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Abstract

Higher order variational time stepping schemes allow an efficient post-processing for
computing a higher order solution. This paper presents an adaptive algorithm whose
time step control utilizes the post-processed solution. The algorithm is applied to
convection-dominated convection-diffusion-reaction equations. It is shown that the
length of the time step properly reflects the dynamics of the solution. With respect
to the performance (accuracy, efficiency), the variational time stepping schemes are
compared with an adaptive Crank–Nicolson scheme, whose time step control relies
on comparing two solutions computed with schemes of the same order.
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1 Introduction

Adaptive time step control is a tool that might increase the efficiency of many
simulations of problems from Computational Fluid Dynamics (CFD). There
are several proposals in the literature for the way to control an adaptive time
step. A simple approach monitors just the change of the solution in two sub-
sequent discrete times, e.g., as applied in [2] to a semi-implicit Euler scheme
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for the Navier–Stokes equations. In more advanced methods, the time step
control is based on comparing solutions computed with different time step-
ping schemes. A classical approach from the numerical solution of ordinary
differential equations [10,21], the use of embedded schemes, was applied to
the incompressible Navier–Stokes equations in [17]. Embedded schemes re-
quire only a post-processing step which can be performed very efficiently. One
obtains the solution of a scheme with one order less than the originally used
scheme and in this way an estimate of the error for the solution of the lower
order method. However, the application of embedded schemes is only possi-
ble for higher order time stepping schemes. Such schemes do not seem to be
popular in the CFD community. Most often, one finds the use of first and
second order schemes in the literature. For the Crank–Nicolson scheme, which
is of second order, there are two proposals for controlling the time step on
the basis of applying another second order scheme and then to estimate the
truncation error. In [29], the other second order scheme is the fractional-step
θ-scheme and in [9], the use of the explicit Adams–Bashforth scheme was
studied. The approach from [29] has a high computational effort. Applying
an explicit scheme reduces the computational cost drastically, but the issue
of a CFL condition arises. The Adams–Bashforth approach was studied in [9]
for one-dimensional convection-diffusion equations, its use for two-dimensional
convection-diffusion equations can be found, e.g., in [5,6]. A slight modification
of this scheme will be considered also in the present paper.

This paper studies higher order variational time discretizations, namely con-
tinuous Galerkin–Petrov (cGP(k), k ∈ {2, 3}) and discontinuous Galerkin
(dG(k), k ∈ {1, 2}) methods. As already mentioned above, the use of higher
order time stepping schemes does not seem to be popular for applications from
CFD. There might be various reasons for this situation, among them are cer-
tainly the higher implementation effort and higher numerical costs. However,
there are studies which show that the application of higher order time step-
ping schemes might give much more accurate results than the use of simple
schemes, e.g., see [14,17]. In variational time stepping schemes, the temporal
derivative is treated in a finite element way. To this end, one takes finite ele-
ment functions which depend on space and time, makes the ansatz that the
discrete solution can be represented with these functions, integrates the equa-
tion in space and time and applies the usual integration by parts in space. In
the definition of the time stepping scheme, the test space is taken to be dis-
continuous in time, at the discrete times. This choice enables the performance
of a standard time marching algorithm and it avoids the solution of a global
system in space and time as in space-time finite element methods. In the dis-
continuous Galerkin method, ansatz and test space coincide. The application
of this method in parabolic problems can be found, e.g., in [8,27]. It turns
out that jump terms at the discrete times appear in this discretization. Using
instead continuous-in-time ansatz functions, the jump terms are avoided. Be-
sides calling this approach continuous Galerkin–Petrov method, one can find
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other names in the literature, like continuous Galerkin method [7] or discontin-
uous Galerkin–Petrov method [26]. Numerical studies with cGP(k) and dG(k)
for convection-dominated convection-diffusion equations can be found in [1].
In these studies, an equidistant time step was used and two stabilization tech-
niques for the spatial discretization were investigated. A super-convergence
of the error in the l∞ norm was observed. A space-time adaptive method for
higher order variational time discretizations in the context of incompressible
Navier–Stokes equations was presented in [3]. This method uses goal-oriented
error estimation techniques for controlling the adaptivity. Algorithmic aspects
for higher order variational time discretizations have been investigated recently
in [12].

Low order variational time discretizations lead to well known methods, e.g.,
dG(0) is the implicit Euler scheme and cGP(1) the Crank–Nicolson scheme. An
obvious drawback of higher order variational temporal discretizations is their
high numerical effort: one has to solve not only a number of scalar problems
in each time step but even a coupled system of problems. For cGP(k), a clever
construction was proposed in [26] such that the coupling becomes much weaker
than in the original method. But the coupling cannot be avoided completely.

The higher computational cost per time step of the variational time discretiza-
tions can be compensated if, for a given problem, only the necessary number
of time steps, for achieving a prescribed accuracy, is applied. For obtaining a
small number of time steps, usually the length of the time step has to vary such
that an adaptive time step control is necessary. With an adaptive time step
control, also the high order of the methods can be exploited best. Fortunately,
a post-processing procedure was proposed in [22] that allows to compute a so-
lution of one order higher than the original method in the L2(L2) time-space
norm, thus an estimate of the error for the original method can be obtained.
For the cGP(k) methods, the post-processing from [22] requires the solution of
a linear system of equations, which is inexpensive compared with one step of
cGP(k). The availability of two solutions with different order enables also the
application of well understood techniques from the numerical analysis of ordi-
nary differential equations for controlling the adaptive time step, e.g., see [28].
Thus, in contrast to commonly used time stepping schemes in CFD, higher
order variational time stepping schemes enable the possibility of applying the
most standard way of adaptive time step control. However, to the best of our
knowledge, the realization and numerical assessment of this approach cannot
be found so far in the literature.

