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Abstract
In this paper, we deal with a renewable-powered mini-grid, connected to an unreliable main
grid, in a Joint Chance Constrained (JCC) programming setting. In several rural areas in
Africa with low energy access rates, grid-connected mini-grid system operators contend with
four different types of uncertainties: forecasting errors of solar power and load; frequency
and outages duration from the main-grid. These uncertainties pose new challenges to the
classical power system’s operation tasks. Three alternatives to the JCCproblem are presented.
In particular, we present an Individual Chance Constraint (ICC), Expected-Value Model
(EVM) and a so called regular model that ignores outages and forecasting uncertainties. The
JCC model has the capability to guarantee a high probability of meeting the local demand
throughout an outage event by keeping appropriate reserves for Diesel generation and battery
discharge. In contrast, the easier to handle ICC model guarantees such probability only
individually for different time steps, resulting in a much less robust dispatch. The even
simpler EVM focuses solely on average values of random variables. We illustrate the four
models through a comparison of outcomes attained from a real mini-grid in Lake Victoria,
Tanzania. The results show the dispatchmodifications for battery andDiesel reserve planning,
with the JCC model providing the most robust results, albeit with a small increase in costs.
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Index
t ∈ T Set of time steps
τ Subset of time-steps when outages could start

Parameters
T Total number of time steps
c�,t Marginal cost of Diesel at time t [$/kWh]
cb,t Marginal aging cost of battery at time t [$/kWh]
cg,t Cost of day-ahead grid import at time t [$/kWh]
pg,t Price for day-ahead grid export at time t [$/kWh]
cγ,t Cost function for instantaneous grid exchange [$]
pd,t Price for electricity sales at time t [$/kWh]
η+ Average efficiency of battery charge [%]
η− Average efficiency of battery discharge [%]
σ Average battery self-discharge rate (internal resistance) [%]
κ Average duration of outages [h]
�max Rated capacity of diesel [kW]
bmax Maximum charging / discharging rate [kW]
SOCmax Maximum state of charge of the battery [kWh]
SOCmin Minimum state of charge of the battery [kWh]
SOC0 Initial state of charge of the battery [kWh]
st Forecasting of solar production at time t [kW]
gmax Maximum available grid capacity at time t [kW]
dt Load forecasting at time t [kW]
p Probability of successful islanding [-]
ω Probability of an outage happening during one optimization horizon [-]

Random variables
δt Load forecasting error at time t [kW]
ξt Forecasting error of solar power at time t [kW]
γt Slack grid exchange at time t [kW]

Non-negative decision variables
�t Diesel power at t [kW]
g+
t Electricity imported from the main grid at time t [kW]
g−
t Electricity exported to the main grid at t [kW]

b+
t Battery charge at time t [kW]

b−
t Battery discharge at time t [kW]
SOCt State of charge at time t [kWh]
rbt Reserve for the battery discharge at time t [kW]
r�
t Reserve for the diesel at time t [kW]

1 Introduction

The United Nations’ Sustainable Development Goal 7 (SDG-7) urgently calls for universal
access to clean energy, amission that faces challenges despite increased electrification efforts.
Projections by the international energy agency estimate that by 2030, around 650 million
people might still lack access, and 9 out of 10 will be in West, Central, and East Africa
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(IEA, 2020). Electrification via centralized grids is slow and expensive, prompting interest
in decentralized mini-grid energy systems that offer quicker deployment and enhanced cost
competitiveness (Antonanzas-Torres et al., 2021).

Renewable-powered mini-grids (MGs) as defined by González Grandón et al. (2021) and
Inensus (2014) are hybrid electricity supply systems combining wind turbine or photovoltaic
(PV) generation (from 10 kW to 10 MW), energy storage systems, and (usually) a Diesel
generator into low andmedium voltage distribution networks. Classified by their relationship
with the main power grid, MGs come in two forms: islanded mini-grids which operate
independently, detached from the national (main) network and grid-connected mini-grids
which link with the main grid and function as both backup systems for distribution as well
as standalone units.

This article focuses on the operational intricacies of grid-connected mini-grids, situated
within the urban and peri-urban areas of Sub-Saharan African countries lacking in energy
access. The paradox lies in the fact that, despite the presence of central-grid infrastructure, an
alarming number of households, numbering in the hundreds of millions, still grapple with the
challenge of accessing less than four hours of electricity per day (Rocky Mountain Institute,
2018). To counter this issue, governments in these countries are progressively adopting grid-
connected mini-grids in areas with unreliable main grid supply. Yet, technical uncertainties
inherent to grid-connected mini-grids in this context stem from multiple sources: stochastic
solar power and demand forecast errors; absolute uncertain main grid outage onset times;
and outage durations subjected to statistical analysis. As operational decisions are taken
prior to the observation of the uncertainty, it becomes imperative to adopt suitable modeling
methodologies that can effectively incorporate all these diverse forms of uncertainty. Thus,
our primary research aim focuses on addressing the four mentioned uncertainties through
modeling and algorithmic approaches, utilizing Joint Chance Constraints. Additionally, the
study aims to assess the effectiveness of the proposed scheduling strategy by applying it to
a case study example of a mini-grid in Lake Victoria.

Introduced by Charnes and Cooper (1959), chance constraints offer an appealing tool
for dealing with uncertainty in the constraints of an optimization problem. A classical and
fundamental introduction to the theory and numerical treatment of chance constraints is pre-
sented by Prékopa (1995). A modern treatment is provided by Shapiro et al. (2014). Since
their introduction, chance constraints have become common for economic dispatch problems,
notably in hydro reservoir management (e.g., Berthold et al., 2022; Loiaciga, 1988; Prékopa
& Szántai, 1978; van Ackooij et al., 2014), but also in power dispatch (e.g., Hong et al., 2022;
Peña-Ordieres et al., 2021). For mini-grid or micro-grid dispatch, the approach has predom-
inantly involved the use of purely-deterministic predictive models (González Grandón et al.,
2021; Parisio et al., 2014). There is increasing interest, however, in applying probabilistic
models in order to ensure sufficiently safe satisfaction of demand in a highly stochastic envi-
ronment, not only with respect to renewable energy but also with respect to instabilities of
the main grid. Zhao et al. (2014) and Liu et al. (2017) introduce the interesting concepts of
probability of self-sufficiency and probability of successful islanding, respectively, in order
to model the self-sufficiency of a mini-grid when isolated from the main grid by an outage.
These concepts rely on keeping reserves for Diesel employment and battery discharge such
that an outage of the main grid, to which the mini-grid is connected, can be survived based
on these reserves with sufficiently high probability. The shortcoming of the models by Zhao
et al. (2014) and Liu et al. (2017) is that they use individual (separate for each time in the
given interval) chance constraints. While such a model is comfortable to handle since the
chance constraint can be transformed without effort into an explicit equivalent, it does not
really reflect the wish for robust self-sufficiency. Indeed, even if one may guarantee that

123



502 Annals of Operations Research (2025) 344:499–531

self-sufficiency holds true at each time individually with high probability, the probability of
violating self-sufficiency at some timemay be high aswell (or: the probability of guaranteeing
self-sufficiency throughout a given period of time may be small). This is why we will rather
consider joint chance constraints in this paper which are, however, more difficult to deal with.
Indeed, they require the consideration of probabilities and their sensitivities with respect to
the decision vector under multivariate random distributions. For numerical solutions related
with joint chance constraints, we shall make use of the so-called spherical-radial decompo-
sition of Gaussian random vectors which efficiently applies to Gaussian, Gaussian-like (e.g.
multivariate log-normal, Gaussian mixture) or elliptically symmetric (e.g. multivariate Stu-
dent) distributions and has found a lot of applications both in operations research and optimal
control under PDEs with random coefficients (e.g., Berthold et al., 2022; Farshbaf-Shaker et
al., 2020; González Grandón et al., 2017; Heitsch, 2020). The possibly striking difference
between individual and joint chance constraints has been widely studied (e.g., Van Ackooij
et al., 2010, p. 547); (Berthold et al., 2022, p. 34).

