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In this article, we compare two different calmness conditions which are
widely used in the literature on bilevel programming and on mathematical
programs with equilibrium constraints. In order to do so, we consider
convex bilevel programming as a kind of intersection between both
research areas. The so-called partial calmness concept is based on the
function value approach for describing the lower level solution set.
Alternatively, calmness in the sense of multifunctions may be considered
for perturbations of the generalized equation representing the same lower
level solution set. Both concepts allow to derive first-order necessary
optimality conditions via tools of generalized differentiation introduced by
Mordukhovich. They are very different, however, concerning their range of
applicability and the form of optimality conditions obtained. The results of
this article seem to suggest that partial calmness is considerably more
restrictive than calmness of the perturbed generalized equation. This fact is
also illustrated by means of a dicretized obstacle control problem.
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1. Introduction

Optimization problems of the abstract form

min Fðx, yÞj y2SðxÞ, x2

� 	

ð1Þ

provide a fairly general framework for interesting subclasses like bilevel programs

(BLPs) and mathematical programs with equilibrium constraints (MPECs). Here,

F :Rn�R
m!R is some objective function, S :Rn !!R

m is a multifunction and


�R
n is a fixed subset. More precisley, a BLP arises from (1) by specifying the

multifunction S as the solution mapping associated with some parameter dependent
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optimization problem

SðxÞ :¼ argmin
y

f ðx, yÞj y2CðxÞ
� 	

, ð2Þ

where f :Rn�R
m!R is some objective function and C :Rn !!R

m a feasible set

mapping. The optimization problem defined in (2) is also called the lower level

problem associated with the upper level problem (1) via the upper level decision

variable x which acts as a parameter in (2). By contrast, an MPEC would be obtained

from (1) by setting

SðxÞ :¼ y2R
mj02 gðx, yÞ þNCðxÞð yÞ

� 	

, ð3Þ

where g :Rn�R
m!R

m, C :Rn !!R
m and ‘N’ represents some appropriate

normal cone.

It is well-known that problem (1) with S either given by (2) or by (3) violates the

standard constraint qualifications of nonlinear programming. Therefore, many

attempts have been made to derive first-order necessary optimality conditions for

(1) under appropriate assumptions. A major tool employed for this purpose is the

generalized differential calculus (subdifferential, normal cone, coderivative) of

Mordukhovich [1]. Typically, the application of these calculus rules requires some

kind of Lischitz-like behaviour (e.g. Aubin property or calmness) of certain

multifunctions. Two basically different approaches have been developed in the past:

one is related with BLPs and uses the concept of partial calmness which is

closely connected with the so-called value function description of the solution set (2)

(e.g. [2–5]). The second approach relies on the MPEC structure and considers

calmness of a perturbation mapping associated with the generalized equation inside

(3) (e.g. [6–9]). The aim of this article is to compare both approaches in a setting

where BLPs can be reformulated as MPECs.

The mapping (2) can be rephrased in the form (3) in case f is convex and

continuously differentiable with respect to y and C(x) is a closed convex set for all x.

Indeed, in this convex setting, the solution set of the optimization problem (2) is

equivalently described by the generalized equation

02ry f ðx, yÞ þNCðxÞð yÞ,

where ‘N’ is the normal cone in the sense of convex analysis. For non-convex data,

this last generalized equation would describe a set larger than the solutions of (2) and

thus, BLPs can no longer be recast as MPECs. Conversely, MPECs cannot be

formulated as BLPs either, since the mapping g in (3) may not be representable as the

gradient of some function f.

In this article, we consider bilevel programs with convex lower level problems of

the type

min Fðx, yÞj y2SðxÞ
� 	

, ð4Þ

where

SðxÞ :¼ argmin
y

f ðx, yÞj y2C
� 	

,

C :¼ y2R
mj gi yð Þ � 0 i ¼ 1, . . . , pð Þ

� 	

,
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F :Rn�R
m!R is a continuously differentiable upper level objective function;

f :Rn�R
m!R is a twice continuously differentiable lower level objective function;

g :Rm!R
p is a twice continuously differentiable lower level constraint mapping.

Moreover, we suppose that f is convex in y and the components gi of g are also

convex.

In contrast to the more general settings in (1), (2) and (3), we consider neither

upper level constraints x2
 nor lower level constraints that depend on x. This

relatively harmless simplification allows a considerable reduction in terms of

notational effort, and therefore, allows us to focus the analysis on the essential

points.

2. Basic concepts and notation

We commence by recalling some basic properties of a multifunction � :X !!Y

between metric spaces X, Y. The graph of � is defined as

gr� :¼ ðx, yÞ 2X� Yj y2�ðxÞ
� 	

:

The inverse of � is a multifunction �
ÿ1 :Y !!X defined by

�ÿ1ð yÞ :¼ x2Xj y2�ðxÞ
� 	

:

We shall make use of the following notions of Lipschitz continuity for multifunctions.

Definition 2.1 Let � :X !!Z be a multifunction between metric spaces X, Z and

consider a point, ð �x, �zÞ 2 gr�. Then � is said to have the Aubin property at ð �x, �zÞ
provided there exists neighbourhoods U of �x and V of �z, and a constant L40

such that

dðz,�ðx00ÞÞ � Lkx0 ÿ x00k 8z2V \�ðx0Þ 8x0, x00 2U:

Here, dðz,�ð �xÞÞ ¼ infz02�ð �xÞ d z, z0ð Þ. A weaker Lipschitz property is obtained when

fixing one of the x-arguments as �x. More precisely we say that � is calm at ð �x, �zÞ
provided there exists neighbourhoods U of �x and V of �z, and a constant L40 such that

dðz,�ð �xÞÞ � Lkx0 ÿ �xk, 8z2V \�ðx0Þ, 8x0 2U:

In the following, we collect some known results about the Aubin property and

calmness of certain multifunctions we shall make use of in this article. We start with

the following theorem.

THEOREM 2.2 [10, Theorem 3.6] Let T1 :X1 !!X and T2 :X2 !!X be multifunctions

between metric spaces X1, X2, X. If T1 is calm at (x1, x)2 grT1,T2 is calm at (x2, x)2
grT2,T

ÿ1
2 has the Aubin property at (x, x2) and T1(x1)\T2(�) is calm at (x2, x), then

the multifunction T1\T2 :X1�X2 !!X defined by (T1\T2) (x1, x2) :¼T1(x1)\T2(x2)

is calm at (x1, x2, x).

