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Abstract
We consider the optimal control of a PDE with random source term subject to prob-
abilistic or almost sure state constraints. In the main theoretical result, we provide
an exact formula for the Clarke subdifferential of the probability function without a
restrictive assumption made in an earlier paper. The focus of the paper is on numerical
solution algorithms. As for probabilistic constraints, we apply the method of spher-
ical radial decomposition. Almost sure constraints are dealt with a Moreau–Yosida
smoothing of the constraint function accompanied by Monte Carlo sampling of the
given distribution or its support or even just the boundary of its support. Moreover, one
can understand the almost sure constraint as a probabilistic constraint with safety level
one which offers yet another perspective. Finally, robust optimization can be applied
efficiently when the support is sufficiently simple. A comparative study of these five
different methodologies is carried out and illustrated.
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1 Introduction

Many physics-based systems that can be described mathematically as optimization
problems contain inputs or parameters that are unknown. Ignoring an available model
for the uncertain values, for example a probability distribution, can result in severely
sub-optimal solutions. In the context of PDE-constrained optimization under uncer-
tainty, the framework of stochastic optimization has proved useful due to its rich theory
and wealth of numerical methods [15]. The simplest ansatz is to optimize with respect
to a desired average outcome [15, 20, 26, 42] of the underlying random PDE, but
robust [3, 34] and risk-averse formulations have also been proposed for engineering
applications [16, 46] with theoretical investigations in [5, 23, 36, 37, 39].

In certain applications, additional constraints on the solution to the random PDE
are also desirable, leading to state constraints. Systems involving an almost sure or
robust model for state constraints have recently been investigated in [20, 22, 23, 26].
Probabilistic constraints offer the possibility to deal with uncertain restrictions in a
robust way that is interpretable with respect to probability. They have been introduced
by Charnes et al. [10]. Fundamental algorithmic and theoretical contributions are due
to Prékopa, see [45]. More recent presentations are provided in [48] or [52]. In the last
years, one may observe a growing interest in probabilistic constraints as part of PDE-
constrained optimization, see e.g., [9, 18, 19, 27, 29, 38, 44, 47, 49, 55]. These works
include proposals for numerical approaches, structural investigations, and applications
to problems of energymanagement. For instance, [18] considers existence of solutions
and their stability with respect to perturbations of the random distribution in a PDE
constrained control problem subject to. In [49], structural properties and convergence
approaches for chance-constrained optimization of boundary-value elliptic PDEs have
been analyzed. A problem with boundary Neumann control of the 1D wave equation
subject to a chance constraint with respect to terminal energy was in the focus of [19].
Numerical approaches based on kernel density estimators or alternative smoothing
methods were discussed in [9, 27, 47]. Among practical applications, the optimal
control of gas networks with transient flow played a prominent role, see [29, 43, 47].

A central challenge in optimization under uncertainty is in the numerical solution.
Classical approaches involve discretization of the stochastic space [7, 21], stochastic
collocation [12, 13, 35, 58], or using a sample average approximation [2, 30, 31, 42,
57]. Stochastic approximation, which dynamically samples over the course of opti-
mization, has also gained attention [24–26, 38, 40, 41]. Other innovations include the
use of surrogate functions constructed using Taylor approximations of the objective
and constraint function [1, 11]. Very few approaches exist that can handle state con-
straints.AMonteCarlo approximationwas used in combinationwith aMoreau–Yosida
penalty in [20]. In [38], almost sure state constraints were relaxed to an expectation
constraint and a stochastic approximation approachwas proposed. In [6], randomfields
are approximated by the tensor-train decomposition and state constraints are handled
using a Moreau–Yosida-type penalty with a softplus approximation for the positive
part function. All of these approaches rely on some form of regularization, and are not
intended for solving a problem with probabililistic state constraints. In this paper, we
tackle this case by working with derived formulas for the Clarke subdifferential of the
corresponding probability function.While obtaining such a formula comes at the price
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of a more restrictive setting for our model, we are able to handle randomness directly
and without the use of regularization. For the almost sure case, we are forced to resort
to the same kind of regularization as is used in the previously-mentioned papers. We
note that the numerical approaches investigated here may also be applied to problems
with probabilistic state constraints and time-dependent PDEs as in [55].

The current work is a follow up paper to [22], where optimality conditions for a
risk-averse PDE-constrained optimization problemwith uncertain state constraint was
considered. Risk aversion was modeled by probabilistic and almost sure constraints.
In the current paper, we pick up the same optimization problem (subject to Poisson’s
equation with a distributed control and an additional random source term on the right-
hand side), but focus on its numerical solution. The paper is organized as follows: after
presenting the model in Sect. 2, we analyze the problem in Sect. 3. The main result is
an improvement of an exact formula for the Clarke subdifferential of the probability
function provided in [22] in that it omits a restrictive assumption on boundedness
of the set of feasible realizations of the random vector. Section4 is then devoted
to the numerical solution of the control problem under probabilistic (uniform) state
constraints in 1D and 2D. Our approach for dealing with probabilistic constraints is
based on the well-studied spherical radial decomposition. In Sect. 5, we pass to almost
sure constraints. For their numerical treatment, we follow a differentmethodology than
for probabilistic constraints, namely sampling of the distribution (or its support) and
applying a Moreau–Yosida approximation. Four different approaches are compared
with a reference solution obtained by robust optimization.

2 TheModel

In this paper, we discuss numerical approaches for solving the following risk-averse
PDE-constrained optimization problem under uncertainty:

min
u∈L2(D)

F(u) (1a)

s.t. −�y(x, ω) = u(x)+ f (x, ξ(ω)), x ∈ D P -a.s., (1b)

y(x, ω) = 0, x ∈ ∂D P -a.s., (1c)

P(y(x, ω) ≤ α ∀x ∈ D) ≥ p. (1d)

Here, D ⊆ R
d (d = 1, 2, 3) is an open and bounded set. Moreover, F : L2(D) →

R is a convex, Fréchet differentiable cost function, ξ ∼ N (0, �) is a centered m-
dimensional Gaussian random vector defined on the probability space (�,F , P), p ∈
(0, 1] is somegivenprobability level, andα > 0 is someupper threshold for the random
state y(·, ω). The function f : R

d × R
m → R is a random source term. Inequality

(1d) is a probabilistic constraint expressing the condition that the random state y stays
below α uniformly on D with probability at least p. Throughout this paper, we will
make the following assumptions on the PDE (1b)–(1c). In the following, the notation
meas(·) refers to the d-dimensional Lebesgue measure.
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Assumption 2.1 The open and bounded set D ⊆ R
d (d = 1, 2, 3) is of class S,1

meaning that there exist constants γ ∈ (0, 1) and r0 > 0 such that meas(Br (x)\D) ≥
γmeas(Br (x)) for all x ∈ ∂D and for all r < r0. Additionally, the function f : R

d ×
R
m → R is defined by

f (x, z) := f0(x)+
m∑

i=1

ziφi (x) (2)

for some given f0, φi ∈ L2(D).

Note that E f (·, ξ) = f0 on account of ξ being centered. We emphasize that the
basic structure of the optimization problem introduced above is intentionally kept
simple in order to focus the attention on the aspect of probabilistic state constraints.
The possible dependence of the objective on the state y (which would include the
tracking-type function frequently used in modeling) is not explicitly stated in (1).
Provided the corresponding objective in the reduced formulation is convex and Fréchet
differentiable, however, the results in this work apply. We note that the structure
imposed on the term in (2) is chosen in such a way so that assumption (GA) in the
next section is satisfied, which is needed for obtaining the Clarke subdifferential of the
probability function. This structure, however, may come from a truncated Karhunen–
Loève expansion, a model frequently used in simulation. We also omit randomness
in the diffusion term in (1b) so that (GA) is satisfied. We stress, however, that these
structural assumptions are not needed for the almost sure and robust cases. Moreover,
it is no problem to pass to more general random distribution settings for ξ , such as:
alternative multivariate distributions (Gaussian-like, elliptically symmetric). We will
occasionally touch on some of these aspects in subsequent sections.