In this paper we focus on the challenges arising from the model with joint chance con-
straints. Therefore, we keep some other modeling aspects simple. In particular, we will not
include binary decisions (simplified model for Diesel generator), we will not adequately
model realistic battery ageing by means of differential equations and we will keep all deci-
sions to be static with respect to the unfolding of uncertainty over time (thus ignoring the
gain of information based on random observations prior to decision taking). The inclusion
of all these aspects is subject of current and future work, e.g., by González Grandón et al.
(2022).

This article makes two key contributions, namely to the realm of applied joint chance
constraint programming and to the advancement of SDG-7. More precisely, our analysis
involves the following steps:

• We base our input data on real power measurement data obtained from an operating MG
in Tanzania and use forecasts for their solar PV generation and the electricity demand of
the connected households.

• We propose a model for an economic scheduling strategy of a MG connected to a weak
main grid with a specified high reliability level. This model utilizes joint chance con-
straints, taking into account various uncertainties, including: 1) forecasting errors in
renewable power generation, 2) forecasting errors in demand profiles, and uncertainties
related to 3) frequency and 4) duration of outages.

• We compare the proposed JCC model with three alternatives. We contrast results with
an Individual Chance Constraint, Expected-Value Model and a (mainstream) so-called
regular model that ignores outages and forecasting errors.

2 Mini-grid topology andmodelling assumptions

Figure1 illustrates the grid-connected mini-grid configuration. This arrangement includes a
solar PV generation unit, one battery energy-storage system (BESS), one Diesel genset, and
one connection to an unreliable main-grid.

The PV and BESS are integrated into the system via two distinct inverters linked to the
Alternating Current (AC) bus. Interactions with the main grid occurs at the Point of Common
Coupling (PCC). At the PCC, a transformer modifies the voltages, translating them from
the lower level of the mini-grid to the higher-level of the primary grid (referred to hereafter
as main grid or higher-level grid). In the examined context of this paper, this connection to
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Fig. 1 Weakly Grid-connected Mini-grid Topology

the main grid is unreliable, with outages occurring frequently due to failures in the main
grid. This could be an overloading of the main grid, an uncurtailed excess generation or
technical aspects due to failures of control strategies, physical components or transmission
lines overheating. Lastly, the Diesel genset, acting as a supplementary component to bridge
any electricity supply gaps, generates AC current directly, injecting it into the AC bus.

Since the MG is balanced through an AC bus, both active and reactive powers will flow
to the loads. In this paper, for simplicity purposes, we assume that the loads of all connected
households maintain a purely resistive nature. We, therefore, conduct all our modelling using
only active power flow figures, neglecting all reactive components.

Further on, we neglect any temperature effects on the MG components and operation,
especially for the battery storage system. The latter is modelled as one large synchronized
unit that can either be charged or discharged, thus neglecting specific dynamics between the
battery packs. Additionally, we model charging and discharging losses in the battery inverter
as well as the battery’s internal resistance as single, average efficiency parameters.

In terms of the flexibility of dispatch, we assume that the Diesel genset is able to run
between 0 and amaximal capacity,without any ramping constraints or restrictions onminimal
resting and running times. Moreover, we follow the premise that the MG operator always
maintains a continuous fuel supply. Additionally, we assume that the solar PV output can be
controlled with the help of a Charge Controller (CC). In case of an excess of PV generation
and an outage preventing any export to the main grid, the PV output can be curtailed fast
enough such that the overall local power balance can be withheld.

Tomodel the demand-side, we aggregate all electricity loads into one node, thus neglecting
any line losses that occur at the local distribution level. Finally, we assume that the MG
operator has access to time series forecasting of solar power generation and aggregate demand
for the forthcoming 24 or 48-hour time interval. Furthermore, we assume that, when an outage
of themain grid occurs, the power exchange at thePCCdrops to 0, thus preventing anyplanned
imports or exports. Outages can occur with a given probability at any arbitrary moment, the
precise timing of which remains uncertain.We further assume that there is statistical evidence
about the average duration of an outage from the main-grid (Klugman et al., 2021). Table 1
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Table 1 Mini-grid uncertainties

Source of uncertainty Assumptions

Aggregate demand Access to a forecasting time series for the
forthcoming 48h

Solar PV generation Access to a forecasting time series for the
forthcoming 48h

Timing of main grid outages Unknown

Duration of main grid outages Access to statistical evidence as an
exogenous parameter (Klugman et al.,
2021)

summarizes the uncertainties present at the examined MG and assumptions made about their
modeling.

3 Mathematical models

This section defines the mathematical model used for the above described MG topology. As
mentioned before, our aim is to find the optimal dispatch of a weakly-connected MG which
allows one to survive a failure of the main grid by means of local energy supply (battery,
Diesel). In order to achieve this goal, in addition to the planning of a regular dispatch for
strongly connected MGs, reserves for Diesel and battery are included into the model. These
can then be employed in the islanded mode of the MG in order to meet the local power
demand. Since dispatch has to be planned prior to observing randomness in demand, solar
radiation and outages, methods of stochastic optimization come into play. Inspired by the
work of Zhao et al. (2014) and Liu et al. (2017), we find the application of probabilistic or
chance constraints to bemost appropriate here. They provide the possibility to find an optimal
dispatch including reserves for Diesel and batteries such that the local demand in an islanded
mode caused by an outage is met with a given probability (typically close to one). However,
as mentioned in the introduction, these papers handle probability individually in time. While
this approach eases drastically the computational treatment of chance constraints, it does not
guarantee robust demand satisfaction throughout the whole critical time interval. Therefore,
our main contribution is devoted to model the MG dispatch problem with respect to joint
chance constraints. This type of constraints cannot directly be converted into explicit linear
constraints as in the individual case, but requires to deal with probability functions and their
derivatives under multivariate distributions.

This section is organized as follows: after introducing the used nomenclature, we present
the objective function and the (common) deterministic constraints for the optimization prob-
lem. Then, we introduce our additional joint chance constraints with respect to decisions on
keeping reserves. We shall assume that an outage may occur at most once a day with a given
probability. Its initial time is supposed to be uniformly distributed over the day. As for the
duration of the outage, we either fix it (e.g., as a statistical mean from available historical
data) or consider it to be an exterior parameter which can be varied in different computations.
Next, we move on to a model with individual chance constraints as used by Zhao et al. (2014)
and Liu et al. (2017), in order to illustrate the gain in robustness by using joint chance con-
straints. Finally, for the sake of completeness, we also mention two further simplifications
of the model: first, the expected-value model in which we replace all random parameters by
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their expected values, such that statistical information is reduced to the first moment. Sec-
ond, the widely-used regular model, which in addition to the previous simplification, also
completely ignores the possibility of outages (Beath et al., 2023; Elegeonye et al., 2023;
González Grandón et al., 2021; Kumar, 2021; Kumar and Pahuja, 2021).

3.1 Objective functions

In this subsection, we will introduce the objective function used across the mathematical
models starting with the cases of a strongly-connected and a weakly-connected mini-grid.

Strongly-connected mini-grid

We first present the objective function for a strongly-connected mini-grid, i.e., where outages
do not occur. In such a mini-grid, if the operator faces forecasting errors in solar and load
predictions, the impact is negligible from a physical standpoint. The system can be adapted
by managing exports and imports. However, economically, it’s important to note that instan-
taneous grid exchanges come with a higher cost compared to day-ahead exchanges.

