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ABSTRACT
The question for the capacity of a given gas network appears
as an essential question that network operators and political
administrations are regularly faced with. In that context, we
present a novel mathematical approach in order to assist gas
network operators in managing increasing uncertainty with
respect to customers gas nominations and in exposing free
network capacities while reliability of transmission and sup-
ply is taken into account. The approach is based on the rig-
orous examination of optimization problems with nonlinear
probabilistic constraints. As consequence we deal with solv-
ing a problem belonging to the class of probabilistic/robust
optimization problems, which can be formulated with some
joint probabilistic constraint over an infinite system of ran-
dom inequalities. We will show that the inequality system can
be reduced to a finite one in the situation of considering a
tree network topology. A detailed study of the problem of
maximizing bookable capacities in a stationary gas network
is presented. The focus will be on both the theoretical and
numerical side. The analytical part consists in introducing and
validating a generalized version of the known rank two con-
straint qualification. The results are important in order to solve
the capacity problem numerically.
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1. Introduction

Recently, in the context of liberalization paradigm, new challenges for the gas net-
work operators appeared. These challenges are consequences of separating the
natural gas transmission from production and services. What follows is that net-
work operators are solely responsible for the transportation of gas. On the other
hand, gas traders are only needed to specify, by so-called nominations, where they
want to inject or extract gas (load) at existing entry and exit points of the network.
From the operator’s point of view, an accurate calculation of transport capacities
and the security of supply are the essential components for a reliable gas trans-
port. The so-called nomination validation (cf. [1]), i.e. the decision whether the
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given nominations of entry and exit flows are technically and physically feasible
under the available infrastructure, is significantly complicated by the existence of
uncertainties due to coverage of future loads. In particular, ensuring security of
gas supply to the customers implies the need of quantifying such uncertainties.
The actual amount of gas that is transported through the gas net is influenced by
volatile prices and by ambient temperatures. The stochastic nature of gas demand
that allows to model demand uncertainty by means of stochastic distributions is
due to the existence of long term historical data records. We refer to a more in-
depth study of nomination validation in [2]. Moreover, robustness of natural gas
flows is examined in [3], whereas an explicit characterization of gas flow feasi-
bility under stochastic exit demand is given in [4]. In addition, [5] considers also
uncertainty of roughnesswithin pipe segments beside uncertainty of gas demand.

The present paper develops a novel mathematical approach to enable a net-
work operator to both locate and maximize free available network capacities,
while keeping a high probability of satisfying some stochastic demand. We con-
sider a passive stationary gas network, which for simplicitywill be assumed to be a
tree. It is supposed that there exists one entry point coincidingwith the root of the
tree and supplying a set of exit pointswith random loads. Exits can nominate their
loads only according to given booked capacities. In principle, the network oper-
ator has to make sure that all balanced nominations complying with the booked
capacities can be satisfied by a feasible flow through the net satisfying given lower
and upper pressure bounds at its nodes. Since several nomination patterns may
turn out to be highly unlikely, he may content himself with guaranteeing this fea-
sibility only with a certain high probability p, being aware that rare infeasibilities
in the stationary model can be compensated for by appropriate measures in the
dispatchmode such as exploiting interruptible contracts (for details see [1]). This
probabilistic relaxation of an originally worst-case-type requirement for feasibil-
ity, gives the network owner the chance of offering significantly larger bookable
capacities. For the given values, it may be the case that the probability of nomina-
tions being technically feasible is larger than the value p desired by the network
owner. This degree of freedom can be used then, in order to extend the currently
booked capacities by a value which still allows one to keep the desired proba-
bility level p no matter what additional nominations in the extended range have
been chosen. The resulting optimization problem will be presented in Section 3.
The problem turns out to be of a new class of joint probabilistic/robust optimiza-
tion models that has been introduced in [5] first. A proper substitution of the
robust part allows to rewrite the problem of maximizing bookable capacities as a
stochastic optimization problem with probabilistic constraints.

