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Abstract
Thedetermination of free technical capacities belongs to the core tasks of a gas network
owner. Since gas loads are uncertain by nature, it makes sense to understand this as
a probabilistic problem provided that stochastic modeling of available historical data
is possible. Future clients, however, do not have a history or they do not behave in
a random way, as is the case, for instance, in gas reservoir management. Therefore,
capacity maximization becomes an optimization problem with uncertainty-related
constraints which are partially of probabilistic and partially of robust (worst case)
type.While previous attempts to solve this problemwere devoted to models with static
(time-independent) gas flow, we aim at considering here transient gas flow subordinate
to the isothermal Euler equations. The basic challenge addressed in the manuscript
is two-fold: first, a proper way of formulating probabilistic constraints in terms of
the differential equations has to be provided. This will be realized on the basis of
the so-called spherical-radial decomposition of Gaussian random vectors. Second, a
suitable characterization of the worst-case load behaviour of future customers has
to be found. It will be shown, that this is possible for quasi-static flow and can be
transferred to the transient case. The complexity of the problem forces us to constrain
ourselves in this first analysis to simple pipes or to a V-like structure of the network.
Numerical solutions are presented and show that the differences between quasi-static
and transient solutions are small, at least in these elementary examples.
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1 Introduction

This paper deals with the determination of time-dependent maximum free capacities
in a gas network under uncertain loads. For a recent review on the transport capacity
management of oil and gas pipeline networks we refer toWang et al. (2022). The prob-
lem we are going to consider here is motivated by gas transport in an entry-exit model
as it has been introduced, for instance, in Germany in 2005. In such a system, a gas
transmission system operator (TSO) sells capacity rights (booking limits) to transport
customers. These rights allow the customers to inject or withdraw gas up to the given
capacity to entry or from exit points, respectively, in a completely independent manner
under the condition that injections and withdrawals are in balance. The TSO has to
make sure that the required gas transport can be technically realized for these arbitrary
injections or withdrawals (nominations) within the given booking limits. Here, tech-
nical realization refers to the existence of pressure and flow functions satisfying the
physical equations of gas transport such that the pressure in the pipes stays between
given lower and upper bounds. He is obliged to offer a maximum possible capacity
which can be used for booking, the so-called freely allocable capacity (FAC). On the
other hand, the requirement to technically ensure the resulting gas transport for all
possible nominations is not understood in a perfectly strict sense but for "likely and
realistic" scenarios. For details of this model, we refer to the monograph (Koch et al.
2015, Chapters 3 and 14). The term "likely and realistic" already alludes to some prob-
abilistic way of thinking: the concrete nominations vary from day to day depending
on exterior conditions such as temperature. But even for given temperature there are
random effects that make the consumption of gas stochastic.

It is clear that, in order to speak of a probability, one needs to have access to a
statistical distribution of nominations. Such distributions are multivariate in character
due to the presence of multiple nodes in the network but also due to time dependence.
They can be estimated from historical gas load data available to TSOs as it is presented
in (Koch et al. 2015Chapter 13), where several types ofmultivariate distributions (e.g.,
Gaussian or log-normal) were found to be relevant for gas nomination data. However,
contrary to gas load data of the existing clients at the exits, uncertainty in gas networks
is not completely of stochastic nature. We list three such settings:

1. Gas injection at entries
2. Values of certain physical parameters
3. Gas load data of future clients which may benefit from FAC

As for 1., it has to be taken into account that the injection at different entry nodes is
rather price-driven than random and could be output of a market model as in Grimm
et al. (2017). Another approach to dealing with entry nominations is assuming a worst
case with respect to technical realization of the required gas flow among all balanced
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nominations as in Adelhütte et al. (2021) Chapter 2. To simplify this aspect, we shall
assume in our paper, similar to (Gotzes et al. 2016; Heitsch 2020; Adelhütte et al.
2021 Chapter 3) that there is only a single entry node in the network feeding all the
exit nodes so that the injection at the only entry is already determined by the total load
of all exits and no uncertain splitting of this total load between several entries has to
be considered.

Concerning 2., the most prominent unknown physical parameter is the roughness
coefficient of a gas pipe. This value may differ in an unknown way from the original
value after a possibly long time of aging and hardly be directly measured for pipes
underground. Then, this value can be treated as an uncertain parameter in the sense
of robust optimization (Aßmann et al. 2019) or it can be endowed with statistical
information via uncertainty quantification and Markov chain Monte Carlo method
(Heitsch and Strogies 2019). In this paper, we shall assume, all physical parameters
to be known.

Most important for us is instance 3. While the gas load of existing clients maybe
assumed to be stochastic thanks to historical data, the same is not true for future clients
for which the FAC is potentially reserved. One could assume, for simplicity, that they
will follow the same statistical characteristics as the existing clients, but this may not
be justified for instance due to differing demographic factors. More importantly, FAC
might be used, for instance, by the owner of a gas reservoir whose load profile is not
random at all but might follow some optimization purposes which may be hard to
predict. Then, the network owner has to be prepared for the worst case load profile
within the booking limits offered to the new clients as an outcome of the determined
FAC.

Therefore, the uncertain total demand of existing and potentially new clients (after
exploiting FAC) exhibits a mixture of stochastic and worst case character. This leads
to the formulation of a probabilistic-robust (probust for short) constraint as introduced
in González Grandón et al. (2017) in order to describe the technical feasibility of the
determined FAC. Inwords, the optimization problemwewant to solve is the following:

Maximize FAC such that at least with a given probability the sum of random loads
imposed by existing clients and arbitrary loads of up to the value of FAC imposed by
future clients can be technically satisfied.

We shall refer to this problem as the probabilistic capacity maximization prob-
lem. Note that FAC may be different from one exit node to the other, so maximizing
might refer to the sum of node-dependent FACs or similar norms. In Heitsch (2020),
the probabilistic capacity maximization problem has been investigated without time-
dependence for an algebraic model of stationary gas flow respecting mass balance,
pressure drop and pressure bounds at the (single) entry and the exits. However, gas
loads at the exits may strongly vary over time in the course of a day which also has a
temporal impact on the free capacity FAC. We therefore intend to study here a proba-
bilistic maximization of time-dependent capacities implied by time-dependent loads.
We shall investigate whether the time dependence of gas flow can be assumed to be
quasi-static, which drastically simplifies the model and, in particular, the probabilistic
treatment of technical feasibility or a PDE-based transient model has to be employed.
As stated in Gugat et al. (2023), for demand functions that change very slowly in time,
it makes sense to consider a quasi-static model, since at each moment the system state
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is very close to a steady state. In order to get realistic results, wemodel time-dependent
stochastic demands of existing clients based on historical data.

Mathematically, the problem formulated above verbally will lead to a so-called
probabilistic constraint embedded into a possibly PDE-constrained optimization prob-
lem. We note that probabilistic constraints in the context of control problems with
transient gas flow have also been investigated in several other works such as (Adelhütte
et al. 2021; Göttlich et al. 2021; Schuster et al. 2022). The present paper differs from
these first of all in the concrete problem of maximizing time-dependent free capaci-
ties but also in the numerical treatment of probabilistic constraints (spherical-radial
decomposition adapted to the discretization of the underlying PDE). As mentioned
above, a major challenge in our model is the integration of non-stochastic loads by
future clients into the probabilistic constraints. Formally, one would have to admit
arbitrary load-functions here, which is out of reach in an optimization context. For-
tunately, in a quasi-static model, the worst-case load profile of a new client, given a
scenario for the stochastic load of an existing client can be explicitly verified. The idea
then is, to keep this information and use it as a constraint in a PDE-based model as an
approximate substitute for a general, unknown worst case.

The paper is organized as follows: In Sect. 2, which is devoted to a single pipe,
we introduce first the concept of technical feasibility for transient and quasi-static
gas flow. Then, taking into account random loads of existing clients and completely
uncertain (non-stochastic) loads of future clients, the capacity maximization problem
is presented along with an appropriate probabilistic constraint involving additional
robust constraints inside. After describing the discretization of the PDE - which leads
to two coupled ODEs - a statistical model for historical gas load patterns is presented.
Finally, it is demonstrated, how the spherical radial decomposition of Gaussian ran-
dom vectors can be employed to numerically deal with the probabilistic constraint in
the environment of ODEs with random coefficients. Section3 demonstrates, how one
can make the probabilistic constraint explicit in the case of quasi-static gas flow by
identifying the worst-case behaviour of future clients. This identification is then taken
as a basis for the case of transient gas flow too. A numerical comparison between both
transport models is provided. Section4 generalizes the previous ideas conceptually
from the consideration of a single pipe to a network with tree structure. Numerical
results are presented for a simple V-shaped form of the network.

2 Probabilistic capacity maximization on a single pipe

In order to illustrate themain ideas of our approach and to keep the notation simple, we
start considering the problem of probabilistic capacity maximization for a single pipe
whose left end is an entry at which gas is injected whereas the right end corresponds
to an exit, where gas is withdrawn to meet a certain (random) demand.
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Fig. 1 Illustration of the introduced notation for a single pipe

2.1 Transient and quasi-static transport models for a single pipe

An overview of different models for the description of gas flow in gas networks is
provided by Domschke et al. (2021). In the following we consider the gas flow through
a single pipe and make use of the following notation:

as ... speed of sound (unit [m s−1]),
A ... the cross section (unit [m2]),
D ... the diameter of the pipe (unit [m]),
λ ... the friction coefficient of the pipe (scalar),
h ... length of the pipe (unit [m]).

We consider the isothermal Euler equations for gas pressure p(x, t) (unit
[kgm−1s−2]) and gas flow q(x, t) (unit [kg s−1]) during a time horizon [0, T ] along a
pipe [L, R], where the left end L will be identified with an entry where gas is injected
and the right end R with an exit where gas is consumed:

∂t p + α ∂xq = 0

∂t q + β ∂x p + γ
q|q|
p

= 0
(x, t) ∈ [L, R] × [0, T ] (1)

with constants

α:=a2s
A

, β:=A, γ := λa2s
2DA

.