For such a problem,wewant tomaximize the profit of theMGdispatch,which is equivalent
to minimizing the net operational costs minus net revenue. The summation term in the
objective (1) reflects the negative profit of the MG over the nominal time horizon T , plus the
duration of an outage κ , as the outage could start at the end of the nominal time horizon.

f0(�, b+, b−, g+, g−) :=
T+κ∑

t=1

c�,t · �t + cb,t · (b+
t + b−

t ) − pd,t · dt + cg,t g
+
t − pg,t g

−
t + E[cγ,t (γt )]. (1)

The aim is to maximize the profit of the MG dispatch, i.e., minimize the function f0, where
revenues from electricity sales are subtracted from the marginal costs of operation. The
marginal costs consist of the fuel costs c�,t for the Diesel genset, of the battery lifetime
depreciation costs cb,t due to the discharge-charge cycling, and of the costs cg,t for import-
ing from the main grid. Solar power is assumed to have zero marginal costs and therefore
doesn’t appear in the objective function. Thus far, maintenance costs are not explicitly con-
sidered. They could be levelized and included in the cost coefficients of each technology.
However, for this paper, further considerations about the maintenance approach are omitted.
The revenues are generated from selling the electricity at exogenous price of pd,t to the con-
nected households consuming electricity at the MG level, as well as from exporting excess
electricity at the exogenous price of pg,t to the main grid. The random variable

γt = γt (z, ξ, δ) := dt + δt − st − ξt − �t − b−
t + b+

t − g+
t + g−

t , ∀t = 1, . . . , T + κ,

with z := (�, b−, b+, g−, g+),

(2)
is defined as the compensating action establishing the loadbalance after applying thedecisions
z on the employment of Diesel �t , battery bt and grid exchange gt on a day-ahead approach
and observing the random variables solar energy st + ξt and demand dt + δt (given forecast
plus random deviation in both cases). A positive value of γt represents a lack of energy to be
compensated by instantaneous import from the main grid (at a price that may be substantially
higher than for the import on the day ahead market). A negative value of γt refers to an excess
of energy which has to be instantaneously exported to the grid, again at certain costs (so that,
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contrary to the day ahead market there is no reward for the export). As γt and, hence, its
associated costs, are random, we minimize the expectation of these costs.

All costs and prices are defined as time-variable parameters, hence the index t for each of
these parameters.

Weakly-connected mini-grid

Here, we introduce the intricacies associated with a weakly-connectedMG, i.e. with potential
outages in themain grid and adjust the objective function accordingly. Starting with the initial
objective function (1), we adapt the objective function f0 to account for the case of possible
grid outages. We introduce the following definition:

f1(�, b+, b−, g+, g−, r�, rb) :=
T+κ∑
t=1

c�,t · �t + cb,t · (b+
t + b−

t ) − pd,t · dt

+ω

T

T∑
τ=1

(∑T+κ
t=1,t �=τ,...τ+κ cg,t g

+
t − pg,t g

−
t + E[cγ,t (γt (z, ξ, δ))] +

τ+κ∑
t=τ

c�,t r�
t + cb,t r

b−
t

)

+(1 − ω)
T+κ∑
t=1

(
cg,t g

+
t − pg,t g

−
t + E[cγ,t (γt (z, ξ, δ))]) . (3)

The first term is defined in analogy to (1) including again a summation over the Diesel and
battery cycling costsminus the revenues generated by selling the electricity to local customers
at a given price. Now, considering the possibility of grid outages, we delineate two scenarios
for the costs and revenues associated with grid exchange: one when an outage occurs and
another when it does not. These scenarios are articulated in the second and third terms of
(3). We make the assumption that, at most, one outage may occur during the designated day
ahead, and the probability of its occurrence is denoted asω. In the absence of an outage during
the specified day (probability equals 1− ω), the sole additional costs stem from trading with
the main grid (third term). Conversely, when an outage occurs, suppose at time τ , then in
the interval [τ, . . . , τ + κ], representing the duration of the outage, no trading costs with
the main grid are incurred (due to the lost connection). However, additional costs arise from
utilizing reserve capacities r�

t , rb−
t for Diesel generation and battery discharge to meet the

local demand in the islanded mode (second term).
We assume that τ is uniformly distributed, indicating that an outage may initiate at any

time with equal probability. Consequently, in the second term of (3), we compute the average
costs across all potential starting times for the outage. In contrast, the duration κ of the outage
is regarded as the statistical mean derived from historical data or treated as an exogenous
parameter of the problem, capable of assuming multiple values.

3.2 Deterministic constraints

The physical constraints represent well-known formulations for mini-grid economic dispatch
models, consisting in capacity constraints of the MG components, a power balancing con-
straint for MG supply and demand, inter-temporal constraints for the storage state of charge,
as well as considerations of conversion and distribution losses expressed through average
efficiency parameters. These will be discussed in more detail in the following.
Capacity constraints of the Diesel genset: it is assumed that the Diesel genset can operate
between 0 and its maximal capacity �max . Therefore, the sum of the decision variables for
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the Diesel genset dispatch�t and the Diesel genset reserve r�
t have to be within these bounds

at all time (4).

0 ≤ �t + r�
t ≤ �max , ∀t = 1, . . . , T + κ. (4)

Capacity constraints of the battery charge and discharge: similarly to the Diesel genset, the
battery charge and discharge rates are also bound by a lower level of 0 and an upper level
bmax . In the case of discharging the battery, we define the discharge rate as the sum of the
actual dispatch decision b−

t and the planned reserve rbt (5). Since we assume that the reserves
are used to compensate an electricity shortage and that any excess generation from solar PV
can be curtailed fast enough, we omit the definition of a reserve for the battery charging, thus
obtaining the constraint (6) for the decision variable of battery charging b+

t .

0 ≤ b−
t + rbt ≤ bmax , ∀t = 1, . . . , T + κ. (5)

0 ≤ b+
t ≤ bmax , ∀t = 1, . . . , T + κ. (6)

Capacity constraint for the grid exchange: the connection to the main grid at the PCC is also
constrained by a certain capacity limit over time. Thus, the decision variables for the grid
export g−

t and the grid import g+
t are also bound by an upper value of gmax

t :

0 ≤ g+
t ≤ gmax

t , ∀t = 1, . . . , T + κ. (7)

0 ≤ g−
t ≤ gmax

t , ∀t = 1, . . . , T + κ. (8)

Power balancing constraint: as in any power system, to maintain the system frequency and
prevent any voltage surge or sag that would lead to a grid failure, the supply and demand of
electricity must be equal at any time. As mentioned in Sect. 3.1, this balance is established
by means of the compensating action γt defined in (2), where any current excess or deficit
in the load balance is rectified by instantaneous (potentially costly) grid exchange

st + ξt + �t + b−
t − b+

t + g+
t − g−

t + γt = dt + δt ∀t = 1, . . . , T + κ. (9)

Capacity, cycling and inter-temporal constraints for the battery energy-storage system: in
addition to the constraints on the battery discharge and charge rates defined in constraints
(5) and (6), we need to define additional constraints on the battery energy fill level, also
called State Of Charge (SOC), and defined in the following constraints as SOCt . The first
constraint concerns the upper and lower bounds of the SOC which are defined by both
physical constraints of the actual battery size, as well battery protection measures that set
tighter conditions on these bounds (SOCmin and SOCmax in the constraint (10)) in order to
protect the battery from overheating and extend its lifetime.

SOCmin ≤ SOCt ≤ SOCmax , ∀t = 1, . . . , T + κ. (10)

In the second constraint for the battery energy-storage system, we set a condition to the
cycling of the battery over the nominal time horizon T , which guarantees that battery’s SOC
at the the end of each time horizon T is equal to the SOC at the beginning of the time horizon
as defined in the constraint (11). With this, we make sure that the dispatch is optimized with
the ulterior operation of the MG, beyond the nominal time horizon, is considered and the
SOC at the end of the time horizon is not exhausted for subsequent operational time steps.
This constraint is optional, since, in practice, the optimization of the MG operation is usually
conducted in a rolling horizon approach, preventing such exhaustion of the SOC at the end
of an optimization horizon.