The paper is organized as follows. A brief discussion of probabilistic problems
is given in the following Section 2. After representation of the capacity problem
in Section 3, the structure and analytical properties of the resulting optimization
model are studied in Section 4, with a particular focus on the validation of some
constraint qualification. What follows is Section 5 concerning all computational
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questions, namely, how to compute function values and gradients of the involved
probability function (see below), where the approach of spheric-radial decompo-
sition is applied. The final Section 6 concludes the theoretical part by a numerical
study that includes solving the capacity problem for a reasonable large sized gas
net adapted from real gas transportation networks under Gaussian-like random
demand.

2. Optimization problems with probabilistic constraints

In this paragraph we shortly want to recall the idea of stochastic optimization
problems using probabilistic (or chance) constraints. For a standard reference on
probabilistic constraints we refer to the monograph [6] by Prékopa.

Many real world optimization problems with, for example, application to
energy, finance, transport and logistics deal with data uncertainty. The opti-
mization models typically come up with systems of inequality constraints of the
form

gi(x, z) ≥ 0 (i = 1, . . . , k) (1)

describing the set of feasible decisions, where x ∈ R
n refers to a control or deci-

sion vector, z ∈ R
m is some uncertain parameter and g : R

n × R
m → R

k refers
to a constraint mapping. Ignoring the uncertainty of the data, for example, when
replacing z by deterministic data in terms of mean values, it would result in
optimal decisions that are frequently non-robust, i.e. infeasible with respect to
deviations from the mean value. But typically, access to historical observations
is given in many situations. Therefore, modelling data uncertainty by a random
vector ξ obeying a certain estimated multivariate distribution turns out to be
a preferable alternative. This allows to rewrite (1) as a so-called probabilistic
constraint

P
(
g(x, ξ) ≥ 0

) ≥ p, p ∈ (0, 1). (2)

Here P denotes the probability measure of the random data ξ , i.e. ξ is assumed
to be given on some probability space (�,A,P). The interpretation of (2) is as
follows. Some decision x is declared to be feasible if and only if the random
inequality system (1) is satisfied with at least probability p. The fixed probabil-
ity level p should be chosen reasonable high. By this value we make a trade-off
between sufficient robustness of the decision x and moderate cost. Define

ϕ(x) := P(g(x, ξ) ≥ 0)

the so-called probability function. Then, the optimization problem using the
probabilistic constraint (2) can be formulated as a generic optimization problem,
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in general nonsmooth, of the form

min
{
f (x)

∣∣ϕ(x) ≥ p
}
, (3)

where f is a cost function mapping from R
n to the real numbers. Both ana-

lytical and numerical properties of the optimization problem with probabilistic
constraints strongly depend on the smoothness properties of the probability
function ϕ(·). Unfortunately, simple examples show that even if the mapping
g(·, ·) in (2) is nice, i.e. particularly smooth, we cannot expect smoothness of
the probability function in general. However, under certain regularity assump-
tions sub-gradients (in the sense of Clarke orMordukhovich) and even gradients
of the probability function might be available [7]. Therefore, the validation of
constraint qualifications in the context of gas transportation problems, and, in
particular, for the problem of maximizing bookable capacities is considered in
Section 4.

3. The problem of maximizing bookable capacities

In this section, we want to describe the optimization problem of maximizing
bookable capacities under uncertain demand that comes up as a highly rele-
vant optimization challenge for network operators. The presented approach of
rigorous examination of the underlying optimization problem with nonlinear
probabilistic constraints is novel in that context and it focuses on the free capac-
ities on the exit side in a classic entry/exit model. Alongside, in [8] the authors of
that article pick up the capacity problem but they do without deeper justification,
they rather try to extend the model to the entry side as well. Such extensions do
not allow to reduce the mixed probabilistic and robust optimization model to a
probabilistic one, in general. Such reductions we will discuss here.