The Eq. (1) have to be augmented by initial and boundary conditions:

p(L, t) = pentry(t); q(R, t) = qexit(t) ∀t ∈ [0, T ]
and p(R, 0) = p0R; q(L, 0) = q0L .

(2)

An illustration of the introduced notation is given in Fig. 1.
In the following sections, qexit will be modeled as a stochastic process based on
historical data. The pressure at the entry pentry is not given but is looked for within
the optimization problem. This will become clearer from the following definition.

Definition 1 A load profile qexit for gas withdrawal at the exit will be said to be
technically feasible w.r.t. transient gas flow if there exists a pressure profile pentry at
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the entry and a solution (p, q) of the PDE (1) satisfying boundary and initial conditions
(2) and the constraints

pentry(t) ∈ [pmin
entry, p

max
entry]; p(R, t) ∈ [pmin

R , pmax
R ] ∀t ∈ [0, T ], (3)

where pmin
entry ≤ pmax

entry and pmin
R ≤ pmax

R are given lower and upper pressure bounds at
the entry and exit, respectively.

The model drastically simplifies when assuming stationary gas flow, in which case
pressure and flow are constant in time (and as a consequence, flow is also constant in
space) and are related by the so-called Weymouth equation:

p2(L) − p2(x) = 2(x − L)
γ

β
q|q| (x ∈ [L, R]). (4)

The stationary case is not relevant by itself for our purposes, because we will deal with
time-dependent exit loads. However, the so-called quasi-static case will be of much
interest. Here, it is assumed that the system is in steady state at each moment in time.
Then, the time-dependent version of the steady state relation (4) becomes

p2(L, t) − p2(x, t) = 2(x − L)
γ

β
q(t)|q(t)| (x ∈ [L, R], t ∈ [0, T ]).

Reducing this to x = R, which is essential in the pressure bound relations (3), taking
into account the boundary conditions (2), and identifying the space-independent flow
q with qexit, one ends up at

(pentry(t))2 − p2(R, t) = γ̃ qexit(t)|qexit(t)| (t ∈ [0, T ]) with γ̃ := 2h
γ

β
. (5)

Accordingly, we are led to the following definition.

Definition 2 A load profile qexit for gas withdrawal at the exit will be said to be techni-
cally feasible w.r.t. quasi-static gas flow if there exist pressure profiles pentry, p(R, ·)
at the entry and exit, respectively, satisfying (5) and the constraints (3).

2.2 The optimization problemwith implicit probabilistic constraint

We now want to formalize in the case of a single pipe the probabilistic capacity
maximization problempresented verbally in the introduction. To this aim,we introduce
the sets

T trans := {
qexit(·) | qexit is technically feasible w.r.t. transient gas flow

}

T qstat := {
qexit(·) | qexit is technically feasible w.r.t. quasi-static gas flow

}

of technically feasible load profiles at the exit according to Definitions 1 and 2. We
shall assume that the time-dependent free capacity FAC we are aiming to maximize is
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offered as a constant for each of the T = 24 h of a day. On the one hand, this appears
to be more practical in a real-life implementation than capacities which are continuous
in time. On the other hand, we get already a canonical discretization of the control
function as a finite-dimensional vector. Now, the probabilistic capacity maximization
problem for transient or quasi-static gas flow, respectively, can be stated as follows:

max
(u1,...,u24)∈R24+

{
24∑

i=1

ui

∣∣∣∣∣
P

(
ξ + y ∈ T trans/qstat for all y : [0, T ] → R

such that 0 ≤ y ≤ U :=
24∑

i=1

uiχ(i−1,i]
)

≥ p

}

.

(6)

Here, U refers to the time-dependent free capacity FAC which is assumed to be in
hourly discretization. Hence, it is defined by the vector (u1, . . . , u24) and by char-
acteristic functions χ(i−1,i] taking value one if the argument belongs to the interval
(i − 1, i] and zero otherwise). For notational simplicity the sum of them, formally
defined on (0, T ] only, is understood as function on [0, T ] with value u1 at argument
0). The load profile at the exit is supposed to be the sum qexit = ξ + y of the load ξ of
existing clients, modeled as a stochastic process whose statistical characteristics are
supposed to be known from historical data, and of the load y of potentially new clients
to which the free capacity u is allocated. For the latter nothing is known apart from
the fact that these loads must be in between 0 and ui at each hour i . The threshold
p ∈ (0, 1] is a pre-defined probability level at which the probabilistic constraint inside
(6) is required to hold. More precisely, this constraint expresses the fact that, given a
profile u of time-dependent FAC, the probability P of a total exit load composed from
existing clients (acting randomly) and potential new clients (acting unpredictably,
hence, arbitrarily) being technically feasible exceeds a given value p.

We already note at this point, that the form of the probabilistic constraint in (6) is
implicit and does not correspondyet to the standard form involving a random inequality
system as presented in Sect. 2.5 below.

2.3 Discretization of the PDE

For the numerical treatment of transient gas flow along a pipe according to (1), we
follow (Huck and Tischendorf 2017) and use a two-point space discretization (left and
right end of the pipe) and (exemplarily) an implicit Euler discretization with respect to
time. Modern discretization schemes are based on a port-Hamiltonian formulation of
the pipe network system. They combine mixed finite element approximations in space
with an implicit time stepping scheme and ensure the global conservation of mass and
energy, see e.g. Egger (2018); Egger et al. (2023).

We assume that the time interval [0, T ] is uniformly discretized in N subintervals
of length τ = T /N . The discretization scheme for the pressure p = p(R, ·) at the
right end and the flow q = q(L, ·) at the left end of the pipe is then given by
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pk := pk−1 − a
(
zk − qk

)

qk := qk−1 + b
(
wk − pk

)
− c

(qk)2

pk

(k = 1, . . . , N ) (7)

with coefficients calculated from those introduced in (1) as

a:=τ
α

h
; b:=τ

β

h
; c:=τγ.

Here, wk :=pentry(kτ) = p(L, kτ) is the time-dependent pressure profile at the entry
(left end of the pipe) and zk :=qexit(kτ) = q(R, kτ) is the (random) load profile at
the exit(right end of the pipe). As far as the initial conditions p0:=p0R and q0:=q0L
are concerned, they are not known in general, in particular not for the historical load
profiles used in Sect. 2.4 for the statistical modeling of gas load data. A common
remedy is to fall back on the stationary case (see 4) and to suppose that

q0 = z0 = qexit(0); p0 =
√

(pentry(0))2 − γ̃ qexit(0)|qexit(0)|.

In any case, the dependence of the transient state on the concrete initial value can be
observed only on a very short time scale so that we will neglect it in the following.
More precisely, we shall fix a common ’average’ value for p0R, q0L and disregard any
relation with or dependence on a concrete random load scenario at the exit.

In order to find (pk, qk) from the implicit system (7),we solve the first linear relation
for qk and then insert it into the second relation. This yields a quadratic expression in
terms of pk which is resolved as

pk = 1

r

⎛

⎝u

2
+
√
u2

4
+ rv

⎞

⎠ and qk = pk − pk−1

a
+ zk,

where the numbers r , u, v are given by

r := a2b + a + c

u := a2
(
bwk + qk−1 − zk

)
+ a

(
pk−1 − 2czk

)
+ 2cpk−1

v := c
(
2apk−1zk − (pk−1)2 − a2(zk)2

)
.

In our application it will be important also to keep track of the dependence of state
variables p, q on an exterior parameter e which will be mainly be represented by the
random variable and by the decision (control) variable. Therefore, we derive an analo-
gous iteration scheme for the gradients of pk and qk with respect to e by differentiation
of (7):
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Fig. 2 Plot of historical gas load scenarios (left) and simulated scenarios from the estimated statistical
distribution (right, thick: mean value μ)

∇ pk := ∇ pk−1 − a
(
∇zk − ∇qk

)

∇qk := ∇qk−1 − b
(
∇wk − ∇ pk

)
− c

2pkqk∇qk − (qk)2∇ pk

(pk)2

(k = 1, . . . , N )

for given initial gradients ∇ p0 and ∇q0. This represents a linear system of equations
that, along with the solutions pk , qk from above, is solved by:

∇ pk =
(
(pk)2 + 2cpkqk

) (
a∇zk − ∇ pk−1

)− a(pk)2(∇qk−1 + b∇wk)

ac(qk)2 − (ab + 1)(pk)2 − 2cpkqk

∇qk = ∇ pk − ∇ pk−1

a
+ ∇zk

(8)

We note that the described scheme can be extended to a finer space discretization if
needed, for instance by adding the mean point of the pipe in order to get a three-point
discretization scheme.

2.4 Statistical model for gas load patterns

The treatment of the probabilistic constraint in our optimization problem(s) (6) requires
to represent the stochastic process ξ in a parametric form. More precisely, we shall
assume a functional dependence ξ(t) = d(ξ̃ , t) for all t ∈ [0, T ] where ξ̃ is some
finite dimensional random vector. In order to get a realistic statistical model of daily
gas load profiles, we considered publicly available hourly load data from Austria
(EnergyMonitor.at). More precisely, the corresponding data were drawn from week
days (in order to disregard different patterns on weekends) in the three winter months
(in order to disregard seasonal trends) from December 2013 to February 2014. This
resulted in 65 historical scenarios for 24h each. They are plotted in Fig. 2 (left).