SOCT = SOC0. (11)
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In the next constraint for the battery energy-storage system, we look into the inter-temporality
of the battery discharge and charge processes, which translates into an increase or a decrease
of the SOC over time. For this, we define the constraint (12), which relates the SOC at time
t to the SOC at time t − 1, with the initial value SOC0 given. The relation between SOCt

and SOCt−1 takes into account the battery discharge b−
t and charge b+

t multiplied by their
respective average efficiency coefficients η+ and η−. Since b−

t and b+
t are power figures,

expressed in kW or W and the SOC is an energy figure expressed in kWh or Wh, the net
charge and discharge rate must be multiplied with the nominal time-step �t ,

SOCt = SOCt−1 + (η+b+
t − η−b−

t )�t, ∀t = 1, . . . , T + κ. (12)

Finally, we define the constraint (13) to describe the potential discharge of the battery, and
therefore the potential SOC, in case of an employment of the battery reserves because of
an outage. This potential SOC at time t (SOCt ) minus the cumulative reserves rbs that are
planned in the κ previous time steps, multiplied by the average discharging efficiency η− and
the nominal time-step �s. Since rbs is a non-negative decision variable, the constraint (13)
entails the definition of the lower bound presented in the constraint (10).
For t = 1, . . . , T + κ:

SOCmin ≤ SOCt −
min{τ+κ,t}∑

s=τ

η−rbs �s, τ = 1, . . . ,max{t − κ, 1}. (13)

Since we consider a battery reserve only for the discharging, we do not need to define an
adjusted constraint for the upper bound of the potential SOC. Therefore, the definition of the
upper bound in the constraint (10) remains unchanged.

3.3 Random parameters

In this section, we describe how the random parameters, namely solar energy and demand
are dealt with in our model.

Time series analysis

Apart from the fixed data, two data sets are used in this study: solar data in dry season and
rural load data. In this study, we implement an Autoregressive Integrated Moving Average
(ARIMA)model (Box and Jenkins, 1976) to forecast the next 48h (such that we can vary κ to
explore different scenarios). ARIMAmodels have a single dependent variable that is a linear
function of past values and an error term. Integrated processes are typically non-stationary.
There are two main sources of non-stationarity: (a) heteroscedasticity, which can often be
addressed by applying a log transformation; (b) an increasing or decreasing trend, which
can often be eliminated by differencing. Differencing the series d times yields a stationary
stochastic process. A typical ARIMA(p, d, q) model can be expressed by:

ϕp(B)(1 − B)d zt = θq(B)εt (14)

where zt represents a non-stationary time series at time t , εt is a white noise, d is the order
of differencing, B is the backward shift operator defined by Bzt = zt−1 and ϕp(B) is the
autoregressive operator defined as:

ϕp(B) = 1 − ϕ1B − ϕ2B
2 − · · · − ϕp B

p. (15)
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Fig. 2 Actual and forecasted ARIMA(24, 1, 27) load model

Also, θq(B) is the moving average operator defined as:

θq(B) = 1 − θ1B − θ2B
2 − · · · − θq B

q (16)

To determine appropriate parameters of the ARIMA models, the following method used
in Sen et al. (2016); González Grandón et al. (2024) was applied. Firstly, the lowest order of
differencing needed for the series to become stationarywas identified. This is done byutilizing
the auto.arima function within the R forecast package (R Core Team, 2021). Based on the
high p-value of the differenced time series from the Kwiatkowski-Phillips-Schmidt-Shin
(KPSS), we confirm stationarity. The differenced stationary time-series is then tested with
an autocorrelation function (ACF) and partial autocorrelation function (PACF) to determine
the highest orders of p and q respectively for which significant auto-correlation is left. The
obtained values are then used as an upper limit for a step-wise grid search with varying
p and q values starting from 1 respectively. The d value determined by the auto.arima
function is retained fixed. ARIMA models are then computed for all specified combinations
of (p, d, q) values and we select the one with the lowest Akaike Information Criterion
(AIC). Initial estimates for the AR and MA coefficients are obtained using conditional-
sum-of-squares estimation, followed by maximum likelihood estimation to finalize these
coefficients. Lastly, the model performance was evaluated using Root Mean Square Errors
(RMSEs) and coefficient of determination R2.

For the rural load data the best model we obtain is an ARIMA(24,1,27). The comparison
between the actual value and the forecasting value for the 48 points out-of-sample is given
in Fig. 2.

Similarly, the best model we got for the solar power production during the dry season was
an ARIMA(12,0,13) and the forecasted values for a 48h test set are shown in Fig. 3.

We conducted a comprehensive statistical residual analysis on the ARIMA models to
evaluate the appropriateness of the model fit. Our investigation revealed that the residuals
from rural load, denoted as δt , from solar forecasts, denoted as ξt , conform to a normal
distribution with zero mean. The Shapiro test resulted in a p-value of 3.2 × 10−3 for load
and of 6.4 × 10−5 for solar.

Furthermore, we assumed that the forecasting error of rural load δ is independent from
the forecasting error of solar power ξ . This assumption and the aforementioned time series
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Fig. 3 Actual and forecasted ARIMA(12, 0, 13) solar power model

analysis imply that:

X :=
(

ξ

δ

)
∼ N

((
μξ

μδ

)
, �̃

)
, where �̃ =

(
�ξξ 0
0 �δδ

)
. (17)

As will be derived later for the definition of the joint and individual chance constraints (in
(22) and (21) respectively), the random vectors ξ and δ are incorporated into the constraints
as a net vector α := δ − ξ , characterized by a non-degenerate Gaussian distribution. With
the assumption of independence, which implies zero correlation, and considering the zero
mean result explained above, (17) is simplified to obtain:

μα = μδ − μξ = 0,

�α = �ξξ + �δδ.
(18)

The non-degenerate Gaussian nature of the distribution of α holds particular significance as
one of the crucial theoretical and numerical aspects concerning our joint chance constraint
problem which pertains to the convexity of the set of decision variables satisfying (21).

It is a well-established result by Prékopa (1995) (Theorem 10.2.1) that this set exhibits
convexity under the condition that the law of α constitutes a log-concave probability measure
on RT+κ . This finding aligns with Prékopa’s theorem, which asserts that the law of α is log-
concavewheneverα possesses a log-concave density, as is the case for themultivariate normal
distribution. Leveraging the insights from our residual analysis and the combination of these
theorems, we are able to confirm the convex nature of our joint chance constraint problem.

Expectation of the costs for instantaneous grid exchange

We shall assume in this paper that the cost function for instantaneous grid exchange has the
concrete form:

cγ,t (x) =
{
c∗
γ x, for x ≥ 0, (c∗

γ > 0 given)
0, else.

Thismeans that costs for importing unsatisfied energy grow linearlywith the amount,whereas
excess energy can be get rid off at no costs. Based on this definition of the cost function,
we derive in the following how to analytically determine the term E[cγ,t (γt (z, ξ, δ))], as
required for the objective function (1).

Let μt = μt (z, ξ, δ) and σ 2
t = σ 2

t (z, ξ, δ) be the expected value and the variance of the
random variable γt , respectively. Using (2) and the characteristics of the forecasting errors ξ
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and δ presented in (18), we derive that

μt = dt − st − �t − b−
t + b+

t − g+
t + g−

t , ∀t = 1, . . . , T + κ.

σ 2
t = σ 2

ξ,t + σ 2
δ,t , ∀t = 1, . . . , T + κ.

(19)

Applying the proof presented in Appendix A, where we denote by ϕ(·) and �(·) the den-
sity and distribution function of the standard normal distribution, respectively, we have the
function:

E[cγ,t (γt (z, ξ, δ))] = c∗
γ σtϕ

(
μt

σt

)
+ c∗

γ μt�

(
μt

σt

)
,

and, with (19), its gradient with respect to z:

∇E[cγ,t (γt (z, ξ, δ))] = c∗
γ �

(
μt

σt

)
∇μt = c∗

γ �

(
μt

σt

)
(−et ,−et , et , et ,−et ),

where et denotes the t-th unit vector of dimension T + κ .

3.4 Probabilistic and expected-value constraints for considering outages

In this section, we present different constraints on reserves for Diesel and battery in the
case of weakly-connected mini-grids affected by occasional outages of the main grid. The
presentation is top-down according to the quality of the models. We start with a model for
joint chance constraints, which is at the core of this paper.

