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Abstract
In this paper we investigate optimal control problems perturbed by random events.
We assume that the control has to be decided prior to observing the outcome of
the perturbed state equations. We investigate the use of probability functions in the
objective function or constraints to define optimal or feasible controls. We provide an
extension of differentiability results for probability functions in infinite dimensions
usable in this context. These results are subsequently combined with the optimal
control setting to derive a novel Pontryagin’s optimality principle.

Keywords Optimal control problems · Pontryagin maximum principle · Probabilistic
cost · Probust control · Chance constraints
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1 Introduction

Many physical or engineering systems are usually described by complex models
including inherent uncertainties related to the evolution of the system or to the envi-
ronment in which this evolution takes place. This is the case for example in finance or
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in energy management where uncertainties about the price of commodities, demand
or supply must be taken into account in the mathematical formulation.

Stochastic optimization provides a general and convenient framework for the opti-
mization of uncertain systems. In this context, it is relevant to consider optimal
solutions that are risk-averse in the sense of probability with respect to the model’s
uncertainties. This notion distinguishes from the “worst case” approach by the fact
that it aims to define a robust solution against the uncertainties for a reasonable level of
probability set by the decision-maker, while the worst-case problem, which aims for
a robust solution against all uncertainties, may admit no feasible solution (and even
when an admissible strategy exists, it is generally too pessimistic).

Optimization under probability constraints, introduced in the 1950s, is currently
featured as a predominantmodel of stochastic optimization. The traditional framework
is set up by finite dimensional decisions and systems of finite random inequalities. We
refer to the classic monograph [39] and the more recent presentation [44] for an
overview of the theory, algorithms and applications of this model. The traditional
framework is already seen as both a theoretical and a numerical challenge. Driven by
the need to handle probabilistic constraints in important engineering applications, sub-
stantial algorithmic advances have been made over the past two decades, e.g., [8, 17,
35]. These and various other popular approaches rely either on sampling approaches
that replace the underlying random vector with a discretized version or on some
reformulation of the probability function. A very popular trend is the replacement
of the probability function by a substitute, often derived from some approximation
of the indicator function inside the expectation, e.g., [25, 29]. Recent investigations
along such lines consist in replacing the probability function with it’s inverse: quantile
approximations, e.g., [37]. Traditionally however resolution methods have relied on
the observation that probability functions are a special kind of nonlinear mapping. In
principle therefore classic nonlinear programming solvers would be appropriate. This
line of investigation has also shown great potential, e.g., [14]. Although a thorough
investigation of various alternatives - trying to investigate pros and cons honestly -
has of yet still to be carried out, it would seem that classic approaches are not only
competitive, but offer advantages in obtaining feasible solutions. Now in order to put
the classic approaches to work, first-order information of probability functions is usu-
ally required. This was recognized a long time ago and different strategies pursued:
a generalistic one, of which, e.g., [45] offers a description and a more practical one
starting from specific structures, such as those arising in concrete engineering appli-
cations, e.g., [27]. Some examples of the latter investigations are [2, 3, 6] and we refer
the reader to [1] for a recent survey and overview.

The infinite-dimensional setting poses a lot of new theoretical questions on the
structure of probabilistic constraints. Some fundamental structural analysis (weak
semi-continuity, convexity, existence of solutions, stability of solutions with respect
to perturbations of the probability measure) have been carried out for infinitely many
probabilistic constraints in a Banach space and applied to PDE-constrained optimiza-
tion problems [19, 24]. By using generalized differential calculus, sub-differential or
differential formulas have been derived in the case of a single Lipschitzian random
inequality with infinite-dimensional decisions and in the case of a finite-dimensional
setting with infinite random inequality systems [8, 28].
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Recently, the interest in applying probabilistic constraints (orValue-at-Riskmodels)
in the context of optimal control setting has increased considerably (for example, [10,
15, 18, 20–22, 26, 30, 38, 43]). Optimal control problems consist in analysing the
evolution of complex systems which, under the effect of a control input, can give the
best performancewhile respecting the constraints of the system. This class of problems
arise in many technological fields (aeronautics, mobile robotics, power management,
gas transport, …).

The present work is devoted to a class of control problems with uncertainties. Let
H andU be two Hilbert spaces, let T be a given finite final time, and let (�,F,P) be a
probability space, where � represents the sample space, F is the σ -algebra of events,
and P : � → [0, 1] is a probability measure. Consider an ensemble of controlled state
equations parametrized by the random event ω on the probability space (�,F,P)

⎧
⎪⎨

⎪⎩

ẋω(t) = Axω(t) + B(ω)u(t) + E(ω) for a.e. t ∈ [0, T ],
xω(0) = x0,

u(t) ∈ U , for a.e. t ∈ [0, T ],
(1)

where U is a closed metric space, x0 is an initial data, A, and B are linear operators
(the assumptions on these operators will be made precise later). An admissible control
input u : [0, T ] → U is a measurable function assumed to be ω-independent, which
means that the states of the ensemble (the parametrized family) are driven by the same
control. The optimal control problems consists of an optimization problem governed
by the uncertain system (1) with a cost function composed of an expectation term and
a probability of success for the terminal state. The latter has the following form

P
(
�(xω(T )) ≤ 0

)
, (2)

where � : H → R is a given function. This cost function evaluates the probability
that the ensemble of controlled states verify a constraint at the final time.

The control problem may alternatively include such a probability of success as a
“target constraint” at the final time.

In the state equation (1), the uncertainty appears in both the control operator B and
the source term E . While a broader scope, including uncertainty in the operator A
and nonlinear dependencies on control and/or state in the source term, would span a
wider range of applications, the sensitivity analysis for optimization problems with
probabilistic functions relies heavily on the nature of dependency with respect to
uncertainty, even in finite-dimensional optimization scenarios. In this study, we adopt
aHilbertian framework capable of accommodating both finite and infinite-dimensional
settings. We focus on a linear case already encompassing a diverse set of compelling
problems [18]. We will use a convexity structure pertaining to uncertainty to derive
explicit optimality conditions of the control problem. Further investigation of more
general cases is slated for future research works.

The problems of designing a single ω-independent control strategy u for control-
ling an ensemble of nonlinear systems arise in many real applications. Questions of
controllability (i.e., steering the ensemble systems from an initial configuration to a
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prescribed final state) have been addressed in [9], where a criterion for controllability
has been derived for a large class of control-linear systems in finite-dimensional space
H = R

N (Ensemble version of Rashevsky-Chow theorem).
The ensemble controllability has been also considered in the context of quantum

systems (see for instance [11, 13, 42]).
The aimof thiswork is to obtain strongoptimality conditions for the control problem

with a cost functional (and with a final constraint) in probabilistic form. In the deter-
ministic setting, optimality conditions are usually derived in the form of a so-called
Pontryagin’s principle, [16, 46]. This principle states that any optimal control and its
corresponding state, satisfies a Hamiltonian system, which is a two-point boundary
value problem, plus a maximum condition of the control Hamiltonian. These neces-
sary conditions become sufficient under certain convexity conditions on the objective
and constraint functions. In presence of uncertainties, KKT-type optimality conditions
have been studied in [21, 23] for control problems with uncertainties and almost-sure
constraints. Here, we consider a different setting where the risk is defined in terms
of probability of success. The proof of Pontryagin principle relies on differentiability
properties of the probability functions. As mentioned earlier, differentiability of prob-
ability functions has received quite some attention. Results relevant for the structures
appearing in this work are [2, 3, 7, 19, 28]. However, in this work we are dealing
with an infinite dimensional “decision vector space", unlike most of the previous ref-
erences where the decision vector w.r.t. which the derivative was to be computed was
simply �n . The work [28] does present “first order" results in infinite dimensions,
but of a more abstract kind and not immediately applicaple to our setting. For this
reason, in section 3 we have undertaken the task of laying down the various pieces in
a consistently and clearly presented framework. This effectively extends the previous
investigations to the infinite dimensional setting, all while providing easy to verify
conditions ensuring the applicability of the results.

The paper is organized as follows. The control problem is described in Sect. 2
where some concrete examples are presented. Section 3 is devoted to the analysis of
differential calculus of probability functions. In Sect. 4, we study optimality conditions
for some control problems governed by ordinary differential equations or by Partial
differential equations. Finally, we discuss a simple numerical example.

2 Formulation of the Problem

Let us start by establishing some notations that will be used in this paper. For any
measure space (S, �;μ), a Banach space (X , ‖ · ‖X ), and r ∈ [1,+∞], the Bochner
space Lr (S; X) consists of all measurable functions y : S −→ X whose norm

‖y‖Lr (S;X) :=

⎧
⎪⎨

⎪⎩

(∫

O
‖y(s)‖rX dμ(s)

) 1
r

if r < ∞,

ess sups∈S‖y(s)‖X if r = ∞

is finite, and where functions which agree μ-almost everywhere are identified.
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Throughout the paper, we assume that we are given a complete probability space
(�,F,P). For any X -valued random variable y : � −→ X that is Bochner integrable,
the expectation of y, denoted by E[y], is defined by

E[y] =
∫

�

y(ω)dP(ω).

It is worth noting thatE[y] defines an element of X , whenever y : � −→ X is Bochner
integrable.

A real function L : X×� −→ R is said to be Carathéodory if L(x, ·) is measurable
with respect to (w.r.t.) the variableω for every x ∈ X and if L(·, ω) is continuous w.r.t.
x for every ω ∈ �. For any measurable function, y : � −→ X , and any Carathéodory
function L : X × � −→ R, the composition ω �−→ L(y(ω), ω) is also a measurable
function.

Let T > 0 be a fixed final time, we shall denote by C([0, T ]; X) the Banach space
that consists of all continuous functions y : [0, T ] −→ X . This space is endowed with
the usual norm

‖y‖C([0,T ];X) := max
t∈[0,T ] ‖y(t)‖X .

Finally, for any Banach spaces X and Y , we shall denote L(X ,Y ) the space of linear
continuous operators from X into Y . This space will be simply denoted by L(X)when
Y = X . The dual of X will be denoted X ′.

Let (H, 〈·, ·〉H) and (U, 〈·, ·〉U) be two Hilbert spaces, which are accordingly iden-
tified with their duals. Let U be a closed convex subset of U and consider the set of
square integrable functions u : [0, T ] −→ U satisfying u(s) ∈ U for almost every
(a.e.) s ∈ [0, T ]

U := {u ∈ L2([0, T ];U) and u(s) ∈ U a.e. on [0, T ]}.