The goals of this paper are twofold. First, it will be shown that the adaptive
time step control for higher order variational time stepping schemes, which is
based on the post-processed solution, leads indeed to lengths of the time steps
that properly reflect the dynamics of the solution. Besides establishing that the
approach works principally, the question arises in which situations its usage in
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practice can be recommended, in particular from the point of view of efficiency.
Second, the performance of the studied methods will be compared with the
performance of (a slight modification of) the adaptive Crank–Nicolson scheme
proposed in [9], which is based on controlling the time step with the solution
obtained with the Adams–Bashforth scheme.

The paper is organized as follows. Section 2 introduces the problem and de-
scribes its discretization in space. The higher order variational time stepping
schemes are presented in Section 3. Then, the post-processing and the adaptive
time step control are discussed in Section 4. Section 5 presents the numerical
studies and their results are summarized in Section 6.

2 The Model Problem and Its Discretization in Space

Consider the scalar convection-diffusion-reaction equation: Find u : (0, T ] ×
Ω→ R such that

∂tu− ε∆u+ b · ∇u+ σu = f in (0, T )× Ω,

u = 0 in (0, T )× ∂Ω,

u(·, 0) = u0 in Ω.

(1)

Here, Ω ⊂ Rd, d ∈ {2, 3}, is a polygonal or polyhedral domain with Lipschitz
boundary ∂Ω. Furthermore, 0 < ε� 1 is a diffusivity constant, b(t,x) is the
flow velocity, σ(t,x) is the reaction coefficient, and f(t,x) is a given outer
source of the unknown scalar quantity u. It will be assumed that either ∇ ·
b(t,x) = 0 and σ(t,x) ≥ 0, or that there exists a positive constant σ0 such
that

σ(t,x)− 1

2
div b(t,x) ≥ σ0 > 0 ∀(t,x) ∈ [0, T ]× Ω,

which are standard assumptions for equations of type (1).

For the finite element discretization, (1) is transformed into a variational for-
mulation. To this end, consider the space V := H1

0 (Ω), its dual space H−1(Ω),
and 〈·, ·〉 as the duality pairing between these spaces. The inner product in
L2(Ω) is denoted by (·, ·).

A function u is a weak solution of problem (1) if u ∈ L2 (0, T ;H1
0 (Ω)) and

∂tu ∈ L2 (0, T ;H−1(Ω)), with

〈∂tu(t), v〉+ a(u(t), v) = 〈f(t), v〉 ∀v ∈ V (2)

for almost all t ∈ (0, T ] and u(0) = u0, where the bilinear form a is given by

a(u, v) := ε(∇u,∇v) + (b · ∇u, v) + (σu, v).

4



Let {Th} denote a family of shape regular triangulations of Ω into compact d-
simplices, quadrilaterals, or hexahedra such that Ω =

⋃
K∈Th K. The diameter

of K ∈ Th will be denoted by hK and the mesh size h is defined by h :=
max
K∈Th

hK . Let Vh ⊂ V be a finite element space defined on Th.

The standard Galerkin method in space applied to (2) consists in finding
uh ∈ H1(0, T ;Vh) such that uh(0) = uh,0 and for almost all t ∈ (0, T ]

(∂tuh(t), vh) + a (uh(t), vh) = (f(t), vh) ∀vh ∈ Vh, (3)

where uh,0 ∈ Vh is a suitable approximation of u0 and f ∈ L2(Ω) was assumed
for simplicity of notation. In the convection-dominated case, the standard
Galerkin formulation (3) is inappropriate since the discrete solution is usu-
ally globally polluted by spurious oscillation, unless the mesh parameter is
sufficiently small.

One of the most efficient stabilized methods is the Streamline-Upwind Petrov–
Galerkin (SUPG) method [4,11] that is frequently used due to its stability
properties, its higher-order accuracy in appropriate norms, and its easy im-
plementation, e.g., see [24]. In the time-continuous case, the SUPG stabi-
lized semi-discrete problem reads as follows: Find uh ∈ H1(0, T ;Vh) such that
uh(0) = uh,0 and for almost every t ∈ (0, T ]

(∂tuh(t), vh) + ah (uh(t), vh) +
∑
K∈Th

δK (∂tuh(t), b · ∇vh)K

= (f(t), vh) +
∑
K∈Th

δK (f(t), b · ∇vh)K (4)

for all vh ∈ Vh. The bilinear form ah(·, ·) is defined by

ah(uh, vh) := a(uh, vh) +
∑
K∈Th

δK (−ε∆uh + b · ∇uh + σuh, b · ∇vh)K ,

where (·, ·)K denotes the inner product in L2(K) and {δK} denotes the set of lo-
cal stabilization parameters. A theoretically supported choice of the stabiliza-
tion parameters is an open question. Even for simple time stepping schemes,
like the backward Euler scheme, one has in the general situation only a con-
vergence proof for δK = O(τ), were τ is the length of the time step, whereas
in special cases optimal estimates for δK = O(hK) were proved, see [15] for
details. Since the small scales, which require a stabilization, are the spatial
layers, we think that the latter choice is more appropriate. Numerical stud-
ies in [15] came also to this conclusion. Concretely, for the numerical studies
presented below, the stabilization parameters were set to be δK = 0.25hK .

Any other linear stabilization which is based on a modification of the bilinear
form, like continuous interior penalty (CIP) or local projection stabilization

5



(LPS) schemes, can be applied within higher order variational time discretiza-
tions in the same way as the SUPG method, see [1]. For nonlinear stabi-
lizations, like spurious oscillation at layers diminishing (SOLD) methods, a
stabilization term might be discretized explicitly and then they can be used
also in the same way. However, for stabilization methods which are based on
modifications of matrices and vectors, like finite element flux-corrected trans-
port (FEM-FCT) methods [20], the application of higher order variational
time discretizations seems to be an open problem.

3 Temporal Discretization with Variational Time Stepping Schemes

The main topic of this paper is a study of the continuous Galerkin–Petrov and
discontinuous Galerkin time stepping schemes. These schemes are basically the
same as described in [1]. To keep this paper self-containing, a brief presentation
of the schemes, which provides the basic ideas, will be given here.