It can be seen that the daily gas load typically exhibits two peaks in the morning
and in the afternoon, but the position, amplitudes and band widths of these peaks vary
in different scenarios. This leads us to formulate a statistical model for the gas load as
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d(ξ̃1, . . . , ξ̃7, t) = ξ̃1 + ξ̃2e
−eξ̃3 (t−ξ̃4)

2 + ξ̃5e
−eξ̃6 (t−ξ̃7)

2
t ∈ [0, T ], (9)

where the random coefficients ξ̃i model the shapes of the two peaks for i = 2, . . . , 7
and ξ̃1 represents some base line for the load. We assume that the joint distribution of
the random vector ξ̃ is Gaussian according to ξ̃ ∼ N (μ,
) with mean vector μ and
covariance matrix 
. This means, in particular, that the coefficients eξ̃3 , eξ̃6 modeling
the band widths of the peaks are supposed to represent log-normal coefficients. The
parameters μ and 
 were found from a statistical fit to the historical data using the
MATLAB built-in function nlinfit. More precisely, the concrete parameters

μ = (10.8679, 5.0149, −2.7452, 8.8464, 4.4975, −3.2350, 18.1880)

and


 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1.5467 0.0350 0.0049 0.0915 0.1119 0.0037 −0.2588
0.0350 0.7836 −0.0309 0.0084 0.8738 −0.0940 −0.0553
0.0049 −0.0309 0.0646 −0.0598 0.0012 −0.0443 −0.0712
0.0915 0.0084 −0.0598 0.1205 0.0251 0.0397 0.0486
0.1119 0.8738 0.0012 0.0251 1.3963 −0.2593 −0.3194
0.0037 −0.0940 −0.0443 0.0397 −0.2593 0.1280 0.1640

−0.2588 −0.0553 −0.0712 0.0486 −0.3194 0.1640 0.3888

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

have been determined. Of course, these data representing gas loads of a big region
will not be used directly in our numerical computations for a single pipe. Rather, they
will be downscaled by an appropriate factor. This means that we replace d in (9) by
s · d for some s > 0 while keeping the derived statistical distribution for the random
vector.

2.5 Spherical-radial decomposition of Gaussian random vectors

Probabilistic constraints are constraints on a decision variable u which is affected by
some finite-dimensional random vector η inside an inequality system describing the
constraint of an optimization problem. More precisely, one requires that, given u, this
random inequality system be satisfied with some minimum probability p ∈ (0, 1]:

P
(
gk(u, η) ≤ 0 (k = 1, . . . , M)

) ≥ p. (10)

Here, we assume that the functions gk are continuously differentiable. Introduced
in the fifties by Charnes, Cooper and Symonds (Charnes et al. 1958), the basics of
probabilistic constraints have been intensively investigated starting with the seventies
and the fundamental work by Prékopa. Still today, his later monograph is a classi-
cal reference for this domain (Prékopa 1995). For more recent presentations we refer
to van Ackooij (2020); Shapiro et al. (2009). The algorithmic treatment of proba-
bilistic constraints has seen a fresh impetus during the last two decades (see e.g.,
van Ackooij et al. (2021); Berthold et al. (2022); Curtis et al. (2018); Geletu et al.
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(2020); Keil et al. (2021); Luedtke and Ahmed (2008); Pagnoncelli et al. (2009)
for a very incomplete selection). We shall make use in this work of the so-called
spherical-radial decomposition of Gaussian random vectors which has been success-
fully applied to numerous optimization problems with probabilistic constraints (e.g.,
Berthold et al. (2022); Farshbaf-Shaker et al. (2020); González Grandón et al. (2017);
Heitsch (2020)). The advantage of this approach over methods relying on generic sam-
pling of an arbitrary distribution consists in exploiting specific information about the
Gaussian distribution which yields a significant variance reduction in the estimation
of probabilities.

In this section we show how to approximate efficiently values and gradients of a
probability function

ϕ(u):=P
(
gk(u, η) ≤ 0 (k = 1, . . . , M)

)
(11)

with u ∈ R
n and η ∼ N (μ,
) being an m-dimensional Gaussian random vector

with expectation μ and covariance matrix 
. This will be the key for dealing with the
inequality constraint ϕ(u) ≥ p (corresponding to 10) inside a nonlinear optimization
solver, say some SQP method. The principle of spherical-radial decomposition of the
Gaussian random vector η expresses the fact that, for every Borel measurable subset
C ⊆ R

m one has the representation

P (η ∈ C) =
∫

w∈Sm−1

νchi ({r ≥ 0 | μ + r Lw ∈ C}) dνu (w) ,

where Sm−1 is the unit sphere inRm , νchi is the one-dimensional Chi-distribution with
m degrees of freedom, νu is the uniform distribution on Sm−1 and thematrix L of order
(m,m) is a root of 
 (i.e., 
 = LLT ). Applied to (11), this yields the expression

ϕ(u) =
∫

w∈Sm−1

νchi ({r ≥ 0 | gk (u, μ + r Lw) ≤ 0 (k = 1, . . . , M)}) dνu (w) .

(12)

Generically, the one-dimensional set whose Chi-probability has to be computed in the
integrand above can be represented as a finite union of disjoint intervals

N (u,w)⋃

j=1

[α j (u, w), β j (u, w)]

which depend on both, the argument u and the direction w. Note, that this set could
be unbounded in which case βN (u,w) = ∞ (while always α1(u, w) ≥ 0). As a conse-
quence,

ϕ(u) =
∫

w∈Sm−1

N (u,w)∑

j=1

(
Fchi(β j (u, w)) − Fchi(α j (u, w))

)
dνu (w) ,
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where Fchi refers to the cumulative distribution function of the one-dimensional
Chi-distribution with m degrees of freedom. For a numeric approximation of ϕ(u),
one would replace the spherical integral by a finite sum with respect to a sample
{w1, . . . wK } of the uniform distribution on the sphere Sm−1:

ϕ(u) ≈ 1

K

K∑

l=1

N (u,wl )∑

j=1

(
Fchi(β j (u, wl)) − Fchi(α j (u, wl))

)
. (13)

An efficient sample could be provided by a low discrepancy sequence on the sphere.
A simple alternative is a QMC sample of the m-dimensional standard Gaussian dis-
tribution normalized to unit length. We note that numerically precise approximations
of Fchi are part of standard statistical modules. Hence, the main effort in the approx-
imation of ϕ(u) consists in the determination of the coefficients α j , β j . This is an
easy task in case that the functions gk(u, η) are linear or quadratic in η (the quadratic
case occurs, for instance, in the random inequality system derived for the quasi-static
model in Sect. 3.1). Otherwise, an analytic derivation of these coefficientsmay become
impossible and has to be replaced by some one-dimensional root finding or a bisection
approach. This will be the case in our application because the nonlinearities arising
from the statistical gas load model (9) as well as from the discretized PDE in Sect. 2.3
are too complex.

In addition to evaluating the probability function ϕ itself, an efficient numerical
treatment of the optimization problem (e.g., using SQP methods) will also require its
gradient ∇ϕ. If we look for instance at (13), then an approximation of the gradient
can be obtained as

∇ϕ(u) ≈ 1

K

K∑

l=1

N (u,wl )∑

j=1

(
∂(Fchi ◦ β j )

∂u
(u, wl) − ∂(Fchi ◦ α j )

∂u
(u, wl)

)
. (14)

Given that F ′
chi = fchi with fchi being the density of the one-dimensional Chi-

distribution with m degrees of freedom, we obtain for j = 1, . . . , N (u, wl) and
l = 1, . . . , K that

∂(Fchi ◦ β j )

∂u
(u, wl) = fchi(β j (u, wl)) · ∂β j

∂u
(u, wl)

(the analogous expression holding true for α j ). Observing that the coefficients, α j , β j

are values of r in (12) for which one of the inequalities gk (u, μ + r Lw) ≤ 0 is
satisfied as an equality, one may apply the Implicit Function Theorem to that equality
in order to obtain the derivatives

∂β j

∂u
(u, wk) = −1

〈∇ηgk∗(u, μ + β j (u, wl)Lwl), Lwl〉∇ugk∗(u, μ + β j (u, wl)Lwl),

where k∗ ∈ argmax
{
gk(u, μ + β j (u, wl)Lwl)) | k ∈ {1, . . . , M}}. The analogous

expression holds true for the coefficients α j . In this way, a fully explicit representation
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of the approximated∇ϕ(u)may be providedwhich just involves the initial data (partial
derivatives of the functions gk) of the problem. Observe, that the sample-dependent
coefficients α j , β j needed for the gradient ∇ϕ are the same already needed for the
probability function ϕ itself. Hence, one may update ϕ and ∇ϕ simultaneously with
the same sample and the computational effort in determining α j , β j occurs only once.

We note that the application of the Implicit Function Theorem mentioned above
requires justification which may be rigorously possible in certain special cases (e.g.,
the quasi-static flow discussed in Sect. 3.1) but could be difficult in general (e.g., the
transient flow discussed in Sect. 3.4). For a detailed discussion of this issue we refer
to van Ackooij (2020) and papers cited therein.

3 Explicit probabilistic constraints for a single pipe

As already stated above, the probabilistic constraint in our capacity maximization
problem (6) is not explicit yet and thus not directly amenable to a numerical solution via
some optimization solver. The reason is that first, the definition of technical feasibility,
hence the definition of the setsT trans/qstat asks for the existence of somepressure profile
pentry satisfying certain properties.One could resolve this issue byunderstanding pentry

as an additional decision variable in the optimization problem (6). Then, however, the
solution of the capacity maximization problem would not only fix the free capacities
but also the pressure profile at which gas is injected at the entry, independently of
the concrete load scenarios. Such an approach would drastically decrease the free
capacities one could actually allocate. Understanding pentry as a function of loads
instead would lead to the question of how to find this function. It would be optimal
to determine it in a way as to maximize the probability of satisfying the pressure
bounds (3). This, however, seems to be a hopeless task in the given context. A second,
even more important difficulty in the definition of technical feasibility, relies on the
arbitrary choice of loads y from new customers within the limits of free capacity in (6).
This ambiguity makes it basically impossible to deal with the probabilistic constraint
as is in the context of an optimization algorithm. Fortunately, as we shall see, these
issues can be resolved in the quasi-static model by equivalently describing the relation
inside the probability in (6) as an explicit inequality system involving only the random
parameter ξ and the decision variable u but no more the undetermined variables pentry

and y. Therefore, our proposal for the transient model is to adapt from the quasi-static
model the way of making the probability explicit while keeping the description of
dynamics via the PDE (1).