Joint chance constraints (JCC)

As explained before, in the case of a weakly connected mini-grid we expect an outage of the
main grid at any initial time τ with a given duration κ . The aim of the dispatch in such case
is to retain reserves for Diesel and battery in addition to their regular employment such that
the mini-grid can survive in an islanded mode without exchange with the main grid. Since all
operational decisions are taken prior to observing uncertainty, successful islanding cannot
be guaranteed deterministically but only with a given (possibly high) probability. Satisfying
at some fixed time t the true demand dt + δt (as opposed to the forecasted demand dt ) under
the true solar power st + ξt with the help of scheduled local dispatches of Diesel and battery
and additional employment of reserves retained for Diesel and battery, but without having
access to the main grid, amounts to the inequality

st + ξt + �t + b−
t − b+

t + rbt + r�
t ≥ dt + δt .

Note that we cannot formulate an equality for the load balance here because of the present
randomness of some of the parameters which is revealed only after taking the dispatch
decisions. The inequality can be reformulated to the following equivalent:

δt − ξt + dt − st − �t − b−
t + b+

t ≤ rbt + r�
t . (20)

Asmentioned above, wewant to satisfy with some high probability p this inequality through-
out the time window of an outage starting at time τ and ending at time τ +κ . Since the initial
time is supposed to be unknown, we formulate a corresponding probabilistic constraint for
each τ . Altogether, we obtain the following system of constraints:

∀τ ∈ {1, ..., T } :
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P(δt − ξt + dt − st − �t − b−
t + b+

t ≤ rbt + r�
t ∀t ∈ {τ, ..., τ + κ}) ≥ p. (21)

Each single of these constraints is called a joint probabilistic constraint because it involves
a system (not just one) of random constraints inside in order to guarantee successful island-
ing uniformly for the whole time window of an outage. As a consequence, one deals with
probabilities under multivariate (not just univariate) normal distributions. This is a particular
challenge because no explicit formulae for probabilities are available in this case. Moreover,
apart from simply approximating the probabilities themselves (which could be done by some
Monte Carlo or Quasi-Monte Carlo sampling), the efficient numerical solution of the arising
optimization problems based on solvers from nonlinear programming requires sensitivities
of these probabilities with respect to decision variables. Efficiently implementable gradient
formulae in the case of Gaussian or related distributions are presented in the form of spherical
integrals (e.g., Van Ackooij and Henrion, 2014).

At this point, one might wonder why the joint character of the chance constraints imposed
on successful islanding at time index t is not extended to the initial time τ of a potential outage.
This would involve placing the quantifier ∀τ inside rather than outside the probability (21), as
seen in hybrid robust-chance-constrainedmodelswith infinite (continuously indexed) random
inequalities (e.g., González Grandón et al., 2017; van Ackooij et al., 2016). The reason is
that during an outage, demand violations can occur multiple times, whereas we assume that
the outage itself occurs at most once a day. For instance, if an outage lasts 5 hours, no new
outage can start during that period. This motivates us to formulate an individual system with
respect to the unknown initial time τ realizing itself at most once. In contrast, individual
chance constraints for successful islanding contradict the goal of ensuring robust demand
satisfaction throughout the entire outage period. This simplifying but less appropriate model
will be discussed for the sake of comparison in the next section.

Individual chance constraints (ICC)

To contrast the JCCmodel with other more common implementations found in the literature,
we introduce in the following the Individual-Chance-Constraints (ICC), which drastically
reduces the computational effort but can only ensure the p-level reliability for single time
steps and not for the whole outage duration κ .

More precisely, we replace the introduced joint chance constraint system by the following
individual chance constraint system:

P(δt − ξt + dt − st − �t − b−
t + b+

t ≤ rb
−

t + r�
t ) ≥ p, ∀t = 1, . . . , T + κ. (22)

Observe that, in contrast with (21), the probability of successful islanding is considered
individually for each time step but no longer uniformly over the time window of an outage.
As a consequence, the obtained probability function is univariate normal and can be easily
inverted using its p-quantile qp:

rb
−

t + r�
t − dt + st + �t + b−

t − b+
t ≥ qp, ∀t = 1, . . . , T + κ. (23)

In this way, the system (21) of nonlinear, non-explicit and potentially difficult to handle joint
chance constraints is reduced to a simple system of explicit linear constraints in the decision
variables which is easy to handle numerically. The drawbacks of this model will be illustrated
in the numerical results below.
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Expected-value constraints ignoring forecasting errors

Next, we further simplify the model by maintaining the assumption of a weakly-connected
mini-grid, while completely avoiding probabilistic constraints. Instead, we require that the
constraints for successful islanding hold on average. Specifically, this expected-value dispatch
model does consider outages but only considers the expected value of forecast errors for both
solar production and for demand in (20). As a result, the system of constraints describing
successful islanding is given by:

dt − st − �t − b−
t + b+

t ≤ rbt + r�
t , ∀t = 1, . . . , T + κ. (24)

Observe that (24) represents the same linear inequality system as (23) but with different
right-hand side.

We note here that we choose to define the system of constraints (23) and (24) for t =
1, . . . , T + κ so that we can apply the objective function defined in (3) across all models
that consider outages, thus allowing for a comparability between the results of the simplified
models (ICC and expected-value models) and the JCC model.

Regular dispatch ignoring outages and forecasting errors

The final model we introduce is the simplest and most basic, as it ignores both forecasting
errors and the occurrence of outages from the main-grid. We refer to this as the regular model
due to its widespread use in the literature, where the operation or economic dispatch of mini-
grids often overlooks uncertainties (Beath et al., 2023; Elegeonye et al., 2023; González
Grandón et al., 2021; Kumar, 2021; Kumar and Pahuja, 2021). These models typically adopt
a deterministic approach, focusing solely on the expected value of the forecasting time series,
disregarding both their random errors and the uncertainty of timing of blackouts. The first
simplification in this model is the elimination of the last term in the objective function f0
presented in (3), which accounts for the random instantaneous exchange with the grid. The
second simplification concerns the assumption of a strongly connected mini-grid, where
outages are disregarded. Consequently, the reserve variables for Diesel and battery systems,
which are included in other models to ensure the reliability of supply during blackouts, are
also excluded from this model.
Under these simplifications, we obtain the following minimization objective function:

f2(�, b+, b−, g+, g−) =
T+κ∑

t=1

(
c�,t ·�t+cb,t ·(b+

t +b−
t )−pd,t ·dt+cg,t g

+
t −pg,t g

−
t

)
. (25)

We also adjust the power balancing constraint from (9) as follows:

st + �t + b−
t − b+

t + g+
t − g−

t ,= dt ∀t = 1, . . . , T + κ. (26)

Furthermore, since the regular model doesn’t include any reserve considerations, we adjust
the box deterministic constraints for the Diesel and battery discharge variables as shown
in (27)-(28), and remove the constraint for the potential state of charge presented in (13).
Meanwhile, the constraints (7), (8) and (10)-(12) remain unchanged.
Capacity constraints of the Diesel genset

0 ≤ �t ≤ �max , ∀t = 1, . . . , T + κ. (27)
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Capacity constraints of the battery discharge

0 ≤ b−
t ≤ bmax , ∀t = 1, . . . , T + κ. (28)

4 Case study

Our case study focuses on an operational mini-grid in Chifule, an island of Lake Victoria,
Tanzania. Currently, theMG remains isolated, lacking any linkage to themain-grid. However,
considering the research question at hand and anticipating a future where many MGs in sub-
Saharan Africa will be connected to weakly-connected main grids, we assume that the MG,
for the purposes of this study, is connected to a main grid characterized by unreliability and
frequent outages.

In the following, we present the physical and monetary parameters preset for this case
study. For the random parameters used in this case study, we refer to Sect. 3.3 where we
derive the parameters characterizing the random components of our model, i.e., the mean and
(co)-variances of the distribution functions resulting from the presented forecasting models.

Physical parameters

The physical parameters pertinent to this context are detailed in Table 2, while the price and
cost parameters are presented in Table 3. In conjunction with the parameters listed in these
tables, it is assumed that the nominal time horizon is 24h, and the time step is set at one hour.