Consider a partition 0 = t0 < t1 < · · · < tN = T of the time interval I := [0, T ]
and set In := (tn−1, tn], τn := tn − tn−1, n = 1, . . . , N , and τ := max1≤n≤N τn.
For a given non-negative integer k, the fully discrete time-continuous and
time-discontinuous spaces, respectively, are defined as follows:

Xk := {u ∈ C(I, Vh) : u|In ∈ Pk(In, V ), n = 1, . . . , N} ,
Yk :=

{
u ∈ L2(I, Vh) : u|In ∈ Pk(In, V ), n = 1, . . . , N

}
,

where

Pk(In, Vh) :=

u : In → Vh : u(t) =
k∑
j=0

U jtj, U j ∈ Vh ∀j


denotes the space of Vh-valued polynomials of order k in time. The functions in
the space Yk are allowed to be discontinuous at the nodes tn, n = 1, . . . , N−1.
For such functions, the left-sided value u−n , right-sided value u+

n , and the jump
[u]n are defined by

u−n := lim
t→tn−0

u(t), u+
n := lim

t→tn+0
u(t), [u]n := u+

n − u−n .

The cGP(k) method applied to (4) leads to a time marching scheme with the
following problems: Find uh,τ |In ∈ Pk(In, Vh) such that for all vh ∈ Vh
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∫
In

(∂tuh,τ (t), vh) + ah(uh,τ (t), vh) +
∑
K∈Th

δK (∂tuh,τ (t), b · ∇vh)K

ψ(t) dt

=
∫
In

(f(t), vh) +
∑
K∈Th

δK (f(t), b · ∇vh)K

ψ(t) dt ∀ψ ∈ Pk−1(In),

with uh,τ |I1(t0) = uh,0 and uh,τ |In(tn−1) := uh,τ |In−1(tn−1) for n ≥ 2. The
functions ψ denote scalar basis functions which are zero on I \ In and which
are a polynomial of degree less than or equal to (k − 1) on In.

The (k−1)-point Gauss–Lobatto quadrature rule for the numerical integration
of time integrals is applied, which is exact for polynomials of degree less than
or equal to (2k − 1). In order to determine the local solution uh,τ |In , it is
represented by

uh,τ |In(t) =
k∑
j=0

U j
n,hφn,j(t) ∀t ∈ In,

with coefficients U j
n,h ∈ Vh, j = 0, . . . , k.

Denote by t̂j and ω̂j, j = 0, . . . , k, the Gauss–Lobatto points and the corre-

sponding quadrature weights on [−1, 1], respectively. Furthermore, let φ̂j ∈ Pk,
j = 0, . . . , k, and ψ̂j ∈ Pk−1 denote the Lagrange basis functions with respect
to t̂j, j = 0, . . . , k, and t̂j, j = 1, . . . , k, respectively. The basis functions
φn,j ∈ Pk(In), j = 0, . . . , k, and ψn,j ∈ Pk−1(In), j = 1, . . . , k, are defined via
an affine reference transformation

Tn : [−1, 1]→ In, t̂ 7→ tn−1 +
τn
2

(t̂+ 1), (5)

see [1].

Using the same setting as in [1], the following fully discrete coupled system
of equations is derived: For U0

1,h = uh,0 and U0
n,h = Uk

n−1,h if n ≥ 2 find the

coefficients U j
n,h ∈ Vh, j = 1, . . . k, such that

k∑
j=0

αci,j

(U j
n,h, vh

)
+

∑
K∈Th

δK
(
U j
n,h, b · vh

)+
τn
2
ah(U

i
n,h, vh)

=
τn
2

[(f(tn,i), vh) + βci (f(tn,0), vh)]

+
τn
2

∑
K∈Th

δK
[
(f(tn,i), b · ∇vh)K + βci (f(tn,0), b · ∇vh)K

]
(6)

for i = 1, . . . , k and for all vh ∈ Vh, where αci,j and βci are defined by

αci,j := φ̂′j(t̂i) + βci φ̂
′
j(t̂0), βci := ω̂0ψ̂i(t̂0), i = 1, . . . , k, j = 0, . . . , k,
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see [22].

In the following, (6) is written as a linear algebraic block system. To this end,
let ϕi ∈ Vh, i = 1, . . .mh, be finite element basis functions of Vh and ujn ∈ Rmh

denote the nodal vector of U j
n,h ∈ Vh, such that

U j
n,h(x) =

mh∑
i=1

(
ujn
)
i
ϕi(x), x ∈ Ω.

Furthermore, the mass matrix M ∈ Rmh×mh , the matrices Cj
n ∈ Rmh×mh

associated with the additional time derivative term, the stiffness matrices Ajn ∈
Rmh×mh , and the discrete right-hand side vector F j

n ∈ Rmh are given by

(M)i,k := (ϕk, ϕi),

(Cj
n)i,k :=

∑
K∈Th

δK (ϕk, b(tn,j) · ∇ϕi)K ,

(Ajn)i,k := ah (ϕk, ϕi) , (7)

(F j
n)i := (f(tn,j), ϕi) +

∑
K∈Th

δK (f(tn,j), b(tn,j) · ∇ϕi)K .

Then, the fully discrete problem in In (6) is equivalent to the following k × k
block system: For given u0

n, find ujn ∈ Rmh , j = 1, . . . , k, such that

k∑
j=0

αci,j
(
M + Cj

n

)
ujn +

τn
2
Ainu

i
n =

τn
2

[
F i
n + βci

(
F 0
n − A0

nu
0
n

)]
, i = 1, . . . , k.

(8)

The finite element nodal vector u0
n of the solution uh,τ |In−1 is given either via

the discrete initial condition uh,0 for n = 1 or by u0
n = ukn−1 for n ≥ 2.