3.1 The quasi-static case

The aim of this section is to provide an equivalent description of the implicit prob-
abilistic constraint inside (6) in an explicit standard form involving only the random
and the decision variable as assumed in Sect. 2.5.
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Proposition 1 For a given exit load profile qexit ≥ 0 the following equivalence holds
true:

qexit ∈ T qstat ⇐⇒
(
pmin
entry

)2 − (pmax
R

)2 ≤ γ̃ (qexit(t))2 ≤
(
pmax
entry

)2 −
(
pmin
R

)2 ∀t ∈ [0, T ].
(15)

Proof (�⇒): Let qexit ≥ 0 with qexit ∈ T qstat be arbitrarily given. Then, by definition
of T qstat, there exist pressure profiles pentry, p(R, ·) satisfying the relations (5) and
(3). Taking into account that qexit ≥ 0 and substituting for pR in (5), the (squared)
second pressure bound relations in (3) read as

(
pmin
R

)2 ≤ (pentry(t))2 − γ̃ (qexit(t))2 ≤ (pmax
R

)2 ∀t ∈ [0, T ].

Using the (squared) first pressure bound relations in (3), we may continue to esti-
mate these relations in order to derive the right-hand side relations of the asserted
equivalence (15).

(⇐�): Let qexit ≥ 0 be given such that the the right-hand side inequalities of (15)
are satisfied. Define, for t ∈ [0, T ],

pentry(t):=min

{
pmax
entry,

√
γ̃ (qexit(t))2 + (pmax

R

)2
}

,

p(R, t):=
√

(pentry(t))2 − γ̃ (qexit(t))2.

(16)

Then, by definition, pentry, p(R, ·) satisfy (5) and it holds that pentry(t) ≤ pmax
entry.

Moreover, pentry(t) ≥ pmin
entry thanks to the first inequality on the right-hand side of

(15). Hence, the pressure bound conditions for pentry(t) in (3) are fulfilled. Finally,
for each t ∈ [0, T ],

p(R, t) =
⎧
⎨

⎩

√(
pmax
entry

)2 − γ̃ (qexit(t))2 if pmax
entry ≤

√
γ̃ (qexit(t))2 + (pmax

R

)2

pmax
R else

.

In the second case, the pressure bound conditions for p(R, t) in (3) are trivially satis-
fied. In the first case, p(R, t) ≥ pmin

R thanks to the second inequality on the right-hand
side of (15). Combining the inequality which defines the first case with the formula for
p(R, t) arising in that case yields the missing relation p(R, t) ≤ pmax

R . Summarizing,
qexit ∈ T qstat. ��
Corollary 1 For a given exit load profile qexit ≥ 0 and a given profile U ≥ 0 of
time-dependent free capacities the following equivalence holds true:

qexit + y ∈ T qstat ∀y : [0, T ] → R : 0 ≤ y ≤ U

⇐⇒
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(
pmin
entry

)2 − (pmax
R

)2 ≤ γ̃ (qexit(t))2 and

γ̃
(
qexit(t) +U (t)

)2 ≤
(
pmax
entry

)2 −
(
pmin
R

)2 ∀t ∈ [0, T ] (17)

Proof Replacing qexit in Proposition 1 by qexit + y, we observe that the left part of
our asserted equivalence (17) is equivalent with the relation

(
pmin
entry

)2 − (pmax
R

)2 ≤ γ̃
(
qexit(t) + y(t)

)2 ≤
(
pmax
entry

)2 −
(
pmin
R

)2 ∀t ∈ [0, T ]

holding true for all y : [0, T ] → R : 0 ≤ y ≤ U . Now, fixing an arbitrary t ∈ [0, T ], it
is clear from y(t) ≥ 0 that the first inequalitywill be satisfied for all indicated functions
y if and only if it is satisfied for y:=0. Likewise, it follows from y(t) ≤ U (t) that
the second inequality will be satisfied for all indicated functions y if and only if it is
satisfied for y:=U . This yields the equivalence with the relations in the right part of
(17). ��
According to Corollary 1, the relation

ξ + y ∈ T qstat ∀y : [0, T ] → R : 0 ≤ y ≤ U

for a random exit load profile ξ and some time-dependent functionU of free capacities
can be equivalently described by the inequalities

hi (u, ξ, t) ≤ 0 ∀t ∈ [0, T ] (i = 1, 2),

where, for t ∈ [0, T ],

h1(U , ξ, t) :=
(
pmin
entry

)2 − (pmax
R

)2 − γ̃ ξ2(t),

h2(U , ξ, t) := γ̃ (ξ(t) +U (t))2 −
(
pmax
entry

)2 +
(
pmin
R

)2
.

We now take into account (1) our statistical model (9), (2) the time discretization of
pressure and flow variables into N subintervals of [0, T ] of equal length with T = 24
and (3) the hourly discretization of the free capacities in (6). Then, the inequalities
above turn into the finite random inequality system g�(u, ξ̃ ) ≤ 0 for � = 1, . . . , 2N ;
where for k = 1, . . . , N

gk(u, ξ̃ ) :=
(
pmin
entry

)2 − (pmax
R

)2 − γ̃ d2(ξ̃ , tk),

gN+k(u, ξ̃ ) := γ̃

(

d(ξ̃ , tk) +
24∑

i=1

uiχ(i−1,i](tk)
)2

−
(
pmax
entry

)2 +
(
pmin
R

)2
,

tk :=kT /N and u = (u1, . . . , u24). In this way, our originally implicit probabilistic
constraint in (6) turns into a standard one as in (11) upon putting M :=2N and η:=ξ̃ ,
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Table 1 Parameters and values
for the numerical computations

Parameter Value Unit

α 147437.68 s−2

β 0.785398 m2

γ 777.073 m−1s−2

h 50, 000 m

pmin
entry 5, 800, 000 kg m−1s−2

pmax
entry 6, 000, 000 kg m−1s−2

pmin
R 5, 300, 000 kg m−1s−2

pmax
R 5, 700, 000 kg m−1s−2

N 96 –

K 10, 000 –

p 0.9 –

s 0.012 kg (MW)−1s−1

where the latter random vector is Gaussian (see Sect. 2.4). Hence, based on the for-
mulae above, the method of spherical-radial decomposition described in Sect. 2.5 can
be employed in order to compute values and gradients for the probability function ϕ

and, thus, numerically to solve problem (6).

3.2 Numerical results

For numerical illustration of the previous section, we choose the data and parameters
for our problem according to Table 1.

Here, the first group of quantities relates to physical coefficients as introduced in
the beginning of Sect. 2.1 (see (1) and (7)). The relevant value for γ̃ , needed in the
representation of the quasi-static case, is obtained by the formula given in (5). The
second group of quantities provides the required pressure bounds in (3), p refers to the
probability level chosen in problem (6) and s is the factor scaling down the demand
modeled in (9) to a single pipe (see end of Sect. 2.4). All computations are done with
MATLAB using the built-in SQP solver for the optimization routine fmincon with
default settings.

The solution of the probabilistic capacity maximization problem in the case of
quasi-static gas transport is displayed in Fig. 3. For nicer visualization, the optimal
time-dependent free capacities are plotted as linear interpolations of the original piece-
wise (hourly) constant function. The probability level was chosen as p = 0.9. Not
surprisingly, the profile of free capacity is somehow complementary to the typical
profiles of demands of existing clients shown in Fig. 2: there is more free capacity
at night time and a shallow peek is also observed around noon. In addition to the
solution of the optimization problem itself, Fig. 3 shows twenty so-called complete
scenarios the meaning of which will be made precise in Sect. 3.3. These scenarios are
composed of a stochastic load scenario ξ for the demand of gas by existing clients
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Fig. 3 Solution of the probabilistic capacity maximization problem with probability level p = 0.9 in the
case of quasi-static gas transport

Fig. 4 Pressure profiles at the entry (left) and exit (right) for the 20 complete load scenarios at the exit
displayed in Fig. 3

plus an associated worst case scenario y∗ for the uncertain gas load of future clients
which removes the ambiguity of y with 0 ≤ y ≤ U in (6).

We obtain that the complete scenarios partially look smooth much like the original
stochastic demand scenarios from Fig. 2 and partially exhibit chaotic jumps. The latter
are hardly observed in this extreme form in reality, they are just a result of reflecting
the worst case behaviour of a future client. These scenarios can be used for a posterior
check of the obtained solution: given the probability 0.9, for approximately 18 out of
these 20 scenarios there should exist pressure profiles pentry, p(R, ·) at the entry and
exit, respectively, satisfying the pressure bound (3) as well as the quasi-static relation
(5). These required pressure profiles associated with the twenty complete scenarios
are displayed in Fig. 4.

We note that the construction of scenario-dependent pressure profiles is not unique.
The concrete construction presented in Sect. 3.3 below is chosen in away that the upper
pressure bounds pmax

entry, p
max
R at the entry and exit are always satisfied, hence violations

can only be observed with respect to the lower pressure bounds. According to Fig. 4,
there is one profile for the entry and one profile for the exit that violates the imposed
lower pressure bounds. Since they correspond to two different complete load scenarios
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visualized in Fig. 3, the empirical probability for technical feasibility according to our
posterior check equals 18/20 which coincides with the chosen probability level of 0.9
(in general, by repeating simulations for the posterior check, slight deviations of the
empirical from the theoretical one may be expected).

3.3 Worst case scenarios and recovery of scenario-dependent pressure profiles

In this sectionwe showhow to recoverworst case scenarios for the load y of new clients
given a stochastic scenario for the load of existing clients. Moreover, the scenario-
dependent profiles for the pressures pentry, p(R, ·) at the entry and exit, given a function
of free capacities and a (random) load scenario at the exit. While these constructions
are not needed in the solution of the optimization problem itself thanks to Corollary 1
(which reduces the feasibility issue to an inequality system not involving these worst
case or pressure profiles), it is useful for several other reasons: first, our posterior
check of the computed solution relied on the mentioned pressure profiles (see Fig. 4);
second, the identification of the pressure profile at the entry for a given function of
free capacities and a given (say forecasted) random load of the existing clients is
actually what the TSO has to provide in the daily operation of gas injection; third,
the construction of the worst case load y and the pressure profile at the entry in the
quasi-static case will be crucial as approximate substitutes for dealing with the worst
case behaviour of future clients in the transient model of gas transport (see Sect. 3.4).