Next, we consider a special multifunction � :Rp !!R
m defined by the parametric

inequality system

�ðwÞ :¼ y2R
mjhi yð Þ � wi i ¼ 1, . . . , pð Þ

� 	

,

where h :Rm!R
p is a continuously differentiable mapping. The following fact is

well-known.
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PROPOSITION 2.3 If for some �w, �yð Þ 2 gr� the Jacobian Dh �yð Þ is surjective, then � has

the Aubin property at �w, �yð Þ.

Concerning the weaker calmness property of �, the following result holds true.

PROPOSITION 2.4 [11, Proposition 1] If � is calm at �w, �yð Þ 2 gr�, then the contingent

and linearized cones of � �wð Þ at �y coincide, i.e. T� �wð Þ �yð Þ ¼ L� �wð Þ �yð Þ, where

T� �wð Þ �yð Þ :¼ d2R
mj9tn # 0 9dn ! d : �yþ tndn 2� �wð Þ

� 	

,

L� �wð Þ �yð Þ :¼ d2R
mj rhi �yð Þ, d

 �

� 0 8i2 I
� 	

,

I :¼ i2 f1, . . . , pgjhi �yð Þ ¼ �w 8i2 I
� 	

:

In the context of bilevel programming the following calmness condition has been

introduced in [3].

Definition 2.5 The bilevel program (4) is called partially calm at one of its local

solutions �x, �yð Þ, if there exists a neighbourhood U of 0, �x, �yð Þ and a constant L40

such that

Fðx, yÞ ÿ F �x, �yð Þ þ Ljuj � 0 8 u, x, yð Þ 2 U : f ðx, yÞ ÿ ’ðxÞ þ u ¼ 0, y2C:

Here,

’ðxÞ :¼ inf f ðx, yÞj y2C
� 	

ð5Þ

denotes the optimal value function of the lower level problem in (4).

The following two definitions provide further important characterizations of the

behaviour of multifunctions:

Definition 2.6 Amultifunction � :X !!Y between metric spaces X, Y is called inner

semicompact at �x2X with � �xð Þ 6¼ ; if for every sequence xn ! �x with � (xn) 6¼ ;
there is a sequence yn2�(xn) containing a bounded subsequence.

Definition 2.7 Amultifunction � :X !!Y between metric spaces X, Y is called inner

semicontinuous at �x, �yð Þ 2 gr� if for any sequence xn ! �x there is a sequence

yn2�(xn) with yn ! �y.

At the end of this section we recall some basic concepts from nonlinear

programming. To this aim consider for an arbitrarily fixed x2R
n the lower level

problem

min f ðx, yÞj gi yð Þ � 0 i ¼ 1, . . . , pð Þ
� 	

: ð6Þ

associated with (4). The set of active indices at some y2C is defined as

Ið yÞ :¼ i2 f1, . . . , pgj gi yð Þ ¼ 0
� 	

: ð7Þ

A common constraint qualification for the set C is given by the following definition.

Definition 2.8 The Linear independence constraint qualification (LICQ) is said to

hold at y2C if the set of gradients {rgi(y)}i2I(y) is linearly independent.

Note that in the case of convex functions gi which we consider here, LICQ implies

the existence of a Slater point forC, i.e. there is some y�with gi(y
�)50 for i¼ 1, . . . , p.

Sometimes a weaker constraint qualification than LICQ is sufficient to be required.
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Definition 2.9 The Constant rank constraint qualification (CRCQ) is said to hold at

y2C if there exists a neighbourhood U of �y such that

rank rgi yð Þ
� 	

i2 I
¼ rank rgi y0ð Þ

� 	

i2 I
8y0 2U 8I � Ið yÞ:

Evidently, LICQ implies CRCQ, whereas the converse does not hold true. By

Lðx, y, �Þ :¼ f ðx, yÞ þ
X

p

i¼1

�igi yð Þ

we denote the Lagrangean of problem (6). Now, fix any �x, �yð Þ 2 grS. Then, �y is a

solution to (6) with x ¼ �x, and hence, if LICQ is satisfied at �y, then there exists a

unique multiplier �2R
p
þ such that ryLð �x, �y, �Þ ¼ 0 and �igi �yð Þ ¼ 0 for i¼ 1, . . . , p.

Definition 2.10 The Strong second-order sufficient condition (SSOSC) is said to

hold at a solution �y to (6) if for all �� 0 satisfying ryLð �x, �y, �Þ ¼ 0 the Hessian

r2
yLð �x, �y, �Þ is positive definite on the subspace

\p

i¼1
ker �irgi �yð Þ
� 	

:

Note that the multiplier � in the previous definition is unique in case that LICQ

holds at �y.

3. A comparison of partial calmness and calmness of the perturbation mapping

3.1. M-stationarity conditions

In this article we want to compare two different calmness concepts leading to

different necessary optimality conditions (stationarity in the sense of Mordukhovich

or M-stationarity) for solutions of (4) in dual form. The following Theorem is a

reduction of Theorems 3.1 and 5.1 in [5] to the setting considered here. It strongly

relies on the concept of partial calmness as introduced in Definition 2.5.

THEOREM 3.1 Let ð �x, �yÞ be a local solution to (4). Assume the following conditions:

. There exists some y� with gi(y
�)50 (i¼ 1, . . . , p) (i.e. y� is a Slater point for

the lower level constraint set C).

. (4) is partially calm at �x, �yð Þ.

. The solution set mapping S of the lower level problem in (4) is

inner semicontinuous at �x, �yð Þ (Definition 2.7) or inner semicompact at �x

(Definition 2.6)

Then, there are real numbers �40, �i� 0, �i� 0 (i¼ 1, . . . , p) such that

rxFð �x, �yÞ ¼ 0

ryFð �x, �yÞ þ �ry f ð �x, �yÞ þ
X

p

i¼1

�irgi �yð Þ ¼ 0

ry f ð �x, �yÞ þ
X

p

i¼1

�irgi �yð Þ ¼ 0

�igi �yð Þ ¼ �igi �yð Þ ¼ 0 i ¼ 1, . . . , pð Þ:
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It is easily seen that the last three relations can be equivalently aggregated in

order to yield the following corollary.

COROLLARY 3.2 Under the assumptions of Theorem 3.1 it holds that

rxFð �x, �yÞ ¼ 0 and ryFð �x, �yÞ 2 span rgi �yð Þ
� 	

i2 I �yð Þ,

where I �yð Þ is defined in (7).