In the sequel U will be referred to as the set of admissible control functions.
For every parameter z ∈ R

n , we consider the differential equation

Ẋz(t) = AXz(t) + B(z)u(t) + E(t, z), Xz(0) = x0, (3)

where the control input u belongs to U and x0 ∈ H. Here, A : D(A) ⊂ H −→ H is
a linear (unbounded) operator generating a strongly continuous analytic semi-group,
denoted eAt , on the Hilbert space H. The mapping B(z) : U −→ [D(A)]′ is a linear
operator, and E : [0, T ] × R

n �−→ H is a given source term.
In the sequel, we will assume thatH andU are either of finite or infinite dimension.

In both cases, the operator A and B and the source term E are supposed to satisfy
some standing assumptions (that will be made precise later) in order to guarantee, for
every u ∈ L2([0, T ];U) and for every z ∈ R

n , the existence and well-posedness of
a solution Xu

z ∈ C([0, T ];H) to the state equation (3). This solution is considered in
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the mild sense, meaning that Xu
z (0) = x0 and, for t ∈ [0, T ],

Xu
z (t) = eAt x0 +

∫ t

0
eA(t−s)B(z)u(s) ds +

∫ t

0
eA(t−s)E(s, z) ds. (4)

We introduce the mapping G : L2([0, T ];U) × R
n −→ C([0, T ];H) defined, for

u ∈ z ∈ R
n , by

G(u, z) := eA·x0 +
∫ ·

0
eA(·−s)B(z)u(s) ds +

∫ ·

0
eA(·−s)E(s, z) ds.

With this notation, the solution Xu
z is given by Xu

z = G(u, z).
Now, Let ξ be a given n-dimensional random variable in the probability space

(�,F,P), and consider the controlled system subject to uncertainties:

ẋω(t) = Axω(t) + B(ξ(ω))u(t) + E(t, ξ(ω)), xω(0) = x0. (6)

The state equation associated with a control u ∈ L2([0, T ];H) is then given by
xuω = G(u, ξ(ω)), for every ω ∈ �. We will also use the notation xu for the bundle of
trajectories {xuω | ω ∈ �}.

In the sequel, we will assume that the uncertainty enters in the operator B and the
source term E in a structuredmanner. In particular, we assume that B and E are affine
with respect to the variable z

B(z) = B0 + B1(z) and E(t, z) = E0(t) + E1(t, z), (7)

where E1(t, ·) and B1(·) are linear maps. Hereafter, we outline the assumptions that
will be considered throughout the paper concerning the mappings B and E as well as
the operator A.

(HS)

(a) If H = R
d and U = R

r are finite dimensional spaces : A is a d × d-matrix. The
mapping B0 is a real d×r matrix. Moreover, the application z �−→ B1(z) is linear
from R

n into Rd×r .
(b) If H and U are infinite dimensional spaces. We assume that 0 belongs to the resol-

vent of A. Then the fractional powers (−A)γ , 0 < γ < 1, are well defined, and
we have ‖(−A)γ eAt‖L(H) ≤ Cγ t−γ for t > 0 (see [36, p. 74]), where Cγ > 0
denotes a positive constant. For every z ∈ R

n , the mapping B(z) : U → [D(A)]′ is
a linear continuous operator,1 such that A−ᾱB(z) ∈ L(U,H) for some ᾱ ∈ [0, 1

2 [:

‖A−ᾱB(z)‖L(U,H) = ‖B∗(z)(A∗)−ᾱ‖L(H,U) ≤ cᾱ(1 + ‖z‖), (8)

for some cᾱ > 0, and where 〈B(z)u, y〉H = 〈u, B∗(z)y〉U (B∗ being theH-adjoint
operator). Moreover, the mapping z �−→ B1(z) is linear and continuous on R

n .

1 B(z) may be unbounded as an operator from U to H
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We assume also that both components B0 and B1(z) also independently verify the
same estimate (8).

(c) The function E : [0, T ] × R
n → H is continuous. For every t ∈ [0, T ], the

mapping E1(t, ·) is a linear continuous operator from R
n into H.

Let us emphasize that by requiring, in (HS), that ᾱ belongs to [0, 1
2 [, we ensure that

for every z ∈ R
n and for every control input u ∈ U, equation (3) admits a unique mild

solution G(u, z) ∈ L2([0, T ];H) ∩ C([0, T ]; H) (see [33, Chapter 3]).
Now, consider a terminal cost function � : H → R that satisfies the following

assumption.

(H�) � is convex and continuously Fréchet differentiable on H into R

There exists C� > 0 such that

|�(x)|≤C�(1+‖x‖m
H
) and ‖∇�(x)‖≤C�(1 + ‖x‖m−1

H
) ∀x ∈ H,

for some m ≥ 1.

Consider also a distributed cost function 
 : [0, T ] × H × U × � → R that is a
Carathéodory function satisfying the following requirement

(H
) For every(t, x, u) ∈ [0, T ] × H × U, the function 
(t, x, u, ·)
is measurable on �.

For every ω ∈ �, 
(·, ·, ·, ω) is continuous on [0, T ] × H × U.

For every (t, ω) ∈ [0, T ] × �, 
(t, ·, ·, ω)

is continuously Fréchet differentiable on H × U.

Moreover, there exists C
 : � → R+ such that

|
(t, x, u, ω)| ≤ C
(ω)(1 + ‖x‖m
H
)(1 + ‖u‖2

U
),

‖
′
x (t, x, u, z)‖H + ‖
′

u(t, x, u, ω)‖U
≤ C
(ω)(1 + ‖x‖m−1

H
)(1 + ‖u‖U),

where the real function C
:�→R+ is Bochner integrable (i.e., E[C
]<∞).

The control problem aims at determining a control law u(·) ∈ U that optimizes a
certain cost function. This cost function encompasses a distributed cost over the time
interval [0, T ] as well as the probability of a specific event occurring at the final time T
and is defined defined over a set of trajectories parametrized by the elementary events
ω ∈ �.

Maximize
{
E

[ ∫ T

0

(t, xu(t), u(t), ·) dt

]
+ P

[
�(xu(T )) ≤ 0

]
, u ∈ U

}
. (9)

In the sequel problem (9) will be referred to as (P0). By the control re-parametrization,
the control problem can be also formulated as

Maximize
{
E

[ ∫ T

0

(t,G(u, ξ)(t), u(t), ·) dt

]
+ P

[
�(G(u, ξ)(T )) ≤ 0

]
, u ∈ U

}
.
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The form of the cost function provides a trade-off between an average cost and a
probability cost. A simple example for the function 
 corresponds to the case where

 = 0. In this case, the cost consists solely of the probability term. A second simple
example corresponds to 
(t, x, u, ω) = δ

2‖u‖2. In this case, the control problem is
simply

Maximize
{ δ

2

∫ T

0
‖u(t)‖2 dt + P

[
�(G(u, ξ)(T )) ≤ 0

]
, u ∈ U

}
,

where δ > 0 is a scaling parameter between the probability of the final event and the
cost associated with the control law u.

The main focus in this paper is to derive the optimality conditions of (9) in the form
of Pontryagin’s principle. As we will see the main difficulty in this problem comes
from the probabilistic term, and more precisely from the differentiability of this term
with respect to the state and control variables. The differentiability tools that will be
developed in this paper also allow us to consider problemswith a probability constraint

Maximize
{
E

[ ∫ T

0

(t,G(u, ξ)(t), u(t), ·) dt

]
, u ∈ U and

P
[
�(G(u, ξ(T )) ≤ 0

] ≥ p0
}
, (10)

where the level of success p0 is a given number in [0, 1]. This chance-constrained
problem will be referred to as (P1). A discussion on the optimality conditions for this
problem will also be given in this paper.

Before, we start the discussion about the optimality conditions, let us mention that
the setting described in this section includes finite-dimensional control systems gov-
erned by linear equations (in this case, H = R

d and U = R
r for some d, r ≥ 1, A

is a d × d matrix and B is a d × r matrix). Additionally, our framework accommo-
dates some systems governed by partial differential equations (PDEs). Here are some
examples of PDEs where assumption (HS) holds.

Example 2.1 (Heat equation with Neumann Boundary control) Let O be an open
bounded subset of RN (for N ≥ 1) of class C2,β , for some β > 0 (that is, the
boundary ∂O ofO is an (N − 1)-dimensional manifold of class C2,β such thatO lies
on one side of ∂O). Consider the parabolic system where the control input acts in the
Neumann boundary condition:

⎧
⎪⎪⎨

⎪⎪⎩

∂tx(t) = �x(t) + ax(t) + E(t, z) in (0, T ) × O,

∂x(t)
∂ν

∣
∣
∣
∂O

= b(z)u(t) in (0, T ) × ∂O,

x(0) = x0 in O,

(11)

where a > 0 is a constant, b is an affine function defined onRn by b(z) = b0+
n∑

i=1

bi zi ,

with b0, · · · bn are given constants. The function E : [0, T ] × R → L2(O) is defined
as E(t, z) = E0(t)+

∑

i

Ei (t)zi with E0, · · · , En are given functions in L2(O). The
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initial condition is supposed to be a given function x0 ∈ L2(O). We assume that a is
not an eigenvalue of the Laplacian operator.

To put this example in the abstract setting, we introduce

Ay = �y + ay, D(A) =
{

y ∈ H2(O),
∂ y

∂ν

∣
∣
∣
∂O

= 0

}

.

We select the spaces and operator B as follows: H = L2(O),U = L2(∂O) and B is
defined by

B(z) : U → [D(A)]′, B(z)u = −b(z)ANu, (12)

where N is the Neumann operator defined as

N f = g −→ �g + ag = 0 in O,
∂g

∂ν

∣
∣
∣
∂O

= f .

In the light of elliptic equations theory (see [34, p. 187]), the linear operator N is
well defined and is continuous as

N : U → H
3
2 (O) and more generally N : Hs(∂O) → Hs+ 3

2 (O), s ∈ R.

From [32, p. 196] and [33, p. 364], B satisfies assumption (HS)(a) with α = 1
4 + ε

for ε > 0.