Proposition 2 The following equivalence holds true:

qexit + y ∈ T qstat ∀y : [0, T ] → R : 0 ≤ y ≤ U ⇐⇒ qexit + y∗(qexit,U ) ∈ T qstat,

where, for t ∈ [0, T ],

y∗(qexit,U )(t):=
⎧
⎪⎪⎨

⎪⎪⎩

U (t), if
(
pmin
entry

)2 − (pmax
R

)2 − γ̃ (qexit(t))2 ≤
γ̃
(
qexit(t) +U (t)

)2 −
(
pmax
entry

)2 + (pmin
R

)2
,

0, else.

(18)

Proof Replacing qexit in Proposition 1 by qexit + y∗(qexit,U ), we get that

qexit + y∗(qexit,U ) ∈ T qstat

⇐⇒
(
pmin
entry

)2 − (pmax
R

)2 ≤ γ̃ (qexit(t) + y∗(qexit,U )(t))2,

γ̃ (qexit(t) + y∗(qexit,U )(t))2 ≤
(
pmax
entry

)2 −
(
pmin
R

)2 ∀t ∈ [0, T ]. (19)

Hence, by Corollary 1, the equivalence claimed in our Proposition will be proven
once we have shown the equivalence of the inequality systems in (19) and (17). Since
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y∗(qexit,U )(t) is equal to 0 or to U (t), it is easily seen that the inequalities in (17)
imply those in (19). Conversely, let inequalities (19) hold true. If t ∈ [0, T ] is such that
the first case of (18) applies, then y∗(qexit,U )(t) = U (t) and the second inequality
in (17) follows from the second inequality in (19). In particular,

γ̃
(
qexit(t) +U (t)

)2 −
(
pmax
entry

)2 +
(
pmin
R

)2 ≤ 0,

whence the first inequality in (17) follows along with the inequality defining the first
case in (18). An analogous argumentation applies if the second case in (18) holds true.

��
Clearly, the discrimination between the two cases in (18) is characterized by the

equality

(
pmin
entry

)2 − (pmax
R

)2 − γ̃ (qexit(t))2 = γ̃
(
qexit(t) +U (t)

)2 −
(
pmax
entry

)2 +
(
pmin
R

)2
.

Resolving this equation for qexit(t) and calling the solution � yields

�(t) = −U (t)

2
+

√√√√
(
pmin
entry

)2 +
(
pmax
entry

)2 − (pmin
R

)2 − (pmax
R

)2

2γ̃
− U 2(t)

4

(the negative sign in front of the square root being excluded because otherwise the
solution would be negative). We shall call � the discriminant, because it decides on
the case distinction in (18). More precisely, we may write now

y∗(qexit,U )(t) =
{
U (t) if qexit(t) ≥ �(t),
0 else,

(t ∈ [0, T ]). (20)

The construction of the worst case scenario according to (20) is illustrated in Fig. 5:
whenever the demand scenario qexit is smaller than the discriminant �, then the worst
case scenario y is defined to be zero, otherwise it is put equal to the capacity function
U . We note that contrary to Fig. 3, where the profile of free capacities has been plotted
as a linear interpolation for nicer visualization, the function is represented in Fig. 5
in its original piece-wise constant shape. This explains the jumps also in the other
functions.

We will define a complete scenario to be the sum of a given demand scenario and
the associated worst case scenario (for an illustration, see Fig. 5):

c(qexit,U ):=qexit + y∗(qexit,U ). (21)

The importance of this concept relies on the possibility to remove the ambiguity of
the load scenario y for potential future clients in (6). Indeed, thanks to Proposition 2,
we may simplify the probability in (6) as
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Fig. 5 Illustration of the construction of worst case and complete scenarios based on a demand scenario
and a given function of free capacities

P(ξ + y ∈ T qstat ∀y : [0, T ] → R : 0 ≤ y ≤ U ) = P
(
c(ξ,U ) ∈ T qstat)

for U :=
24∑

i=1

uiχ(i−1,i].

This observation justifies our posterior check for the numerical solution of our
optimization problem in Sect. 3.2: one may simulate a number of K samples for
the Gaussian random vector ξ̃ which yields K samples for the demand process
ξ = d(ξ̃ , (·)) according to (9). These, in turn, generate K complete scenarios
c(ξ,U ):=ξ + y∗(ξ,U ) as illustrated in Fig. 3. Now, one may count the number K̃ of
complete scenarios belonging to the set T qstat by checking the constructed pressure
profiles at the exit and entry as in Fig. 4. Then, the ratio K̃/K is an empirical approx-
imation of the true probability inside (6) and should be close to the desired value p if
the computed optimal function u of free capacities is feasible.

It remains to recover the scenario-dependent profiles for the pressures pentry(·),
p(R, ·) at the entry and exit, given a function of free capacities and a (random) load
scenario at the exit. The formulae for pressure recovery have actually been derived
already in (16) for a general feasible load profile qexit at the exit. Here, we have to apply
them to a complete scenario of the form (21), where qexit just represents a (random)
load scenario for the existing clients which is complemented by a worst-case scenario
for future clients. According to (16), we obtain that

pentry(t) := min

{
pmax
entry,

√
γ̃ (qexit(t) + y∗(qexit,U )(t))2 + (pmax

R

)2
}

, (22)

p(R, t) :=
√

(pentry(t))2 − γ̃ (qexit(t) + y∗(qexit,U )(t))2. (23)

Using the representation of the worst-case scenario y∗(qexit,U ) from (18) or, equiv-
alently, (20), one may recover now the pressure profiles at the entry and exit from
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a load profile at the exit and from a given function of free capacities as was done
in Fig. 4. As it is shown in the proof of Proposition 1, the two pressure profiles in
(22),(23) satisfy the pressure bounds (3) whenever the underlying complete scenario
is technically feasible (c(ξ,U ) ∈ T qstat).

3.4 The transient case

Asmentioned in the introduction to Sect. 3, it is hopeless in the transient case to derive
a similar equivalent description of the family of inclusions

qexit + y ∈ T trans ∀y : [0, T ] → R : 0 ≤ y ≤ U
(
U =

24∑

i=1

uiχ(i−1,i]
)

(24)

in (6) by means of explicit inequalities as was done in Corollary 1. In particular,
deriving aworst-case scenario equivalently representing (24) as in the quasi-static case
(see Proposition 2) is out of reach. In order to cope with this issue, we shall assume
that the quasi-static model is sufficiently close to the transient one, in order to justify
the assumption that the worst-case function constructed in (18) could analogously
represent the family of inclusions (24) by the single one

c(qexit,U ):=qexit + y∗(qexit,U ) ∈ T trans,

where we used the definition of a complete scenario from (21). Then, the probabilistic
constraint in problem (6) turns into the simpler expression

P
(
c(ξ,U ) ∈ T trans) ≥ p. (25)

Still, the random constraint inside the probability is not explicit yet and has to be
resolved as an inequality system. By definition, the relation c(ξ,U ) ∈ T trans is equiv-
alent to the existence of a pressure profile pentry at the entry and a solution (p, q) of
the PDE (1) satisfying the boundary and initial conditions

p(L, t) = pentry(t); q(R, t) = c(ξ,U )(t) ∀t ∈ [0, T ],
p(R, 0) = p0R; q(L, 0) = q0L

as well as the constraints (3). Denote by F(pL , qR, p0R, q0L) the pressure function p
associated with the unique solution (p, q) of the PDE (1) under boundary and initial
conditions

p(L, t) = pL(t); q(R, t) = qR(t) ∀t ∈ [0, T ], p(R, 0) = p0R; q(L, 0) = q0L .
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Then, the probability in (25) can be written as

P
(
c(ξ,U ) ∈T trans) = P

( ∃ pentry : [0, T ] → R : pentry(t) ∈ [pmin
entry, p

max
entry];

F
(
pentry, c(ξ,U ), p0R, q0L

)
(R, t) ∈ [pmin

R , pmax
R ] ∀t ∈ [0, T ] )(26)

The remaining problemwith this representation of the probability for feasible transport
is the ambiguity of the pressure profile pentry at the entry. Plugging an arbitrary function
here which satisfies the pressure bounds at the entry will yield a probability which
is smaller than that on the left-hand side. To increase this smaller probability, pentry

should not just be a fixed function of time but also depend on the random load c(ξ,U ).
Moreover, this functional dependence should be chosen as tomaximize the probability
on the right-hand side (thus making it coincide with that on the left-hand side). To find
this functional dependence, which should moreover be given as an explicit formula
in order to deal with the probability analytically in the framework of an optimization
algorithm, appears to be hardly possible. Once more, we find a remedy in the quasi-
static model where it was possible to recover pressure functions at the entry and
exits from a given complete scenario such that the quasi-static transport model and
the corresponding pressure bounds are satisfied whenever the underlying stochastic
scenario ξ was technically feasible (see (22),(23)). The idea for the transient case
is now to use the entry profile from (22) as a boundary condition in the transient
model, thus removing the ambiguity in (26) by selecting a concrete function. Since
pentry in (22) may violate the lower pressure bound pmin

entry (while satisfying pmax
entry by

construction) we additionally raise it up to the lower bound then, so that the scenario-
dependent pentry automatically satisfies the pressure bounds. Given the definition (21),
(22) can be adapted to define the profile

pentry∗ (c(ξ,U )):=max

{
pmin
entry,min

{
pmax
entry,

√
γ̃ c2(ξ,U ) + (pmax

R

)2
}}

. (27)

After having fixed a profile pentry∗ satisfying the pressure bounds, wemay approximate
the probability P

(
c(ξ, u) ∈ T trans

)
in (26) by the probability

P

(
F
(
pentry∗ (c(ξ,U )), c(ξ,U ), p0R, q0L

)
(R, t) ∈ [pmin

R , pmax
R ] ∀t ∈ [0, T ]

)
(28)

which just relates to the pressure at the exit given the initial and boundary conditions.
Here, the random constraints are still continuous in time. Next, we want to subordinate
the random constraint inside the probability to the time discretization and the implicit
Euler scheme of (7) for numerically identifying the state variables of the PDE (1).
We observe first that for k = 1, . . . , N the values of the mapping F at tk :=kT /N
correspond to the pressures pk in (7). In this discretization scheme, the pressures (and
flows) are associated with the discretized load z at the exit and pressure w at the entry.
Our time-discrete version of (28) therefore becomes

P

(
F̃k
(
w(ξ,U ), z(ξ,U ), p0R, q0L

)
∈ [pmin

R , pmax
R ]; k = 1, . . . , N

)
, (29)
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where F̃k
(
w(ξ,U ), z(ξ,U ), p0R, q0L

)
refers to the value pk in the scheme (7) obtained

with initial conditions p0:=p0R and q0:=q0L and boundary values w, z defined by

zk(ξ,U ):=c(ξ,U )(tk), wk(ξ,U ):=pentry∗ (c(ξ,U ))(tk), k = 1, . . . , N .