In contrast to Theorem 3.1, a different system of necessary optimality conditions

is derived in the following theorem via the calmness of a perturbation mapping

associated with the generalized equation 02ry f(x, y)þNC(y) which describes the

lower level solution set mapping S of (4).

THEOREM 3.3 Let ð �x, �yÞ be a local solution to (4). Assume the following conditions:

. There exists some y� with gi(y
�)50 (i¼ 1, . . . , p).

. The Constant rank constraint qualification (CRCQ) is satisfied (see

Definition 2.9).

. The perturbation mapping

MðvÞ :¼ ðx, yÞ 2R
n �R

mjv2ry f ðx, yÞ þNCð yÞ
� 	

ð8Þ

is calm at 0, �x, �yð Þ (see Definition 2.1).

Then, there are multipliers �� 0, v� and w� such that

0 ¼ rxFð �x, �yÞ þ rT
xry f ð �x, �yÞv�

0 ¼ ryFð �x, �yÞ þ ryyf ð �x, �yÞv� þ
X

i2 I �yð Þ
�ir2gi �yð Þ

 !

v� þ
X

i2 I �yð Þ
w�
i rgi �yð Þ

0 ¼ rgi �yð Þ, v�

 �

8i2 I �yð Þ : �i 4 0

0 ¼ w�
i 8i2 I �yð Þ : �i ¼ 0, rgi �yð Þ, v�


 �

5 0

0 � w�
i 8i2 I �yð Þ : �i ¼ 0, rgi �yð Þ, v�


 �

4 0

0 ¼ ry f ð �x, �yÞ þ
X

i2 I �yð Þ
�irgi �yð Þ:

The theorem was proved in [12, Corollary 4.1] under the stronger LICQ

(Definition 2.8) (see also [9, Theorems 5.2 and 5.3] in a concrete setting). The

possibility to weaken LICQ to CRCQ (in which case the multiplier � is not

necessarily unique) was shown in [12, Corollary 6.2]. We note that a very similar

version of this theorem was earlier proven in [13, Theorem 5.1], albeit under a

stronger calmness condition not related to the mapping (8) but rather to an enhanced

mapping including Lagrange multipliers.

It is evident that the stationarity conditions of Theorems 3.1 and 3.3 differ

considerably and that the main reason for this is the different nature of the calmness

conditions used (the other assumptions playing a subordinate technical role). The

most striking difference concerning the results is the lack of second order terms in

Theorem 3.1. This observation seems to suggest a quite restrictive role played by the

partial calmness condition in Theorem 3.1. Consider for a moment a situation, where

the lower level problem of (4) has no constraints (i.e. C¼R
m). Then, the inequality

956 R. Henrion and T. Surowiec
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constraints gi (y)� 0 are not present and the stationarity conditions of Theorem 3.1

reduce to

0 ¼ rFð �x, �yÞ, 0 ¼ ry f ð �x, �yÞ, ð9Þ

whereas Theorem 3.3 still yields the much richer information of the existence of v�

such that

0 ¼ rxFð �x, �yÞ þ rT
xry f ð �x, �yÞv�

0 ¼ ryFð �x, �yÞ þ ryyf ð �x, �yÞv�

0 ¼ ry f ð �x, �yÞ:
ð10Þ

The following example illustrates the difference:

Example 3.4 Consider the following specific instance of problem (4):

min x2 þ cyj y2SðxÞ
� 	

, SðxÞ :¼ argmin
1

2
y2 ÿ xy

� �

,

where c2R is some parameter. The solution of this problem is easily found in a

direct way as �x, �yð Þ ¼ ÿ c
2
;ÿ c

2

ÿ �

. Using (9), one would arrive at the stationary

solution �x, �yð Þ ¼ ð0, 0Þ in the case of c¼ 0 and at no stationary solution at all if c 6¼ 0.

Thus, (9) are not stationarity conditions in the typical case c 6¼ 0. In other words, the

partial calmness condition of Theorems 3.1 is violated in the typical situation

(whereas the other technical assumptions of the Theorem hold true). Applying (10)

instead, the conditions exactly identify the solution of the problem for all c2R. Let

us look more precisely at the calmness conditions themselves. If partial calmness was

satisfied at a solution �x, �yð Þ ¼ ÿ c
2
;ÿ c

2

ÿ �

, then, according to Definition 2.5, there

should exist a neighbourhood U of 0, �x, �yð Þ and a constant L40 such that

x2 þ cyÿ
�

c2

4
ÿ c2

2

�

þ Ljuj � 0 8 u, x, yð Þ 2 U :
1

2
y2 ÿ xyÿ 1

2
x2 ÿ x2

� �

þ u ¼ 0:

ð11Þ

Then, we may define a sequence un, xn, ynð Þ :¼ ÿ 1
2
nÿ2, ÿ c

2
, ÿ c

2
ÿ nÿ1

ÿ �

! 0, �x, �yð Þ
satisfying 1

2
xn ÿ ynð Þ þ un ¼ 0 but

x2n þ cyn þ
c2

4
þ Ljunj ¼ ÿcnÿ1 þ L

2
nÿ2

5 0 for n4
L

2c
:

This is a contradiction with (11) and so partial calmness is violated for c 6¼ 0. As far

as the perturbation mapping M (8) is concerned, it follows from NC(y)¼ {0} (due to

the absence of lower level constraints) that

MðvÞ :¼ ðx, yÞjv2 yÿ x
� 	

:

Hence, M is a continuous multifunction and in particular calm in the sense of

Definition 2.1.

At the end of this section, we provide three independent conditions ensuring the

calmness of the multifunction (8) needed in Theorem 3.3.
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THEOREM 3.5 The multifunction (8) is calm at 0, �x, �yð Þ, where ð �x, �yÞ is a local solution
to (4), if one of the following three conditions is satisfied in problem (4):

(1) The lower level constraint set C is a polyhedron and the lower level objective has

the form f(x, y)¼ yT(AyþBx) for matrices A, B of appropriate size.

(2) The lower level problem satisfies LICQ and SSOSC (Definition 2.8 and

Definition 2.10).

(3) The lower level objective satisfies that r2
xy f �x, �yð Þ is surjective (‘ample

parameterization’).