Example 2.2 (A heat equation with pointwise control - dimension 1) Consider now the
casewhen the control input is concentrated at fixed space points s1, · · · , sn ∈ O, where
O is an open interval of R. Let Here δ(· − si ) be the Dirac δ-function concentrated at
si . The controlled system is

⎧
⎪⎨

⎪⎩

∂tx(t) = �x(t) + ax(t) + ∑n
i=1 zi ui (t)δ(· − si ) in (0, T ) × O,

x(t)|∂O = 0 in (0, T ) × ∂O,

x(0) = x0 in O.

(13)

In this new setting, we select the spaces H = L2(O) and U = R
n . The operator

A : D(A) → H is defined as

Ay = �y + ay, D(A) = H2(O) ∩ H1
0 (O).

The constant a > 0 is assumed not to be an eigenvalue of the Laplacian. We define the

operator B(z) =
n∑

i

ziδ(·−si ). From [33, p. 365], the operator B satisfies assumption

(HS)(a) with α = 1
4 + ε for ε > 0.

In this example and the previous one, the Laplacian operator can be replaced by
a more general second-order uniformly elliptic operator with smooth variable coeffi-
cients as in [33, 40, 41].
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3 Values and Derivatives of Probability Functions

In this section, we shall derive a representation as a spheric integral of probability func-
tions and their derivative associated with a single random inequality. More precisely,
we introduce the probability function

ϕ (x) := P [g (x, ξ) ≤ 0] , (14)

where g : X × R
n → R, X is a Banach space and ξ is an n-dimensional random

vector, i.e., ξ : � → �n a measurable function. In this work we will focus on the
situation wherein ξ will be elliptically symmetric, which is a large class, also offering
a concise presentation. Extensions to more general, almost arbitrary laws could likely
be carried out along the lines of the investigation in [?].

3.1 Elliptical distributions

We recall the definition of an elliptical distribution:

Definition 3.1 An n-dimensional random distribution is called elliptical, if it admits a
density of the form

f (z) = c · k
(
(z − μ)T �−1 (z − μ)

) (
z ∈ R

n) ,

where c is some normalizing constant,μ ∈ R
n ,� is a n×n positive definitematrix and

k : R+ → R+ is the generator, i.e.,
∫ ∞

0
r

n
2 k(r)dt < ∞. We shall write E (μ,�,k)

for an elliptical distribution with parameters μ and �.

We note thatμ is the expectation of the distribution (if it exists) and� is proportional to
the covariancematrix of the distribution (if it exists). The class of elliptical distributions
includes many prominent multivariate distributions such as Gaussian, Student or t-,
symmetric Laplace or logistics distributions. Moreover, the following presentation
of values and gradients for the probability function (14) can be extended to related
non-elliptical distributions like log-normal, truncated Gaussian or Gaussian mixture
upon performing a corresponding transformation of the inequality g. For example, a
multivariate Gaussian distribution with expectation μ and covariance matrix � has an
elliptical distribution E (μ,�,k) with generator k (t) := e−t/2. We shall then use the
common notationN (μ,�) rather than E (μ,�,k). It is well known (e.g., [4, eq. (11)
and (13)]) that the probability of an elliptical random vector ξ ∼ E (μ,�,k) to take
values in a Lebesgue-measurable set M can be represented as the spherical integral

P (ξ ∈ M) =
∫

w∈Sn−1

ν̃ ({r ≥ 0|μ + r Lw ∈ M}) dνU (w) ,

where L is a Cholesky factor of � (i.e., � = LT ), νU is the uniform distribution on
the unit sphere Sn−1 of Rn and ν̃ is a one-dimensional probability distribution with
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density

f̃ (t) := c̃ · tn−1k
(
t2

)
(t ≥ 0) , (15)

with another normalizing constant c̃. For instance, if ξ ∼ N (μ,�), then

f̃ (t) = c̃ · tn−1e−t2/2 (t ≥ 0) ,

which is the density of the Chi-distribution with n degrees of freedom. Applying the
spherical representation above to (14), where g is supposed to be Lebesguemeasurable
in its second argument, we infer that

ϕ (x) =
∫

w∈Sn−1

ν̃ ({r ≥ 0|g (x, μ + r Lw) ≤ 0}) dνU (w) . (16)

3.2 Continuity of the Probability Function and Representation as a Spherical
Integral

As an application of (16), we obtain the following result on the probability function:

Proposition 3.1 In (14), let g be a continuous function which in addition is convex in
its second variable. Let ξ have an elliptic distribution according to ξ ∼ E (μ,�,k).
Assume that g (x̄, μ) < 0 for some given x̄ ∈ X. Then, the probability function in (14)
is continuous at x̄ and has the representation

ϕ (x̄) =
∫

w∈Sn−1

e (x̄, w) dνU (w) , (17)

where the radial probability function e : X × R
n → R is defined as

e (x, w) :=
{
1 i f g (x, μ + r Lw) < 0 ∀r ≥ 0
F̃ (ρ (x, w)) else

via the cumulative distribution

F̃ (t) =
∫ t

−∞
f̃ (s) ds, (18)

associated with the density f̃ from (15) and the radius function ρ : X × R
n → R̄

defined by

ρ (x, w) := sup
r≥0

{r ≥ 0|g (x, μ + r Lw) ≤ 0} .
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Proof Whenever (x, w) ∈ X × R
n are such that g (x, μ) < 0 and ρ (x, w) < ∞,

then, by convexity in the second variable of the continuous function g, ρ (x, w) is the
unique solution in r ≥ 0 of the equation g (x, μ + r Lw) = 0 and it holds that

{r ≥ 0|g (x, μ + r Lw) ≤ 0} = [0, ρ (x, w)] .

On the other hand, if g (x, μ) < 0 and ρ (x, w) = ∞, then

{r ≥ 0|g (x, μ + r Lw) ≤ 0} = R+.

Since in (15), the density f̃ of the probability measure ν̃ is nonzero only on R+, it
follows that

ν̃ ({r ≥ 0|g (x, μ + r Lw) ≤ 0}) =
{
F̃ (ρ (x, w)) i f ρ (x, w) < ∞
1 if ρ (x, w) = ∞ .

Combining this with (16), we arrive at the representation (17).
It has been shown in [2, Corollary 3.4] that the radial probability function e is

continuous at all (x, w) ∈ X × S
n−1 with g(x, μ) < 0. While this result and the

auxiliary result it relies on ([2, Lemma 3.3]), were formulated in a setting where X is
finite-dimensional and ξ has a Gaussian distribution, their proofs do nowhere exploit
these properties and, hence, remain valid in our framework of X being a Banach space
and ξ having a general elliptical distribution. Now, in order to verify the continuity of
ϕ at x̄ , consider a sequence xk → x̄ . By continuity of g, we have that g(xk, μ) < 0 for
k sufficiently large. Therefore, the assumption of this lemma is satisfied at xk as well
and, hence, the representation (17) holds true with x̄ replaced by xk as well. From the
stated continuity of e, it follows that e(xk, w) → e(x̄, w) for all w ∈ S

n−1. Moreover
e(xk, w) ≤ 1 for all k andw ∈ S

n−1. Since the dominating function 1 is integrablewith
respect to the uniform measure νU on the sphere, Lebesgue’s dominated convergence
theorem yields the asserted continuity of ϕ:

lim
xk→x̄

ϕ(xk) = lim
xk→x̄

∫

w∈Sn−1

e (xk, w) dνU (w)

=
∫

w∈Sn−1

(

lim
xk→x̄

e (xk, w)

)

dνU (w) = ϕ(x̄).

��
For a numerical approximation of ϕ (x̄), one would replace the spherical integral in
(17) by a finite sum

ϕ (x̄) = K−1
K∑

k=1

e
(
x̄, w(k)

)
,
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where
{
w(k)

}K
k=1 is a sample of the uniform distribution on the sphere S

n−1. We
conclude this section with the remark that the additional condition g (x̄, μ) < 0 is not
very restrictive. Indeed, as shown in [2, Prop. 3.11], it will always hold true if there
exists at all some z ∈ R

n with g (x̄, z) < 0 (Slater point) and if, in addition, the value
ϕ (x̄) of the probability function in x̄ is not smaller than 0.5 (note that one is usually
interested in probabilities close to one). In particular, according to Proposition 3.1, the
condition g (x̄, μ) < 0 already implies that the probability function ϕ is (strongly)
continuous. However, it does not have to be differentiable yet, despite the fact that the
function g is supposed to be so [2, Prop. 2.2].

3.3 Differentiability of the Radial Probability Function

A crucial step in showing that ϕ is continuously differentiable consists in verifying the
same property for the radial probability function e with respect to its first argument.
We recall that the matrix L occuring in (16) is regular as a root of the positive definite
matrix �.

Lemma 3.1 In (14), let g be a continuously differentiable function which in addition
is convex in its second variable. Let ξ have an elliptic distribution according to ξ ∼
E (μ,�,k) with continuous generator k. At some (x̄, w̄) ∈ X × S

n−1, assume that
g (x̄, μ) < 0 andρ (x̄, w̄) < ∞. Then, the radial probability function e is continuously
differentiable with respect to its first argument in a neighbourhood of (x̄, w̄) and it
holds that

Dxe (x, w) · h = − f̃ (ρ (x, w))

Dzg (x, μ + ρ (x, w) Lw) (Lw)
Dxg (x, μ + ρ (x, w) Lw)

(19)

for (x, w) locally around (x̄, w̄).

Proof According to [2, Lemma 3.1], the continuous differentiability of g and its con-
vexity (in the second argument) imply the inequality

Dzg (x̄, μ + r Lw̄) (Lw̄) ≥ −g (x̄, μ)

r
> 0 (20)

for the unique r > 0 satisfying the equation g (x̄, μ + r Lw̄) = 0 (i.e., r = ρ (x̄, w̄)).
The inequality has been established in the reference for the centered case μ = 0, but
is evident for arbitrary μ as well. Now, (20) allows one to apply the implicit function
theorem in order to derive that ρ is continuously differentiable in a neighbourhood of
(x̄, w̄) with derivative

Dxρ (x, w) = − 1

Dzg (x, μ + ρ (x, w) Lw) (Lw)
Dxg (x, μ + ρ (x, w) Lw)

(21)
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for (x, w) locally around (x̄, w̄). By definition, e in Proposition 3.1 has the represen-
tation e = F̃ ◦ρ locally around (x̄, w̄). Since k is a continuous generator, the function
f̃ in (15) is continuous too and, hence, F̃ is continuously differentiable with F̃ ′ = f̃
by (18). It follows along with (21 ) that e is continuously differentiable with respect
to its first argument in a neighbourhood of (x̄, w̄) with derivative (19). ��

The analogous result of Lemma 3.1 in the alternative case of ρ (x̄, w̄) = ∞ is more
delicate to handle. Here, one has to impose an additional growth condition.