3 Analytical Properties of the Problem

3.1 General Statements on Optimization Problems with Probabilistic Constraints

We start by embedding problem (1) into a more general framework, which is given
by

min
u∈U F(u) s.t. ϕ(u) ≥ p (p ∈ (0, 1]). (3)

Here,U is a reflexive and separableBanach space, F : U → R is some convex, Fréchet
differentiable cost function, and ϕ : U → R denotes a probability function defined by
ϕ(u) := P(ω | g(u, ξ(ω)) ≤ 0). In this last expression, ξ is an m-dimensional Gaus-
sian random vector defined on a probability space (�,F , P) and having a centered
Gaussian distribution N (0, �) with covariance matrix �, and g : U × R

m → R is

1 For the domain, we use the terminology from [33] and note that class S covers many cases, including
Lipschitz or convex domains.
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some constraint function. We make the following general assumption on g:

g is locally Lipschitzian and g(u, ·) is convex for all u ∈ U . (GA)

We shall say that g satisfies the condition of moderate growth at ū ∈ U , if

∃l > 0 ∀d ∈ U : g◦(·, z)(u; d) ≤ l ‖z‖−m exp

(
‖z‖2

2‖�1/2‖2
)
‖d‖ (4)

∀u ∈ B1/l (ū) ,∀z : ‖z‖ ≥ l

Here, ‖ · ‖ denotes the �2-norm of vectors and matrices, and g◦(·, z)(u; d) refers to
the Clarke directional derivative of the locally Lipschitzian (by (GA)) partial function
g(·, z) at the argument u in direction d. Moreover, �1/2 denotes a root of �. As a
consequence of the spherical-radial decomposition of Gaussian random vectors (e.g.,
[17, 28]), the (total) probability function ϕ can be represented as a spherical integral
with respect to the uniform distribution μζ on S

m−1

ϕ(u) =
∫

Sm−1

e(u, v) dμζ (v) (u ∈ U ) (5)

over a one-dimensional radial probability function e : U × S
m−1 → R defined by

e(u, v) := μχ({r ≥ 0 | g(u, r�1/2v) ≤ 0}), (6)

whereμχ is the one-dimensional Chi-distributionwithm degrees of freedom.We refer
to [32, 50–52, 54, 56] for more details and generalizations of such decomposition to
other classes of distributions. The following result on subdifferentiation under the
integral sign holds true:

Theorem 3.1 ([32], Theorem 5, Corollary 2 and Proposition 6) Under the basic
assumptions (GA), let ū ∈ U be given such that g(ū, 0) < 0 and (4) is satisfied.
Then, ϕ and the e(·, v), (v ∈ S

m−1), are locally Lipschitzian around ū and, with ∂C

denoting the Clarke subdifferential, it holds that

∂Cϕ(ū) ⊆
∫

Sm−1

∂Cu e(ū, v) dμζ (v). (7)

Here, the integral on the right-hand side is multivalued and understood in the sense
of Aumann. ∂Cϕ(ū) reduces to a singleton and equality holds in (7), if additionally,
the condition
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μζ ({v ∈ S
m−1 | #∂Cu e(ū, v) ≥ 2}) = 0 (8)

is satisfied (here, #A means the cardinality of A). As a consequence, ϕ is strictly
differentiable at ū in the Hadamard sense [14, p. 30].

We note that differentiability of ϕ, and thus condition (8), may be violated in general
(see [22, Example 2.15]). Therefore, the question arises if there are weaker conditions
than those enforcing differentiability as in (8), which still guarantee equality in (7). It
was shown in [22, Theorem 2.3] that this holds true under the additional assumptions
that g is jointly (!) convex in both variables and that the set

{z ∈ R
m | g(ū, z) ≤ 0} (9)

is bounded. The condition (9) turns out to be quite restrictive (for instances where it is
violated, see [22, Examples 2.15 and 2.16]) and it is difficult to check, in general. Now,
we are going to state a result, which allows us to avoid the aforementioned conditions
at the price of a growth condition which, however, turns out to be automatically
satisfied in our control problem (1). We shift the rather lengthy proof to the appendix.
In what follows, for a function h : U × R

m × K → R, we denote by Duh(u, z, w)

and Dzh(u, z, w) the partial derivatives of h with respect to u and z, respectively.

Theorem 3.2 Let some ū ∈ U be given. For (u, z) ∈ U × R
m assume that g(u, z) =

supw∈K h(u, z, w), where K ⊆ R
l is compact and h : U × R

m × K → R satisfies
the conditions

1. h is continuous, Fréchet differentiable in its first two arguments, and convex in its
second argument;

2. the mapping (u, z, w) �→ (Duh(u, z, w), Dzh(u, z, w)) is continuous;
3. h(ū, 0, w) < 0 ∀w ∈ K;
4. ∃c > 0 : ‖Duh(u, z, w)‖ ≤ c exp (‖z‖) ∀u : ‖u − ū‖ ≤ c−1 ∀z : ‖z‖ ≥ c ∀w ∈

K.

Then, −ϕ is regular at ū in the sense of Clarke and equality holds in (7).

3.2 (Sub-)Differential of the Probability Function in the Concrete Optimal Control
Problem

We now want to calculate the exact subdifferential of the probability function asso-
ciated with problem (1). A corresponding result has been previously obtained in [22,
Theorem 2.13]. However, the restrictive condition requiring the set (9) to be bounded
was imposed there. The results of the previous section allowus to get rid of this assump-
tion, which we will now show. To this end, denote by S : L2(D) × R

m → C(D̄) the
parameterized control-to-state operator assigning to each u ∈ L2(D) and each z ∈ R

m

the solution y of the PDE (1b)-(1c) with right-hand side u + f (·, z). Due to Assump-
tion 2.1 and [22, Lemma 1.2], the operator S is well-defined and bounded. Then the
control problem (1) may be recast in the general form of (3) upon defining the function
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g(u, z) := supx∈D[S(u, z)](x)− α. Since S maps into C(D̄), we may write

g(u, z) := max
x∈D̄

[S(u, z)](x)− α. (10)

Indeed, with y = S(u, z) being the state associated with control u and paramater z,
in the PDE (1b)–(1c), the inequality g(u, z)− α ≤ 0 is equivalent with y(x) ≤ α for
all x ∈ D. Now, identifying the parameter z with the realization ξ(ω) of the random
vector ξ , the definition of ϕ yields that the constraint ϕ(u) ≥ p in (3) is equivalent
with (1d).

Due to linearity, one has the decomposition

S(u, z) = ȳ(u) +
m∑

i=1

zi y
(i) (u ∈ L2(D), z ∈ R

m), (11)

where ȳ(u) is the solution of the PDE

−�y(x) = u(x)+ f0(x) x ∈ D; y(x) = 0, x ∈ ∂D (12)

and the y(i) are the solutions of the PDEs

−�y(x) = φi (x) x ∈ D; y(x) = 0, x ∈ ∂D (i = 1, . . . ,m). (13)

We shall refer to ȳ(u) as the mean state associated with the control u (because it
relates to the mean value f0 of the random source term) and to the y(i) as the basic
states (because they relate to the basic functions φi in the random source term with no
control in action). Moreover, to each x ∈ D we assign a dual element ux ∈ (L2(D))∗
by ux (h) := yh(x) for all h ∈ L2(D), where yh is the solution of the control-only
PDE

−�y(x) = h(x) x ∈ D; y(x) = 0, x ∈ ∂D. (14)

Theorem 3.3 In the control problem (1), fix some point of interest ū ∈ L2(D). Assume
that the mean state ȳ(ū) associated with ū satisfies the condition

ȳ(ū)(x) < α ∀x ∈ D̄. (15)

Then, the probability function ϕ associated with our control problem is locally
Lipschitzian at ū and has the exact Clarke subdifferential

∂Cϕ(ū) = −
∫

{v∈Sm−1:ρ(v)<∞}
clco

{
fχ (ρ(v))

κ(v, x)
· ux | x ∈ M∗(v)

}
dμζ (v),

where “clco” means the closed convex hull and for each v ∈ S
m−1 and x ∈ D̄, fχ

refers to the density of the one-dimensional Chi-distribution μχ with m degrees of
freedom and
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κ(v, x) :=
m∑

i=1

(�1/2v)i y
(i)(x),

ρ(v) := max{r ≥ 0 | ȳ(ū)(x)+ rκ(v, x) ≤ α ∀x ∈ D̄},
M∗(v) := {x ∈ D̄ | κ(v, x) > 0, ȳ(ū)(x)+ ρ(v)κ(v, x) = α}.