The dG(k) method applied to (4) leads to the following problem in In: Given
u−n with u−0 = uh,0, find uh,τ |In ∈ Pk(In, Vh) such that for all ψ ∈ Pk(In)

∫
In

(∂tuh,τ (t), vh) + ah (uh,τ (t), vh) +
∑
K∈Th

δK (∂tuh,τ (t), b · ∇vh)

ψ(t) dt

+

([uh,τ ]n−1, v
+
n−1

)
+

∑
K∈Th

δK
(
[uh,τ ]n−1, b · ∇v+

n−1

)ψ(tn−1)

=
∫
In

(f(t), vh) +
∑
K∈Th

δK (f(t), b · ∇vh)K

ψ(t) dt ∀vh ∈ Vh. (9)

Here, the (k+1)-point right-sided Gauss–Radau quadrature formula is applied
for the numerical evaluation of the integrals, which is exact for polynomials
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up to degree 2k. Let t̂j and ω̂j, j = 1, . . . , k+ 1, denote the points and weights
for this quadrature formula on [−1, 1], respectively. Using the representation
of uh,τ

uh,τ |In(t) :=
k+1∑
j=1

U j
n,hφn,j(t)

where U j
n,h ∈ Vh, j = 1, . . . , k + 1, and following [1], one obtains the following

system of equations: Find the coefficients U j
n,h ∈ Vh, j = 1, . . . k+ 1, such that

k+1∑
j=1

αdi,j

(U j
n,h, vh

)
+

∑
K∈Th

δK
(
U j
n,h, b · ∇vh

)+
τn
2
ah
(
U i
n,h, vh

)

= βdi

(U0
n,h, vh

)
+

∑
K∈Th

δK
(
U0
n,h, b · ∇vh

)
+
τn
2

(f(tn,i), v) +
∑
K∈Th

δK (f(tn,i), b · ∇vh)K


for i = 1, . . . , k + 1, and for all vh ∈ Vh, where

αdi,j := φ̂′j + βdi φ̂j(−1), βdi :=
1

ω̂i
φ̂i(−1), U0

n,h = U−n−1,h.

In matrix-vector notation, the following (k + 1)× (k + 1) block system of the
problem in In is derived: Find ujn ∈ Rmh for j = 1, . . . , k + 1, such that

k+1∑
j=1

αdi,j
(
M + Cj

n

)
ujn+

τn
2
Ainu

i
n = βdi

(
M + C0

n

)
u0
n+

τn
2
F i
n, i = 1, . . . , k+1,

where ujn denotes the nodal vector of U j
n,h ∈ Vh. After having solved this

system, one enters the next time interval and sets the initial value of In+1 to
u0
n+1 := uk+1

n .

4 Post-processing and Adaptive Time Step Control

Following [22], a higher order in time approximation can be obtained by means
of a post-processing of the time-discrete solution uh,τ with low computational
costs for the cGP(k) and dG(k) methods. Note that this approach is not
restricted to linear problems.

Let uh,τ denote the solution of the cGP(k) method (6). The post-processed
solution Πunh,τ on the time interval In is given by

(Πunh,τ )(t) = uh,τ (t) + anζn(t), t ∈ In,
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where
ζn(t) =

τn
2
ζ̂(t̂), t̂ := T−1

n (t),

with Tn from (5). The polynomial ζ̂ ∈ Pk+1 vanishes in all Gauss–Lobatto
points t̂j, j = 0, . . . , k, and it is scaled such that ζ̂ ′(1) = 1. The nodal vector
γn of a finite element function ah ∈ Vh is the solution of(

M + Ck
n

)
γn = F k

n − Aknukn −
(
M + Ck

n

)
ηkn, (10)

where ηkn denotes the nodal representation of u′h,τ (tn) ∈ Vh and the matrices
and the vector are given in (7). It has been shown in [22] that the post-
processed solution Πunh,τ (t) can be interpreted as the solution obtained with
a time stepping scheme of order (k + 2), k ≥ 2. Thus, computing Πunh,τ (t)
requires the solution of the linear system of equations (10), where the system
matrix is dominated by the mass matrix. A similar post-processing can be
performed for the dG(k) method (9).

However, for dG(k) the higher order in time post-processed solution can be
computed even simpler. The post-processed solution Πunh,τ of the solution uh,τ
of (9) on the interval In can be represented as

(Πunh,τ )(t) = uh,τ (t) + bnϑn(t), t ∈ In,

where
ϑn(t) =

τn
2
ϑ̂(t̂), t̂ := T−1

n (t),

with Tn given in (5). The polynomial ϑ̂ ∈ Pk+1 is uniquely defined by ϑ̂(t̂j) = 0

for all Gauss–Radau points t̂j, j = 1, . . . , k + 1, and ϑ̂′(1) = 1. The finite
element function bn ∈ Vh is obtained by

bn :=
1

ϑn(tn−1)

(
u−n−1 − u+

n−1

)
,

i.e., it is just a scaled difference between the initial condition u−n−1 at t = tn−1

and the calculated solution u+
n−1 at t = tn−1. Also in this case, it was proved

in [22] that there is an interpretation of Πunh,τ (t) as the solution obtained with
a scheme of order (k + 2), k ≥ 1. In numerical studies, we could observe that
both post-processing techniques for dG(k) gave the same results.

Adaptive time step control aims at computing a numerical solution with a pre-
scribed accuracy using as few time steps as possible. In particular for problems
where the dynamics changes in (0, T ), the application of equidistant time steps
is governed by the subintervals with the fastest dynamics, such that in other
subintervals much more time steps might be performed than necessary. This
paper studies if the higher order in time post-processed solution Πunh,τ is an ap-
propriate tool for controlling the length of the time steps. Since two solutions
of different order are available, one can use well understood techniques, from
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the numerical simulation of ordinary differential equations, for controlling the
length of the time step.