In order to remove the functional character of the right-hand side expressions, we
recall from (18) that

y∗(qexit,U )(t) = ψ1(q
exit(t),U (t)) ∀t ∈ [0, T ],

where

ψ1(α, β):=
{

β, if
(
pmin
entry

)2 − (pmax
R

)2 − γ̃ α2 ≤ γ̃ (α + β)2 −
(
pmax
entry

)2 + (pmin
R

)2

0, elsewhere
.

Accordingly, (21) yields that

c(ξ,U )(t) = ξ(t) + ψ1(ξ(t),U (t)).

Similarly, we derive from (27) that

pentry∗ (c(ξ,U ))(t) = ψ2(c(ξ,U )(t));
ψ2(τ ):=max

{
pmin
entry,min

{
pmax
entry,

√
γ̃ τ 2 + (pmax

R

)2
}}

.

Summarizing, for k = 1, . . . , N we have that

zk(ξ,U ) = ξ(tk) + ψ1(ξ(tk),U (tk)); wk(ξ,U ) = ψ2(ξ(tk) + ψ1(ξ(tk),U (tk))).

In the last step, we take into account the concrete representation ξ = d(ξ̃ , ·) of our
random process according to (9), so that randomness enters via the finite-dimensional
Gaussian random vector ξ̃ . This leads us to define for k = 1, . . . , N :

ẑk(ξ̃ ,U ) := zk(ξ,U ) = d(ξ̃ , tk) + ψ1(d(ξ̃ , tk),U (tk)) (30)

ŵk(ξ̃ ,U ) := wk(ξ,U ) = ψ2(d(ξ̃ , tk) + ψ1(d(ξ̃ , tk),U (tk))) (31)

In this way, the probability in (29) can be written in the form of (11) amenable to
spherical-radial decomposition upon setting M :=2N , u:=(u1, . . . , u24), η:=ξ̃ , and
for k = 1, . . . , N :

gk(u, ξ̃ ) := pmin
R − F̃k

(
ŵ
(
ξ̃ ,

24∑

i=1

uiχ(i−1,i]
)
, ẑ
(
ξ̃ ,

24∑

i=1

uiχ(i−1,i]
)
, p0R, q0L

)
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Fig. 6 Comparison of the maximum capacities in a single pipe computed for the quasi-static and transient
model, respectively. The transient computations are related to a two-point and an advanced three-point
space discretization, respectively

gN+k(u, ξ̃ ) := F̃k
(

ŵ
(
ξ̃ ,

24∑

i=1

uiχ(i−1,i]
)
, ẑ
(
ξ̃ ,

24∑

i=1

uiχ(i−1,i]
)
, p0R, q0L

)
− pmax

R .

Observe that the functions gk are fully explicit via (30), (31) upon taking into account
that in these formulae

U (tk) =
24∑

i=1

uiχ(i−1,i](tk) k = 1, . . . N .

We may therefore apply the method of spherical-radial decomposition presented in
Sect. 2.5 in order to calculate the probabilistic constraint inside the optimization prob-
lem (6). As pointed out in Sect. 2.5, an efficient numerical treatment of the optimization
problem will also require the gradient of this probability as a function of the decision
vector u. This can be done with the aid of formula (14). As described below this
formula, it will be necessary to calculate the partial gradients with respect to u and
η = ξ̃ of the constraint functions gk . This can be realized using the explicit formulae
for these functions provided above. More precisely, the gradients for ẑ and ŵ follow
from (30) and (31), respectively, whereas the gradient of F̃k (playing the role of pk in
the implicit Euler scheme (7)) can be computed via the updating formula (8).

Figure6 illustrates the solution of the probabilistic capacity maximization problem
in the case of transient gas flow. It can be seen that a small deviation of the solution
based on the two-point discretization scheme (7) from the solution of the quasi-static
model of gas transport (the same as in Fig. 3) appears. However, when passing to a
finer three-point discretization in space, this small gap is further reduced such that the
deviation is widely negligible. This confirms the fact that the solutions in the transient
and quasi-static models almost coincide.
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4 Probabilistic capacitymaximization in a networkwith tree structure

In this sectionwewant to generalize the ideas relatedwith a single pipe andpresented in
the previous section to a general network. As before, we shall first deal with the quasi-
static model of gas transport. We shall keep the assumption of dealing with a single
entry only at which gas is injected, whereas theremay be several exits now atwhich gas
is withdrawn for consumption. We shall further assume that the network is a tree. This
would not be necessary for a generalization of Proposition (1) which addresses the
reformulation of technical feasibility of exit-loads ξ by means of an explicit inequality
system. Indeed, such inequality system would have to be complemented by certain
equations in additional variables corresponding to fundamental cycles in the network
(see, Gotzes et al. (2016) Theorem 1). A corresponding result incorporating unknown
loads y of potentially new customers along the lines of Corollary 1 appears to be
hardly possible in the presence of cycles. Therefore, we restrict our presentation to
networks with tree structure from the very beginning, in which case the generalization
of Proposition 1 too can be given in the form of an inequality system only.

4.1 Transport model for a tree

We shall assume that our gas network is a directed and contains G + 1 nodes, where
the root node ’0’ is identified with the (single) entry and nodes ’1’ to ’G’ correspond to
the exits. We denote the set of arcs in the tree by E and the arc-dependent coefficients
γ̃ from (4) by γ̃k,l (for (k, l) ∈ E). Moreover, we assume that all arcs in E are directed
away from the root. To describe the network topology we introduce the (reduced)
node-arc incidence matrices AL , AR ∈ R

G×|E | defined by (AL)ke:= − 1 if node k
is left node of arc e and (AL)ke:=0 otherwise, and, (AR)ke:= + 1 if node k is right
node of arc e and (AR)ke:=0 otherwise (k = 1, . . . ,G; e ∈ E). When dealing with
the transient gas flow in a tree network we are going to apply a priori the two-point
space discretization of the isothermal Euler equations (1) for each pipe of the given
network.

Before starting the analysis, the meaning of ’technical feasibility’ from Definitions
1 and 2 have to be generalized from a single pipe to the network.

Definition 3 A vector of load profiles qexit = (qexit1 , . . . , qexitG ) for gas withdrawal at
the exits will be said to be technically feasible w.r.t. transient gas flow if there exist
vectors of pressure and flow profiles pL , pR and qL , qR along the directed arcs of E ,
where each component is either the left/right pressure or the left/right flow of a certain
pipe, respectively; solving component-wise (for each arc e ∈ E)

∂t pR + α

h
(qR − qL) = 0

∂t qL + β

h
(pR − pL) + γ

qL |qL |
pR

= 0
∀t × [0, T ], (32)

satisfying the flow balance equation

ALqL + AR pR = qexit ∀t ∈ [0, T ].
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Moreover, there exist a vector of pressure profiles p = (p0, . . . , pG) at the entry and
all exit nodes, respectively, satisfying the coupling constraints

p(k,l)
L = p(m,k)

R = pk ∀t ∈ [0, T ]; k = 0, . . . ,G; ∀(m, k), (k, l) ∈ E,

and the pressure bounds

pk(t) ∈ [pmin
k , pmax

k ] ∀t ∈ [0, T ]; k = 0, . . . ,G.

Definition 4 A vector of load profiles qexit = (qexit1 , . . . , qexitG ) for gas withdrawal at
the exits will be said to be technically feasible w.r.t. quasi-static gas flow if there exist
a vector of pressure profiles p = (p0, . . . pG) at the entry and all the exits, respectively,
and a vector f = ( fk,l) of flow profiles along the directed arcs (k, l) ∈ E satisfying
the pressure drop equations

p2k (t) − p2l (t) = γ̃k,l fk,l(t)| fk,l(t)| (t ∈ [0, T ]; (k, l) ∈ E),

the Kirchhoff law

∑

{l:(l,k)∈E}
fl,k −

∑

{l:(k,l)∈E}
fk,l = qexitk ∀t ∈ [0, T ]; k = 0, . . . ,G,

as well as the pressure bounds

pk(t) ∈ [pmin
k , pmax

k ] ∀t ∈ [0, T ]; k = 0, . . . ,G.

The definitions of the sets T trans, T qstat will remain the same as in the case of a
single pipe except that they now refer to Definitions 3 and 4 in the context of a network.

4.2 The quasi-static case

In this section we are going to generalize the results of Sect. 3.1 from a single pipe
to a tree-like network as introduced above. Our probabilistic capacity maximization
problem with quasi-static gas transport along a tree with an entry as root node ’0’ and
exit nodes ’1’ to ’G’ now reads as

max
(uik )i,k∈R24×G+

G∑

k=1

24∑

i=1

uik subject to

P

(
ξ + y ∈ T qstat ∀y : [0, T ] → R

G : 0 ≤ yk ≤
24∑

i=1

uikχ(i−1,i]; k = 1, . . . ,G

)
≥ p.