Proof It has been shown in [22, Lemma 2.11, Lemma 2.12] that the integral

∫

Sm−1

∂Cu e(ū, v) dμζ (v)

coincides with the right-hand side of the identity in the statement of this theorem.
Therefore, it will be sufficient to apply Theorem 3.2 to our control problem (1) in order
to use (7) as an equality. Clearly, thiswould yield the asserted exact formula. Hence,we
only have to check the assumptions of Theorem 3.2. Given the definition (10), we set
K := D̄,w := x , h(u, z, x) := [S(u, z)](x)−α and observe that we are in the setting
of Theorem 3.2. We check the assumptions of that theorem: as for assumption 1., let
us first verify the continuity of h by considering a sequence (un, zn, xn) → (u, z, x)
in the set L2(D)×R

m × D̄. As shown as part of the proof in [22, Lemma 2.7], there
exists a constant C > 0 such that for all (u1, z1), (u2, z2) ∈ L2(D)× R

m ,

‖[S(u1, z1)] − [S(u2, z2)]‖C(D̄) ≤ C(‖u1 − u2‖L2(D) + ‖z1 − z2‖). (16)

Accordingly,

|h(un, zn, xn)− h(u, z, x)| ≤
|[S(un, zn)](xn)− [S(u, z)](xn)| + |[S(u, z)](xn)− [S(u, z)](x)| ≤
C(‖un − u‖L2(D) + ‖zn − z‖)+ |[S(u, z)](xn)− [S(u, z)](x)|.

Here, both terms on the right converge to zero (the second one thanks to S(u, z) ∈
C(D̄)). This shows the continuity of h. As observed in [22, p.3], the operator S admits
for some y0 ∈ C(D̄) a decomposition

S(u, z) = P(u, z)+ y0 ∀(u, z) ∈ L2(D)× R
m,

where P : L2(D)×R
m → C(D̄) is some continuous linear operator. Consequently, for

fixed x ∈ D̄, the function (u, z) �→ h(u, z, x) is the sum of a constant y0(x)−α and a
continuous linear function (u, z) �→ [P(u, z)](x). This implies that h is Fréchet differ-
entiable and convex in its first two arguments. Moreover, the partial Fréchet derivative
D(u,z)h at (u, z, x) equals the continuous linear function [P(·, ·)](x). Altogether, we
have shown the validity of assumptions 1. and 2. of Theorem 3.2. Assumption 3. fol-
lows immediately from (15). In order to check assumption 4., observe that by (16),
the function u �→ h(u, z, x) is locally Lipschitzian with some common modulus C at
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all u ∈ L2(D) and for all (z, x) ∈ R
m × D̄. Consequently,

‖Duh(u, z, x)‖
≤ C ≤ ce‖z‖ ∀(u, z, x) ∈ L2(D)× R

m × D̄ : ‖z‖ ≥ c := max{1, logC}.

This shows the validity of assumption 4. and finishes the proof. ��

Remark 3.1 Onemay easily derive from [50, Prop. 3.11] that condition (15) is satisfied
whenever the probability ϕ(ū) is larger than or equal to 0.5. Since typically the prob-
ability level p is chosen close to one, this condition will be automatically fulfilled for
most iterations of the control. Hence, the exact formula for the Clarke subdifferential
in Theorem 3.2 will basically hold true unconditionally.

Remark 3.2 If the sets M∗(v) introduced in Theorem 3.3 satisfy the condition

#M∗(v) = 1 μζ − a.e. v ∈ S
m−1, (17)

then the integral in the formula for the Clarke subdifferential, and hence the Clarke
subdifferential itself, reduce to singletons. Therefore, the probability function is strictly
differentiable in the Hadamard sense (see [14, Prop. 2.2.4]) and its derivative is given
by

Dϕ(ū) = −
∫

{v∈Sm−1:ρ(v)<∞}

fχ (ρ(v))

κ(v, x∗(v))
· ux∗(v) dμζ (v), (18)

where, for μζ -almost every v ∈ S
m−1, x∗(v) is defined as the unique element in the

set M∗(v).

Simple examples show that in the setting of Theorem 3.3 the probability function
may fail to be differentiable, hence condition (17) is violated in general. Evidently, (17)
is difficult to verify for concrete data. In [53, Lemma 4.3], some easy to understand
constraint qualification (so-called “rank 2-CQ”) has been shown to imply (17) for
finite random inequality systems. A generalization to our setting with infinite systems
(uniform state constraints) does not seem to be straightforward, so that the verification
of differentiability for the probability function remains an open problem. On the other
hand, in the numerical solution of the given control problem, one may be forced to
replace the uniform state constraint (1d) by evaluating it on a finite subset D̃ ⊆ D of
the domain. Then, the aforementioned rank 2-CQ reduces to the following verifiable
condition at some fixed control ū ∈ U :

rank {Y (xa),Y (xb)} = 2 ∀xa, xb ∈ D̃ :
xa �= xb, ȳ(ū)(xa)+ 〈z,Y (xa)〉 = ȳ(ū)(xb)+ 〈z,Y (xb)〉 = α

∀z ∈ R
m : ȳ(ū)(x)+ 〈z,Y (x)〉 ≤ α ∀x ∈ D̃.
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Here, for x ∈ D̃, the vector Y (x) := (y(1)(x), . . . , y(m)(x)) collects in its components
all values of the basic functions y(i) at x defined in (13). This condition can be evidently
strengthened to the much easier condition

rank {Y (xa),Y (xb)} = 2 ∀xa, xb ∈ D̃ : xa �= xb

3.3 Convexity Properties Under Gaussian and Truncated Gaussian Distributions

In this section, we show that problem (1) is convex under Gaussian and truncated (to
convex sets) Gaussian distributions. Given the assumed convexity of the objective F ,
it is sufficient to verify convexity of the constraint. For pure Gaussian distributions,
this has been done (without explicit statement) in [22]. We refer to the abstract form
(3) of problem (1), where ϕ is defined as the Gaussian probability function associated
with the random inequality g(u, ξ(ω)) ≤ 0. In the context of our problem (1), this
constraint function takes the form (10). Similarly, we may consider problem (1) under
a truncated Gaussian distribution and represent it in the abstract form (3) with ϕ being
replaced by the truncated Gaussian probability function ϕ̃ associated with the same
constraint function g from (10). More precisely, if ξ̃ ∼ T N (μ,�,�) designates
a random vector having a Gaussian distribution N (μ,�) truncated to a closed set
� := {z ∈ R

m | s(z) ≤ 0} (s : R
m → R continuous), then

ϕ̃(u) = P(ω | g(u, ξ̃ (ω)) ≤ 0) = P(ω | g(u, ξ(ω)) ≤ 0, s(ξ(ω)) ≤ 0)

P(ω | s(ξ(ω)) ≤ 0)
.

The last equation above expresses the fact that the truncated distribution is nothing
but the original distribution conditioned to a subset. Consequently, the probabilistic
constraint ϕ̃(u) ≥ p in (3) (with ϕ replaced by ϕ̃) can be equivalently written as
P(ω | g̃(u, ξ(ω)) ≤ 0) ≥ p̃, where

g̃(u, z) := max{g(u, z), s(z)}, p̃ := p · P(ω | s(ξ(ω)) ≤ 0). (19)

Proposition 3.1 The optimization problem (1) is convex if the random vector ξ follows
a Gaussian distribution or a Gaussian distribution truncated to a set � := {z ∈ R

m |
s(z) ≤ 0} where s : R

m → R is convex, hence continuous.

Proof The convexity of the constraint ϕ(u) ≥ p in case of a Gaussian distribution
follows in the abstract setting from the convexity of the constraint function g(u, z)
(jointly in both variables), see [22, Lemma 2.4]. That this property holds true for the
concrete function g defined in (10), has been shown in [22, Lemma 2.7]. As for the case
of a truncated distribution,wehave seen above thatwemay represent the corresponding
chance constraint as in the Gaussian case but with the modified constraint function g̃
and the modified probabilty level p̃ defined in (19). Evidently, g̃ is jointly convex in
(u, z) since g is so and s is convex. Consequently, we can apply again the previous
argument to prove the convexity of the feasible set also under truncated Gaussian
distribution. ��
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4 Numerical Results for the Control Problemwith Probabilistic
Constraints

4.1 Implementation of the Spherical-Radial Decomposition

In order to deal with the probabilistic constraint ϕ(u) ≥ p in the general problem
(3) numerically, one has to appropriately approximate the probability function ϕ and,
assuming differentiability, its derivative Dϕ. Sinceϕ is defined as the spherical integral
(5), it can be approximated by a finite sum

ϕ(u) ≈ ϕ̂(u) := 1

K

K∑

k=1

e(u, v(k)) ∀u ∈ U ,

where {v(k)}Kk=1 is a sample of size K of the uniform distribution on the sphere S
m−1.