In the numerical simulations presented in this paper, the adaptive time step
control is based on the L2(Ω) error norm of the error of the numerical solution
and its post-processed solution

rn := ‖unh,τ − Πunh,τ‖L2(Ω),

which is a standard criterion. The use of other quantities of interest will be
subject of future studies. There are several proposals in the literature for de-
termining a new time step, so-called controllers, e.g., see [28]. In the numerical
simulations presented in Section 5, generally the PC11 controller

τ ∗n+1 = θ

(
TOL rn
r2
n+1

)1/(k+1)
τ 2
n

τn−1

(11)

was used, e.g., as in the simulations of [17]. For comparison, some results
obtained with the PID controller

τ ∗n+1 = θ

(
TOL

rn+1

)0.525/(k+1) (
rn
rn+1

)0.225/(k+1) (
r2
n

rn+1rn−1

)0.03/(k+1)

τn (12)

will be presented, too. For k = 2, one obtains the parameter set which is
proposed in [30,31], where the Crank–Nicolson scheme was used. In (11) and
(12), θ is a safety factor which is introduced to reduce the probability of
rejecting τ ∗n+1. In our simulations θ = 0.8 was used. The parameter TOL
determines the required accuracy of the numerical solution. The impact of
TOL on the number of time steps will be studied in Section 5. Finally, to
avoid a strong increase or decrease of subsequent time steps, the proposal for
the next time step is computed with

τn+1 = min
{
smaxτn,max

(
sminτn, τ

∗
n+1

)}
,

which is known as the integral step size controller in the deterministic frame-
work [10]. In our simulations, smin = 0.1 and smax = 2 were used. A step size
τn+1 is accepted if rn+1 ≤ TOL, otherwise it is rejected.

5 Numerical Results

This section presents numerical studies of the proposed algorithm for the adap-
tive time step control. On the one hand, it will be shown that the adaptive
time step control for higher order variational schemes works properly. And on
the other hand, the performance of these schemes will be compared with the
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performance of (a slight modification of) an adaptive Crank–Nicolson scheme
proposed in [9].

The adaptive Crank–Nicolson scheme was implemented as presented in [9,
pp. 2020]. In order to prevent the ringing phenomenon of the Crank–Nicolson
scheme, a stabilization of the integrator was proposed in [9] which avoids per-
forming additional computations. Let vn be the update computed with the
Crank–Nicolson scheme at time tn, then there is a backward-oriented averag-
ing un = (un+un−1)/2 and the new solution is computed for tn+1 = tn+τn+1/2
with un+1 = un+τn+1vn/4. It will be explained in Example 1 that we obtained
wrong results with this approach. For this reason, a central averaging as pro-
posed in [23]

un =
τnun+1 + (τn + τn+1)un + τn+1un−1

2(τn + τn+1)
(13)

was applied in our simulations. After having computed (13), the time step τn+1

is rejected and the adaptive procedure is continued with the averaged solution
un at tn. Thus the central averaging is performed at the cost of one time step
rejection. With respect to the frequency of averaging, it is proposed in [9]
to prescribe a target time length t∗ (t∗ = 10−4 in [9]) after which the next
averaging should be performed. For examples where the appropriate length
of the time step varies considerably, as in Example 1, we found it difficult to
choose a good value for t∗. Thus, besides prescribing t∗, also a minimal number
n∗ of accepted time steps in between two averaging steps was prescribed. The
time step of the adaptive Crank–Nicolson scheme is controlled with a tolerance
TOL which bounds an estimate of the local truncation error in the L2(Ω) norm.

In the first example considered below, an adaptive time step control is ad-
vantageous because the convection field is time-dependent. Time-dependent
convection fields are a common feature of problems from applications as the
convection field is often a velocity field computed from the Navier–Stokes
equations. The temporal variation in the second example results from a time-
dependent boundary condition at the inlet. This feature reflects, e.g., changes
of the temperature or the concentration of a species at the inlet during the
studied process, which is also a typical feature in many applications.

The use of higher order discretizations in time should be combined with the
application of higher order discretizations in space. In the studied examples,
quadrilateral (2d) or hexahedral (3d) meshes were used with the Q2 finite
element. As already mentioned in Section 2, the SUPG method was utilized as
stabilization. It is well known from numerical experience, e.g., in [18], that the
SUPG method is not a perfect stabilization, mainly because of the appearance
of spurious oscillations. However, it is certainly the most popular finite element
stabilization such that its study is worthwhile in our opinion.

Our experience in [16] for simple time stepping schemes was that Krylov sub-
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space methods with standard preconditioners work most efficiently for the
solution of the arising linear systems of equations. A major reason is the
availability of a good initial iterate. In the simulations for the variational time
stepping schemes the restarted GMRES(50) [25] with a Jacobi preconditioner
(without damping) was applied as solver for the block systems. The linear
system for the post-processing (10) was solved with GMRES(50) and a SSOR
preconditioner with relaxation parameter 1.5. The same solver was utilized in
the adaptive Crank–Nicolson method. As initial iterate for the time stepping
schemes, the solution of the previous discrete time was used. The initial iterate
for solving the system for the post-processing was the solution of the varia-
tional time stepping schemes as given in Section 3. All iterations were stopped
if the Euclidean norm of the residual vector was less than 10−10. Usually the
restart did not become effective.

The initial time step was set to be τ1 = 10−8 in all simulations.

All simulations were performed with the code MooNMD [13] at a HP SL390s
computer with Six-Core 3467 MHz Xeon processors.

Example 1 Time-dependent convection field. This example is a generaliza-
tion of the well known rotating body problem. It is defined in Ω = (0, 1)2, the
diffusion is set to be ε = 10−20. The other coefficients are σ = 0 and f = 0.
Homogeneous Dirichlet boundary conditions are prescribed on (0, T )×∂Ω. At
the initial time, three disjoint bodies, are given, see Figure 1. More precisely,

for a given (x0, y0), set r(x, y) =
√

(x− x0)2 + (y − y0)2/r0. The center of the

slotted cylinder is located at (x0, y0) = (0.5, 0.75) and its shape is defined by

u(0;x, y) =

 1 if r(x, y) ≤ 1, |x− x0| ≥ 0.0225 or y ≥ 0.85,

0 otherwise.

The hump at the left-hand side is given by (x0, y0) = (0.25, 0.5) and

u(0;x, y) =
1

4

(
1 + cos(πmin{r(x, y), 1})

)
,

and the conical body on the lower part is given by (x0, y0) = (0.5, 0.25) and

u(0;x, y) = 1− r(x, y).