All parameters, excluding those pertaining to the main grid connection, are defined based
on data from the MG operator in Tanzania. For the parameters related to the grid connection,
we use heuristic and model-informed values. For instance, for the maximum available grid
capacity gmax , we assume a high value meaning that in case of grid availability, the grid can
always guarantee the satisfaction of the local electricity demand. For the average duration
of an outage κ , we initially set its value to 3h, based on empirical values collected from
main-grids in similar geographies (Klugman et al., 2021). The κ parameter will be varied,
further on, to examine its effect on the obtained solutions. For the probability of an outage
ω, we assume that outages occur on nine days out of ten, i.e., ω = 0.9 to magnify the effect
of outages on the daily planning of the dispatch.

Monetary parameters

The monetary parameters, presented in Table 3 are also based on indications by the MG
operator for the marginal costs of the fuel, the electricity sale price to local customers, and
scalar aging costs. The marginal aging cost of the battery is the monetary value reflecting the
cost of battery aging due to an additional power unit charged or discharged from the battery
Xu et al. (2018). For the cost of importing from the grid and the price of exporting to it,
we use values derived from expert interviews with weakly-connected MGs in sub-Saharan
Africa. Thereby, we assume that prices and costs differ between night and day, reflecting
market conditions, i.e., that importing from the grid costs more during the night than during
the day, since at night, the main grid is overall more stressed due to the absence of (cheap)
renewable-energy generation (e.g., solar), and that selling to the grid during the day is more
valuable due to the higher demand.

123



Annals of Operations Research (2025) 344:499–531 515

Table 2 Physical parameters

Parameter Unit Value Description

Battery system η+ % 95 Average battery charging efficiency

η− % 95 Average battery discharging

Efficiency

σ % 0 Battery self-discharge rate

bmax kW 10 Maximal battery charging/dis-

Charging rate

bcap kWh 100 Maximal battery capacity

SOCmax % 90 Maximal battery state of charge

SOCmin % 20 Minimal battery state of charge

SOC(t = 0) % 35 Initial battery state of charge

Diesel genset �max kW 5 Rated Diesel genset capacity

Main grid connection gmax kW 100 Maximum available grid capacity

κ - 3 Average duration of outages

ω - 0.9 Probability of an outage occurring

during one day

Solar input st kW see Fig. 3 Forecasting of maximum solar

Production

Meta-parameters p % 90 Probability of Successful islanding

dt kW see Fig. 2 Forecasted electricity load

Table 3 Cost & price parameters

Parameter Unit Values Description

c�,t e /kWh 0.35 Marginal cost of Diesel

cb,t e/kWh 0.0055 Marginal cost of battery

cg,t e/kWh 0.55 (night), 0.15 (day) Marginal cost of grid import

cγ,t e/kWh 0.85 (night), 0.45 (day) Cost for instantaneous grid exchange

pg,t e/kWh 0.08 (night), 0.13 (day) Price for grid export

pd,t e/kWh 0.55 Price for electricity sales to customers

5 Results

In this section, we present the results of the optimization problem of the regular (purely-
deterministic), expected, ICC and JCC models and compare them to investigate the effects
achieved due to the different formulations and ways of handling the uncertainties. For these
results, we use the previously presented input parameters and time series.

Optimal dispatch

First, we look into figures 4-7 showcasing the optimal dispatch of each component
(respectively-colored bars), in order to meet the forecasted electricity demand profile (as
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Fig. 4 Economic dispatch in the regular model. Arrows near the x-axis show an increase or a decrease in the
price/cost of grid export/import

a continuous black line) given the forecasted solar power production (as a continuous yellow
line).

To emphasize the price signaling that is implied by the chosen monetary parameters for
grid exchange (see Table 3), we show using top and down arrows near the x-axis of the figures
the changes in grid import cost (dark blue) and grid export price (light blue). A top arrow
indicates an increase in the cost parameter, while a down arrow indicates a decrease. In this
sense, the cost of grid import drops to its set lower level at 9 a.m. and increases again to its
set higher level at 6 p.m. each day, while the price for grid export increases at 9 a.m. and
drops at 10 p.m.

The dispatch of the regular model is shown in Fig. 4. The figure shows that the demand is
mainly met through discharging the battery for the first two morning hours and from 10 p.m.
to midnight. In the early morning hours starting from 3 a.m., we notice an employment of the
Diesel genset. Later, starting from 9 a.m., as the prices for main grid electricity import get
cheaper (see Table 3), electricity is also imported from the main grid for a few hours. During
the day, the demand is met by using the solar PV generation with a peak around 3 p.m. The
solar PV power is first used tomeet the electricity demand directly. Any remaining generation
from the solar system is either sold to the main grid for additional revenue generation or used
to charge the battery in preparation for the night hours. This optimal dispatch leads to expected
profits of 84.46 e for the optimization horizon T + κ , i.e., 27h.

Looking into the expected-value model, where the model ignores forecasting errors but
factor in the possibility of main grid outages occurring with a certain probability, the resulting
dispatch shown in Fig. 5 differs from the regular model dispatch, mainly by using the Diesel
genset more strongly (throughout the first eight hours of the day) and using more of the
excess solar PV generation to charge the battery in the middle of the day. Since the increased
Diesel employment adds to the operational costs and the decreased exporting to the main
grid reduces the generated profits, the overall expected profits drops to 69.06 e for the
optimization horizon of 27h.
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Fig. 5 Economic dispatch for the expected-valuemodel. Arrows near the x-axis show an increase or a decrease
in the price/cost of grid export/import

The expected optimal profits drop even more for the ICC model, where we use individual
probabilistic constraints to ensure a certain probability of successful islanding while consid-
ering both main grid outages and forecasting errors. For a probability of 90%, the optimal
profits are 63.73 e. In the resulting optimal dispatch shown in Fig. 6, the optimizer hedges
against forecasting errors and main grid outages by starting to charge the battery sooner (i.e.,
at 1, 2, 5 and 6 a.m.) with electricity imported from the main grid. Additionally, more of
the excess electricity is used to charge the battery than to export to the main grid and more
Diesel generation occurs during the night hours in order to reduce the electricity discharged
from the battery keeping it as a reserve. This new dispatch clearly leads to higher Diesel
and main grid import costs and lower main grid export revenues. Overall, compared to the
expected-value model, the profits with the ICCmodel drop by merely 5e, all while ensuring
a high probability in the order of 90% individually at each time step to successfully meet the
local demand in an islanded mode and compensate for forecasting errors.
Still, as explained in earlier sections, the ICCmodel guarantees the required level of islanding
probability only for the single time step when an outage starts and doesn’t cover the entire
duration of the outage. For this, we look into the dispatch results of the JCC model, shown in
Fig. 7. The figure showcases the same effects as for the ICC model, only larger in scale, i.e.,
the dispatch shows more battery charging through main grid imports during the night and
excess solar PV power during the day, as well as less battery discharging during the night
hours replaced by Diesel generation.

As a consequence, the expected profits drop to 59.87 e, yet with a guarantee that the
minigrid survives islanding and probable forecasting errors with a probability of p = 90%
for the whole duration κ = 3 of the main grid outage. Further in this section, we analyze
the influence of the parameters p and κ on the expected profits and achievable successful
islanding probabilities.

One concluding remark regarding the optimal dispatch shown in the figures above, is
that, except for the regular model which doesn’t include any random variables, the planned
dispatch from the MG components do not balance out to the forecasted demand given the
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Fig. 6 Economic dispatch for the ICC model. Arrows near the x-axis show an increase or a decrease in the
price/cost of grid export/import

Fig. 7 Economic dispatch for the JCC model. Arrows near the x-axis show an increase or a decrease in the
price/cost of grid export/import

forecasted solar power generation. This can be explained by the definition of the balancing
constraint as shown in (9). With this equation, we don’t impose the expensive condition that
forecasted demand be met with the respective dispatch from the MG components. Instead,
we use for the power balance the real demand and the real solar power generation, as well
as the variable γt as a random variable to cover the instantaneous grid exchange (see (2) and
the linked explanation in that section of the paper). To showcase this effect in a clearer way,
we present, in Fig. 8, the net planned dispatch from all the components in the JCC model in
each time step, the forecasted demand and one realization of the real demand. In addition,
we showcase the instantaneous dispatch, composed by one realization of the solar power
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Fig. 8 Planned and instantaneous dispatch of MG components, and forecasted and real demand in the JCC
model with cγ,t = 0.85 e/kWh (night) and 0.45 e/kWh (day)

forecasting error ξ and the random grid exchange γ . The figure shows clearly the deviations
between the planned dispatch and the forecasted demand, which are balanced out with the
instantaneous dispatch, e.g, at time steps 5 and 7 as a negative deviation from the forecasted
demand translating into an instantaneous need for more grid import, and in most other time
steps, e.g., at times 9 to 24 as a positive deviation, translating into an instantaneous need for
more grid export or generation curtailment.