Definition 3.2 In (14) let g be continuously differentiable and ξ ∼ E (μ,�,k). We
say that the function g satisfies a distribution-adapted growth condition at x̄ ∈ X if
there exists a non-decreasing function ψ : R+ → R+ and a constant c > 0 such that
the following hold true:

limr→∞ rnk
(
r2

)
ψ (δr) = 0 ∀δ ≥ 0 (22a)

‖Dxg (x, z)‖X ′ ≤ cψ (‖z‖) ∀x : ‖x − x̄‖X ≤ c−1 ∀z : ‖z‖ ≥ c. (22b)

Observe that the growth condition (22b) requires the inequality to hold with possibly
large modulus and for possibly large norm of z in a sufficiently small neighbourhood
of x̄ .

Example 3.1 Assume that ξ ∼ N (μ,�). Then, k (r) = e−r/2 and condition (22b)
reduces to

lim
r→∞ rne−r2/2ψ (δr) = 0 ∀δ ≥ 0.

A possible candidate for ψ is then ψ (r) := er for r ≥ 0 which is non-decreasing and
satisfies

lim
r→∞ rne−r2/2ψ (δr) = lim

r→∞ rneδr−r2/2 = 0 ∀δ ≥ 0.

Hence, in the Gaussian case, it is sufficient to verify the exponential growth condition

‖Dxg (x, z)‖X ′ ≤ ce‖z‖ ∀x : ‖x − x̄‖X ≤ c−1 ∀z : ‖z‖ ≥ c.

This growth condition allows us to formulate the following technical result:

Lemma 3.2 In (14), let g be a continuously differentiable function which in addition
is convex in its second variable. Let ξ have an elliptic distribution according to ξ ∼
E (μ,�,k) with continuous generator k. At some (x̄, w̄) ∈ X × S

n−1, assume that
g (x̄, μ) < 0 and ρ (x̄, w̄) = ∞. Suppose, moreover, that g satisfies a distribution-
adapted growth condition at x̄ . Then, for every sequence {(xk, wk)} ⊆ X × R

n with
(xk, wk) → (x̄, w̄) and ρ (xk, wk) < ∞ it holds that Dxe(xk, wk) → 0.
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Proof Observe first that g (xk, μ) < 0 for k sufficiently large and ρ (xk, wk) < ∞
by assumption. Hence, we may apply Lemma 3.1 to the points (xk, wk) rather than
(x̄, w̄) and verify that not only Dxe(xk, wk) exists and calculates as

Dxe (xk , wk) = − f̃ (ρ (xk , wk))

Dzg (xk , μ + ρ (xk , wk) Lwk) (Lwk)
Dxg (xk , μ + ρ (xk , wk) Lwk) ,

(23)

but also the relation corresponding to (20) holds true:

Dzg (xk, μ + ρ(xk, wk)Lwk) (Lwk) ≥ − g (xk, μ)

ρ(xk, wk)
> 0. (24)

By continuity, g (xk, μ) < g (x̄, μ) /2 < 0 for large enough k and it follows from
(24) that

Dzg (xk, μ + ρ(xk, wk)Lwk) (Lwk) ≥ |g (x̄, μ) |
2ρ(xk, wk)

. (25)

Exploiting the facts that ρ(xk, wk) < ∞, xk →k x̄ and ρ(x̄, w̄) = ∞, we may refer
to [2, Lemma 3.3] in order to derive that ρ(xk, wk) → ∞. Then, with L regular
and ‖wk‖ ≥ 1/2 for k large enough, it follows that ‖μ + ρ (xk, wk) Lwk‖ → ∞.
Consequently,

‖xk − x̄‖X ≤ c−1, ‖μ + ρ (xk, wk) Lwk‖ ≥ c

hold true for the constant c from (22b) and all k large enough. This allows us to
combine (23), (25) and (22b), in order to verify that, for k large enough,

‖Dxe(xk, wk)‖X ′ ≤ 2c
f̃ (ρ (xk, wk)) ρ (xk, wk)

|g(x̄, μ)| ψ(‖μ + ρ (xk, wk) Lwk‖).

From ‖ρ (xk, wk) Lwk‖ → ∞ and ‖wk‖ ≤ 2 for k large enough infer that

‖μ + ρ (xk, wk) Lwk‖ ≤ 2ρ (xk, wk) ‖Lwk‖ ≤ 4ρ (xk, wk) ‖L‖

for k large enough. Therefore, we may exploit (15) along with the fact that ψ is
required to be non-decreasing, in order to verify that, for k large enough,

‖Dxe(xk, wk)‖X ′ ≤ 2cc̃
ρn (xk, wk)k(ρ2 (xk, wk))

|g(x̄, μ)| ψ(4 ‖L‖ ρ (xk, wk)).

Since ρ(xk, wk) → ∞, the right-hand side of the inequality above tends to zero thanks
to (22b) and the assertion of the lemma follows. ��

We are now in a position to formulate the complementary result to Lemma 3.1:
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Lemma 3.3 Under the assumptions of Lemma 3.2, e is differentiable with respect to
its first argument at (x̄, w̄) and it holds that Dxe(x̄, w̄) = 0.

Proof Due to ρ (x̄, w̄) = ∞, the definition of e implies that e(x̄, w̄) = 1. We show
first that e is differentiable with respect to its first argument at the point (x̄, w̄) itself
with Dxe(x̄, w̄) = 0. Indeed, should this not be the case, then we find ε > 0 and a
sequence xk → x̄ such that

e(xk, w̄) − e(x̄, w̄)

‖xk − x̄‖X < −ε ∀k, (26)

since e(x̄, w̄) = 1 is amaximum for the probability function e. This entails e(xk, w̄) <

1 and, hence, ρ(xk, w) < ∞ for all k. By continuity of g, our assumption g(x̄, μ) < 0
implies that g(x, μ) < 0 for all x in some δ-ball Bδ(x̄) around x̄ . For k large enough,
the whole line segment [xk, x̄] is contained in the ball Bδ(x̄). Fix an arbitrary such k
and define

α := inf {τ ≥ 0 | e(xk + τ(x̄ − xk), w̄) = 1} .

Clearly, α ∈ [0, 1]. As stated in the proof of Proposition 3.1, the function e is contin-
uous at all (x, w) ∈ X × S

n−1 with g(x, μ) < 0. Hence, it is continuous at (x, w̄) for
all x ∈ [xk, x̄]. Along with e(xk, w̄) < 1, this entails that α > 0 and

e(xk + α(x̄ − xk), w̄) = 1. (27)

Therefore, the interval (0, α) is nonempty and

g(xk + τ(x̄ − xk), μ) < 0, e(xk + τ(x̄ − xk), w̄) < 1 ∀τ ∈ (0, α). (28)

The second relation implies by definition of e that ρ(xk + τ(x̄ − xk), w̄) < ∞ for
all τ ∈ (0, α). Along with the first relation above, this entails that for all τ ∈ (0, α)

the point xk + τ(x̄ − xk) satisfies the same assumptions as did the point x̄ in the
proof of Lemma 3.1. We may thus conclude that the function e(·, w) is continuously
differentiable at the points xk +τ(x̄− xk) for all τ ∈ (0, α). Since it is also continuous
at these points even for the closed interval τ ∈ [0, α] (by continuity of e at (x, w) for
all x ∈ [xk, x̄]), we infer that the real function τ �→ e(xk +τ(x̄−xk), w̄) is continuous
on τ ∈ [0, α] and continuously differentiable on (0, α). Now, the mean value theorem
allows us to identify some τk ∈ [0, α] (in particular, τk ≤ 1) such that, along with
(27),

Dxe(xk + τk(x̄ − xk), w̄)(x̄ − xk) = e(xk + α(x̄ − xk), w̄) − e(xk, w̄)

α

= 1 − e(xk, w̄)

α
.
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Recalling that e(x̄, w̄) = 1, we derive from (26) that

‖Dxe(xk + τk(x̄ − xk), w̄)‖X ′ ‖x̄ − xk‖X ≥ ε

α
‖x̄ − xk‖ ≥ ε ‖x̄ − xk‖ .

Since k had been fixed arbitrarily, we have thus shown that, for all k sufficiently large,

‖Dxe(yk, w̄)‖ ≥ ε > 0 (yk := xk + τk(x̄ − xk)). (29)

From ρ(yk, w̄) < ∞ and yk →k x̄ due to τk ≤ 1, we infer that the sequence
(yk, w̄) satisfies the assumptions of the sequence (xk, wk) in Lemma 3.2. Accordingly,
we derive the contradiction Dxe(yk, w̄) → 0 with (29). This shows our assertion
Dxe(x̄, w̄) = 0. ��
Corollary 3.2 In (14), let g be a continuously differentiable function which in addition
is convex in its second variable. Let ξ have an elliptic distribution according to ξ ∼
E (μ,�,k) with continuous generator k. At some x̄ ∈ X, assume that g (x̄, μ) < 0
and that g satisfies a distribution-adapted growth condition at x̄ . Then, there exists a
neighbourhood V of x̄ such that e is differentiable with respect to its first argument
in V × S

n−1 with the respective derivatives Dxe indicated in Lemmas 3.1 and 3.3.
Moreover, Dxe is continuous on V × S

n−1.

Proof Observe first that the assumptions of Lemmas 3.1 and 3.3 are stable, i.e., the
conditions g(x̄, μ) < 0 and the distribution-adapted growth condition at x̄ pertain to
hold in a neighbourhood V of x̄ . Hence, the differentiability of ewith respect to its first
argument in V× S

n−1 follows from these two Lemmas along with the corresponding
formulae for Dxe. We check the continuity of the derivative Dxe at a point (x ′, w′) in
V×S

n−1. This is clear fromLemma 3.1 in case of ρ
(
x ′, w′) < ∞ because then Dxe is

continuous locally around (x ′, w′). Otherwise,ρ
(
x ′, w′) = ∞. Lemma3.3 entails that

Dxe(x ′, w′) = 0. If continuity of Dxe at (x ′, w′) failed, then there would exist some
ε > 0 alongwith a sequence (xk, wk) → (

x ′, w′) such that ‖Dxe(xk, wk)‖ ≥ ε. Then,
xk ∈ V for k large enough and ρ(xk, wk) < ∞, because otherwise Dxe(xk, wk) = 0
by Lemma 3.3. Now, Lemma 3.2 yields the contradiction Dxe(xk, wk) → 0. ��

3.4 Differentiability of the Probability Function and Representation of the
Derivative as a Spherical Integral

With the preliminary work laid down, we can now present our main result providing
insights into the differentiability of the studied probability function. Several subse-
quent corollaries will allow us to explore various further practical settings.