Proof Under the first condition, we may write the graph of M from (8) as

grM ¼ Tÿ1 grNCð Þ, where Tðv, x, yÞ :¼ y, vÿ 1

2
Ayÿ Bx

� �

:

Since C is a polyhedron, grNC is a union of polyhedra and so is grM as its preimage

under a linear mapping. In other words, M is a polyhedral multifunction and as such

it is calm as a consequence of a well-known theorem by Robinson [14]. Conditions

(2) and (3) both imply actually the stronger Aubin property of M which entails

calmness (Definition 2.1). This was proved for condition (2) in [12, Corollary 5.1],

(see also [9, Proposition 5.1]) and follows for condition (3) from Mordukhovich’s

criterion for the Aubin property of multifunctions [1]. g

3.2. Uniformly weak sharp minima and value function constraint qualification

When comparing the partial calmness and calmness of the perturbation mapping in

Theorems 3.1 and 3.3, it turns out that partial calmness is not a constraint

qualification in the strict sense because it mixes the properties of the upper level

objective function with properties of the constraint y2S(x). As a consequence, it is

not sufficient to check that the constraints behave well in order to derive stationarity

conditions for a whole class of objective functions. Rather, one has to check partial

calmness in (2.5) for each instance of an objective function F anew. A way to

formulate sufficient conditions for partial calmness independent of the concrete

nature of the upper level objective is the use of uniformly weak sharp minima as

proposed in [3].

Definition 3.6 The parametric lower level problem

min f ðx, yÞj y2C
� 	

ð12Þ

of (4) is said to have a uniformly weak sharp minimum around one of its solutions �y

at x :¼ �x if there exist ",�40 such that

f x, yð Þ ÿ ’ðxÞ � �d y,SðxÞð Þ 8x2B �x, "ð Þ 8y2C \ B �y, "ð Þ:

Here, ’ refers to the optimal value function (5) of the lower level problem and B �x, "ð Þ
is the closed ball with the radius " around �x.

It can be shown [3, Proposition 5.1] that for any locally Lipschitz function F the

partial calmness condition in (2.5) is satisfied at a local solution �x, �yð Þ of (4) provided
that the lower level problem has a uniformly weak sharp minimum around �x, �yð Þ.
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Special conditions for lower level quadratic programs ensuring uniformly weak sharp

minima are formulated in [3, Proposition 5.2]. Note, however, that these conditions

are not satisfied in Example 3.4, because otherwise partial calmness could be

guaranteed. In the following, we provide a strictly weaker constraint qualification

than that of uniformly weak sharp minima, yet it is strong enough to still imply

partial calmness for any locally Lipschitz objective F. Later we shall show that even

this weaker constraint qualification is not satisfied (much less the existence of

uniformly weak sharp minima) in typical lower level programs.

Definition 3.7 With the notation of Definition 3.6, we say that the value function

constraint qualification (VFCQ) is satisfied at �x, �yð Þ 2 grS if the mapping

KðuÞ :¼ ðx, yÞ 2R
n � R

mj y2C, f ðx, yÞ ÿ ’ðxÞ � u
� 	

is calm at 0, �x, �yð Þ in the sense of Definition 2.1.

PROPOSITION 3.8 If the lower level problem (12) has a uniformly weak sharp minimum

around one of its solutions �y at x :¼ �x, then (VFCQ) is satisfied at �x, �yð Þ.

Proof First, note that �x, �yð Þ 2 grS by definition of S in (4) and that K(0)¼ gr S. Let

",�40 be the constants from Definition 3.6 and consider arbitrary u,x, yð Þ 2
B 0, �x, �yð Þ, "ð Þ such that (x, y)2K(u). Then,

d x, yð Þ,Kð0Þð Þ ¼ d x, yð Þ, grSð Þ � d y,SðxÞð Þ � �ÿ1 f x, yð Þ ÿ ’ðxÞð Þ � �ÿ1u:

This, however, amounts to calmness of K at 0, �x, �yð Þ in the sense of Definition 2.1.

Consequently, (VFCQ) is satisfied. g

The following example shows that (VFCQ) is strictly weaker than the existence of

uniformly weak sharp minima.

Example 3.9 In (12) let C¼ [0, 2], f(x, y)¼ xy and �x, �yð Þ ¼ 0, 1ð Þ. Then,

SðxÞ ¼
f2g if x5 0

0, 2½ � if x ¼ 0

f0g if x4 0

8

<

:

, ’ðxÞ ¼ 2x if x5 0

0 if x � 0

�

:

Now, choose any u, x, yð Þ 2B 0, �x, �yð Þ, 1=2ð Þ such that (x, y)2K(u). A simple calcula-

tion shows that

d x, yð Þ,Kð0Þð Þ ¼ d x, yð Þ, grSð Þ � 2u:

This implies that (VFCQ) is satisfied. On the other hand, the fact that, for instance,

d �y,SðxÞð Þ ¼ 1 holds true for all x50 entails the failure of the uniformly weak sharp

minimum condition around �x, �yð Þ.

Though (VFCQ) is strictly weaker than the uniformly weak sharp minimum

condition, it still guarantees the partial calmness condition:

PROPOSITION 3.10 Let �x, �yð Þ be a local solution of (4). If (VFCQ) is satisfied at �x, �yð Þ,
then (4) is partially calm at �x, �yð Þ.

Proof According to Definition 3.7, let U be some neighbourhood of 0, �x, �yð Þ and
L40 be some constant such that

d x, yð Þ,Kð0Þð Þ � Lu 8 u, x, yð Þ 2 U : x, yð Þ 2KðuÞ:
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Let (x�, y�)2K(0)¼ grS be such that

d x, yð Þ,Kð0Þð Þ ¼ k x, yð Þ ÿ x�, y�ð Þk:

Since �x, �yð Þ is a local solution of (4), we may assume the neighbourhood U to be small

enough to ensure that F �x, �yð Þ � F x�, y�ð Þ. Finally, denote by {40 some Lipschitz

constant of the upper level objective function F close to �x, �yð Þ. Then,
F �x, �yð Þ ÿ Fðx, yÞ � F x�, y�ð Þ ÿ Fðx, yÞ � { x, yð Þ ÿ x�, y�ð Þ













� {Lu ¼ {Ljuj 8 u,x, yð Þ 2 U : x, yð Þ 2KðuÞ:

Here, the last equality relies on the fact that u� 0 whenever (x, y)2K(u) because

f(x, y)� ’(x) for all y2C. By virtue of the definition of K(u) this means that (4) is

partially calm at �x, �yð Þ. g

Evidently, the last proposition applies to any locally Lipschitzian upper level

objective F (despite our smoothness assumption) as this was the only property of F

exploited in the proof. Propositions 3.8 and 3.10 show that the constraint

qualification (VFCQ) is a stronger tool to guarantee the stationarity conditions of

Theorem 3.1 than the condition of uniformly weak sharp minima. Nevertheless, we

show in the following that (VFCQ) is much less efficient than the calmness condition

on M in Theorem 3.3. First, recall that the mappings K and M from Definition 3.7

and Theorem 3.3 satisfy the relation K(0)¼M(0)¼ grS.