A simple way to create such a sample consists in normalizing to unit length a quasi-
Monte Carlo (QMC) sample of the given Gaussian distribution. It was shown in [22,
eq. (19)] that, for any fixed ū with g(ū, 0) < 0, there exists a neighborhood N of ū
such that

e(ū, v) =
{
Fχ (ρ∗(v)) if ρ∗(v) < ∞
1 if ρ∗(v) = ∞ ∀u ∈ N ∀v ∈ S

m−1, (20)

where Fχ is the cumulative Chi-distribution function introduced before and

ρ∗(v) := sup{r ≥ 0 | g(ū, r�1/2v) ≤ 0} (v ∈ S
m−1).

It follows from [22, eq. (29)] that ρ∗ coincides with the function ρ defined in the
statement of Theorem3.3. Consequently, the probability function can be approximated
at some ū with g(ū, 0) < 0 by

ϕ(ū) ≈ ϕ̂(ū) = 1

K
#{k ∈ {1, . . . , K } | ρ(v(k)) = ∞}

+ 1

K

∑

{k∈{1,...,K }:ρ(v(k))<∞}
Fχ (ρ(v(k))).

Should ϕ be differentiable, the spherical integral in (18) can be approximated by the
sample-based quantity

Dϕ(ū) ≈ Dϕ̂(ū) := −
∑

{k∈{1,...,K }:ρ(v(k))<∞}

fχ (ρ(v(k)))

κ(v(k), x∗(v(k)))
· ux∗(v(k)),

whose ingredients are defined in the statement of Theorem 3.3 and below (18),
respectively.
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It is essential to observe that values and derivatives (in a specified direction h ∈
L2(D)) can be simultaneously updated by sharing the same sample v(k). In this way,
the potentially time-consuming computation of ρ(v(k)) may be carried out only once,
when it comes to updating the probabilities themselves, whereas it does not have to be
redone during the update of the gradient. Altogether, this leads us to the algorithmic
scheme in Algorithm 1.

Algorithm 1 Algorithmic approximation of probabilities and their gradients via
spherical-radial decomposition

Input: D ⊂ R
d (domain), f0 (expected source term), φi (i = 1, . . .m) (basic source functions), � (covari-

ance matrix of Gaussian distribution for random coefficients), ū (control of interest satisfying (15)), h
(direction of interest to apply the gradient to).

1. Initialization

(a) Fix sample size K and create a sample {v(k)}Kk=1 uniformly distributed on the sphere S
m−1.

(b) prob := 0, deriv := 0, k := 1.
(c) Determine functions y(i)(i = 1, . . .m) as the solutions of (13).
(d) Determine function ȳ(ū) as the solution to (12) (with u := ū).

(e) Determine function yh as the solution to (14).

2. Iteration on k

(a) Define a function κ :=
m∑
i=1

(�1/2v(k))i y
(i)

(b) Calculate ρ := max{r ≥ 0 | ȳ(ū)(x) + rκ(x) ≤ α ∀x ∈ D̄} (e.g., by evaluation on a grid over
D̄).

(c) Determine a point x∗ ∈ D̄ satisfying ȳ(ū)(x
∗)+ ρκ(x∗) = α

(if x∗ is not unique then the probability function fails to be differentiable and the output will yield
a subgradient rather than a gradient).

(d) If ρ < ∞ then prob := prob + Fχ (ρ) else prob := prob + 1.

(e) If ρ < ∞ then deriv := deriv + fχ (ρ)

κ(x∗) y
h(x∗).

3. Termination: If k < K then k := k + 1. Goto Step 2.
4. Output: prob := K−1 prob, deriv := K−1deriv

Output: Approximation of probability ϕ(ū) ≈ prob and of its directional derivative Dϕ(ū)(h)〉 ≈ deriv.

4.2 Results in Dimension One

We consider problem (1) with the following data:

d = 1, D = (0, 1),m = 6, α = 0.2, F(u) = ‖u‖2L2(D)
,

p = 0.9, �i, j = 9 · 0.6|i− j | (i, j = 1, . . .m),

f0(x) = 5x2, φ2i−1(x) = sin(i x) (i = 1, 2, 3), φ2i−2(x) = cos(x/i) (i = 2, 3, 4).
(21)

We use a finite difference discretization over a subdivision of the domain into 120
intervals. The values and—assuming differentiability—derivatives of the probability
function were obtained as described in Algorithm 1 on the basis of a QMC sample
on the unit sphere of size 512. The optimization problem (1) (with the data described
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Fig. 1 Numerical solution of (1). Optimal control for probability level p = 0.9 (left) and associated states
for twenty scenarios of the random source term (right)

Fig. 2 Solution of (1) for
Gaussian distribution truncated
to an ellipsoid and for increasing
probability levels

in (21)) was numerically solved with the “SLSQP” method from the Python standard
minimzation routine scipy.optimize.minimize. Figure1 (left) shows the optimal control
under the indicated Gaussian distribution.

Figure1 (middle) plots twenty states associated with the optimal control and with
twenty scenarios for the random source term f (x, ξ(ω)) in (1b). It can be seen that
only two of them exceed the desired threshold α occasionally, whereas the remaining
ones stay below it uniformly over the domain, which corresponds well to the imposed
probability level of p = 0.9.

In order to include the almost sure case (p = 1) for later comparison, the problem
was solved again with the Gaussian distribution truncated to an ellipsoid E defined by
E := {z ∈ R

m | zT�−1z ≤ 36} (the choice of the Mahalanobis norm in this definition
facilitates computations). In this way, the support of the distribution becomes compact
so that the problem with an almost-sure constraint has a chance to have a feasible
solution. As can be seen from Fig. 2, the optimal solutions of the probabilistically
constrained problems seem to converge to that with almost sure constraints for p → 1
(for a rigorous statement, see Sect. 5.1).

Note that passing to truncatedGaussian distributions alreadypoints to the possibility
of using alternative distributions. We do not present details here but note that the
same methodology could be applied to multivariate lognormal or Student or Gaussian
mixture distributions.

4.3 Results in Dimension Two

In this section, we revisit problem (1) but with some increased complexity when
compared to the previous section: the domainwill be in two dimensions, the dimension
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Fig. 3 Optimal solution of the control problem in 2D (left). For graphical reasons the negative control is
plotted. Contourplot (right)

of the random parameter will increase from 6 to 30, and additional bound constraints
will be imposed on the control. More precisely, we consider the following data:

d = 2, D = (0, 1)2,m = 30, α = 0.2, F(u) = ‖u‖2L2(D)
,

p = 0.9, �i, j = 9 · 0.6|i− j | (i, j = 1, . . .m),

f0(x1) = 5x1x2, φi (x1, x2) = sin(i x1) cos(i x2) (i = 1, . . . ,m).

In addition, we impose the following bounds on the control:

−5 ≤ u(x1, x2) ≤ 0 a.e. (x1, x2) ∈ D.

The PDE was solved using finite differences on a 20x20 grid of the domain and
the random parameter was approximated by using 213 = 8192 QMC samples on the
sphere. Figure3 shows the resulting optimal control (linearly interpolated). It can be
seen in both plots that the control bound becomes active in a certain small region of
the domain (yellow).

5 Almost Sure Constraints

In this section, we want to consider the extreme case of risk-averse decision making,
namely the optimal control with constraints that should be satisfied almost surely. In
this case, our PDE-constrained optimization problem becomes

min
u∈L2(D)

F(u) (22a)

s.t. −�y(x, ω) = u(x)+ f (x, ξ(ω)), x ∈ D P -a.s., (22b)

y(x, ω) = 0, x ∈ ∂D P -a.s., (22c)

y(x, ω) ≤ α, x ∈ D P -a.s. (22d)
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We shall assume in this section that the support � ⊆ R
m of the random vector ξ is

compact, because otherwise there may not exist a feasible solution that satisfies (22d).
This assumptionwill meet the setting illustrated in Fig. 1 (right), where the distribution
was assumed to be Gaussian, truncated to an ellipsoid.

5.1 Almost Sure Constraints as Limit of Probabilistic Constraints

Evidently, by equivalence of (22d) with (1d) when choosing p = 1, this optimization
is equivalent with the previously analyzed probabilistically constrained problem (1)
when choosing the maximum possible probability level. We emphasize that, in spite
of this equivalence, necessary and sufficient optimality conditions can be obtained for
the formulation (22) ( [22, Theorem 3.10]) while they cannot for the formulation (1) (
[22, Remark 2.6 and Example 3.1]). On the other hand, we were able numerically to
find a candidate solution to (1) for p = 1 and observed a convergence of solutions for
p → 1 towards this candidate (see Fig. 2). Two questions arise: is the candidate we
found the true solution of the almost sure problem (22) and canwe prove thementioned
convergence? The first question will be considered in the next section, whereas the
second question will be answered after the following technical preparation.