3.1. General formulation as probabilistic/robust problem

As noted in the introduction, we consider a passive and stationary gas network
with tree structure. Moreover, we want to assume that the root of the tree refers
to a single entry node, labelled by zero, supplying the remaining exit nodes with
gas. The exit nodes V are labelled by 1, . . . , |V|. Let G = (V+, E) represent the
tree network graph, that is trivially a spanning tree of itself, where V+ denotes
the set of both exit points and entry.Without loss of generality we direct all edges
in E away from the root. Using depth-first search, we number the nodes so that all
numbers increase along any path from the root to one of the leaves. For k, � ∈ V ,
denote k � � if, in G, the unique directed path from the root to k passes through
�. The latter path we denote with �(k). Moreover, let π(e) denote the head of
edge e, i.e. π(e) := � for e = (k, �).
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According to [4, Corollary 2], a vector of exit loads z in this configuration is
technically feasible, whenever the inequality system

min
k=1,...,|V|

{
(pmax

k )2 + hk(z)
}

− (pmin
0 )2 ≥ 0

(pmax
0 )2 − max

k=1,...,|V|

{
(pmin

k )2 + hk(z)
}

≥ 0

min
k=1,...,|V|

{
(pmax

k )2 + hk(z)
}

− max
k=1,...,|V|

{
(pmin

k )2 + hk(z)
}

≥ 0 (4)

is satisfied, where the functions hk(·) are given by

hk(z) :=

⎧⎪⎨
⎪⎩

∑
e∈�(k) φe

( ∑
t�π(e) zt

)2
if k ≥ 1 ,

0 if k = 0 .
(5)

Here, pmin
k and pmax

k refer to lower andupper pressure limits at the nodes of the gas
net. As well as certain positive roughness (or friction) coefficients φe along edges
e ∈ E , they represent fixed network parameters. The interpretation of function
hk(·) is as follows, it adds for every involved edge of the path �(k) the square
of the overall demand of the corresponding subtree that is supplied by the single
edge. By the elimination of minima and maxima, the inequality system (4) can
be represented equivalently in closed form by a number of |V|2 + |V| constraints
of the form

gk,l(z) := (pmax
k )2 + hk(z) − (pmin

l )2 − hl(z) ≥ 0 , (6)

for all k, l = 0, . . . , |V| and k �= l. Note, the number of inequalities reduces sig-
nificantly in the event of considering constant upper and constant lower pressure
limits at all nodes. In that case, if pmax

k ≡ pmax and pmin
k ≡ pmin for all k =

0, . . . , |V|, by eliminating all redundant inequalities from (6), we obtain a system
of only |V| inequalities

(pmax)2 − (pmin)2 − hk(z) ≥ 0 , (7)

k = 1, . . . , |V|, to describe technical feasibility in a tree network.
With regard to maximizing bookable capacities, we assume that a nomina-

tion vector on the exit side is given as the sum of two vectors ξ and y. Here,
ξ is some random demand ξ ≥ 0 that describes the nomination behaviour of
former customers and that satisfies already existing booking contracts. The sec-
ond vector y ∈ [0, x] corresponds to additional nominations due to available free
capacities, where the components xk of x are extra booking limits, say for new
customers at the exit nodes k, k = 1, . . . , |V|. The motivation for modelling ξ

as a random vector is due to the fact that a sufficient large data basis for load
nominations according to former booked capacities may be given, which would
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allow one to approximate a multivariate distribution of ξ (see [1]). While this
stochastic information enables the network owner to relax the technical feasi-
bility of exit nominations in a probabilistic sense, nothing is known in contrast
about the future nomination pattern of the new customer, so that one has to be
prepared principally for every possible nomination y ∈ [0, x]. This constellation
leads the network owner to define a capacity extension x as feasible, whenever
the constraint