PROPOSITION 3.11 If C is compact and (VFCQ) holds true at �x, �yð Þ then the

perturbation mapping M from Theorem 3.3 is calm at 0, �x, �yð Þ. In particular, the same

conclusion holds true if the lower level problem (12) has a uniformly weak sharp

minimum around �x, �yð Þ.

Proof According to Definition 3.7 and the mapping K defined there, there exist

numbers L, "40 such that

d x, yð Þ,Kð0Þð Þ � Ljuj 8u2 ÿ", "½ � 8 x, yð Þ 2KðuÞ \ B �x, �yð Þ; "ð Þ: ð13Þ

Moreover, there is some D40 such that ky1ÿ y2k�D for all y1, y22C. Put

~" :¼ min ", "=D
� 	

. Now, let v2B 0; ~"ð Þ and x, yð Þ 2MðvÞ \ B �x, �yð Þ; ~"ð Þ be arbitrarily

given. By the definition of M, one has that

v2ry f ðx, yÞ þNCð yÞ,

which is equivalent to

x, yð Þ 2 argmin
y0

f ðx, y0Þ ÿ v, y0

 �

j y0 2C
� 	

:

Therefore,

f ðx, yÞ � f ðx, y0Þ ÿ v, y0 ÿ y

 �

� f ðx, y0Þ þ D vk k 8y0 2C:

Consequently, f(x, y)� ’(x)þDkvk and, thus, (x, y)2K(Dkvk). From v2B 0; ~"ð Þ,
we derive that Dkvk� ". Moreover, x, yð Þ 2B �x, �yð Þ; "ð Þ. Summarizing, (13) may be

invoked to yield

d x, yð Þ,Mð0Þð Þ ¼ d x, yð Þ,Kð0Þð Þ � LD vk k:

This implies that M is calm at 0, �x, �yð Þ. The second assertion follows now from

Proposition 3.8. g
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The next theorem shows that in a typical setting for the lower level problem,

the perturbation mapping M (8) is calm whereas (VFCQ) is violated. To this aim,

we make the following assumptions on the lower level problem (6) at �x, �yð Þ 2 grS:

LICQ and SSOSC hold at �y ðsee Definition 2:8 and Definition 2:10Þ: ð14Þ

#Ið �yÞ5m ðsee ð7ÞÞ: ð15Þ

ry f ð �x, �yÞ 6¼ 0: ð16Þ

These assumptions describe a somehow generic situation in nonlinear programming:

(14) implies that the generalized equation describing the solution mapping S of (6) is

strongly regular at �x, �yð Þ in the sense of Robinson [15, Theorem 4.1]. In particular,

S is single-valued and Lipschitz continuous around �x, �yð Þ. Inequality (15) means that

the solution �y of (6) (at x ¼ �x) is not attained in a corner of C but rather on a higher-

dimensional face. Finally, (16) excludes a situation, where �y is already an

unconstrained solution of (6). In other words, the associated multiplier � is

nontrivial, such that the constraint y2C comes into play. Now, we have the

following result.

THEOREM 3.12 For any �x, �yð Þ 2 grS satisfying (14)–(16), M in (8) is calm (actually

has the stronger Aubin property) at 0, �x, �yð Þ, whereas (VFCQ) is violated at �x, �yð Þ. In
particular, the lower level problem (12) has no uniformly weak sharp minimum

around �x, �yð Þ.

Proof The statement about M follows from Theorem 3.5 (condition 2.), hence it

remains to show that K fails to be calm at 0, �x, �yð Þ under the indicated conditions.

This will entail that (VFCQ) is violated at �x, �yð Þ and also via Proposition 3.8 that (12)

has no uniformly weak sharp minimum around �x, �yð Þ. By strong regularity of S at

�x, �yð Þ (see discussion above), there exists some reals {, �1, �240 such that

# SðxÞ \ B �y; �2ð Þ
� 	

¼ 1 8x2B �x; �1ð Þ ð17Þ

d Sðx1Þ \ B �y; �2ð Þ,Sðx2Þ \ B �y; �2ð Þ
ÿ �

� { x1 ÿ x2










 8x1, x2 2B �x; �1ð Þ: ð18Þ

In particular, Sð �xÞ \B �y; �2ð Þ ¼ �y
� 	

. Assume for a moment that we have already

shown that the restricted multifunction

~MðuÞ :¼ y2R
mj y2C, f ð �x, yÞ ÿ ’ð �xÞ � u

� 	

fails to be calm at 0, �yð Þ. Then, there are sequences un, ynð Þ ! 0, �yð Þ such that

yn 2 ~MðunÞ and dð yn, ~Mð0ÞÞ4njunj:

Since ~Mð0Þ ¼ Sð �xÞ and yn ! �y it follows that, for n large enough,

njunj5 dð yn, ~Mð0ÞÞ ¼ dð yn,Sð �xÞÞ ¼ dð yn,Sð �xÞ \ B �y; �2ð ÞÞ ¼ yn ÿ �y










: ð19Þ

If K were calm at 0, �x, �yð Þ, then there would exist reals L, "40 such that (13) holds

true. In particular, since �x, ynð Þ 2KðunÞ (by yn 2 ~MðunÞ), it follows that

d �x, ynð Þ,Kð0Þð Þ � Ljunj:
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Consequently, by K(0)¼ grS, there is a sequence (xn, vn)2 gr S such that

�x, ynð Þ ÿ xn, vnð Þ










 � Ljunj:

Considering without loss of generality the infinity-norm, we have that both

k �xÿ xnk, k yn ÿ vnk � Ljunj:

In particular, xn ! �x and vn ! �y. Then for n large enough, (17) entails that

SðxnÞ \B �y; �2ð Þ ¼ vnf g and (18) yields

kvn ÿ �yk ¼ d SðxnÞ \B �y; �2ð Þ,Sð �xÞ \B �y; �2ð Þð Þ � { xn ÿ �xk k � {Ljunj:

This, finally leads to k yn ÿ �yk � { þ 1ð ÞLjunj, a contradiction with (19). Hence, K is

not calm at 0, �x, �yð Þ as was to be shown.