Lemma 5.1 Consider problem (1) but with the random vector ξ having a Gaussian
distribution truncated to a compact convex set � as in Proposition 3.1. Let u pk ∈
L2(D) be optimal solutions of (1) with pk ∈ (0, 1) and pk → 1. In addition, suppose
that u pk⇀ū ∈ L2(D). Then, ū is an optimal solution of problem (1) with p = 1 and
F(u pk ) → F(ū).

Proof As shown in Sect. 3.3, the constraint of (1) can be rewritten as ϕ̃(u) ≥ p̃, where
ϕ̃(u) = P(ω | g̃(u, ξ(ω)) ≤ 0) is a probability function related to an untruncated
Gaussian random vector and g̃, p̃ are defined in (19). By [22, eq. (5)], the functions
(u, z) �→ [S(u, z)](x) are affine linear (hence weakly lower semicontinuous) for each
x ∈ D̄. Consequently, the function g in (10) is weakly lower semicontinuous as a
sum of a constant and a maximum of such functions. On the other hand, the function
(u, z) �→ s(z) with s from Proposition 3.1 is convex and continuous, hence weakly
lower semicontinuous. It follows once more that g̃ as the maximum of two weakly
lower semicontinuous functions shares this property. Therefore, using [18, Lemma 2],
we get that the function ϕ defined in (3) is weakly sequentially upper semicontinuous,
whenceϕ(ū) ≥ lim supk→∞ ϕ(u pk ) = 1.Now, let u′ ∈ L2(D) be any control function
satisfying ϕ(u′) = 1. Since in problem (3) with probability level pk , the control
u′ is feasible while the control u pk is optimal, it follows that F(u pk ) ≤ F(u′). In
particular, it shows that F(u pk ) ≤ F(ū) and consequently lim supk→∞ F(u pk ) ≤
F(ū). Therefore, utilizing the weak lower semicontinuity of the objective function,
we can conclude that F(ū) ≤ lim infk→∞ F(u pk ) ≤ F(u′), thereby demonstrating
the optimality of ū and limk→∞ F(u pk ) = F(ū). ��
Proposition 5.1 In addition to the assumptions of Lemma5.1, assume that the objective
F in (1) is strictly convex. Then, any bounded sequence (u pk )k∈N of minimizers of (1)
with pk ∈ (0, 1) weakly converges to the unique solution of (1) with p = 1. If the
objective happens to be even strongly convex (as in the numerical examples), then any
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bounded sequence (u pk )k∈N of minimizers of problem (1) with pk ∈ (0, 1) strongly
converges to the unique solution of problem (1) with p = 1.

Proof As proven in Proposition 3.1, problem (1) has a convex feasible set for all
p ∈ (0, 1]. Therefore, if F is strictly convex, the problem has a unique minimizer.
Hence, if u pk is bounded, then as per Lemma 5.1, the only possible accumulation point
is the unique minimizer of (1) for p = 1.

Strong convexity of F (with modulus μ) gives

F(u pk )− F(ū) ≥ 〈∇F(ū), u pk − ū〉 + μ

2
‖u pk − ū‖2. (23)

From Lemma 5.1, we have limk→∞ F(u pk ) = F(ū). Also 〈∇F(ū), u pk − ū〉 → 0
as k → ∞ by weak convergence of u pk . Strong convergence of the same sequence
follows by (23). ��

Note that the last Proposition explains why in Fig. 2 we observe strong and not just
weak convergence.

5.2 Moreau–Yosida Approximation for Dealing with Almost Sure Constraints

A difficulty in the numerical solution to problem (22) is in the enforcement of the state
constraints. One possibility to handle this computationally is to penalize this constraint
in the objective. Note that (H1

0 (D), L2(D), H−1(D)) is a Gelfand triple. Moreover,
the cone K = {y ∈ L∞

P
(�, H1

0 (D)) | y(x, ω) ≤ 0 a.e.-P -a.s.} is compatible with
the cone KH = {y ∈ L2

P
(�, L2(D)) | y(x, ω) ≤ 0 a.e.-P -a.s.} in the sense that

KH ∩ L∞
P

(�, H1
0 (D)) = K. This justifies the penalization on the weaker (Hilbert)

space H = L2
P
(�, L2(D)) where the projection πKH onto the cone KH is possibly

computationally cheaper. The Moreau–Yosida regularization (or envelope) for the
indicator function on the cone KH has the formula

β̂γ (k) = γ ‖k − πKH (k)‖2H ;

see, e.g., [23, Section 4.1]. Let α ∈ L∞
P

(�, H1(D)) be the function that is equal to α

a.e. in D and P-a.s. Penalizing the constraint (22d) amounts to adding β̂γ (y − α) to
the objective, leading to the modified problem

min
u∈L2(D)

{
f γ (u) := F(u)+ γ E[‖max(0, y − α)‖2L2(D)

]
}

(24a)

s.t. −�y(x, ω) = u(x)+ f (x, ξ(ω)), x ∈ D P -a.s.,
(24b)

y(x, ω) = 0, x ∈ ∂D P -a.s.
(24c)

The results from [23] focus on the consistency of the optimality conditions for
(24) to the optimality conditions for (22), which require an interior point condition
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(and therefore higher regularity of the solution to the PDE). Here, we will focus
on the consistency of the primal problem and will work with the weakest regularity
available. Let A : H1

0 (D) → H−1(D) represent the Laplacian, which is a linear
isomorphism thanks to Assumption 2.1 and the Lax–Milgram lemma. We denote with
A−1 : L∞

P
(�, L2(D)) → L∞

P
(�, H1

0 (D)) the superposition defined by [A−1y](ω) =
A−1y(·, ω). Let B : L2(D) → L∞

P
(�, L2(D)) be the canonical embedding. Let f̃ be

defined by f̃ (x, ω) := f (x, ξ(ω)). It will be convenient to define the (affine linear)
control-to-state operator S̃ : L2(D) → L∞

P
(�, H1

0 (D)) by S̃(u) = A−1(Bu + f̃ ),
which is bounded by [22, Lemma 10]. Due to the continuous canonical embedding
ι : L∞

P
(�, H1

0 (D)) → L2
P
(�, L2(D)), the operator S := ι ◦ S̃ is continuous from

L2(D) to L2
P
(�, L2(D)).

We demonstrate how solutions to (24) converge to (22) in the limit as γ → ∞.
First we need the following.

Lemma 5.2 For any γ ≥ 0, the reduced functional βγ : L2(D) → R defined by

βγ (u) = γ E[‖max(0,S(u)− α)‖2L2(D)
]

is convex and (weakly) lower semicontinuous.

Proof Since S is continuous and the map y �→ E[‖max(0, y− α)‖2
L2(D)

] is evidently
continuous on L2

P
(�, L2(D)), βγ is continuous on L2(D). Moreover, since S is

(affine) linear, βγ is convex. Weak lower semincontinuity follows from the continuity
and convexity of βγ . ��

We now have the following result:

Lemma 5.3 If F is (in addition to being convex and Fréchet differentiable) coercive,
then there exists a solution uγ to (24) for all γ > 0. Additionally, if there exists a
feasible point for problem (22), then given a sequence (γn) with γn →∞, weak limit
points of uγn solve (22).