Theorem 3.3 In (14), let g be a continuously differentiable function which in addition
is convex in its second variable. Let ξ have an elliptic distribution according to ξ ∼
E (μ,�,k) with continuous generator k. Assume that g (x̄, μ) < 0 for some given
x̄ ∈ X and that g satisfies a distribution-adapted growth condition at x̄ . Then, ϕ is
continuously differentiable in a neighbourhood of x̄ and its derivative applied to an
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arbitrary h ∈ X is given by

Dϕ (x̄) (h) = −
∫

{
w∈Sn−1|ρ(x̄,w)<∞}

f̃ (ρ (x̄, w))

Dzg (x̄, μ + ρ (x̄, w) Lw) (Lw)

Dxg (x̄, μ + ρ (x̄, w) Lw) (h) dνU (w) (30)

with f̃ from (15).

Proof Let V be some convex neighbourhood of x̄ such that the (open) conditions of
the Theorem persist to hold, i.e., g(x, μ) < 0 and g satisfies a distribution-adapted
growth condition at x for all x ∈ V. By the continuity of Dxe on V × S

n−1 (see
Corollary 3.2), the maximum K := max

w∈Sn−1
‖Dxe(x̄, w)‖ is attained and, moreover,

after possibly shrinking V,

max
w∈Sn−1

‖Dxe(x, w)‖ ≤ K + 1 ∀x ∈ V.

We show first that ϕ is differentiable at x̄ . Observe that the operator P defined by

P(h) :=
∫

w∈Sn−1

Dxe(x̄, w)(h) dνU (w) (h ∈ X) (31)

is evidently linear and also continuous due to |P(h)| ≤ K ‖h‖ for all h ∈ X . We
claim that Dϕ (x̄) = P which at the same time would establish the asserted derivative
formula thanks to Lemmata 3.1 and 3.3. To proceed, let xk → x̄ be an arbitrary
sequence and define the sequence of functions αk : Sn−1 → R as

αk(w) := e(xk, w) − e(x̄, w) − Dxe(x̄, w)(xk − x̄)

‖xk − x̄‖ (w ∈ S
n−1).

Then, αk(w) → 0 for all w ∈ S
n−1 by Corollary 3.2. Clearly, for k sufficiently large,

|Dxe(x̄, w)(xk − x̄)|
‖xk − x̄‖ ≤ K ∀w ∈ S

n−1.

On the other hand, the Mean-Value-Theorem yields the existence of a sequence x̃k ∈
[xk, x̄] ⊆ V (by convexity of V) such that

|e(xk, w) − e(x̄, w)|
‖xk − x̄‖ = |Dxe(x̃k)(xk − x̄)|

‖xk − x̄‖ ≤ K + 1 ∀w ∈ S
n−1.

Altogether, this yields that |αk | ≤ 2K + 1 for all w ∈ S
n−1. Since constant functions

are integrable with respect to the uniform distribution on the sphere, we may apply
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Lebesgue’s dominated convergence Theorem in order to derive along with Proposition
3.1 that

0 =
∫

w∈Sn−1

(

lim
k→∞ αk(w)

)

dνU (w) = lim
k→∞

∫

w∈Sn−1

αk(w) dνU (w)

= lim
k→∞

ϕ(xk) − ϕ(x̄) − P(xk − x̄)

‖xk − x̄‖ .

This shows that ϕ is differentiable at x̄ with derivative Dϕ (x̄) = P . From the rep-
resentation of P the asserted derivative formula follows from Lemmas 3.1 and 3.3.
Moreover, since the assumptions of the Theorem persist to hold for all x ∈ V, we
conclude from (31) that

Dϕ(x)(h) =
∫

w∈Sn−1

Dxe(x, w)(h) dνU (w) ∀x ∈ V ∀h ∈ X . (32)

It remains to verify the continuous differentiability of ϕ in a neighbourhood of x̄ . To
this aim, consider an arbitrary sequence xk → x̄ and define the function

β(x, w) := ‖Dxe(x, w) − Dxe(x̄, w)‖ (x ∈ V; w ∈ S
n−1).

Then, β is continuous, thanks to Corollary 3.2 and it holds that β(x̄, w) = 0 for all
w ∈ S

n−1. Now, defining the maximum function

βmax(x) := max
w∈Sn−1

β(x, w) (x ∈ V),

we observe that βmax is continuous and βmax(x̄) = 0. Consequently, for some arbi-
trarily given ε > 0 one has that βmax(xk) ≤ ε for k large enough. It follows from (32)
that

|Dϕ(xk)(h) − Dϕ(x̄)(h)| ≤ ‖h‖
∫

w∈Sn−1

β(xk, w) dνU (w)

≤ ‖h‖βmax(xk) ≤ ‖h‖ ε ∀h ∈ X .

Hence, ‖Dϕ(xk) − Dϕ(x̄)‖ ≤ ε for k large enough and, because ε had been chosen
arbitrarily, we arrive at Dϕ(xk) → Dϕ(x̄). ��
Corollary 3.4 The statement of Theorem 3.3 remains true if the growth condition is
replaced by the assumption that the set {z ∈ �n : g(x̄, z) ≤ 0} is compact.
Proof First we observe that the multifunction M(x) := {z ∈ �n : g(x, z) ≤ 0} is
upper semicontinuous as a consequence of our assumptions [12, Theorem3.2.1]. Then,
with M(x̄) required to be compact, there exist some R ≥ 0 such that M(x) ⊆ B(0, R)

for x near x̄ . As a result, ρ(x, w) < ∞ holds true for x sufficiently close to x̄ and
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for all w ∈ S
n−1. Hence, the proof of Corollary 3.2 (and thus of Theorem 3.3) does

not require the growth condition (by appealing to Lemmas 3.2 and 3.3) but follows
directly from Lemma 3.1. ��

The previous observation allows us to adapt Theorem 3.3) to truncated elliptical
distributions.

Definition 3.3 A n-dimensional random vector ξ is said to be truncated elliptical with
parameters (μ,�,k,C) if C ⊆ �n is a Lebesgue measurable set of positive measure
and there exists η ∼ E(μ,�,k) such that the density of ξ relates with that of η via

fξ (z) = fη(z) · 1C (z)/P(η ∈ C),

where 1C denotes the characteristic function of C . Note that P(η ∈ C) > 0. As a
consequence,

P(ξ ∈ M) = P(η ∈ M ∩ C)

P(η ∈ C)
,

for all Lebesgue measurable sets M ⊆ �n .

Corollary 3.5 In (14), let g be a continuously differentiable function which in addition
is convex in its second variable. Let ξ have a truncated elliptic distribution with
parameters (μ,�,k,C), with continuous generator k and compact set C having
nonempty interior. Assume that, for some given x̄ ∈ X, it holds that g (x̄, μ) < 0 and

{
z ∈ �n : g(x̄, z) ≤ 0

} ⊆ intC . (33)

Then, ϕ is continuously differentiable in a neighbourhood of x̄ and its derivative
applied to an arbitrary h ∈ X is given by

Dϕ (x̄) (h) = −1

c

∫

S
n−1

f̃ (ρ (x̄, w))

Dzg (x̄, μ + ρ (x̄, w) Lw) (Lw)

Dxg (x̄, μ + ρ (x̄, w) Lw) (h) dνU (w) (34)

with f̃ from (15) and c = P(η ∈ C) for η ∼ E(μ,�, k).

Proof Inclusion (33) enforces the compactness of the left-hand side. Then, with the
upper semicontinuity argument already employed in the proof of Corollary 3.4, we
infer the existence of some neighbourhood V of x̄ such that

{
z ∈ �n : g(x, z) ≤ 0

} ⊆ intC ∀x ∈ V.

This inclusion implies along with Definition 3.3 that

φ(x) = P(g(x, ξ) ≤ 0) = 1

c
P(η ∈ C, g(x, η) ≤ 0) = 1

c
P(g(x, η) ≤ 0) ∀x ∈ V.

123



Applied Mathematics & Optimization             (2024) 90:5 Page 21 of 36     5 

On the other hand, the probability function ϕ(η) := P(g(x, η) ≤ 0) satisfies the
assumptions of Corollary 3.4 at x̄ , so that the assertion follows from Theorem 3.3
upon observing that Dϕ(x) = c−1Dϕ(η)(x) for all x ∈ V. ��

In some models, the random variable takes values in a compact set. The following
result indicates a sufficient condition under which the function ϕ is still differentiable.

Corollary 3.6 In (14), let g be a continuously differentiable function which in addition
is convex in its second variable. Let ξ have a truncated elliptic distribution with
parameters (μ,�,k,C), with continuous generator k and compact convex set C,
itself representable as C = {

z ∈ �n : ĝ(z) ≤ 0
}
, with ĝ : �n → � convex and

continuously differentiable. Assume that, for somegiven x̄ ∈ X, it holds that g (x̄, μ) <

0 and

rank
{∇zg(x, z),∇ ĝ(z)

} = 2, ∀z s.t. ĝ(z) = 0 = g(x̄, z). (35)

for x in a neighbourhood of x̄ . Then, ϕ is continuously differentiable in a neighbour-
hood of x̄ and its derivative applied to an arbitrary h ∈ X is given by

Dϕ (x̄) (h) = −1

c

∫

Iρ

f̃
(
ρ̂ (x̄, w)

)

Dzg
(
x̄, μ + ρ̂ (x̄, w) Lw

)
(Lw)

Dxg
(
x̄, μ + ρ̂ (x̄, w) Lw

)
(h) dνU (w) (36)

with f̃ from (15), c = P(η ∈ C) for η ∼ E(μ,�, k), Iρ = {w ∈ S
n−1 : μ +

ρ(x, w)Lw ∈ C} and ρ̂(x, w) = min
{
ρ(x, w), supr :μ+r Lw∈C r

}
.