P
(
gk,l

(
ξ + y

) ≥ 0 ∀y ∈ [0, x] ∀k, l = 0, . . . , |V|) ≥ p (8)

is satisfied with that x. The meaning of this constraint is as follows. The capacity
extension x is feasible if and only if, with probability larger than p ∈ [0, 1), the
sum ξ + y of the original random nomination vector and of a new nomination
vector can be technically realized for every such new nomination vector in the
limits [0, x]. By its structure, (8) is a probabilistic constraint, but it is a nonstan-
dard one in that it contains a robust (worst case) ingredient which makes the
given random inequality system an infinite one. As mentioned in the introduc-
tion, such joint probabilistic/robust constraints have been considered first in the
context of gas networks in [5].

By regulatory law, the network owner is obligated to maximize the capac-
ity which can be booked. This leads him to the consideration of the following
optimization problem

maximize cTx subject to (8), (9)

where c is a weighted preference vector for capacity maximization, for example,
c = (1, . . . , 1)T in the case of no preferences among exit nodes.

3.2. Reformulation of the problemwith probabilistic constraints only

In order to apply theory andmethodology of optimization problems with proba-
bilistic (chance) constraints, it might be essential to reduce the infinite system of
constraints in (8) to a finite one. To this end we make use of the equivalence

gk,l(z + y) ≥ 0 ∀y ∈ [0, x] ⇔ min
y∈[0,x]

gk,l(z + y) ≥ 0 , (10)

where k, l = 0, . . . , |V| and k �= l. Let

g̃k,l(x, z) := min
y∈[0,x]

gk,l(z + y) , k, l = 0, . . . , |V|, (11)

be the minimum function depending on both x and z. An explicit representation
of the minimum function g̃k,l(x, z) can be obtained by taking a closer look to the
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constraint functions gk,l(·). Inserting Equation (5) into formula (6) leads to

gk,l(z) = (pmax
k )2 + hk(z) − (pmin

l )2 − hl(z)

= (pmax
k )2 +

∑
e∈�(k)\�(l)

φe

( ∑
t�π(e)

zt
)2

− (pmin
l )2 −

∑
e∈�(l)\�(k)

φe

( ∑
t�π(e)

zt
)2

. (12)

Note that the latter equation appears after cancellation of same summands in
hk(z) and hl(z). The minimum of (11) is observed by using formula (12) after
replacing z by z+y. In particular, we have

g̃k,l(x, z) = min
y∈[0,x]

gk,l(z + y)

= min
y∈[0,x]

⎧⎨
⎩(pmax

k )2 +
∑

e∈�(k)\�(l)

φe

( ∑
t�π(e)

(zt + yt)
)2

− (pmin
l )2 −

∑
e∈�(l)\�(k)

φe

( ∑
t�π(e)

(zt + yt)
)2

⎫⎬
⎭

= (pmax
k )2 +

∑
e∈�(k)\�(l)

φe

( ∑
t�π(e)

zt
)2

− (pmin
l )2 −

∑
e∈�(l)\�(k)

φe

( ∑
t�π(e)

(zt + xt)
)2

, (13)

where k, l = 0, . . . , |V| and k �= l. The above minimization can be separated
due to the fact that the vertices of the involved subtrees generated by the sub-
paths �(k) \ �(l) and �(l) \ �(k) are disjoint (see also Figure 1). Therefore,
the optimization problem of maximizing bookable capacities turns into a classi-
cal probabilistic problem with a finite number of probabilistic constraints. The
reformulation of (9) reads

maximize cTx subject to

P
(
g̃k,l(x, ξ) ≥ 0 ∀ k, l = 0, . . . , |V|) ≥ p , (14)

where for all k, l = 0, . . . , |V| with k �= l the constraint mappings g̃k,l(·, ·) are
obtained by the explicit representation given in (13).

4. The validation of constraint qualifications

The analytical properties of an optimization problem strongly depend on
whether it satisfies certain regularity conditions which are given by different
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Figure 1. Illustration of subpaths and nodes specified by Definition 4.1 for an example.

types of constraint qualifications. We follow the approach of considering the
rank 2 constraint qualification (R2CQ) (cf. [7]) as a sufficient criterion for
differentiability of the probability function of the probabilistic constraints.

