problem (H = L = 0.1 m)

H1 Sobolev (Hilbert-) space (H1 := W 1,2)

K Kolmogorov constant related to E(k) (Eq. (2.6))

Kij subtest-scale stress tensor (Eq. (2.15))

Lij Germano identity (Eq. (2.16))

L characteristic length

Lp Lebesgue space (Eq. (5.6))

P pressure

Q vector space (Eq. (5.11))

Re Reynolds number (Eq. (1.1))

Sij rate-of-strain tensor (or velocity deformation tensor, Eq. (1.4))

Sij filtered rate-of strain tensor (Eq. (2.3))

Sij stress tensor (Eq. (3.2))

U characteristic velocity

V vector space (Eq. (5.9))

Wm,p Sobolev space (Eq. (5.7))

W 1,3
0,div divergence-free Sobolev space where functions vanish on the bound-

ary (Eq. (5.8))
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X vector space defined in Eq. (5.10)

Lower-case Roman

cdrag drag coefficient (Eq. (3.7))

c̄drag mean drag coefficient (Eq. (3.13))

clift lift coefficient (Eq. (3.7))

c̄lift mean lift coefficient (Eq. (3.13))

f = (f1, f2, f3)T forces per unit mass acting on the fluid

`S Smagorinsky lengthscale (`S = CS∆)

n = (n1, n2, n3)T outward unit surface normal to Γ = ∂Ω

p̂ dimensionless pressure (Eq. (3.4))

p̄ modified filtered pressure (Eq. (5.3))

Upper-case Greek

Γ boundary of the domain (Γ = ∂Ω)

Γcube surface of the cube

∆ filter width

∆̂ test filter (Section 2.4)

Ω domain

Lower-case Greek

ε kinetic energy dissipation rate by viscous effects (Eq. (2.7))

ε̃ kinetic energy transfer rate through the cutoff (a specific wave number)

εI injection rate of turbulent kinetic energy into the flow (Eq. (2.11)))

µ dynamic viscosity in kg/(m · s)

ν kinematic viscosity (ν = µ/ρ [m2/s])

νr residual subgrid-scale eddy viscosity (Eq. (2.5))

νturb turbulent viscosity constant (Eq. (3.1))

ρ density in kg/m3
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τRij residual-stress tensor (or Reynolds stress tensor, Eq. (5.1))

τ rij anisotropic residual-stress tensor (Eq. (5.2), see also Eq. (2.4))

Abbreviations

DNS direct numerical simulation

EDQNM eddy-damped quasinormal Markovian model (see [15], as cited in
[4, p. 293])

LES large-eddy simulation

MooNMD Mathematics and object oriented Numerics in Magdeburg (a pro-
gram package, see [21])

NSE Navier-Stokes equations (see Section 1.4)

TFM two-fluid model
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[9] J. H. Ferziger and M. Perić, Computational Methods for Fluid Dynam-
ics, 3rd ed. Berlin, Heidelberg, and New York: Springer-Verlag, 2002.
[Online]. Available: http://user.uni-frankfurt.de/~shahraki/
index _ htm _ files / Ferziger % 20Peric % 20 - %20Computational %

20Methods%20for%20Fluid%20Dynamics,%203rd%20Ed%20-%202002.

pdf.

41

http://www.wias-berlin.de/people/john/LEHRE/NUM_NSE_14/script_num_nse_1_2014.pdf
http://www.wias-berlin.de/people/john/LEHRE/NUM_NSE_14/script_num_nse_1_2014.pdf
http://www.wias-berlin.de/people/john/ELECTRONIC_PAPERS/JL02.SINUM.pdf
http://www.wias-berlin.de/people/john/ELECTRONIC_PAPERS/JL02.SINUM.pdf
http://user.uni-frankfurt.de/~shahraki/index_htm_files/Ferziger%20Peric%20-%20Computational%20Methods%20for%20Fluid%20Dynamics,%203rd%20Ed%20-%202002.pdf
http://user.uni-frankfurt.de/~shahraki/index_htm_files/Ferziger%20Peric%20-%20Computational%20Methods%20for%20Fluid%20Dynamics,%203rd%20Ed%20-%202002.pdf
http://user.uni-frankfurt.de/~shahraki/index_htm_files/Ferziger%20Peric%20-%20Computational%20Methods%20for%20Fluid%20Dynamics,%203rd%20Ed%20-%202002.pdf
http://user.uni-frankfurt.de/~shahraki/index_htm_files/Ferziger%20Peric%20-%20Computational%20Methods%20for%20Fluid%20Dynamics,%203rd%20Ed%20-%202002.pdf


References Marco Rösler

[10] A. N. Kolmogorov,“The local structure of turbulence in incompressible
viscous fluids for very large Reynolds number”, Dokl. Akad. Nauk SSR,
vol. 30, pp. 9–13, 1941.

[11] B. Aupoix and J. Cousteix, “Modèles simples de tensions de sous-
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