An immediate result of this modeling logic is that the amount of power that is balanced
out using the instantaneous grid component γt varies depending on the predetermined cost
of γt , denoted as cγ,t : when the the cost associated to the instantaneous grid exchange cγ,t

and modeled in the objective function using E[cγ,t (γt )] is higher, less power is balanced
using the expensive, instantaneous grid exchange γ and the planned dispatch matches the
forecasted demand more. In Appendix B, we showcase the effect of varying cγ,t on the
resulting dispatch.

Optimal battery cycle

The presented differences in dispatch can also be examined in terms of optimal battery cycling
strategy, shown in Fig. 9-12 as charging and discharging powers (in different shades of green)
and SOC development (as a continuous black line).

Compared to the cases of the regular and expected-value models, the chance constraint
models showcase a strategy to charge the battery overnight, which is understandably more
significant in the case of the JCCmodel.Consistently, the chance constraintsmodels showcase
less discharging of the battery in the night hours, this being at the lowest for the JCC model.
Looking closer at the range of battery cycling, we note that for the regular and the expected-
value model, the state of charge is, as expected, cycled to lower levels than for the ICC and
JCC models. In the former two, the state of charge reaches its preset minimum value of 20
%, while, for the ICC, it only goes slightly below 30% and, for the JCC, it remains slightly
above 30%.
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Fig. 9 Battery cycle for the regular model

Fig. 10 Battery cycle for the expected-value model

Optimal reserves

Finally, we take a look at the reserves planned for the entire optimization horizon. Starting
with the reserves in the case of the expected-value model shown in Fig. 13, we note that
the planned diesel reserves cover almost entirely the planned grid import (see Fig5), thus
ensuring that the minigrid succeeds in its islanding provided that there is an outage during
these hours that would hinder the import of power.
Fig. 14 presents the planned optimal reserves for the case of an ICC model. Again here, we
note that the reserves are planned at each time step of planned grid import, as shown in Fig. 6.
During the peak of solar generation in the hours 12-19, where excess electricity is recorded,
no reserves are planned.
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Fig. 11 Battery cycle for the ICC model

Fig. 12 Battery cycle for the JCC model

For the case of a JCC model, Fig. 15 shows that more battery and Diesel reserves are
planned in all time steps and even in more hours of the day than in the ICC case, i.e., only in
time steps 13-18, no reserves are present.
The planned reserves translate into additional possible profits that are held back, e.g., through
avoided grid export revenues or increased Diesel deployment costs, thus explaining the grad-
ual worsening of the objective function value from the regular to the JCC case (see Table
4). However, in the following, we prove the increased reliability of the MG operation that is
achieved by the JCC model, justifying the small drop in profitability showcased so far.

123



522 Annals of Operations Research (2025) 344:499–531

Fig. 13 Reserves for the expected-value dispatch model

Fig. 14 Reserves for the ICC dispatch model

Increased reliability

With the ICC and JCC model, we are capable of handling many uncertainties in the MG
operation, as explained in Sect. 2, thus increasing the reliability ofmeeting the local electricity
demand. Thereby, we handle different types of uncertainty: on the one hand, the uncertainties
about the forecasting of the solar PV generation and the electricity demand, on the other hand,
the uncertainties about an outage of the main grid. The uncertainties about when and how
long a main grid outage could occur enlarges the uncertainties about the forecasting errors:
provided that the grid is reliable and doesn’t experience any outages during one day, the
main grid could level up any forecasting errors and ensure that the power balance is always
met. Nevertheless, in the presence of an unreliable grid, not only are forecasting errors
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Fig. 15 Reserves for the JCC dispatch model

more noticeable, but any planned grid exchange in the optimal dispatch could also be risky,
potentially leading to load shedding and an unmet power balance in the MG.

In the previous figures, we prove that at times of a planned exchange with the main grid,
enough reserves from the battery and Diesel are kept in the MG and, therefore, the reliability
of meeting the local demand in the case of an outage is increased depending on the preset
reliability level (compare Fig. 6 and 7 with Fig. 14 and 15, respectively). In the following
figures, we show the effect of the forecasting errors and how the additionally planned reserves
can also compensate them even in the case of a main grid outage.

Starting with the ICC case, Fig. 16 showcases, on the left, 10 realizations of the forecasting
errors (according to the determined distributions), and on the right, how these errors are
compensated using the reserves planned for them.Given that the individual chance constraints
are defined as follows and as explained in Sect. 3.4,

P(rb
−

τ + r�
τ + g−

τ − g+
τ − (ξτ + δτ ) ≥ 0) ≥ p, ∀τ ∈ {1, ..., 27},

any curves that go below the zero line (colored in red) represent a violation of the probabilistic
constraint, and thus, unmet demand translates into lost revenues. Hence, with 10 simulations
and a probability p = 90%, an empirical approximate of only one curve in each individual
time step should be below zero, hence ensuring that the reliability constraint is satisfied
separably for each time step

However, if we look at windows of outages, we find that different lines go below the zero
line at different time steps, as represented in Fig. 16 as red-colored lines. Thus, with the ICC
model, over the whole duration of the outage, we obtain a probability of successful islanding
that is less than 90%. In fact, its empiric value is as low as 58% for the investigated case study
for the computed case study(see Table 4). This is precisely the reason behind introducing
joint chance constraints which will be discussed next.
In the JCC case, we apply the same logic of verifying the reliability of the MG operation,
i.e., the capability of the planned reserves to compensate forecasting errors up to a given
probability level. We define the chance constraints as follows (also see Sect. 3):

P(rb
−

t + r�
t + g−

t − g+
t − (ξt + δt ) ≥ 0 ∀t ∈ {τ, . . . , τ + κ}) ≥ p, ∀τ = 1, ..., 24,
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Fig. 16 Forecasting errors of solar PV generation and electricity demand without any planned reserves (left)
and with planned reserves (right) in the ICC model

which means that with joint chance constraints, we look into windows of reliability that
range between τ ... τ + κ , with τ = 1 . . . T to verify that the probability level is withheld
throughout the entire window, and that, therefore, only one and the same realization curve is
below the zero line (colored in red) for each of the windows. This is proven for all possible
starting times of an outage τ = 1 . . . T , as shown in Fig. 17 with the outage starting times
τ = 1, 12, 24, for example.
Table 4 summarizes some key indicators of solving each of the optimization models, i.e.,
the optimal profit, the type of model and the required solve time. The values are for an
optimization model solved with the input parameters presented in Sect. 4, i.e., a nominal
time horizon T = 24 and an outage duration κ = 3 (optimization horizon of 27 steps) and a
probability level p = 90% for ICC and JCC.

Except the regular model, all models are nonlinear. The ICC includes T + κ = 27 lin-
ear chance constraints. The JCC model, on the other hand, includes T = 24 nonlinear
chance constraints with multivariate probability functions of dimension κ + 1 = 4. The
optimization problem for the expected-value, ICC and JCC models are solved with the local
nonlinear solver IPOPT, which is sufficient for global optimality due to the convexity of the
defined problems (Prékopa, 1995), and using two methods to compute the probability func-
tions and their gradients: Quasi-Monte-Carlo with the Genz algorithm and Spherical Radial
Decomposition (Van Ackooij and Henrion, 2014). Up to a slight numerical imprecision, both
computation methods yield the same optimal solution.