Proof Condition (35) is called the rank-2 constraint qualification condition in [3],
which as a result of Lemma 4.3 therein (relying on convexity and arguments in �n)
enables us to establish

μζ (
{
w ∈ S

n−1 : ĝ(μ + ρ(x, w)Lw) = 0
}
) = 0.

Since moreover C is bounded, Dom(ρ̂(x, .)) = S
n−1 and in fact ρ̂(x, .) is

bounded uniformly in x . Now, together with the just made observation we can
employ Lemma 3.1 μζ almost everywhere. We can now distinguish over Iρ and{
w ∈ S

n−1 : μ + ρ(x, w)Lw /∈ C
}
, on which Dxe(x, w) = 0. The arguments jus-

tifying the interchange of integration and differentation of Theorem 3.3 can be used
again, but this time simplified since there can be no sequence on which ρ̂ becomes
arbitrarily large. This then allows us to arrive at the desired formula. ��
Remark 3.1 In the just given result, condition (35) can be seen in the light of the well
known LICQ condition. Should however the setC be defined by multiple inequalities,
condition (35) would essentially remain unchanged - indeed it suffices to request
linear independence of active gradients two by two. In that setting the given condition
is weaker than LICQ. This condition is largely preferable over the abstract zero-
measure requirement that it entails. It is not clear how one is to concretely verify the
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latter, whereas conditions, let alone constraint qualifications, on the nominal data are
reasonable.

4 Analysis of the Control Problem

The general framework described in the previous section will be now used to analyze
the control problems (P) and (P1) defined in (9) and (10). Under assumption (HS),
the mappings G : L2([0, T ];U) × �n → C([0, T ];H) with

G(u, z) := eA·x0 +
∫ ·

0
eA(·−s)E(s, z) ds +

∫ ·

0
eA(·−s)B(z)u(s) ds (37)

is well defined. Observe that for every z ∈ R
n , the operator G(·, z) is affine and

continuous. Indeed, if we set Yz = G(u, z) − G(v, z), then it comes that Yz satisfies
the equation Ẏz(t) = AYz(t) + B(z)(u(t) − v(t)) with Yz(0) = 0. Then, assumption
(HS) guarantees that there exists a constant C0 > 0 such that, for every z ∈ R

n , for
every u, v ∈ L2([0, T ];U) we have (see [33] for instance)

‖G(u, z) − G(v, z)‖C([0,T ];H) ≤ C0(1 + ‖z‖Rn )‖u − v‖L2([0,T ];U), (38a)

‖G(u, z)‖C([0,T ];H) ≤ C0(1 + ‖z‖Rn )(1 + ‖x0‖H + ‖u‖L2([0,T ];U)). (38b)

Now, define G : L2([0, T ];U) × R
n −→ R by

G(u, z) := �(G(u, z)(T )) ∀z ∈ R
n,∀u ∈ L2([0, T ];U).

Lemma 4.1 Assume that (HS) and (H� ) hold. For every z ∈ R
n, the mapping u �−→

G(u, z) is continuously differentiable and for every u, v ∈ L2([0, T ];U), we have:

DuG(u, z) · v =
∫ T

0
〈B∗(z)yuz (s), v(s)〉 ds

where yuz ∈ C([0, T ;H) is the unique solution of the equation −ẏuz (s) = A∗yuz (s)
and yuz (T ) = ∇�(G(u, z)(T )).

Proof As mentioned earlier,for every z ∈ R
n , the mapping u �−→ G(u, z) is affine

and continuous. The derivative DuG(u, z) : L2([0, T ];U) → C([0, T ];H) is well
defined and is given by

DuG(u, z) · v =
∫ ·

0
eA(·−s)B(z)v(s) ds ∀v ∈ L2([0, T ];U).

Since � is differentiable, by the chain rule argument and a straightforward calculus,
we get that

DuG(u, z) · v = 〈∇�(G(u, z)(T )),

∫ T

0
eA(T−s)B(z)v(s) ds〉H.
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This equality leads to

DuG(u, z) · v =
∫ T

0
〈∇�(G(u, z)(T )), eA(T−s)B(s, z)v(s)〉H ds

=
∫ T

0
〈B∗(z)eA∗(T−s)∇�(G(u, z)(T )), v(s)〉U ds. (39)

Now, introduce the solution yuz ∈ C([0, T ;H) of the equation −ẏuz (s) = A∗yuz (s)
with the final condition yuz (T ) = ∇�(G(u, z)(T )). This solution is explicitly given
by yuz (s) = eA

∗(T−s)∇�(G(u, z)(T )), which combined to (39) concludes the proof.
��

Lemma 4.2 Assume that (HS) and (H� ) hold. Then, the function G is convex w.r.t its
second variable.

Moreover, for every u ∈ L2([0, T ];U), the mapping G(u, ·) is continuously differ-
entiable and for every z, h ∈ R

n, we have

DzG(u, z) · h = 〈∇�(G(u, z)(T )), yh(T )〉H,

where yh ∈ C([0, T ];H) is the unique solution of the linear system:

ẏh(t) = Ayh(t) + B1(h)u(s) + E1(t, h) for t ∈ [0, T ], yh(0) = 0 (40)

(or equivalently,

yh(t) =
∫ t

0
eA(t−s)

(
B1(h)u(s) + E1(s, h)

)
ds).

Proof By its definition and by assumptions (HS), the mapping z �−→ G(u, z)(T ) is
affine. Hence, the function G is a composition of the convex function � (by (H� ))
and the affine function G, which implies that G is convex on its second variable (and
even separately in its both variables). Moreover, using the linearity of the maps B1(·)
and E1(s, ·), for every s ∈ [0, T ], we get G(u, z + h) − G(u, z) = yh , where yh is the
solution of (40). Therefore, the mapping z �−→ G(u, z) is continuously differentiable.
Finally, by using the chain rule argument, we conclude the proof. ��

Recall that the uncertainty enters in the controlled system in a structured manner
(see (7)) through a n-dimensional random vector ξ that is distributed according to

ξ ∼ E (μ,�,k) , μ ∈ R
n, � ∈ R

n×n,

with � positive definite. For every u ∈ L2([0, T ];U) and every η ∈ S
n−1, we define

the possibly extended valued radius function ρ(u, η) by

ρ (u, η) := sup
r≥0

{r ≥ 0|� (G(u, μ + r Lη)(T )) ≤ 0} .
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Introduce the cost function J1 : L2([0, T ];U) → [0, 1] defined by

J1(u) := P

[

�(xu(T )) ≤ 0

]

= P

[

�(G(u, ξ)(T )) ≤ 0

]

for every u ∈ L2([0, T ];U).

In the sequel, we make the following hypothesis:

(HG) The model uncertainty ξ has an elliptical distribution according to
E(μ,�,k) such that Gsatisfies
a distribution adapted growth (recall Definition
3.2) condition at all u ∈ L2([0, T ];U).

Assumption (HG) is not a restrictive requirement. It indicates that there must be an
interplay between the growth of the cost function ∇�(x) and the decay of the kernel
k. Under assumption (H� ), ∇�(x) has a polynomial growth of degree m − 1, then
one can consider any choice of distribution whose kernel κ(r) decays faster than the
function r−q with 2q > n + m. Indeed, recall that from (39), we have

∇uG(u, z)(s) = B∗(z)eA∗(T−s)∇�(G(u, z)(T ))

∀u ∈ L2([0, T ];Rm) ∀z ∈ R
n ∀s ∈ [0, T ].

By hypothesis (HS), there exists some constant C1 > such that

‖∇uG(u, z)‖L2([0,T ];U) ≤ C1(1 + ‖z‖)‖∇�(G(u, z)(T ))‖H.

Combining this with our assumed growth condition for �, one obtains that

‖∇uG(u, z)‖L2([0,T ];U) ≤ C1C�(1 + ‖z‖)(1 + ‖G(u, z)(T )‖m−1
H

).

Then, using the estimate (38), one obtains that

‖∇uG(u, z)‖L2([0,T ];U) ≤ C(1 + |z|)m(1 + ‖u‖L2([0,T ];U))
m−1

∀u ∈ L2([0, T ];Rm), ∀z ∈ R
n

for some constant C > 0. Assumption (HG) is then satisfied whenever the generator
function k satisfies

lim
r→∞ rnk(r2)(1 + |r |)m = 0. (41)

Remark 4.1 The multivariate Gaussian distribution has generator k(t) = exp(−t/2)/
(2π)

n
2 and evidently the growth condition (41) will then hold true. Likewise the logis-

tic and “exponential power” families are readily seen to be compatible. One can easily
verify that if ξ follows a multivariate Student distribution that the above growth con-
dition will hold true whenever the degrees of freedom ν > m. Indeed, the multivariate
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student random vector has as generator:

k(t) = �( n+ν
2 )

�( ν
2 )

(πν)−n/2(1 + t

ν
)−

n+ν
2 .

Finally, let us mention that assumption (HG), along with the convexity property
of G stated in Lemma 4.2, is needed to ensure that function J1 is differentiable. A
precise statement is given in the next Theorem.

Theorem 4.1 Assume (HS), (H� ) and (HG). Let u ∈ L2([0, T ];U) be such that

G(u, μ) = �(G(u, μ)(T )) < 0.

Introduce the set Iρ := {η ∈ S
n−1 | ρ(u, η) < ∞} and the function α(η) :=

μ + ρ (u, η) Lη. Then, J1 is continuously differentiable at u and its derivative is
given by

DJ1 (u) · v =
∫ T

0

∫

Iρ

〈B∗(α(η)) puη(s), v(s)〉U dνU(η)ds ∀v ∈ L2([0, T ];U),

where the adjoint state puη ∈ C([0, T ];H) is solution of the equation:

− ṗ(s) = A∗ p(s), p(T ) = − f̃ (ρ (u, η))
〈∇�(G(u, α(η))(T )), yLη(T )

〉

H

∇�(G(u, α(η))(T )),

with yLη defined as in (40) (for h = Lη), and the density f̃ is given in (15).

Proof First, notice that by convexity of G(u, ·) and by definition of ρ(u, η), for every
η ∈ Iρ , it comes that

G(u, μ) ≥ G(u, α(η)) + DzG(u, α(η)) · (μ − α(η)) = −ρ(u, η)DzG(u, α(η)) · Lη.

Using the assumption that G(u, μ) < 0 and Lemma 4.2, we get that

〈∇�(G(u, α(η))(T )), yLη(T )〉H > 0 for every η ∈ Iρ.