It remains to verify that ~M fails to be calm at 0, �yð Þ. In order to show this,

we want to invoke Theorem 2.2 by defining

T1ðvÞ :¼ y2R
mj gi yð Þ � vi i ¼ 1, . . . , pð Þ

� 	

T2ðuÞ :¼ y2R
mj f ð �x, yÞ ÿ ’ð �xÞ � u

� 	

:

First observe that, due to Proposition 2.3, T2 has the Aubin property at 0, �yð Þ due to
our assumption ry f ð �x, �yÞ 6¼ 0. In particular, T2 is calm at 0, �yð Þ. Similarly, our

assumption, that LICQ holds at �y, implies again via Proposition 2.3 that T1 has the

Aubin property at 0, �yð Þ. So, T1 is also calm at 0, �yð Þ. Finally, the inverse mapping

T2ð Þÿ1ð yÞ ¼ ½ f ð �x, yÞ ÿ ’ð �xÞ,1Þ

has trivially the Aubin property at �y, 0ð Þ by Lipschitz continuity of f ð �x, �Þ. Now,

assume that ~M was calm at 0, �yð Þ. Observing that ~MðuÞ ¼ T1ð0Þ \ T2ðuÞ, Theorem 2.2

would tell us that the mapping

M� u, vð Þ :¼ y2R
mj f ð �x, yÞ ÿ ’ð �xÞ � u, gi yð Þ � vi i ¼ 1, . . . , pð Þ

� 	

is calm at 0, 0, �yð Þ. Then, by Proposition 2.4, the contingent and linearized cones of

M� 0, 0ð Þ ¼ Sð �xÞ at �y must coincide. Given that Sð �xÞ \ B �y; �2ð Þ ¼ �y
� 	

, it follows for

the contingent cone that TM� 0, 0ð Þ �yð Þ ¼ f0g. Let us calculate the linearized cone

(recalling the definition of the index set Ið �yÞ introduced above):

LM� 0, 0ð Þ �yð Þ ¼ h2R
mj ry f ð �x, �yÞ, h

 �

� 0, rgi �yð Þ, h

 �

� 0 i2 Ið �yÞð Þ
� 	

:

We claim that LM�ð0,0Þð �yÞ contains at least a 1-dimensional subspace. Indeed, by the

definition

LM� 0, 0ð Þ �yð Þ � h2R
mj ry f ð �x, �yÞ, h

 �

¼ 0, rgi �yð Þ, h

 �

¼ 0 i2 Ið �yÞð Þ
� 	

:

Moreover, �x, �yð Þ 2 grS implies that �y is a solution of the lower level problem at x ¼ �x.

Accordingly, the set of vectors

fry f ð �x, �yÞg [ frgi �yð Þgi2 Ið �yÞ

is linearly dependent. Now, (15) entails that the rank of this set of vectors is at most

mÿ 1. It follows that LM� 0, 0ð Þ �yð Þ contains a linear subspace of at least dimension 1,
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which implies that LM� 0, 0ð Þ �yð Þ 6¼ TM� 0, 0ð Þ �yð Þ, showing that ~M cannot be calm at 0, �yð Þ.
This completes the proof. g

4. A discrete obstacle problem

For the purpose of comparing the different calmness concepts discussed above as

well as the resulting stationarity conditions according to Theorems 3.1 and 3.3, we

consider the following instance of a bilevel problem (4) resulting from the control of

a discrete obstacle problem [16]:

min
1

2
yÿ z













2þ c

2
xk k2

�

�

�

�

y2SðxÞ
� �

ð20Þ

where

SðxÞ :¼ argmin
y

y,Ay

 �

ÿ Bx, y

 �

j y2R
m
þ

� 	

:

Here, B is any matrix of appropriate size and A is a positive definite matrix, for

instance the three-point Laplacian

A ¼

2 ÿ1 0 � � � 0

ÿ1 2 ÿ1 . .
. ..

.

0 . .
. . .

. . .
.

0

..

. . .
.

ÿ1 2 ÿ1

0 � � � 0 ÿ1 2

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

: ð21Þ

In this problem, y refers to a state variable (e.g. shape of a one-dimensional

membrane), x is a control variable (force), z represents a given desired state and the

zero level is an obstacle for the state variable (thus giving rise to the constraint

y2R
m
þ). The upper level objective

Fðx, yÞ ¼ 1

2
yÿ z













2þ c

2
xk k2

reflects a compromise between approaching the desired state and minimizing the cost

of the control. The balance between both goals is determined by the coefficient c40.

The minimization of the lower level objective

f ðx, yÞ :¼ y,Ay

 �

ÿ Bx, y

 �

determines the state as a function of the control (thereby respecting the lower level

constraint y2C :¼ R
m
þ). The matrix B could be used to model a situation in which

the control is defined only on a subinterval of the domain of the state. For instance,

it might have the form

B ¼ I

0

� �

:

We next observe that all technical assumptions (apart from calmness) of Theorems 3.1

and 3.3 are satisfied. Indeed, the lower constraint set C satisfies trivially (LICQ)
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at any of its feasible points. Much more it satisfies the weaker constraint qualification

(CRCQ) and has a Slater point (e.g. y�¼ (1, . . . , 1)). Moreover, (SSOSC) is satisfied at

any solution to the lower level problem given any value of the upper level variable x

due to positive definiteness of A. Along with (LICQ) this implies (again via strong

regularity as in the paragraph on top of Theorem 3.12) that the solution set mapping S

of the lower level problem is locally unique and Lipschitz continuous around any point

of its graph. In particular, S is inner semicontinuous at any point of its graph. Now we

are in a position to state the following result on the failure of partial calmness in the

obstacle problem.

PROPOSITION 4.1 If the desired state z contains at least one positive component, then

partial calmness is violated at any local solution �x, �yð Þ of (20).