(33)
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Here, the array (uik)i=1,...,24;k=1,...,G represents the hourly discretized free capacities
at the exit nodes k = 1, . . . ,G corresponding at node k to the function of time

Uk(t) =
24∑

i=1

uikχ(i−1,i](t). (34)

To start with, Proposition 1 generalizes as

Proposition 3 For a given vector qexit = (qexit1 , . . . , qexitG ) ≥ 0 of exit load profiles,
the following equivalence holds true:

qexit ∈ T qstat ⇐⇒
hk(q

exit(t)) + (pmax
k )2 − hl(q

exit(t)) − (pmin
l )2 ≥ 0 ∀k, l = 0, . . . ,G ∀t ∈ [0, T ],

where

hk(z):=
∑

e∈�(k)

γ̃e

( ∑

m�H(e)

zm
)2

Here,�(k) denotes the unique directed path from the root to node k, where for the root
itself we put �(0):=∅. In particular, h0 ≡ 0. The relation k � l for k, l ∈ {0, . . . ,G}
means that �(k) passes through l. H(e) refers to the head of the (directed) arc e ∈ E .

Proof This result has been shown for a stationary flow model (no time involved) in
(Gotzes et al. (2016) Corollary 1). In the quasi-static model considered here, station-
arity is assumed at each time t ∈ [0, T ], hence the result is just applied point-wise in
time. ��
The proposition shows how to equivalently reformulate in the quasi-static network
model the technical feasibility of a vector of general load profiles as an explicit system
of inequalities. The incorporation of unknown loads y in the limits of free capacities
cannot be derived as easily as in Corollary 1 for a single pipe. Nonetheless, we have
the following

Proposition 4 For a given vector qexit = (qexit1 , . . . , qexitG ) ≥ 0 of exit load profiles
and a given vector U = (U1, . . . ,UG) ≥ 0 of time-dependent free capacities at the
exits the following equivalence holds true:

qexit + y ∈ T qstat ∀y : [0, T ] → R
G : 0 ≤ y ≤ U

⇐⇒
αk,l(q

exit,U , t) ≥ 0 ∀k, l = 0, . . . ,G ∀t ∈ [0, T ],

where, for k, l = 0, . . . ,G and t ∈ [0, T ],

αk,l(q
exit,U , t) :=

∑

e∈�(k)\�(l)

γ̃e

( ∑

s�H(e)

qexits (t)
)2 + (pmax

k )2
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Fig. 7 Solution of the capacity problem (33) computed by the quasi-static model obtained for exit 1 (left)
and exit 2 (right) for a V-net containing a single entry and two exit nodes

−
∑

e∈�(l)\�(k)

γ̃e

( ∑

s�H(e)

qexits (t) +Us(t)
)2 − (pmin

l )2.

Proof Again, the corresponding result has beenproven in (Heitsch (2020)Sect. 3.2) for
a stationary flow model and it follows in the quasi-static case by applying it pointwise
in time. ��
Equippedwith the result of the previous proposition and passing to a timediscretization
of the form t j := j∗T /N for j = 1, . . . , N as in the case of a single pipe,wemay rewrite
the probabilistic constraint in our optimization problem (33) again in the standard form
of (11). To this aim, we exploit a statistical model

ξk(t) = d(ξ̃k, t) ∀t ∈ [0, T ] (35)

for the random load at each exit node k = 1, . . . ,G of the tree much like we did in
Sect. 2.4 for a single exit. Here, ξ̃ = (ξ̃k)

G
k=1 is a Gaussian random vector. Now, we

put for k, l = 0, . . . ,G and j = 1, . . . , N

gk,l, j (u, ξ̃ ) :=
∑

e∈�(l)\�(k)

γ̃e

( ∑

s�H(e)

d(ξ̃s, t j ) +
24∑

i=1

uisχ(i−1,i](t j )
)2 + (pmin

l )2

−
∑

e∈�(k)\�(l)

γ̃e

( ∑

s�H(e)

d(ξ̃s, t j )
)2 − (pmax

k )2,

and, observe that indeed the probabilistic constraint in (33) is in the standard form
of (11) with η:=ξ̃ and M :=(G + 1)2N . As in the case of a single pipe, the method
of spherical-radial decomposition described in Sect. 2.5 can be employed in order to
compute values and gradients for the probability function ϕ and, thus, numerically to
solve problem (33).

Figure 7 shows the solution of the capacitymaximization according to problem (33)
for a small tree example (V-net) with two exit nodesG = {1, 2} involving two arcs that
origin from the single entry node, i.e. the set of edges is given by E = {(0, 1), (0, 2)}.
For the exit demands we used the same fitting as given in Sect. 2.4 but with slightly
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varying scaling between exit node one and two. Moreover, a randomly obtain small
correlation between both exits is considered in the numerical example. The results
are comparable two that of the single pipe before. Due to the different scaling of the
demand curves, the capacity at exit one turns out to be a bit smaller than the capacity
at exit two. This could be expected because the average demand at exit one is assumed
to be higher along the overall time horizon in this example.

4.3 Worst case scenarios and recovery of scenario-dependent pressure profiles

In this section we generalize the results of Sect. 3.3 to a network with tree structure.

Proposition 5 For a given vector qexit = (qexit1 , . . . , qexitG ) ≥ 0 of exit load profiles
and a given vector U = (U1, . . . ,UG) ≥ 0 of time-dependent free capacities at the
exits the following equivalence holds true:

qexit + y ∈ T qstat ∀y : [0, T ] → R
G : 0 ≤ y ≤ U ⇐⇒ qexit + y∗(qexit,U ) ∈ T qstat,

where, for s = 1, . . . ,G and t ∈ [0, T ],

[y∗(qexit,U )]s(t):={
Us(t), if s � H(e) for some e ∈ �(l∗(qexit,U , t)) \ �(k∗(qexit,U , t))
0, otherwise

and l∗(qexit,U , t), k∗(qexit,U , t) ∈ {0, . . . ,G} are chosen such that

αk∗(qexit,U ,t),l∗(qexit,U ,t)(q
exit,U , t) ≤ αk,l(q

exit,U , t) ∀k, l ∈ {0, . . . ,G}

holds true for the functions αk,l defined in Proposition 4.

Proof (�⇒) This direction is obvious, by construction y∗(qexit,U ) satisfies 0 ≤
y∗(qexit,U ) ≤ U .

(⇐�) By assumption and by Proposition 3 (applied to qexit + y∗(qexit,U ) rather
than qexit) we have that, for all k, l = 0, . . . ,G and t ∈ [0, T ],

hk(q
exit(t) + y∗(qexit,U )(t)) + (pmax

k )2 − hl(q
exit(t) + y∗(qexit,U )(t))) − (pmin

l )2

≥ 0. (36)

The definition of hk implies that, for k = 0, . . . ,G and t ∈ [0, T ],

hk(q
exit(t) + y∗(qexit,U )(t)) =

∑

e∈�(k)

γ̃e

( ∑

s�H(e)

qexits (t) + [y∗(qexit,U )]s(t)
)2

.

(37)

Wefixanarbitrary t ∈ [0, T ] andput shortly k∗:=k∗(qexit,U , t) and l∗:=l∗(qexit,U , t)
for the indices introduced in the statement of this Proposition. Then, (36) and (37) along
with the definition of the paths �(k) yield that
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0 ≤ (pmax
k∗ )2 + hk∗(qexit(t) + y∗(qexit,U )(t))

− hl∗(q
exit(t) + y∗(qexit,U )(t))) − (pmin

l∗ )2

= (pmax
k∗ )2 +

∑

e∈�(k∗)\�(l∗)
γ̃e

( ∑

s�H(e)

qexits (t) + [y∗(qexit,U )]s(t)
)2

−
∑

e∈�(l∗)\�(k∗)
γ̃e

( ∑

s�H(e)

qexits (t) + [y∗(qexit,U )]s(t)
)2 − (pmin

l∗ )2.

We claim the following two relations:

[
y∗(qexit,U

]

s
(t) = 0 ∀s � H(e) ∀e ∈ �(k∗) \ �(l∗),

[
y∗(qexit,U )

]

s
(t) = us(t) ∀s � H(e) ∀e ∈ �(l∗) \ �(k∗).

The second relation follows immediately from the definition of y∗(qexit,U ). As for
the first one, let e∗ ∈ �(k∗)\�(l∗) and s � H(e∗) be arbitrarily given. Then, the
path �(s) leading to node s contains the edge e∗. Assume that also there exists some
edge e′ ∈ �(l∗) \ �(k∗) with s � H(e′). Then, the path �(s) leading to node s
also contains the edge e′. The edges e∗ and e′ do not coincide, they are both on the
unique path �(s), yet neither follows nor precedes the other, which is not possible.
Hence, there cannot exist any e ∈ �(l∗) \ �(k∗) with s � H(e). From the definition
of y∗(qexit, u) we derive the first relation.

Now, with the proven two relations and exploiting the definitions of the indices
k∗, l∗ in the statement of this proposition, we may continue the estimation above by

0 ≤ (pmax
k∗ )2 +

∑

e∈�(k∗)\�(l∗)
γ̃e

( ∑

s�H(e)

qexits (t)
)2

−
∑

e∈�(l∗)\�(k∗)
γ̃e

( ∑

s�H(e)

qexits (t) +Us(t)
)2 − (pmin

l∗ )2

= αk∗,l∗(q
exit,U , t) ≤ αk,l(q

exit,U , t) ∀k, l ∈ {0, . . . ,G}.