The initial condition is zero outside the bodies. Finally, the convection field is
defined by

b(t, x, y) =
1

1 + 0.98 · sin(4t)

0.5− y

x− 0.5

 .
This field describes a rotation around (0.5, 0.5)T whose speed varies in time.
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In the standard rotating body problem, the rotation does not depend on time.
Setting T = 6.164546203 leads to exactly five revolutions of the bodies.

Fig. 1. Example 1. Initial condition.

The simulations were performed on an equidistant quadrilateral grid with
squares of edge length h = 1/64 such that there were 16641 degrees of freedom
(including Dirichlet nodes).

First, the behavior of the higher order variational time discretizations will be
discussed. For the sake of brevity, only results with the PC11 controller (11)
will be presented. With the PID controller (12), the computed solutions were
similar for the same value of TOL (often a little bit more accurate), but the
PID controller took notable more time steps. First of all, one had to find appro-
priate values for the parameter TOL in the PC11 controller (11). In our expe-
rience [17], appropriate values of TOL depend on the used temporal discretiza-
tion. Choosing TOL too large introduced notable smearing, in particular in
the region of the slotted cylinder. In Figure 2 it can be seen that this situation
occurs for dG(1) and TOL = 10−2. For TOL ≤ 5 · 10−3, there are only minor
differences in the computed solutions. For all other methods and TOL ≤ 10−2

we obtained very similar solutions like for dG(1) and TOL = 10−3, see the
lower picture in Figure 2. Note that the other methods are of higher order than
dG(1). After having performed numerous simulations, we decided to present
results with the same parameters TOL ∈ {5 · 10−3, 10−3, 5 · 10−4} for all stud-
ied methods. For the PID controller, it was found that appropriate parameters
would be larger by a factor of 5 to 10.

For the chosen parameters, the evolution of the length of the time step is shown
in Figure 3. It can be observed that in all cases the time step reflects the speed
of the rotation very well. A close look on the pictures and the numbers given
in Table 1 shows that the higher the order of the method the less time steps
were used. In our simulations, there were no rejections of proposed time steps
for this example.
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Fig. 2. Example 1. Solution at the final time with dG(1), left: TOL = 10−2, right:
TOL = 5 · 10−3, bottom: TOL = 10−3.

Table 1
Example 1. Number of time steps with the variational time discretizations. Note
that there were no rejections.

TOL dG(1) dG(2) cGP(2) cGP(3)

5 · 10−3 1673 1495 1533 1332

1 · 10−3 9095 7396 7575 6616

5 · 10−4 18199 14771 15128 13212

From Figure 3 one can conclude that an accurate simulation of the time in-
tervals with fast rotation requires a time step of around τ = 10−4. Thus, for
using an equidistant time step, one has to choose this value. In Figure 4 one
can observe that there are no visible differences in the solutions obtained with
this small equidistant time step and the solution computed with the adaptive
time stepping algorithm (with only 2.5 % of the number of time steps). Hence,
in this respect, the adaptive algorithm works efficiently and accurately. As al-
ready mentioned above, the SUPG stabilization leads to spurious oscillations.
In addition, some smearing, especially at the slotted cylinder, can be observed.

Applying the adaptive Crank–Nicolson scheme as propose in [9] to this exam-
ple, i.e., with the backward-oriented averaging as explained at the beginning
of this section, the bodies did not arrive at their correct positions at the fi-
nal time, with large deviations from these positions. This behavior could be
observed in all simulations. Thus, the backward-oriented averaging could not
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Fig. 3. Example 1. Temporal evolution of the length of the time step, dG(1), dG(2),
cGP(2), cGP(3) (left to right, top to bottom).

Fig. 4. Example 1. Solution at the final time, left: cGP(2) with adaptive time step
and TOL = 10−3 (1533 steps), right: cGP(2) with equidistant time step τ = 10−4

(61646 steps).

cope with the strongly changing dynamics of this example. Hence, we decided
to replace this averaging with the central averaging (13). But even with the
central averaging, the tolerance in the adaptive Crank–Nicolson scheme had
to be chosen below 10−6 to obtain the exact positions of the bodies at the
final time. For the tolerances 10−4, 10−5, 5 · 10−6, there were still slight devia-
tions, the rotation stopped less than two degrees too early, which could be also
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Table 2
Example 1. Number of time steps (total, accepted, rejected, averagings among the
rejected) for the adaptive Crank–Nicolson scheme, TOL = 10−6.

t∗ = 10−3 t∗ = 10−4

n∗ total acc. rej. (aver.) total acc. rej. (aver.)

10 16020 11121 4899 (1088) 15981 10928 4953 (1090)

20 16060 12236 3824 (600) 15937 12084 3853 (603)

50 16672 13400 3272 (263) 16515 13287 3238 (265)

100 15690 13356 2334 (131) 15126 12819 2307 (128)

considered to be an acceptable accuracy. Altogether, our impression is that
the averaging procedure for avoiding the ringing phenomenon still deteriorates
the accuracy of the method to some extent. To have a comparison of solutions
with the same accuracy, only results with TOL = 10−6 will be presented and
discussed.

0 1 2 3 4 5 6

10
−5

10
−4

10
−3

10
−2

10
−1

time

τ

 

 

TOL=10
−6

Fig. 5. Example 1. Solution at the final time and temporal evolution of the length of
the time step for the adaptive Crank–Nicolson scheme with t∗ = 10−4 and n∗ = 100.