Proof Let �x, �yð Þ be a local solution of (20). Assume that partial calmness holds true

at �x, �yð Þ. Then, all assumptions of Theorem 3.1 are satisfied and we derive from the

respective first stationarity condition that

0 ¼ rxFð �x, �yÞ ¼ c �x,

which leads to �x ¼ 0 due to c40. Now the associated lower level problem becomes

min y,Ay

 �

j y � 0
� 	

with its unique solution evidently given by �y ¼ 0. Since also the resulting optimal

value equals zero, we get that ’ �xð Þ ¼ 0 with ’ from (5). Define zþ by

zþi :¼ max zi, 0f g i ¼ 1, . . . ,mð Þ:

By assumption, zþ 6¼ 0. Introducing sequences

yn :¼
1
ffiffiffi

n
p

zþk k z
þ ! 0 ¼ �y

un :¼ ÿ yn,Ayn

 �

! 0,

we observe that yn 2C ¼ R
m
þ and un ¼ ’ �xð Þ ÿ f �x, ynð Þ. Consequently, we may apply

the partial calmness definition (2.5) to the sequence un, �x, ynð Þ to derive the relation

0 � Fð �x, ynÞ ÿ F �x, �yð Þ þ Ljunj ¼
1

2
yn ÿ z













2ÿ 1

2
zk k2þL yn,Ayn


 �

¼ 1

2
yn













2ÿ yn, z

 �

þ L yn,Ayn

 �

¼ 1

2n
ÿ 1

ffiffiffi

n
p

zþk k zþ, z

 �

þ L
1

n zþk k2
zþ,Azþ

 �

:

Denoting the (positive) maximum eigenvalue of A by �
max and observing that

hzþ, zi ¼ kzþk2, one arrives at the contradiction

ffiffiffi

n
p

zþ










 � 1

2
þ L�max

for n!1 because kzþk40. Hence, our assumption that partial calmness holds true

at �x, �yð Þ is false. g
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The proposition shows that in the obstacle problem, by failure of partial

calmness, the application of Theorem 3.1 is limited to settings, where z� 0. In this

latter case, however, it is clear that the optimal solution of the problem is the trivial

one: �x ¼ �y ¼ 0.

In contrast, calmness of the perturbed generalized equation (8) holds true in any

case. Indeed, conditions (1) and (2) of Theorem 3.5 are satisfied simultaneously,

where already one of them would have sufficed. Consequently, all assumptions of

Theorem 3.3 are fulfilled. We recall that the functions describing the set C in (4) are

given by gi(y) :¼ÿyi in the concrete setting of the obstacle problem, where C ¼ R
m
þ.

Consequently,

rgi yð Þ ¼ ÿei, r2gi yð Þ ¼ 0,

with ei denoting the standard unit vectors of R
n. Writing down then the

stationarity conditions of Theorem 3.3 in terms of the data of the obstacle problem,

one arrives at

0 ¼ c �xÿ BTv� ð22Þ

0 ¼ �yÿ zþ 2Av� ÿ
X

i2 I �yð Þ
w�
i ei ð23Þ

0 ¼ v�i 8i2 I �yð Þ : �i 4 0 ð24Þ

0 ¼ w�
i 8i2 I �yð Þ : �i ¼ 0, v�i 4 0 ð25Þ

0 � w�
i 8i2 I �yð Þ : �i ¼ 0, v�i 5 0 ð26Þ

0 ¼ 2A �yÿ B �xÿ
X

i2 I �yð Þ
�iei, ð27Þ

where �� 0, v� and w� are certain multipliers whose existence is guaranteed. We may

use these conditions to derive the following equivalent reformulation of problem (20)

as a simple one-level optimization problem. To this aim, we make a specific

assumption on the form of A which is fulfilled, for instance, for the three-point

Laplacian (21) and we also suppose a certain structure of the matrix B, namely that

B ¼
In

0

� �

ð28Þ

for some n�m. This choice reflects a situation where the control x is supported by a

(left) subinterval of the state’s domain only (first m out of n discretization points). In

accordance with (28), we partition the matrix A as

A ¼ Að1Þ

Að2Þ

 !

: ð29Þ
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THEOREM 4.2 Assume that the positive definite matrix has the property

Aij � 0 8i, j ¼ 1, . . . ,m : i 6¼ j ð30Þ

(as it is the case for A in (21)). Assume further, that B is given as in (28). Then, the

following holds true: �x, �yð Þ is a solution to (20) if and only if �y is a solution to

min
1

2
yÿ z













2þ2c Að1Þy












2
�

�

�

�

y2R
m
þ, Að2Þy ¼ 0

� �

ð31Þ

and

�x ¼ 2Að1Þ �y: ð32Þ

Proof Let �x, �yð Þ be a solution to (20). We first show that �y is a solution to (31) and

that �x satisfies (32). By Theorem 3.3 there exist multipliers �� 0, v� and w� such that

(22)–(27) are fulfilled. Assume that there is some i2 I �yð Þ \ 1, . . . , nf g such that �i40.

We denote by Ai and Bi the ith rows of the matrices A and B, respectively. Since

Bj¼ ej for j2 {1, . . . , n} (see (28)), we may derive from (27) that

0 ¼ 2 Ai, �y

 �

ÿ Bi, �xh i ÿ �i 5 2 Ai, �y

 �

ÿ �xi: ð33Þ

Now, with �y � 0 and, given that �yi ¼ 0 due to i2 I �yð Þ, it follows from (30) that

2 Ai, �y

 �

¼ 2
X

j6¼i

Aij �yj � 0: ð34Þ

Along with (33) this yields �xi 5 0. Now, with BT¼ (Inj0), and recalling that

i2 {1, . . . , n}, we derive from (22) that

v�i ¼ BTv�
ÿ �

i
¼ c �xi 5 0:

This, however, contradicts (24). Thus, we have shown that �i¼ 0 for all

i2 I �yð Þ \ 1, . . . , nf g. We may now read the components of (27) as follows:

2 Ai, �y

 �

ÿ Bi, �xh i
¼ 0 i2 I �yð Þ \ 1, . . . , nf g
¼ 0 i =2 I �yð Þ
� 0 i2 nþ 1, . . . ,mf g:

8

<

:

ð35Þ

In particular,

2 Ai, �y

 �

¼ Bi, �xh i 8i2 1, . . . , nf g:

Using the partition (29), we may compress these relations as �x ¼ 2Að1Þ �y thus proving

(32). Next, let i2 I �yð Þ \ nþ 1, . . . ,mf g. Then, Bi, �xh i ¼ 0 and using again the

argument leading to (34), we infer that 2 Ai, �y

 �

ÿ Bi, �xh i � 0. Now, the second and

third relations in (35) provide equality here: 2 Ai, �y

 �

ÿ Bi, �xh i ¼ 0 for all

i2 {nþ 1, . . . ,m}. Referring again to the partition (29) and recalling that

Bi, �xh i ¼ 0 for i2 {nþ 1, . . . ,m}, we arrive at Að2Þ �y ¼ 0. We now show that �y is a

solution to (31). Since �y2R
m
þ, �y is feasible in (31). Assume that �y is not a solution

to (31). Then there exists some ŷ2R
m
þ and satisfying A(2)ŷ¼ 0 such that

1

2
ŷÿ z












2 þ 2c Aŷ












2
5

1

2
�yÿ z












2 þ 2c A �y












2
: ð36Þ
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Defining

x̂ :¼ 2Að1Þŷ

0

 !