Since t ∈ [0, T ] has been arbitrarily fixed, the assertion now follows from Proposition
4. ��

Next, we follow the concept relying on the possibility to remove the ambiguity of
the load scenario y for potential future clients in (33), similarly as in the single pipe
implementation before. Therefore, we define the complete scenario again to be the
sum of a given demand scenario and the associated worst case scenario:

c(qexit, u):=qexit + y∗(qexit,U ). (38)
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Thanks to Proposition 5, we may simplify the probability in (33) as

P

(
ξ + y ∈T qstat ∀y : [0, T ] → R

G : 0 ≤ yk ≤ Uk, k = 1, . . . ,G
)

= P

(
c(ξ,U ) ∈ T qstat

)
for Uk :=

24∑

i=1

uikχ(i−1,i], k = 1, . . . ,G.

It remains to recover the scenario-dependent profiles for the pressures p0(·), pk(R, ·)
at the entry and exits (k = 1, . . . ,G), given a function of free capacities and a (random)
load scenario at the exit.

Proposition 6 Let qexit = (qexit1 , . . . , qexitG ) ≥ 0 be a technically feasible vector of exit
load profiles qexit ∈ T qstat. Then, the vectors of pressure and flow profiles defined as

p0(t) := min
k∈{0,...,G}

(
hk(q

exit(t)) + (pmax
k )2

) 1
2

pk(t) := (
(p0(t))

2 − hk(q
exit(t))

) 1
2 (k = 1, . . . ,G)

fk,l(t) :=
∑

m�l

qexitm (t) ((k, l) ∈ E)

are satisfying the pressure drop equations, the Kirchhoff law and the pressure bounds
given in Definition 4; hk(·) is as given in Proposition 3.

Proof The result follows from themore general proof of (Gotzes et al. (2016) Theorem
1) applied for a tree network, and, applied point-wise in time for each t ∈ [0, T ]. ��

The formulae for pressure recovery for a general feasible load profile qexit at the
exits, given by the proposition, have to apply to a complete scenario of the form (38)
again. Accordingly, we obtain that

p0(t) :=
√

min
k∈{0,...,G} hk

(
qexit(t) + y∗(qexit,U )(t)

)+ (pmax
k )2, (39)

pk(t) :=
√

(p0(t))2 − hk
(
qexit(t) + y∗(qexit,U )(t)

)
(k = 1, . . . ,G). (40)

The formulae (39) and (40) for the pressures at the entry and exits generalize formulae
(22) and (23) obtained for a single pipe before. By applying the representation of
the worst-case scenario y∗(qexit,U ) from Proposition 5, a recovering of the pressure
profiles at the entry and exits from a given load profile at the exits and from a given
function of free capacities is possible in a a tree network situation as well.

4.4 The transient case

The probabilistic capacity maximization problem with transient gas transport along
a tree is formulated as in (33), where T qstat is replaced by T trans. The probabilistic
constraint in the transient case reads
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P

(
qexit + y ∈ T trans ∀y : [0, T ]→R

G : 0 ≤ y ≤ U

)
≥ p, (41)

where U = (U1, . . . ,UG) and the Uk are defined in (34). As already stated for the
single pipe, to derive a description of the conditions inside the probabilistic constraint
in terms of a family of inclusions, as in the quasi-static case, is hopeless in the transient
case even more when considering a tree network. Instead of that, we assume that the
quasi-staticmodel is sufficiently close to the transientmodel formore complex network
structures than a single pipe as well. In particular, under this assumption theworst-case
function introduced in Proposition 5 may represent the system of inclusions in (41)
by the single condition

c(qexit,U ):=qexit + y∗(qexit,U ) ∈ T trans,

where we apply the tree version of the complete scenario definition from (38). There-
fore, for a tree network the probabilistic capacity problem in the transient case is
formulated as follows:

max
(uik )i,k∈R24×G+

G∑

k=1

24∑

i=1

uik subject to P
(
c(ξ,U ) ∈ T trans) ≥ p. (42)

We want to resolve the still non-explicit random constraint inside the probability as an
inequality system similar as done for the single pipe in Sect. 3.4 before. By definition,
the relation c(ξ,U ) ∈ T trans is now equivalent to the existence of vectors of profiles
pL , pR and qL , qR solving component-wise the PDE (32) and the existence of a vector
of profiles p satisfying the boundary conditions

ALqL + AR pR = c(ξ,U ) ∀t ∈ [0, T ]
p(k,l)
L = p(m,k)

R = pk ∀k = 0, . . . ,G; ∀(m, k), (k, l) ∈ E .

According to the degree of freedom, under these boundary conditions the PDE (32)
has a unique solution if we consider the additional boundary and initial conditions

p0(t) = pentry(t) ∀t ∈ [0, T ]; pk(0) = p0k , k = 1, . . . ,G; qL(0) = q0L .

When denoting by F(p0, c(ξ,U ), p0, q0L) the pressure function (p1, . . . , pG) asso-
ciated with the unique solution, then the probability in (42) can be written as

P

(
c(ξ,U ) ∈ T trans

)
= P

(
∃ p0 : [0, T ] → R : p0(t) ∈ [pmin

0 , pmax
0 ];

[
F
(
p0, c(ξ,U ), p0, q0L

)
(t)
]
k ∈ [pmin

k , pmax
k ] ∀t ∈ [0, T ]; k = 1, . . . ,G

)
.
(43)

Just like in the single pipe problem, also in the tree formulation the probability is
affected by the choice of the pressure profile p0(·) at the entry. We are aiming to
maximize the probability level on the right-hand side. Instead of determining the
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profile p0(·) inside the optimization framework (which is hardly possible) the idea
once more is to make use of the opportunity to recover pressure functions at the entry
and exits in the quasi-static model. This suggests to use the entry profile from (39)
for the complete scenario as boundary condition in the transient model. To make sure
to satisfy the pressure bounds the pressure profile at the entry is eventually cut at the
lower bound (the upper bound is satisfied automatically). According to (39) we define
the profile

p∗
0(c(ξ, u)):=max

{

pmin
0 ,

√
min

k∈{0,...,G} hk
(
qexit(t) + y∗(qexit, u)(t)

)+ (pmax
k )2

}

.

(44)

By the fixed entry pressure profile p∗
0 the probability P

(
c(ξ, u) ∈ T trans

)
in (43) is

approximated by the probability

P

([
F
(
p∗
0(c(ξ,U )), c(ξ,U ), p0, q0L

)
(t)
]
l ∈ [pmin

l , pmax
l ] ∀t ∈ [0, T ]; l = 1, . . . ,G

)

(45)

that relates to the pressure bound conditions at the exits for the given initial and
boundary conditions. In order to transform the random constraints in (45) from con-
tinuous in time to time discrete we may apply the implicit Euler scheme (7) for
solving the system of PDEs (32) (for each pipe). Based on some time discretization
tk :=kT /N with k = 1, . . . , N the solution mapping F is replaced by the mappings
F̃k
l (p∗

0(c(ξ,U )), c(ξ,U ), p0, q0L) which denote the l-th component of the numerical
solution vector (pk1, . . . , p

k
G) of exit pressures at time steps k = 1, . . . , N , given the

corresponding initial and boundary values. The analog formula to (29) reads now:

P

(
F̃k
l

(
p∗
0(c(ξ,U )), c(ξ,U ), p0, q0L

) ∈ [pmin
l , pmax

l ]; k = 1, . . . , N ; l = 1, . . . ,G
)

.

(46)

Now we can proceed as shown in Sect. 3.4 in details for the example of a single pipe,
in order to reformulate the condition within the probability (46) in terms of a finite
system of well-defined explicit inequalities. The inequalities are obtained formally as
system with a number of 2NG inequalities

gkl (u, ξ̃ ) := pmin
l − F̃k

l

(
p∗
0(c(ξ,U )), c(ξ,U ), p0, q0L

)
≤ 0

gN+k
l (u, ξ̃ ) := F̃k

l

(
p∗
0(c(ξ,U )), c(ξ,U ), p0, q0L

)
− pmax

l ≤ 0

for k = 1, . . . , N and l = 1, . . . ,G. Plugging in the formula (35) for the demand ξ ,
formula (38) for the complete scenario c(ξ, u) (applying the definition of the worst
case y∗ in Proposition 5), and, formula (44) for the worst case entry pressure p∗

0; the
above inequality system becomes fully explicit. By doing so, we are able to apply
the method of spheric-radial decomposition presented in Sect. 2.5 in order to compute
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Fig. 8 Comparison of the numerical solutions of the capacity maximization for the quasi-static and transient
model using the V-net tree example. Displayed are the results for exit 1 (left) and exit 2 (right). The yellow
curves refer to an advanced three-point space discretization by subdividing the two pipes of the V-net into
two segments each

the probabilistic constraint inside the optimization problem (42) related to the general
transient case.

We want to conclude this section by the comparison of the numerical solutions of
the problem ofmaximizing the free capacity which are obtained by the quasi-static and
by the transient model, respectively. In the single pipe example we have already made
the observation that the difference between the two solutions is reasonable small (see
Fig. 6), in particular, if the length of the pipe is not too large (otherwise just subdivide
the pipe into a couple of smaller ones). As supposed, this observation can be validated
for more involved network structures as well. To confirm this result we have solved
the V-net example given in Sect. 4.2 even for the transient model. Figure 8 compares
the computed free capacity profiles for the two exits of the V-net obtained for the two
models, the quasi-static and the transient one. The shown pictures are very similar to
the picture of Fig. 6 that is related to the single pipe.

Conclusion

We have modeled and numerically solved a time-dependent probabilistic problem
for capacity maximization in gas networks with random demand. Two basic models
based on transient and quasi-static gas flow, respectively, have been investigated where
the latter one is easier to solve and crucial for identifying worst case scenarios. On
a simple pipe, both models yielded very similar results for maximum capacities. In
order to check potential deviations as a consequence of branching, the same problem
was considered for a V-net. Again, the differences were marginal. This suggests, that
the time-dependent probabilistic capacity maximization problem could be solved in
general under the assumption of quasi-static flow. This observation has the beneficial
consequence that, owing to the much easier explicit random constraints, one may
afford the consideration of much larger networks of tree-like structure.
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