Proof Let Fad = {u ∈ L2(D) | [S(u)](x, ω) ≤ α a.e.- P -a.s.} denote the feasible
set for problem (22). It is straightforward to show that this set is convex; it is closed
thanks to the continuity of S. Thus, Fad is weakly closed (see [8, Theorem 2.23]).
Coercivity of F (in combination with the other assumptions) implies that f γ attains
itsminimumover Fad. In particular, there exists aminimizing sequence (un)n∈N ⊂ Fad
such that limn→∞ f γ (un) = infu∈Fad f γ (u). This sequence is also bounded due to
the coercivity of F , so we can extract a subsequence (unk )k∈N such that unk⇀uγ .
Now, we have (since F is weakly lower semicontinuous, as a convex and continuous
function)

lim inf
k→∞ F(unk )+ βγ (unk ) ≥ lim inf

k→∞ F(unk )+ lim inf
k→∞ βγ (unk ) ≥ F(uγ )+ βγ (uγ ),

meaning uγ solves problem (24). In other words, a solution exists for any γ > 0.
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Now, let (uγn )n∈N be a sequence such that γn →∞ as n →∞. Let ū ∈ Fad �= ∅
be a minimizer to (22). Then, by optimality of uγn and feasibility of ū, we have

F(uγn ) ≤ F(uγn )+ βγn (uγn ) ≤ F(ū)+ βγn (ū) = F(ū). (25)

This means uγn is a minimizing sequence for F , which is bounded thanks to the
coercivity of F . Therefore, there exists a subsequence (uγnk )k∈N and point û such that
uγnk ⇀û. Weak lower semicontinuity of F implies that

F(û) ≤ lim inf
k→∞ F(uγnk ) ≤ F(ū). (26)

It only remains to show that û is feasible for (22). Since F is bounded over Fad, (25)
implies that there exists a constant c > 0 such that

βγnk (uγnk ) ≤ c ⇔ E[‖max(0,S(uγnk )− α)‖2L2(D)
] ≤ c

γnk
.

Since γnk → ∞, we obtain E[‖max(0,S(uγnk ) − α)‖2
L2(D)

] → 0, implying that

[S(û)](x, ω) ≤ α a.e.P-a.s. By definition ofS, the functionS(u) satisfies (22b)–(22c).
��

Corollary 5.1 Under the same conditions as Lemma 5.3, suppose that F is strongly
convex. Then any bounded sequence (uγn )n∈N of minimizers of problem (24) with
γn →∞ converges to the unique solution of problem (22).

Proof Since there can only be one solution to (22), (26) together with the feasibility
of û and ū imply that limn→∞ F(uγn ) = F(ū). Strong convergence follows with the
same reasoning used in Proposition 5.1. ��
Remark 5.1 While the above proof is based on [23, Proposition 3.8], we used the
reduced formulation here, which greatly simplified certain arguments; we did not
need to rely on arguments using the weak* topology, for one. Moreover, we did not
require an interior point condition to establish consistency (which was assumed in
[23] but not used in this proof). We also note that similar arguments are made in [20]
for a related problem in the context of generalized Nash equilibrium problems. The
single-player case resembles our problem but different assumptions are made on the
underlying PDE and objective and therefore do not cover the theory presented here.
Moreover, the argument in [20] relies on a constraint qualification that we do not need
here.
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5.3 Numerical Results by“Sampling the Distribution,” “Sampling the Support,” or
“Sampling the Boundary” of the Support

In the following numerical tests, we use gradient descent to solve a sample average
approximation of the subproblem (24). Given a fixed number N of samples z1, . . . , zN
of the random vector ξ , the corresponding SAA problem is

min
u∈L2(D)

{
f̂ γ (u) := F(u)+ γ

N

N∑

i=1

[‖max(0, yi − α)‖2L2(D)
]
}

(27a)

s.t. −�yi (x) = u(x)+ f (x, zi ), x ∈ D ∀i = 1, . . . , N , (27b)

yi (x) = 0, x ∈ ∂D ∀i = 1, . . . , N . (27c)

The gradient of f̂ γ can be computed using standard techniques, resulting in

∇ f̂ γ (u) = ∇F(u)− 1

N

N∑

i=1

pi , (28)

where pi is the solution to the adjoint equation

−�pi (x) = −2γ max(0, yi (x)− α), x ∈ D and pi (x) = 0 x ∈ ∂D, (29)

and yi is the solution to (27b)–(27c) for a fixed sample zi . For numerical tests, we
use the same setup as described at the beginning of Sect. 4.2. However, rather than
considering the purely Gaussian distribution N (0, �) defined there, we truncate it to
the ellipsoid E defined below the original data in connection with Fig. 1 (right). The
sampling of this truncated Gaussian distribution is carried out by accepting/rejecting
samples of the underlying original Gaussian distribution according to whether or not
these samples belong to the ellipsoid E . The PDEs (27b)– (27c) and (29) were solved
using FEniCS [4] with a finite element discretization over 29 intervals. We use a
path-following approach, where in an outer iteration, the penalty was increased and
in inner iterations, gradient descent on a subproblem was performed until a given
tolerance. A starting value for the control was set to u ≡ −1. In each outer iteration
k ∈ {0, . . . , 8}, γ = 10k , an increasing batch of 3k m-dimensional vectors was used.
The step-size for each outer iteration was chosen to be t� = 4/�, which was informed
by the strong convexity of the problem; see [24] for a discussion of this choice in the
context of PDE-constrained optimization. Each inner iteration was terminated when
‖∇ f̂ γ (u j )‖L2(D) < 10−4. In Fig. 4 (top left), different optimal controls are displayed
for increasing values γ = 10k and increasing sample sizes 3k .

So far, we have considered samples of the distribution in order to characterize solu-
tions of the almost sure model. Sometimes, however, one can do better than sampling
the distribution. As observed in [22, Example 3.3], problems with almost sure con-
straints are not equivalent, in general, to problems with worst-case constraints on the
support of the random parameter [22, Lemma 3.4]. They are, however, if the underly-
ing random inequality is lower semicontinuous with respect to the random parameter.
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Fig. 4 Solutions uγ obtained for increasing values γ = 10k and increasing sample sizes 3k using sampling
of the distribution (top left), sampling of the support (top right), and sampling on the boundary of the support
(bottom left). The decrease of constraint violation as a function of k for the three sampling approaches is
illustrated in the diagram at the bottom right

Algorithm 2 SAA Gradient descent with Moreau–Yosida penalization

Input: D ⊂ R
d (domain), K (number of penalty updates), {z1, . . . , zNK } (set of samples), u1 (initial

control), (γk )k∈{1,...,K } (sequence of penalties), (t j ) j (step-size rule)
for k = 1, . . . , K do
for j = 1, 2, . . . do
if ‖∇ f̂ γk (u j )‖ > tol then
break

end if
for � = 1, . . . , Nk do

y� ← solution to (27b)–(27c) with z� and u j
p� ← solution to (29) with y� and γk

end for
u j+1 := u j − t j (∇F(u j )− 1

Nk

∑Nk
i=1 pi )

end for
u1 := u j

end for
Output: Solution u.

123



Journal of Optimization Theory and Applications            (2025) 204:7 Page 21 of 30     7 

This is the case, for instance, in our problem. Therefore, the problem (22) with almost
sure constraints is equivalent with the robust optimization problem

min
u∈L2(D)

F(u) (30a)

s.t. −�ŷ(x, z) = u(x)+ f (x, z), (x, z) ∈ D ×�, (30b)

ŷ(x, z) = 0, (x, z) ∈ ∂D ×�, (30c)

ŷ(x, z) ≤ α, (x, z) ∈ D ×�, (30d)

where the support � of the random vector ξ plays the role of the uncertainty set with
respect to which the worst case has to be taken into account. The parametrized solution
ŷ : D×� → Rof the robust problem is distinguished from the solution y : D×� → R

introduced earlier. Since the support�—contrary to our concrete simple ellipsoid E—
can be potentially complicated and hard to deal with, one approach might consist in
uniformly sampling this support. Of course, our previous sampling of the distribution
trivially provides samples on the support. These are, however, strongly concentrated
around the mean 0 of the ellipsoid due to the underlying Gaussian distribution, while
only few of these samples will be close to the boundary of the ellipsoid. However,
points at the boundary are much more informative in defining the robust constraint
(see discussion in Sect. 5.4 below). Therefore, it seems reasonable, if possible, to
work with a uniform sample of the support or even just its boundary. In the case of
our ellipsoid E := {z ∈ R

m | zT�−1z ≤ 36}, a uniformly distributed sample can be
created as follows: Let {v(k)}Kk=1 be a sample of the uniform distribution on the sphere
S
m−1 as in Sect. 4.1 and let {τ (k)}Kk=1 be a sample of the uniform distribution on [0, 1].

Then, {6τ (k)�1/2v(k)}Kk=1 is a sample of the uniform distribution on E . When fixing
τ (k) ≡ 1 instead, one rather obtains a uniform distribution on the boundary of E . With
this potentially more efficient uniform sampling of the support � or its boundary,
respectively, one may numerically proceed in the same way as with the previous
sampling of the distribution. The corresponding results are illustrated in Fig. 4 (top
right and bottom left). A plot showing the decrease in constraint violation for the three
sampling strategies is illustrated in the diagram at the bottom right. More precisely,
constraint violation refers to the maximum excess over the threshold α (with respect
to the domain of the space variable x and to the support of the random variable ξ )
of the random state under optimal control. All sampling schemes show convergence
according to the theoretical results, but uniform sampling of the support and even
more of just its boundary seem to exhibit much faster convergence than sampling
of the distribution (see amplitudes of solutions in Fig. 4). This will be confirmed in
the following section upon comparing results with the sample-free solution of the
problem.