Let v ∈ L2([0, T ];U) be given. A direct application of Theorem 3.3 leads to

DJ1 (u) · v = −
∫

Iρ

f̃ (ρ (u, η))

DzG (u, α(η)) · Lη
[DuG (u, α(η)) · v] dνU (η) .

By using Lemmas 4.1 & 4.2, we obtain

DJ1 (u) · v = −
∫

Iρ

f̃ (ρ (u, η))
〈∇�(G(u, α(η))(T )), yLη(T )

〉

H
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〈∇�(G(u, α(η))(T )), [DuG (u, α(η)) · v] (T )〉H dνU (η)

=
∫

Iρ

〈
puη(T ), [DuG(u, α(η)) · v] (T )

〉

H

dνU (η)

Notice that, by assumption (HS), for every η ∈ Iρ , the function puη belongs to
C([0, T ],H) and pu· ∈ L2(Sn;C([0, T ];H)). Besides, we have

DuG(u, α(η)) · v =
∫ ·

0
eA(·−s)B(α(η))v(s) ds.

Therefore,

DJ1 (u) · v =
∫

Iρ

∫ T

0
〈B∗(α(η))eA

∗(T−s) puη(T ), v(s)〉U dsdνU(η)

=
∫

Iρ

∫ T

0
〈B∗(α(η)) puη(s), v(s)〉U dsdνU(η)

for every v ∈ L2([0, T ];U). Since the measure dνU × ds is σ -finite on the compact
set Sn−1 × [0, T ], Tonelli-Fubini’s theorem yields the asserted formula. ��

Theorem 4.1 indicates that the gradient of J1, at u, is given by the following
expression

∇J1(u) :=
∫

Iρ
B∗(α(η)) puη(·) dνU(η) ∈ L2([0, T ];U).

In this expression, we used the radial decomposition of the random variable ξ . Con-
vexity with respect to uncertainty is crucial here to determine the derivative expressed
solely in terms of directions η belonging to the set Iρ , that is, the directions η asso-
ciated with a finite radius value ρ(u, η). The same calculus can be done if instead of
(HG), we assume that the random variable ξ has a truncated elliptical distribution with
parameters (μ,�,k,B(0, M)) where M > 0. In this case, the differentiability can
still be analysed by using Corollary 3.5 or 3.6.

In the control problem (P) (given in (9)), the cost function is constituted by a
sum of a probability cost J1 and the expectation of a running cost, denotes as J2 :
L2([0, T ];U) −→ R and defined by

J2(u) := E

[ ∫ T

0

(s, xu(s), u(s), ·) ds

]
∀u ∈ L2([0, T ];U).

It is noteworthy that under assumption (HS) that xuω ∈ C([0, T ],H) for every u ∈
L2(0, T ;U) and for every ω ∈ �. Additionally, due to assumption (H
), the cost
J2(u) is finite.
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Theorem 4.2 Assume (HS), (H
). Let u ∈ L2([0, T ];U) and its associated state xu

(i.e., solution of (6)). Then, J2 is continuously differentiable around u and its deriva-
tive is given by

DJ2 (u) · v = E

[ ∫ T

0
〈
u(t, xu(t), u(t), ·) + B∗(ξ)qu(t), v(t)〉U dt

]
∀v ∈ L2([0, T ];U),

where the co-state quω ∈ C([0, T ];H) is solution of the adjoint equation:

−q̇uω(s) = A∗quω(s) + 
′
x (s, x

u
ω(s), u(s), ω), q(T ) = 0.

Proof Notice that for u ∈ L2([0, T ];U)

J2(u) =
∫

�

∫ T

0

(t,G(u, ξ(ω))(t), u(t), ω)dtdP(ω).

Since 
 is of class C1 and satisfies (H
), by superposition principle, the function J2
is differentiable and, for every v ∈ L2([0, T ];U), we have

DJ2(u) · v =
∫

�

∫ T

0
[〈
x (t,G(u, ξ(ω))(t), u(t), ω),

∫ t

0
eA(t−s)B(ξ(ω))v(s) ds〉H

]

dtdP(ω)

+
∫

�

∫ T

0
〈
u(t,G(u, ξ(ω))(t), u(t), ω), v(t)〉U dtdP(ω).

By introducing the adjoint state quω (for every ω ∈ �), we notice that:

∫ T

0
〈
x (t, xuω(t), u(t), ω),

∫ t

0
eA(t−s)B(ξ(ω))v(s) ds〉H dt

=
∫ T

0
〈B∗(ξ(ω))quω(t), v(t)〉U dt,

which concludes the proof. ��
Unlike the cost function J1, the differentiability of the function J2 does not

require any convexity property with respect to the uncertainty. For this function,
the gradient at any u ∈ U, is identified to the function defined on [0, T ] by
∇ J2(u)(t) = E

[

u(t,G(u, ξ)(t), u(t), ·) + B∗(ξ)qu(t)

]
. This function involves an

expectation over all elementary events in �. Now, we can state the optimality condi-
tion for the control problem with uncertainties.

Theorem 4.3 Assume (HS), (H� ), (H
) and (HG). Let u be an optimal control law
and xu = G(u, ξ) its associated optimal state. We assume that

G(u, μ) = �(G(u, μ)(T )) < 0.
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Introduce the set Iρ := {
η ∈ S

n−1 | ρ(u, η) < ∞}
and the function α(η) :=

μ + ρ (u, η) Lη, for η ∈ Iρ .
There exist perturbed adjoint states p = { pη, η ∈ Iρ} ⊂ C([0, T ];H) and

q = {qω, ω ∈ �} ⊂ C([0, T ];H) satisfying

− ṗη(t) = A∗ pη(t), pη(T ) = γ (η)∇�(G(u, α(η))(T )), (42a)

−q̇ω(t) = A∗qω(t) + 
x (t,G(u, ξ(ω))(t), u(t), ω), q̄ω(T ) = 0, (42b)

where for every η ∈ Iρ , γ (η) = − f̃ (ρ (u, η))
〈∇�(G(u, α(η))(T )), yLη(T )

〉 , and

ẏLη(t) = AyLη(t) + B1(Lη)u(t) + E1(t, Lη), yLη(0) = 0. (42c)

Moreover, for a.e t ∈ (0, T ) and for every v ∈ U, we have

〈
E
[

u(t,G(u, ξ)(t), u(t), ·) + B∗(ξ)q(t)

]

+
∫

Iρ

B∗(α(η)) pη(t) dνU(η), u(t) − v
〉

U
≥ 0. (42d)

Proof By combining Theorems 4.1 and 4.2, and by convexity of U , we obtain for
every v ∈ U

0 ≤ D(J1 + J2)(u).(u − v)

≤
∫ T

0
E
[ 〈


u(t,G(u, ξ)(t), u(t), ·) + B∗(ξ)q(t), u(t) − v(t)
〉

U

]
dt

+
∫ T

0

∫

Iρ

〈
B∗(α(η)) pη(t), u(t) − v(t)

〉

U
dνU(η)dt . (43)

To conclude the proof, we use the spike perturbation techniques. Let v ∈ U and denote
by �0 ⊂ [0, T ] the set of Lebesgue points of the function

t �−→ 〈
E
[

u(t,G(u, ξ)(t), u(t), ·) + B∗(ξ)q(t)

] +
∫

Iρ

B∗(α(η)) pη(t) dνU(η), u(t) − v
〉

U
.

This application being continuous on [0, T ], the set �0 is of full measure. Let t0 ∈ �0,
for ε > 0, consider the perturbation

vε(s) :=
{

v if s ∈ (t0 − ε, t0 + ε)

u(s) otherwise.
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Using this perturbation in (43) and dividing by 2ε, we get

0 ≤ 1

2ε

∫ t0+ε

t0−ε

〈
E
[

u(t,G(u, ξ)(t), u(t), ·) + B∗(ξ)q(t)

]

+
∫

Iρ

B∗(α(η)) pη(t) dνU(η), u(t) − v
〉
dt .

By letting ε goes to 0, we obtain

0 ≤ 〈
E
[

u(t0,G(u, ξ)(t0), u(t0), ·) + B∗(ξ) p(t0)

]

+
∫

Iρ

B∗(t0, α(η)) pη(t0) dνU(η), u(t0) − v
〉
,

for any to ∈ �0, which concludes the proof. ��

4.1 Chance-Constrained Control Problems

The key point in deriving the optimality conditions for problem (9) is the derivation
formula for the probability functional. The same analysis can be extended to other
control problems with chance constraints on the state at the final time. For instance,
consider the following control problem:

(P1) Maximize
{
J2(u) | u ∈ U and P

[
�(G(u, ξ)(T )) ≤ 0

] ≥ c
}
.

Theorem 4.4 Consider the same setting as in Theorem 4.3. Let u be an optimal control
law of (P1) and xu = G(u, ξ) its associated optimal state. We assume that

G(u, μ) = �(G(u, μ)(T )) < 0.

Introduce the set Iρ := {
η ∈ S

n−1 | ρ(u, η) < ∞}
and the function α(η) :=

μ + ρ (u, η) Lη, for η ∈ Iρ . There exist (λ0, λ) ∈ {0, 1}×R
−, and perturbed adjoint

states p = { pη, η ∈ Iρ} ⊂ C([0, T ];H) and q = {qω, ω ∈ �} ⊂ C([0, T ];H)

satisfying

(λ0, λ) �= 0, (44a)

λ
(
P
[
�(xuω(T )) ≤ 0

] − c
) = 0, and P

[
�(xuω(T )) ≤ 0

] ≥ c, (44b)

− ṗη(t) = A∗ pη(t), p̄η(T ) = γ (η)∇�(G(u, α(η))(T )), (44c)

−q̇ω(t) = A∗qω(t) + λ0
x (t, xω(t), u(t), ω), q̄ω(T ) = 0, (44d)

where for every η ∈ Iρ , γ (η) = − f̃ (ρ (u, η))
〈∇�(G(u, α(η))(T )), yLη(T )

〉 , with

ẏLη(t) = AyLη(t) + B1(Lη)u(t) + E1(t, Lη), yLη(0) = 0. (44e)
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Moreover, for a.e t ∈ (0, T ) and for every v ∈ U, we have

〈
λ0E

[

u(t, xu(t), u(t), ·) + B∗(ξ)q(t)

]

+λ

∫

Iρ

B∗(ξ) pη(t) dνU(η), u(t) − v
〉

U
≥ 0. (44f)

Proof By general results of optimization theory, the maximal solution u is associated
with a non trivial pair of multipliers (λ0, λ) ∈ {0, 1} × R

+ such that for all v ∈ U

0 ≤ λ0DJ2(u).(u − v) + λDJ1(u).(u − v). (45)

The rest of the proof is based on the differentiability formulas for J1 (in Theorem 4.1)
and for J2 (in Proposition 4.2) and follows similar arguments as in the proof of
Theorem 4.3. ��

At this stage the question can be raised whether the necessary optimality conditions
are sufficient or not. In particular, could the probabilistic function J1 be a concave
functional? Although the controlled system is linear and the function � is convex, the
cost function J1 can not be expected to be convex in general. However, it could be
the case that some upper-level sets of J1 are convex. The following result provides an
insight into the matter.