The number of time steps is given in Table 2. It can be seen that for the
total number of time steps one gets similar results for all choices of t∗ and n∗.
However, the choice of n∗ influences the ratio of accepted and rejected steps
considerably. With respect to this aspect, we prefer to choose larger values for
n∗, e.g., n∗ ∈ {50, 100}, since more accepted steps lead potentially to smaller
time steps, which in turn might have a positive impact on the accuracy. For
larger values of n∗, the additional cost for the central averaging is small, since
the number of averaging steps is below 1.6 % of the number of total steps.
The evolution of the time step for one choice of the parameters is presented in
Figure 5. One can observe that the time step follows in the mean the dynamics
of the problem, however there are a lot of small oscillations. In addition, there
are some larger drops of the time step. The next averaging step increases the
time step again. Since the occurrence of the next averaging step is determined
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Table 3
Example 1. Averaged computing times (in seconds) for solving the linear systems of
equations and for performing one time step. The total times are for TOL = 5 · 10−3

for the higher order variational schemes and for t∗ = 10−4, n∗ = 100 for the adaptive
Crank–Nicolson scheme.

method dG(1) dG(2) cGP(2) cGP(3) CN/(10)

linear systems 0.22 1.36 0.26 1.08 0.025

time/step 0.39 1.62 0.43 1.31 0.09

total time 657 2433 659 1750 1355

mainly by n∗, large values of n∗ lead potentially to more accepted small steps
(after the drop of the time step).

Table 3 provides information on computing times for the studied methods:
the averaged computing time for solving the linear systems of equations, the
averaged time per time step, and total computing times for some cases where
solutions with comparable accuracy were computed. The times for solving the
linear systems and the times per time step were similar for all considered
values of TOL and the values in Table 3 are also averages with respect to
TOL. First of all, it can be seen that the overhead for computing the post-
processed solution in the variational schemes is small. It is about 6 % for dG(1)
and cGP(2), with respect to the time per time step, whereas it was less than
2 % for the higher order methods dG(2) and cGP(3). Using the alternative
strategy for computing the post-processed solution for the dG(k) methods
resulted practically in a negligible overhead. Thus, the savings in the number
of time steps were much more important than the overhead of the adaptive
time step control algorithm.

Among the variational time integrators, cGP(2) shows in our opinion the best
combination of accuracy and efficiency. In this example, where the temporal
dynamics strongly changes, the application of cGP(2) turned out to be more
efficient than using the adaptive Crank–Nicolson scheme for computing a so-
lution with comparable accuracy. The smoother evolution of the length of the
time step, using the control with the post-processed solution for cGP(2), to-
gether with the higher order of cGP(2) resulted in considerably less needed
time steps compared with the adaptive Crank–Nicolson scheme. These savings
more than compensate the five times higher computational costs per time step.

Example 2 Time-dependent inlet condition. This three-dimensional exam-
ple was proposed in [19]. Given Ω = (0, 1)3, a species enters the domain at
some inlet and it leaves the domain at the opposite side of the domain. While
transported through the domain, the species is diffused somewhat and in the
subregion where the species is transported, also a reaction occurs. The con-
vection field points from the center of the inlet to the center of the outlet and
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it is not parallel to the coordinate axes.

Concretely, the inlet is located at {0}×(5/8, 6/8)×(5/8, 6/8) and the position
of the outlet is given by {1} × (3/8, 4/8)× (4/8, 5/8). The convection field is
prescribed by b = (1,−1/4,−1/8)T , the diffusion is given by ε = 10−6, and
the reaction by

σ(x) =

 1 if ‖x− g‖2 ≤ 0.1,

0 else,

where g is the line through the center of the inlet and the center of the outlet
and ‖ · ‖2 denotes the Euclidean norm. The given ratio of diffusion and con-
vection is typical in many applications. The boundary condition at the inlet
is prescribed by

uin(t) =


sin(πt/2) if t ∈ [0, 1],

1 if t ∈ (1, 2],

sin(π(t− 1)/2) if t ∈ (2, 3].

Homogeneous Neumann boundary conditions are set at the outlet and homo-
geneous Dirichlet conditions at the rest of the boundary. There are no sources,
i.e., f = 0. The initial condition is set to be u0(x) = 0. In the time interval
(0, 1), the inflow is increasing and the injected species is transported towards
the outlet. Then, in (1, 2), there is a constant inflow and the species reaches
the outlet. At the end of this time interval, there is almost a steady-state
solution. Finally, in (2, 3), the inflow decreases.

The simulations were performed on an equidistant hexahedral grid with the
mesh width h = 1/32, leading to 274625 degrees of freedom (including Dirich-
let nodes).

Also for this example, we found that TOL ∈ {5 · 10−3, 10−3, 5 · 10−4} are
appropriate parameters to be used in the PC11 controller (11). The evolution
of the length of the time step is presented in Figure 6. Starting with a small
time step, the time step increases in the time interval (1, 2). In particular, at
the end of this interval, where the solution is nearly steady-state, it becomes
comparably large. But it can be clearly seen that the length of the time step
drops at t = 2, due to the change of the inlet condition. Thus, the evolution
of the length of the time step reflects the dynamics of the problem well. It can
be observed that the time step is oscillating in (2, 3) for some methods.

Detailed information on the needed number of time steps is provided in Ta-
ble 4. Clearly, the number of time steps increases with decreasing parameter
TOL. The second order method dG(1) needed few steps more than the higher
order methods for small values of TOL.
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Fig. 6. Example 2. Temporal evolution of the length of the time step with the PC11
controller (11), dG(1), dG(2), cGP(2), cGP(3) (left to right, top to bottom).

Table 4
Example 2. Number of effective and rejected time steps with the PC11 controller
(11).

TOL dG(1) dG(2) cGP(2) cGP(3)

5 · 10−3 40 1 40 1 39 1 40 0

1 · 10−3 65 1 65 1 64 1 63 0

5 · 10−4 105 2 90 1 92 1 89 1

As a measure of accuracy, the value of the solution (amount of species) at the
center of the outlet was proposed in [16]. It can be observed in Figure 7 that
all simulations gave very similar results. For TOL ≤ 10−3, they are very close
to the result obtained when applying the small equidistant time step τ = 0.01.