5.4 Sample-Free Solution of the Optimization Problemwith Almost-Sure
Constraints

So far, we have seen four alternative approaches for dealing with almost sure con-
straints: one by formulating a probabilistic constraint with probability level p = 1
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and three sample average approaches based on Moreau–Yosida approximation with
increasing penalty parameter. The latter three methods differed according to whether
the distribution was sampled itself or rather its support or even just the boundary of
the support. In this section, we present yet another alternative, namely the direct solu-
tion of the robust optimization problem (30) without sampling. This solution can be
understood as the “true” solution of the almost sure problem. We emphasize that such
a sample-free approach may not be possible in general, when the objective and the
support are not simple enough to provide an analytical solution of the inner problem
below.

We recall our assumption that the support � ⊆ R
m of the random vector ξ is

compact. Similar to the probabilistic setting, we may exploit the parametric control-
to-state operator S there, in order to recast (30) as an infinite-dimensional optimization
problem

min
u∈L2(D)

F(u) s.t. h(u) ≤ 0, h(u) := max
(x,z)∈D̄×�

[S(u, z)](x)− α. (31)

In order to solve (31) numerically, we need to compute the function h and its (sub-)
gradients. It is advantageous to rewrite h as an iterated maximum

h(u) = max
x∈D̄

max
z∈�

[S(u, z)](x)− α. (32)

Since S is affine linear in z, the innermaximization problem (for somefixed u ∈ L2(D)

and x ∈ D̄) can be solved analytically if the support � is a simple set (e.g., rectangle,
ellipsoid). Then, since the domain D is of low dimension, the outer maximization
is easily carried out on a grid corresponding to the discretization of the state. For
instance, if the support is given by an ellipsoid

� = {z ∈ R
m | zT Bz ≤ γ }, (33)

for some symmetric and positive definite matrix B and some γ > 0, then a linear
function cT z realizes its maximum over � at the point

z∗ =
√

γ

cT B−1c
B−1c.

Now, in order to compare the sample-free robust solution with the previous three
methodologies, assume that the support of� of the truncated Gaussian random vector
ξ is the ellipsoid E := {z ∈ R

m | zT�−1z ≤ 36} as in Sect. 4.2. For a fixed u ∈ L2(D),
denote as in Theorem 3.3 by ȳu := S(u, 0) the mean state associated with u, i.e., the
solution of the PDE (1c), (1d) with right-hand side u(x)+ f0(x). Then, with (11), we
infer that

[S(u, z)](x) = ȳ(u)(x)+
m∑

i=1

zi y
(i)(x) ∀(x, z) ∈ D̄ ×�.
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Fig. 5 Comparison of the probabilistic, three sampling-based the sample-free solutions to the worst-case
problem (left). Illustration of the nonsmoothness of the robust constraint function h (right), details see text

Hence, for some fixed u ∈ L2(D) and x ∈ D̄, the inner maximization problem men-
tioned above amounts to maximizing the linear function cT z with c := (y(i)(x))mi=1
over the ellipsoid (33) with B := �−1 and γ := 36, where the data for the support
have been chosen as in the previous computations. Therefore, themaximum is realized
for

z∗ = 6√
cT�c

�c.

Summarizing, the function value of h can be determined as

h(u) = max
x∈D̄

ȳ(u)(x)+
m∑

i=1

z∗i y(i)(x)− α =: max
x∈D̄

H(u, x)− α,

which is easily approximated over the discretized state in low dimensions. The robust
constraint function h will be typically nonsmooth (see discussion below). Its (convex)
subdifferential is easily characterized as

∂h(u) = clco {ux | x ∈ M(u)}; M(u) := {x ∈ D̄ | h(u) = H(u, x)− α},

whereux is introduced below (13). Equippedwith these tools, an appropriate algorithm
for nonsmooth convex optimization can be employed in order to numerically solve
problem (31).As this algorithmic aspect is not in the focus of our analysis here,we used
for simplicity the previously mentioned SLSQP method without providing derivative
information. Figure5 (left) shows the comparison of the probabilistic solution in Fig. 1
(right) for p = 1 with the three sampled and the sample-free robust solutions on the
same support. The sampled robust solutions are those illustrated in Fig. 4 with penalty
parameter γ = 108 and sample size 38. Several conclusions can be drawn when
understanding, as suggested above, the sample-free solution as the “true” reference:
First, sampling the distribution is the least efficient method. This is not surprising,
because in this sampling procedure a minimum amount of information is exploited.
In particular, no knowledge about the support of the distribution is used. Sampling
the support uniformly (and not according to the original random distribution, which
might be strongly concentrated in the interior of the support) yields a much better
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approximation. This can even be significantly improved when just sampling uniformly
the boundary of the support. The explanation of this further improvement is that, thanks
to the linearity of the objective in the inner maximization problem (32), all constraints
are already induced by boundary points. This observation from Fig.5 complements
those from Fig. 4. Best performance in approximating the “true” solution is reached by
the just-mentioned sampling of the boundary of the support combined with aMoreau–
Yosida approximation on the one side and probabilistic constraint with level p = 1
on the other side. The difference between both results is that the former method better
approximates the smooth pieces of the solution, whereas the latter one is more precise
close to the nonsmooth kinks.

Remark 5.2 We note that the benefit of sampling the boundary of the support pertains
to constraint functions g(u, z) that are not necessarily linear but just convex in the
random variable z. Then, the objective in the inner maximization of (32) is convex
and, hence, assuming that the support � is not just compact but also convex, the
maximizers are still located on the boundary of �.

It is interesting to observe that the robust constraint function h fails to be differentiable
at the optimal solution u∗ (here, we do not refer to the fact, evident from Fig. 5 (left),
that this solution itself is a nonsmooth function). A first indication of this is that the
function H(u∗, ·) plotted in Fig. 5 (right) achieves its maximum over D̄ = [0, 1]
on a whole interval. Hence, the set M(u∗) and the subdifferential ∂h(u∗) do not
shrink to a singleton and, consequently, h is nonsmooth. This fact can be alternatively
illustrated by plotting h as a univariate function of a needle variation of u∗ on a small
interval � ⊆ D in the middle of the domain. More precisely, we define the function
h̃(t) := h(ut ), where

ut (x) :=
{
u∗(x)+ t, if x ∈ �,

u∗(x), if x ∈ D \�.

Evidently, if h was differentiable, then so would the univariate function h̃ be, too. This,
however, is not the case as can be seen fromFig. 5 (right). Note that in the figure, we are
simultaneously using the horizontal axis for the x-variable of the function H(u∗, x)
and for the t-variable of the function h̃.

A Appendix

In the following, we provide a proof of Theorem 3.2. It will follow from two lemmas
below.

Lemma A.1 Under the assumptions of Theorem 3.2, the mapping g defined there,
satisfies the assumptions of Theorem 3.1.

Proof We refer to the assumptions 1.-4. of Theorem 3.2. The continuity of h (see 1.)
ensures that g can be written as a max rather than just sup and that g(ū, 0) < 0 by
3. Condition 2. implies that g is locally Lipschitzian. Indeed, the function γ (u, z) :=
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maxw∈K ‖D(u,z)h(u, z, w)‖ is continuous by 2., hence it is locally bounded around an
arbitrary (u, z) by some constantC . This implies that all functions h(·, ·, w) forw ∈ K
are locally Lipschitz continuous around (u, z) with a common Lipschitz constant C .
Hence, g is locally Lipschitz continuous around (u, z). The convexity of h in its second
argument (see 1.) yields that g is convex in its second argument too. Therefore, our
general assumption (GA) on g holds true. We show that 4. implies (4). To this aim,
for (u, d, z, t) ∈ U × U × R

m × R, denote by wu,d,z,t ∈ K some element with
g(u + td, z) = h(u + td, z, wu,d,z,t ), which exists thanks to the compactness of K
and the continuity of h. It follows that g(u′ + td, z) = h(u′ + td, z, wu′,d,z,t ) and
−g(u′, z) ≤ −h(u′, z, wu′,d,z,t ), which yields

g◦(·, z)(u; d) = lim sup
u′→u,t↓0

g(u′ + td, z)− g(u′, z)
t

≤ lim sup
u′→u,t↓0

h(u′ + td, z, wu′,d,z,t )− h(u′, z, wu′,d,z,t )

t

≤ lim sup
u′′→u

sup
w∈K

‖Duh(u′′, z, w)‖‖d‖

≤ c exp(‖z‖)‖d‖ ∀u : ‖u − ū‖ ≤ (2c)−1 ∀z : ‖z‖ ≥ c ∀d ∈ U .