To discuss the constraint qualification for the constraint mappings in the con-
text of gas transmission we start with the general inequality system gk,l(z) in (12)
for k, l = 0, . . . , |V| and k �= l. To simplify the representation we are going to
introduce the following definitions and notations (see Figure 1).

Definition 4.1: For some given pair of nodes k, l ∈ V define

(i) �+
kl := �(k) \ �(l) and �−

kl := �(l) \ �(k) the disjunctive subpaths with
respect to �(k) and �(l),

(ii) bkl :=
{
max{π(e) | e ∈ �(k) ∩ �(l)}, if �(k) ∩ �(l) �= ∅ ,
0, otherwise,

the bifurca-

tion node of paths �(k) and �(l),
(iii) d+

kl := min{π(e) | e ∈ �+
kl} and d−

kl := min{π(e) | e ∈ �−
kl} thefirst direction

nodes for nonempty subpaths �+
kl and �−

kl , respectively.

In order to check constraint qualification (R2QC), we pairwise have to com-
pare gradients of active constraints. The following Lemma displays an analytical
representation allowing to compute gradients of the constraint mappings.

Lemma 4.2: For the constraint mappings gk,l(·) in (6) we obtain that

[∇zgk,l(z)
]
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
e∈�+

kl∩�(i)

2φe
∑

t�π(e)

zt , if �+
kl ∩ �(i) �= ∅,

−
∑

e∈�−
kl∩�(i)

2φe
∑

t�π(e)

zt , if �−
kl ∩ �(i) �= ∅,

0, otherwise,

(15)

for all k, l = 0, . . . , |V| with k �= l, for all i = 1, . . . , |V|, and, any z.
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Proof: Because the subtrees generated by the paths �+
kl and �−

kl are disjoint, for
any fixed k,l with k �= l and arbitrary i ∈ V we observe that i does not belong to
any of these subtrees or it belongs exactly to one of them. In the first case from (12)
we observe that gk,l(z) does not depend on zi at all, thus, the ith component of the
gradient vanishes. Now, assuming that i belongs to the subtree either generated
by �+

kl or �−
kl . Due to uniqueness of paths between two nodes in a tree, for any

e ∈ E node i is contained in the subtree generated by e (i.e. i � π(e)) if and only
if e ∈ �(i). Hence, from (12) we observe that[∇zgk,l(z)

]
i =

∑
e∈�+

kl∩�(i)

2φe
∑

t�π(e)

zt −
∑

e∈�−
kl∩�(i)

2φe
∑

t�π(e)

zt

for any z. But �(i) can only intersect one of the two sub-paths �+
kl or �−

kl at a
time. Thus, for any fixed i,k,l gradient formula (15) is a consequence of the above
equation. �

Another structural result is given by the following observation for active
constraints.

Lemma 4.3: Let k,l with k �= l and z ≥ 0 be given such that gk,l(z) = 0. If pmax
k >

pmin
l then it holds

(a) �−
kl �= ∅ , (b) d−

kl �= 0 , (c)
[∇zgk,l(z)

]
d−
kl

< 0 .

Proof: Due to the assumption pmax
k > pmin

l , and, due to gk,l(·) is active con-
straint in z, by (12) we obtain that path �−

kl is nonempty and zt > 0 for some
t � d−

kl . In particular, we have d−
kl �= 0 (see Definition 4.1 (iii) above). Moreover,

the path �(d−
kl) intersects the nonempty path �−

kl by the arc (bkl, d−
kl) ∈ E , and,

by applying Lemma 4.2 we conclude with z ≥ 0 that[∇zgk,l(z)
]
d−
kl

= −
∑

e∈�−
kl∩�(d−

kl )

2φe
∑

t�π(e)

zt = −2φ(
bkl,d−

kl

) ∑
t�d−

kl

zt < 0 ,

where bkl is the bifurcation nodew.r.t.�(k) and�(l) (seeDefinition 4.1 (ii)). �

The following structural result focuses on the relation between the con-
straints (6) describing feasibility of gas flows in general and the ones involved
in the capacity problem (13).