For this examples, also results obtained with the PID controller are presented,
see Table 5 and Figures 8 and 9, since there are some qualitative differences to
the results obtained with the PC11 controller. First, there were no rejections
for the PID controller and second, the evolution of the time step for t ≥ 2 was
much smoother. For the same value of TOL, the time step control with the
PID controller proposed more time steps than with the PC11 controller. In
turn, the results for the PID controller and TOL = 5 ·10−3 were more accurate
than the results obtained with the PC11 controller.
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Fig. 7. Example 2. Temporal evolution of the amount of species at the center of the
outlet, PC11 controller (11), dG(1), dG(2), cGP(2), cGP(3) (left to right, top to
bottom).

Table 5
Example 2. Number of effective and rejected time steps with the PID controller
(12).

TOL dG(1) dG(2) cGP(2) cGP(3)

5 · 10−3 48 0 44 0 43 0 44 0

1 · 10−3 105 0 82 0 81 0 75 0

5 · 10−4 181 0 130 0 129 0 110 0

Results for the adaptive Crank–Nicolson scheme are presented in Table 6 and
Figure 10. One can see that the evolution of the solution at the center of the
outlet becomes close to the reference curve for TOL = 10−5 and the numer-
ical results and the reference curve are almost indistinguishable for smaller
values of TOL. Thus, an appropriate parameter TOL for the adaptive Crank–
Nicolson scheme is also in this example smaller than for the higher order vari-
ational time integrators. Perhaps, this situation can be generally expected,
since the tolerances are compared with the difference of two solutions and the
difference of the solutions from two second order schemes can be anticipated
to be smaller than the difference of two solutions obtained with methods of
different order. In comparison with Example 1, the dynamics of Example 2
does not change so strongly. Table 6 shows that there is however a certain
amount of rejected steps and that the number of averaging steps is small. The
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Fig. 8. Example 2. Temporal evolution of the length of the time step with the PID
controller (12), dG(1), dG(2), cGP(2), cGP(3) (left to right, top to bottom).

Table 6
Example 2. Number of time steps (total, accepted, rejected, averagings among the
rejected) for the adaptive Crank–Nicolson scheme, t∗ = 10−4.

TOL = 10−5 TOL = 5 · 10−6

n∗ total acc. rej. (aver.) total acc. rej. (aver.)

10 167 120 47(11) 205 157 48(15)

20 154 133 21(6) 195 167 28(8)

50 155 144 11(2) 222 203 19(4)

100 193 181 12(1) 263 239 24(2)

evolution of the length of the time step follows in mean the dynamics of the
problem, see Figure 10, with some jumps after having applied the averaging
procedure.

For assessing the efficiency, information concerning averaged computing times
are given in Table 7. For the variational time stepping schemes, one can also
in 3d observe that the computation of the post-processed solution imposed an
almost negligible overhead. As already mentioned, cGP(2) offers in our opin-
ion the best combination of accuracy and efficiency. Like in the 2d example,
one step of cGP(2) took around five times as long as one step of the adap-
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Fig. 9. Example 2. Temporal evolution of the amount of species at the center of
the outlet, PID controller (12), dG(1), dG(2), cGP(2), cGP(3) (left to right, top to
bottom).
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Fig. 10. Example 2. Temporal evolution of the length of the time step (left) and the
amount of species at the center of the outlet (right) for the adaptive Crank–Nicolson
scheme with TOL = 10−5, t∗ = 10−4, and n∗ = 20.

tive Crank–Nicolson scheme. Considering results with comparable accuracy,
it turns out that in Example 2, where the temporal dynamics is compara-
bly smooth, the adaptive Crank–Nicolson scheme was more efficient than the
variational time stepping schemes.

23



Table 7
Example 2. Total computing times and averaged computing times (in seconds) for
solving the linear systems of equations and for performing one time step. The total
time for the adaptive Crank–Nicolson scheme is for TOL = 10−5, t∗ = 10−4, and
n∗ = 20.

method dG(1) dG(2) cGP(2) cGP(3) CN (10)

TOL = 5 · 10−3, systems 19 39 17 32 3.5 1

time/step 47 81 45 71 9

total 1895 3243 1756 2839 1386

TOL = 1 · 10−3, systems 13 31 11 27

time/step 41 72 38 67

total 2655 4682 2472 4230

6 Summary

A method for the adaptive time step control in higher order variational time
discretizations was proposed and studied numerically. This method was ap-
plied in the context of convection-dominated convection-diffusion-reaction equa-
tions. The adaptive time step control utilizes a post-processed solution which
is of higher order than the solution of the time stepping scheme. The time
step control was performed with the PC11 and the PID controller. Numerical
examples were presented which has typical features appearing in applications,
like a time-dependent convection field or a time-dependent boundary condi-
tion at the inlet. For comparison, a recently proposed adaptive Crank–Nicolson
scheme was also employed in the numerical studies, which relies on comparing
two solutions computed with schemes of the same order.

The numerical studies showed that the time step control for the variational
time integrators works fine. The dynamics of the solutions were represented
well by the length of the time step. Taking both, efficiency and accuracy into
consideration, then cGP(2) is certainly the best of the studied methods.

The PC11 controller led to simulations with fewer time steps than the PID
controller for the same value of TOL. With the PID controller, less rejections
and a smoother evolution of the length of the time step (Example 2) were
observed.

Compared with the adaptive Crank–Nicolson scheme, the number of time
steps was considerably smaller for the variational time integrators for com-
puting solutions with similar accuracy. In our opinion, the higher order of the
variational time integrators as well as the different time step selection algo-
rithms are responsible for this fact. In addition, the evolution of the length of
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the time steps was much smoother for the variational schemes. The averaging
step for avoiding the ringing phenomenon has probably a certain impact on
this behavior. We also have the impression that the time step control based
on two solutions with different order is more reliable than the control with
two solutions of the same order. The computing time for one step of the adap-
tive Crank–Nicolson scheme was around five times smaller than for one step of
cGP(2). For a problem with strongly changing temporal dynamics, Example 1,
the smaller number of time steps resulted in cGP(2) to be more efficient. In
the case that the dynamics vary smoothly, Example 2, the adaptive Crank–
Nicolson scheme was finally the most efficient method.
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