Proposition 4.1 Assume that the hypothesis (HS), (H� ) and (HG) hold true. In addi-
tion assume that

• the mapping u �→ ρ(u, η) is β-concave2 for each η (see, e.g., Definition 3.2 in
[4]).

• the random vector ξ is multivariate Gaussian.

Then the upper level sets of J1 are convex for all levels beyond c∗ = �(
√
n − β).

Moreover J1 is concave on any of the latter upper level sets. Here � stands for the 1
dimensional standard Gaussian distribution function.

Proof Notice that G is convex in its both arguments. Since the underlying space L2

is reflexive, the result of the proposition is a direct application of [31, Theorem 11]
along the lines of [4, Corollary 4.3 ]. The concavity of J1 results from [4, Theorem
3.1]. ��

Under the assumptions of Proposition 4.1 it is always true that ρ is quasi-concave,
i.e., β = −∞. If G is jointly convex in both arguments, then β = 1, i.e., ρ is
concave. In other situations the specific structure of G has to be explored to learn of an
appropriate β value. However when G is jointly convex, one can leverage Prékopa’s
celebrated log-concavity results to ensure that all upper level sets of J1 are convex,
not just beyond a given level -J1 being log-concave itself. Proposition 4.1 does ensure
however the stronger concavity of J1 on the exhibited upper level sets.

2 for β < 0, this means u �→ ρβ(u, η) is convex.

123



Applied Mathematics & Optimization             (2024) 90:5 Page 31 of 36     5 

Corollary 4.5 Assume the same setting as in Proposition 4.1. Assume that the dis-
tributed cost 
 is concave on both state and control variables . Let u ∈ U be an
admissible control law and xu = G(u, ξ) its associated optimal state. Assume that

G(u, μ) = �(G(u, μ)(T )) < 0.

Assume also that the probability level c > c∗. Then, u is an optimal control of (P1) if
and only if there exists a nontrivial pair of multipliers (λ0, λ) �= 0 such the optimality
system (44) is satisfied.

Remark 4.2 (OnGaussian randomvectors) The restriction toGaussian randomvectors
in Proposition 4.1 is only to make the statement less involved. A very similar result
would indeed hold for essentially any Elliptically symmetrically distributed random
vector ξ such that assumption (HG) holds. We refer the reader to Table 1 [4]. To
provide an example, if ξ would be multi-variate Student with ν degrees of freedom,
then the resulting threshold would be:

c∗ = (
1

2
− q)Fn,ν

(
ν(n − α)

δ(q)2(nν − n)

)

+ q + 1

2

with δ(q) the unique solution (in δ) to the equation

Bi

(
n − 1

2
,
1

2
, 1 − δ2

)

= (1 − 2q)Bc

(
n − 1

2
,
1

2

)

,

where Bi (Bc) refers to the incomplete (resp. complete) Beta function, Fn,ν is the
Fisher-Snedecor distribution with n and ν degrees of freedom and q ∈ (0, 1

2 ) is a free
parameter.

Remark 4.3 (On the threshold) The given threshold in the previous results is to be
understood as a conservative estimate - and is by no means tight. As a result, in
concrete applications it may well be that the upper level sets of J1 are convex beyond
c∗ = 1

2 even though this can only be asserted theoretically for a much larger c∗.

4.2 Some Examples

The results from the previous section apply to a class of optimal control problems with
a linear state equation. This limitation arises from the need for convexity to ensure the
differentiability of the probability function J1. The linear control class is compelling
and encompasses various applications in control theory. Here, we present two simple
examples.

Example in finite dimensional space Consider first the simplest case in finite
dimensional spacesH = R

d andU = R
m , with a final cost defined onRd by�(x) :=

1
2‖x − x̄‖22 − r20 for a fixed radius r0. Let A be a d × d matrix and z �−→ B(z) a linear
application from R

n to Rd×m . Given a level of success c ∈ [0, 1] and a fixed function
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ū ∈ L2([0, T ];Rm), the control problem is as follows

Minimize
1

2

∫ T

0
‖u(t) − ū(t)‖2

R
m dt

ẋuω(t) = Axuω(t) + B(ξ(ω))u(t) for t ∈ [0, T ],
xuω(0) = x0 ∈ R

d ,

u(t) ∈ R
m a.e. t ∈ [0, T ],

P
[
�(xu(T )) ≤ 0

] ≥ c.

For simplicity,we also consider here the special case of amultivariate centredGaussian
distribution for the random vector ξ . Therefore, all the assumptions (HS), (H� ), (H
)
and (HG) are fulfilled.

Let u be anoptimal control lawof the aboveproblemandxu = G(u, ξ) its associated
optimal state. We assume that

1

2
‖G(u, μ)(T )) − x̄‖2

R
d < r20 .

Introduce the set Iρ := {
η ∈ S

n−1 | ρ(u, η) < ∞}
and the function α(η) :=

ρ (u, η) Lη, for η ∈ Iρ . By Theorem 4.4, there exist (λ0, λ) ∈ {0, 1} × R
−, and

perturbed adjoint states p = { pη, η ∈ Iρ} ⊂ C([0, T ];Rd) satisfying

(λ0, λ) �= 0, (46a)

λ

(

P
[1

2
‖G(u, μ)(T )) − x̄‖2

R
d ≤ r20

] − c

)

= 0, and

P
[1

2
‖G(u, 0)(T )) − x̄‖2

R
d ≤ r20

] ≥ c, (46b)

− ṗη(t) = A∗ pη(t), p̄η(T ) = γ (η)
[
G(u, α(η))(T ) − x̄

]
, (46c)

where for every η ∈ Iρ , γ (η) = − f̃ (ρ (u, η))

〈G(u, α(η))(T ) − x̄,G(u, α(η))(T )〉 . Moreover, for

a.e t ∈ (0, T ) and for every v ∈ U , we have

−λ0(u(t) − ū(t)) + λ

∫

Iρ

B∗(ξ) pη(t) dνU(η) = 0. (46d)

Heat equation with NeumannBoundary control In the context of infinite dimensi-
nal control problem, consider the parabolic controlled system described in Example
2.1. For simplicity, we assume here that b0 = 0, and E0 = 0. Consider again the
special case of a multivariate centred Gaussian distribution for the random vector ξ .

The control problem is the following

Maximize E
[−λQ

2

∫ T

0

∫

O
|G(u, ξ)(t, y) − xQ(t, y)|2 dydt

]
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+−λ�

2

∫ T

0

∫

∂O
|u(t, y)|2 dydt

+P

[1

2
‖G(u, ξ(ω))(T ) − xO‖2 − R2 ≤ 0

]
,

such that u ∈ L2([0, T ]; L2(∂O)),

with λQ > 0, λ� > 0, and the radius R > 0 are given constants. In this example, the
hypothesis (HS), (H� ), (H
) hold true. Assume the control problem has an optimal
solution u ∈ U such that

1

2
‖G(u, 0)(T ) − xO‖2 < R2.

Then, Theorem 4.3 provides the first optimality optimality conditions . Introduce the
set Iρ := {

η ∈ S
n−1 | ρ(u, η) < ∞}

and the function α(η) := ρ (u, η) Lη, for
η ∈ Iρ .

There exist perturbed adjoint states p ∈ L2([0, T ];H) and q ∈ L2([0, T ];H)

satisfying

⎧
⎪⎪⎨

⎪⎪⎩

−∂t pη(t, y) = � pη(t, y) + a(y) pη(t, y) in (0, T ) × O,
∂ pη

∂ν

∣
∣
∣
∂O

(t, y) = 0 in (0, T ) × ∂O,

pη(T , y) = γ (η)(G(u, α(η))(T , y) − xO(y)) in O,

(47a)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∂tqω(t, y) = �qω(t, y) + a(y)qω(t, y)

+λQ(G(u, ξ(ω)(η))(t, y) − xQ(t, y)) in (0, T ) × O,
∂qω

∂ν

∣
∣
∣
∂O

(t, y) = 0 in (0, T ) × ∂O,

qω(T , y) = 0 in O.

(47b)

where γ (η) = − f̃ (ρ (u, η))

〈G(u, α(η))(T ) − xO,G(u, Lη)(T )〉 , for every η ∈ Iρ . Moreover, for

a.e t ∈ (0, T ), we have

∫

∂O

(
− λ�u(t, y) + E

[
q(t, y)

] +
∫

Iρ

pη(t, y)dνU(η)
]
dy = 0.

5 Conclusion

In conclusion, in this paper we have investigated the optimality conditions for a control
problem subject to a probabilistic constraint or with a probabilistic cost. The key point
is the differentiability of the probabilistic cost function. The differentiability result
that is derived in the present work depends on a convexity structure with respect to the
random variable. For a class of linear control problems, we show that the optimality
conditions can be expressed in the form of a Pontryagin principle. To the best of our
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knowledge, the results obtained in this paper are new in the context of optimal control
problems under uncertainties.

The obtained result constitute a starting point for future studies on optimality
conditions and for developing efficient numerical methods for solving probabilistic
constrained optimal control problems. More precisely, it should be emphasized that
the requisite convexity structure is required only with respect to the uncertainty. In
the framework considered in this paper, we have a joint convexity concerning both
control and uncertainty. It is expected that our results can be extended to more general
situations beyond the linear framework, provided that the convexity structure pretain-
ing to the uncertainty is maintained. Furthermore, in cases where the problem lacks a
convexity structure, it is still possible to prove some sub-differentiability of the proba-
bilistic function. This sub-differentiability may be adequate for deriving a nonsmooth
Pontryagin’s principle for a broader class of control problems. These questions will
be interesting to investigate in the future works.
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