,

we derive from A(2)ŷ¼ 0 that

x̂k k2¼ 4 Að1Þŷ












2¼ 4 Aŷ












2
:

Similarly, the already proved relation (32) yields along with Að2Þ �y ¼ 0 that

�xk k2¼ 4 A �y












2
. Consequently, (36) may be written as

1

2
ŷÿ z












2þ 1

2
c x̂k k2 5 1

2
�yÿ z












2þ 1

2
c �xk k2: ð37Þ

On the other hand,

2Aŷÿ Bx̂ ¼ 2Að1Þŷÿ x̂

2Að2Þŷÿ 0

 !

¼
0

0

� �

:

It follows, that ŷ satisfies the Kuhn–Tucker conditions for the lower level problem

argmin
y

y,Ay

 �

ÿ Bx̂, y

 �

j y2R
m
þ

� 	

:

As this is a convex optimization problem (by positive definiteness of A), ŷ must

actually be a solution of this problem. In terms of the lower level solution mapping S,

this means that ŷ2Sðx̂Þ. Now, (37) entails that �x, �yð Þ cannot be a solution to (20).

This contradiction implies that �y is a solution to (31). We have therefore proved one

implication of the theorem. For the reverse direction, let now �x, �yð Þ be such that �y

solves (31) and �x satisfies (32). Observe that the objective in (31) is strictly convex.

Consequently, (31) �y is the only solution to (31). Therefore, if (20) possesses a

solution at all, this must coincide by the already proved implication with �x, �yð Þ.
Hence, we are done once we can show that (20) possesses a solution.

Though it can be verified that (20) does indeed have a solution via classical

methods from the calculus of variations (see, e.g. ([17]), we provide an elementary

proof for the sake of completeness. To see this, first we verify that S(x) 6¼ ; for all

x2R
n. Indeed, let x2R

n be arbitrarily given. Then, S(x) is the set of solutions to

min
y

y,Ay

 �

ÿ Bx, y

 �

j y2R
m
þ

� 	

:

We putH :¼ {y2R
mjhy, Ayiÿ hBx, yi� 1}. Since ; 6¼ H \R

m
þ 3 0, S(x) is also the set

of solutions to

min
y

y,Ay

 �

ÿ Bx, y

 �

j y2H \R
m
þ

� 	

:

Denoting by �
min

40 the smallest eigenvalue of A, we have that

�min y












2� y,Ay

 �

� Bx, y

 �

þ 1 � y










 Bxk k þ 1ð Þ 8y2H : y










 � 1:
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This leads to

y










 � �min
ÿ �ÿ1

Bxk k þ 1 8y2H : y










 � 1:

As a consequence, H is compact and the solution set S(x) is nonempty. Hence, by the

already employed strict convexity argument for the objective function of the lower

level problem, S(x) is a singleton for all x2R
n. On the other hand, referring back to

the discussion in front of Proposition 4.1, S is a locally Lipschitz continuous

mapping around all points of its graph. Summarizing, S is a continuous function (!)

defined on all of Rn. This allows us to equivalently rewrite (20) as the unconstrained

optimization problem

min
x2R

n

1

2
SðxÞ ÿ z












2þ c

2
xk k2

� �

: ð38Þ

Now, we use a similar argument as above, but this time for the upper level problem.

Let

�H :¼ x2R
n 1

2
SðxÞ ÿ z












2þ c

2
xk k2� kzk2

�

�

�

�

� �

:

Since S(0)¼ {0}, one has that ; 6¼ �H 3 0, and so problem (38) is equivalent with

min
1

2
SðxÞ ÿ z












2þ c

2
xk k2

�

�

�

�

x2 �H

� �

: ð39Þ

Since �H is contained in a closed ball with radius kzk
ffiffiffiffiffiffiffi

2=c
p

it follows that �H is

compact. As the objective of (39) is continuous by continuity of S, problem (39) and,

hence, the original problem (20) possesses a solution. This finishes the proof of the

theorem. g

Theorem 4.2 allows us to reduce the bilevel obstacle problem to a simple

quadratic optimization problem the numerical solution of which is easily carried out

by standard tools. Figure 1 provides an illustration for the solution of the obstacle

problem under two different choices for the weighting coefficient c based on the

solution of (31) along with the relation (32). The given interval is discretized into

m¼ 100 points. Here, the control is defined on the first half of the interval only

0 20 40 60 80 100

–0.5

0.0

0.5

0 20 40 60 80 100

–0.5

0.0

0.5

Figure 1. Illustration of solutions to the obstacle problem for coefficients c¼ 1 (left) and
c¼ 50 (right). The plot shows the desired state z (thick, gray), the optimal state y (thin, black)
and the optimal control x (thick, black).
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(i.e. n¼ 50). For a small coefficient c¼ 1, the optimal state y, which is required to

stay nonnegative, fits the desired state perfectly, whenever it too is positive in the first

part of the interval. A substantially larger coefficient c¼ 50 forces the control to be

smaller than in the first case. As a consequence, the discrepancy between optimal and

desired state increases. Observe that the right-most value of the control determines

the rate of linear decay of the optimal state on the second half of the entire interval.

5. Conclusions

The results of this article (in particular, Proposition 3.11, Theorem 3.12 and

Proposition 4.1) seem to suggest that the concept of partial calmness via the value

function approach is less efficient than calmness of the perturbation mapping (8)

when used as a constraint qualification for M-stationarity in bilevel optimization

problems. On the other hand, there are very recent developments where both

approaches are combined [18].
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