Since, for some c0,

exp (‖z‖) ≤ ‖z‖−m exp

(
‖z‖2

2
∥∥�1/2

∥∥2

)
∀z : ‖z‖ ≥ c0,

(4) holds true with l := max{1, c0, 2c}. ��
As a consequence of the previous lemma, Theorem 3.2 yields (7) via Theorem 3.1.
The argument provided in [32] to infer (7) from the assumptions of Theorem 3.1, relies
on the functions e(·, v) being uniformly (with respect to all v ∈ S

m−1) Lipschitzian
with a common modulus on a neighborhood of ū, see [32, Theorem 5, Corollary 2].
Since constants are integrable with respect to the uniform distribution on the sphere,
one may invoke Clarke’s theorem on subdifferentiation of integral functionals [14,
Theorem 2.7.2] in order to derive (7). According to an addendum in Clarke’s theorem,
equality in (7) along with Clarke regularity of ϕ at ū could be inferred if the partial
functions e(·, v) were Clarke regular at ū. Unfortunately, they are not. On the other
hand, with e(·, v) also the negative functions−e(·, v) are uniformly Lipschitzian with
a common modulus on a neighborhood of ū. Hence, multiplying relation (5) by minus
one, we may apply the same Clarke’s theorem in order to derive the inclusion

∂C (−ϕ)(ū) ⊆
∫

Sm−1

∂Cu (−e)(ū, v) dμζ (v). (34)

Now, the addendum to Clarke’s theorem mentioned above yields that equality in (34)
and Clarke regularity of −ϕ would hold true if the functions −e(·, v) were Clarke
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regular at ū. Contrary to the functions e(·, v) themselves, thiswill hold true for−e(·, v),
so that we can conclude equality instead of inclusion in (7) upon multiplying the
relation (34) with minus one. Summarizing, the assertion of Theorem 3.2 will hold
true as a consequence of the following

Lemma A.2 Under the assumptions of Theorem 3.2, for each v ∈ S
m−1, the functions

−e(·, v) are Clarke regular at ū.

Proof We define functions ew : U × S
m−1 → R for w ∈ K by ew(u, v) :=

μχ(A(u, v, w)), where A(u, v, w) := {r ≥ 0 | h(u, r�1/2v,w) ≤ 0}. By conti-
nuity of g and g(ū, 0) < 0, there exists a neighborhoodN of ū such that g(u, 0) < 0
or h(u, 0, w) < 0 for all u ∈ N and all w ∈ K . Then, the convexity of h in the sec-
ond argument yields the existence of a positive (possibly infinite) number ρ(u, v, w)

such that A(u, v, w) = [0, ρ(u, v, w)] for all (u, v, w) ∈ N × S
m−1 × K . Now, the

definitions of e and g provide that, for all (u, v) ∈ N × S
m−1,

e(u, v) = μχ

(
⋂

w∈K
A(u, v, w)

)
= μχ

(
⋂

w∈K
[0, ρ(u, v, w)]

)

= μχ

(
[0, inf

w∈K ρ(u, v, w)]
)
= inf

w∈K μχ([0, ρ(u, v, w)]) = inf
w∈K ew(u, v).

Here, the penultimate identity follows from μχ being an absolutely continuous mea-
sure. Condition 4. of Theorem 3.2 ensures that ew(·, v) is continuously differentiable
onN for each w ∈ K and each v ∈ S

m−1 by [55, Corollary 3.2 and Example 3.1] and
its derivative is given by (with ρ introduced above)

Duew(u, v) =
{
− fχ (ρ(u, v, w))

Duh(u,ρ(u,v,w)�1/2v,w)

〈Dzh(u,ρ(u,v,w)�1/2v,w),�1/2v〉 if ρ(u, v, w) < ∞,

0 if ρ(u, v, w) = ∞.

(35)

Here, fχ denotes the density of the Chi-distribution μχ with m degrees of freedom.
The Clarke regularity of −e(·, v) = supw∈K −ew(u, v) at ū for every v ∈ S

m−1 can
be checked by applying [14, Theorem 2.8.2]. Indeed, according to this theorem and
translated to our setting, it will be sufficient to show the following statements for each
v ∈ S

m−1 separately:

(a) The mapping N × K ! (u, w) �→ Du(−ew)(u, v) is continuous
(b) The functions ew(·, v) with w ∈ K are Lipschitz continuous on a neighborhood

of ū with some common modulus;
(c) The set {ew(ū, v) | w ∈ K } is bounded;
(d) The mapping w �→ ew(u, v) = μχ([0, ρ(u, v, w)]) is continuous at each u ∈ N .

In order to show (a), consider a sequence (uk, wk) → (u, w). On the one hand,
if ρ(u, v, w) < ∞, we have that the continuity of ρ [56, Lemma 4.10 (ii)] and
the continuity of Duh, Dzh by condition 2. of Theorem 3.2 imply via (35) that
Du(−ewk )(uk, v) → Du(−ew)(u, v). On the other hand, if ρ(u, v, w) = ∞, then
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again by [56, Lemma 4.10 (ii)], we have that ρ(uk, v, wk) →∞. Now, adapting [55,
Lemma 3.2] to our setting, we infer for k large enough the estimate

‖Duewk (uk, v)‖ ≤ c

|h(u, 0, wk)| fχ (ρ(uk, v, wk))ρ(uk, v, wk)

exp
(
4ρ(uk, v, wk)‖�1/2‖

)
,

where c is the constant from condition 4. of Theorem 3.2. For k →∞, the expression
|h(u, 0, wk)| tends to |h(u, 0, w)|, which is nonzero by definition of N (see above).
Moreover, given the explicit formula for the density of the Chi-distribution with m
degrees of freedom (including some normalizing constant c̃ > 0), we get that

fχ (t)t exp
(
4t‖�1/2‖

)
= c̃tm exp(−t2/2) exp

(
4t‖�1/2‖

)
→ 0 (as t →∞).

Hence, by (35), Duew(u, v) = 0 = limk→∞ Duewk (uk, v), which shows the continu-
ity of (u, w) �→ Du(−ew)(u, v). To proceed with items (b-d), observe that, from the
already shown continuity of the mapping (u, w) �→ Duew(u, v), it follows that the
function u �→ maxw∈K ‖Duew(u, v)‖ is continuous on N . Hence, there is a neigh-
borhood N ′ of ū and some κ > 0 such that ‖Duew(u, v)‖ ≤ κ for all w ∈ K and all
u ∈ N ′. This implies (b) with the common Lipschitz modulus κ , while (c) is trivial
because ew is a probability. Concerning (d), fix an arbitrary (u, v, w) ∈ N×S

m−1×K
and a sequence wk → w with wk ∈ K . We repeat the case distinction on ρ(u, v, w)

from above: If ρ(u, v, w) < ∞, then ρ(u, v, wk) → ρ(u, v, w) by the continuity
of ρ already mentioned above. Moreover, ρ(u, v, wk) < ∞ for k large enough and,
hence, with Fχ denoting the continuous distribution function of the Chi-distribution
with m degrees of freedom, we arrive at

ewk (u, v) = μχ([0, ρ(u, v, wk)]) = Fχ (ρ(u, v, wk)) →k Fχ (ρ(u, v, w))

= μχ([0, ρ(u, v, w)]) = ew(u, v),

which is the desired continuity in the first case. Otherwise, if ρ(u, v, w) = ∞, then,
as already seen above, we have that ρ(u, v, wk) →∞. Let ε > 0 be arbitrary. Since
limt→∞ Fχ (t) = 1, it follows that ewk (u, v) = Fχ (ρ(u, v, wk)) ≥ 1− ε whenever k
is large enough and ρ(u, v, wk) < ∞. If, in contrast, ρ(u, v, wk) = ∞ for some k,
then

ewk (u, v) = μχ([0,∞)) = 1.

Hence, ewk (u, v) ≥ 1− ε whenever k is large enough. Consequently,

ewk (u, v) →k 1 = μχ([0,∞)) = μχ([0, ρ(u, v, w)) = ew(u, v).

This proves the desired continuity in the second case and, hence, (d). ��
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