Compared to the value of the optimal expected profit of the regular model which is around
84.46 e, the expected-value, ICC and JCC models always lead to less profits, i.e., 69.06 e,
63.73e and 59.87e respectively, since they add additional constraints to the feasible set and
therefore lead to a worse objective function value. In addition, due to its tighter constraints
and the need for increased planning of reserves in order to survive the whole duration of
an outage, the JCC model formulation always has a worse objective function value than
the expected-value and the ICC. On the other hand, the JCC model achieves a much higher
robustness of the minigrid dispatch with regard to main grid outages and forecasting errors.
To quantify this increased robustness with a comparable indicator, we calculate, à posteriori
to the optimization, the minimally guaranteed probability of successful islanding throughout
the entire outage duration for each of the four models by using the joint chance constraint
system defined in (21). For the expected-value, ICC and JCC model, we insert the yielded
optimal values of the decision variables present in the constraint system. For the regular
model, we insert zero values to the reserve decision variables. Table 4 lists the minimally
achieved probabilities of successful islanding, denoted as Min. probability. As expected,
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Fig. 17 Forecasting errors of solar PV generation and electricity demand without any planned reserves (left)
and with the planned reserves (right) for τ = 1 (top), τ = 12 (middle) and τ = 24 (bottom) in the JCC model
with κ = 3

adding the considerations of reserves and gradually increasing the required level of robustness
from merely using expected values, to single step reliability constraints to joint reliability
constraints, leads to increasing probabilities of successful islanding with the highest level
achieved in the JCC model in the order of 90 % as preset.

In this sense, the drop in profits by approximately 25e from the regular to JCCmodel saves
the reliability of the minigrid in at least 90% of the cases from certain outages and substantial
associated revenue losses, while a mere 9 e loss in profit between the expected-value model
and the JCC model guarantees an increase in reliability by 70%.

We note that, in the following table, the indicated solve times are given only as an approx-
imation to hint at the order of magnitude of the required solve times, solely for the given
problem setting and its dimensions, as well as the preset accuracy and sample sizes.
Finally, we investigate the effect of changing probability levels p and changing outage dura-
tion κ on the optimal results. Figure18 presents the variation of the optimal expected profits
depending on the set probability level. The latter was varied from a value close to 0% up to
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Table 4 Comparison of the four models

Modelling approach Profit Min. probability Type Solve time

Regular 84.46 e 0 % Linear < 1 millisecond

Expected-value 69.06 e 20 % Nonlinear < 0.5 s

ICC (p = 90%) 63.73 e 58 % Nonlinear < 1s

JCC (p = 90%, κ = 3) 59.87 e 90 % Nonlinear 30-60 s

the maximum probability level above which the problem becomes infeasible. For the present
case study, the maximum probability is around 91%. In general, the variation of this parame-
ter, as well as the tendency of the curves depend on the system sizing and the input parameters
to the optimization problem. As shown in the figure, the trend is such that higher p-levels
lead to a worse objective function value, since this means an increase of the reliability and,
therefore, more hedging against the uncertainty leading to an overall decrease in profits.

To investigate the effect of varying κ , we look into the maximal reliability level (referred
to hereafter as p-max problem) that is feasible given the sizing of the studied MG as well
as the boundary conditions. Formulating the p-max problem requires changing the objective
function to a maximization of the probability level p, which is changed from being an input
parameter to being a decision variable. Figure19 presents the maximal reliability level for
values of the outage duration κ between one and ten. It shows that the higher the outage
duration, the lower is the maximal reliability to be achieved. Already with an outage lasting
κ = 5 hours, the probability of successful islanding drops below 60%, and for κ = 7 hours,
it drops to almost 0%. This means that, with outages lasting 7h or longer and with the given
MG sizing, the maximum reserves that can be planned are not enough to achieve a non-zero
probability of successful islanding.

Hence, in order to achieve high probabilities of successful islanding for a higher outage
duration, we need to adjust the size of the minigrid and therefore, solve the respective sizing
problem, e.g., by combining it with the dispatch optimization problem using chance con-
straints. Depending on the assumed input parameters, the assumed duration of the outage
and the reliability level to be achieved, the solution to this problem could be too expensive
and, therefore, must be considered in trade-off with the value of robustness achieved by using
chance constraints.

Overall, we prove that, through using joint chance constraints, a level of successful island-
ing probability can be preset and guaranteed, increasing the robustness of the optimal MG
operation strategy under uncertainty, in exchange with a small drop in profitability. This
trade-off is quickly compensated for, given the high reliability level that is achieved. Without
this level of reliability, experiencing an outage leads to very high costs represented by load
shed and, therefore, electricity purchases that are missing.

Practically, when applying dispatch models to the real-time operation of mini-grids, oper-
ators implement the dispatch algorithms in a rolling horizon method, typically of 15min,
thus updating the operation at each new run with new input data and forecast values. This
method should also be applied when using the presented JCC model, as this increases the
practical dispatch’s adaptability to new boundary conditions.
Supplementary information. The code with the model implementation and results can be
found on the Autarky-Power github page.
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Fig. 18 Variation of the objective function for the ICC (green) and the JCC (blue)model formulation depending
on the probability level

Fig. 19 Variation of themaximumprobability of successful islanding of the JCCmodel formulation depending
on the outage duration

Appendix A Expected cost for stochastic grid exchange

Let ζ ∼ N (μ, σ 2) be a Gaussian Random variable with mean μ ∈ R and standard deviation
σ ∈ R. Consider the piecewise linear cost function

h(y) =
{
cy, if y ≥ 0,
0, otherwise,

(A1)

where c > 0 is given.
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Expected cost

The expected cost E[h(ζ )] with respect to the distribution of ζ is given by

E[h(ζ )] = 1

σ
√
2π

∫ ∞

−∞
h(y)e− 1

2σ2
(y−μ)2dy.

The substitution y := σ x + μ allows for transformation to standard normal distribution. In
particular, having dy = σdx , and, by applying (A1), we may continue the above equation
as follows:

E[h(ζ )] = 1√
2π

∫ ∞

−∞
h(σ x + μ)e− 1

2 x
2
dx

= 1√
2π

∫ ∞

− μ
σ

c(σ x + μ)e− 1
2 x

2
dx

= cσ√
2π

∫ ∞

− μ
σ

xe− 1
2 x

2
dx + cμ√

2π

∫ ∞

− μ
σ

e− 1
2 x

2
dx .

Denoting by ϕ(·) and �(·) the density and distribution function of the standard normal
distribution, respectively, we are able to resolve both integrals and arrive at the equation

E[h(ζ )] = cσϕ
(μ

σ

)
+ cμ�

(μ

σ

)
.

Note, we used the property ϕ′(x) = −xϕ(x) in order to resolve the first integral.

Gradient

Assuming a dependency on an outer parameter (variable) z: In particular, let μ = μ(z) and
σ = σ(z) be functions depending on the variable z. Then, also the sensitivity of the expected
cost above in terms of the variable z may be of interest. Denoting with ∇μ and ∇σ the
gradients of μ and σ with respect to z we have

∇E[h(ζ(z))] = cϕ
(μ

σ

)
∇σ − cμϕ

(μ

σ

) σ∇μ − μ∇σ

σ 2

+ c�
(μ

σ

)
∇μ + cμϕ

(μ

σ

) σ∇μ − μ∇σ

σ 2

= cϕ
(μ

σ

)
∇σ + c�

(μ

σ

)
∇μ.

Under the assumption that only μ is depending on z in fact (∇σ = 0), then the gradient
formula further simplifies just to

∇E[h(ζ(z))] = c�
(μ

σ

)
∇μ.

Appendix B Effect of varying the cost parameter associated with the
instantaneous grid exchange c�,t
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Fig. 20 Planned and instantaneous dispatch of MG components, and forecasted and real demand in the JCC
model with cγ,t = 0.65 e/kWh (night) and 0.25 e/kWh (day)

Fig. 21 Planned and instantaneous dispatch of MG components, and forecasted and real demand in the JCC
model with cγ,t = 1.35 e/kWh (night) and 0.95 e/kWh (day)
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