Definition 4.4: For any k, l ∈ V (k �= l) and x ≥ 0 we define a mapping ϕk,l :
R
V → R

V by

[ϕk,l(x)]t :=
{
xt , if t � d−

kl ,
0, otherwise ,

∀t ∈ V .



10 H. HEITSCH

Figure 2. Pictograms for the case study in order to prove Theorem 4.6.

The functionals ϕk,l(·) represent the solution mappings for the generalized
constraints in the capacity problem, as shown next.

Lemma 4.5: For any k, l ∈ V (k �= l) and any x, z ≥ 0 we have

min
y∈[0,x]

gk,l(z + y) = gk,l(z + ϕk,l(x)) .

Proof: The result is a direct consequence of formula (13). �

Now we are prepared to state the first main result concerning the constraint
mapping involved by the problem ofmaximizing bookable capacities in a station-
ary gas transport network, in order to derive constraint qualifications for this type
of problem.

Theorem 4.6: For given x ≥ 0, z ≥ 0 define α := ϕk,l(x), β = ϕm,n(x), k �= l and
m �= n. If it holds gk,l(z + α) = gm,n(z + β) = 0 and if pmax

s > pmin
t for all s, t ∈

V+, then we have that (at least) one of the following statements is satisfied:

(1) The gradients ∇zgk,l(z + α) and ∇zgm,n(z + β) are linearly independent.
(2) It exist indices i, j ∈ V with zi = zj = 0 and i �= j.
(3) There is redundancy, i.e. gk,l(z) ≥ gm,n(z) or gm,n(z) ≥ gk,l(z) for all z ≥ 0.

Proof: We want to prove the statement by a case study with respect to the bifur-
cation nodes observed from the paths with respect to the index pairs (k, l) and
(m, n), respectively. Figure 2 shows pictograms of the cases considered in the
following.

1) Case bkl �= bmn:
If the bifurcation nodes do not coincide, at least one of the relations bkl � bmn or
bmn � bkl must be satisfied. Without loss of generality we assume bkl � bmn. We
consider the negative path �−

kl and its first direction node d−
kl . Clearly, that node

can now either be the bifurcation node bmn itself, or it is even not involved in the
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paths �+
mn and �−

mn. However, in both cases it follows that we have

�+
mn ∩ �(d−

kl) = ∅ and �−
mn ∩ �(d−

kl) = ∅ .

Thus, due to (15) we obtain[∇zgm,n(z + β)
]
d−
kl

= 0 .

On the other hand, due to the assumptions gkl(z + α) = 0, gmn(z + β) = 0 and
pmax
k > pmin

l , by Lemma 4.3 we have that[∇zgk,l(z + α)
]
d−
kl

< 0 and
[∇zgm,n(z + β)

]
d−
mn

< 0 .

Thus, the gradients ∇zgk,l(z + α) and ∇zgm,n(z + β) are linearly independent.

2) Case bkl = bmn:
In case the bifurcation nodes are identical, we first want to consider the event that
a) �−

kl ∩ (�+
mn ∪ �−

mn) = ∅ or �−
mn ∩ (�+

kl ∪ �−
kl) = ∅ :

Assuming the first expression, completely analogue to 1) it follows that
[∇zgm,n(z + β)

]
d−
kl

= 0,
[∇zgk,l(z + α)

]
d−
kl

< 0,[∇zgm,n(z + β)
]
d−
mn

< 0 ,

which implies linear independence of the considered gradients. Clearly, the same
result we obtain for the second expression just by interchanging the role of α, β
and indices (k, l), (m, n). The next case we want to consider is

b) �−
kl ∩ �−

mn �= ∅ :
Because the bifurcation nodes are identical, we observe d−

kl = d−
mn. Note that

(bkl, d−
kl) ∈ �−

kl ∩ �−
mn here, and thus, due to formula (15) we further obtain[∇zgk,l(z + α)

]
d−
kl

= [∇zgm,n(z + β)
]
d−
kl

= −2φ(
bkl,d−

kl

) ∑
t�d−

kl

(zt + xt) < 0 ,

because αt = βt = xt for all t � d−
kl (see Definition 4.4). It follows that the gra-

dients are co-linear, if and only if, all their components coincide. Let us assume
co-linearity. In that case, by (15) again, on the one hand we have

0 = [∇zgk,l(z + α) − ∇zgm,n(z + β)
]
k = 2

∑
e∈�+

kl\�+
mn

φe
∑

t�π(e)

zt , (16)

0 = [∇zgk,l(z + α) − ∇zgm,n(z + β)
]
m = −2

∑
e∈�+

mn\�+
kl

φe
∑

t�π(e)

zt . (17)

(16) can be derived from (15) using the observations

�+
kl ∩ �(k) = �+

kl , �−
kl ∩ �(k) = ∅ , �−

mn ∩ �(k) = ∅ ,

�+
mn ∩ �(k) = �+

mn ∩ (�(k) \ �(n)) = �+
mn ∩ (�(k) \ �(l)) = �+

mn ∩ �+
kl .
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Interchanging the role of (k, l) and (m, n) results in (17). On the other hand, by
similar arguments, we obtain that

0 = [∇zgk,l(z + α) − ∇zgm,n(z + β)
]
l = −2

∑
e∈�−

kl\�−
mn

φe
∑

t�π(e)

(zt + xt) ,

(18)

0 = [∇zgk,l(z + α) − ∇zgm,n(z + β)
]
n = 2

∑
e∈�−

mn\�−
kl

φe
∑

t�π(e)

(zt + xt) . (19)

What follows is, in all cases two indices i, j ∈ {k, l,m, n}with zi = zj = 0 and i �= j
can be identified, unless k=m and l  n (n  l), or, l=n and k  m (m  k),
respectively. The latter exception appears if three of the above sums vanish due
to cancellation of paths. However, if we assume k=m and l  n (the other cases
are analogue) wemight compute the difference of the active constraints. By using
(12) we obtain that

0 = gk,l(z + α) − gm,n(z + β)

= −(pmin
l )2 + (pmin

n )2 −
∑

e∈�−
kl\�−

mn

φe

( ∑
t�π(e)

(zt + xt)
)2

.

Due to (18) the last terms need to equal zero, hence, we have (pmin
l )2 = (pmin

n )2.
But, as consequence of that observation from (12) it follows withm=k that

gm,n(z) ≥ gk,l(z) ∀z ≥ 0 ,

and, hence, inequality gm,n is redundant. Finally, it remains to show the claim of
the theorem for the case

c) �−
kl ∩ �+

mn �= ∅ and �+
kl ∩ �−

mn �= ∅ :

In this case, first of all, we define non-negative numbers

a := 2�(bkl,d+
kl )

∑
t�d+

kl

zt ≥ 0, c := 2�(bkl,d+
kl )

∑
t�d+

kl

xt ≥ 0 ,

b := 2�(bkl,d−
kl )

∑
t�d−

kl

zt ≥ 0, d := 2�(bkl,d−
kl )

∑
t�d−

kl

xt ≥ 0 .

Assuming c) the numbers are well-defined. Moreover, we observe dkl+ = d−
mn

and d−
kl = d+

mn. By (15) combined with Definition 4.4 it is easy to show that[∇zgk,l(z + α)
]
d+
kl

= a ,
[∇zgm,n(z + β)

]
d+
kl

= −a − c[∇zgk,l(z + α)
]
d−
kl

= −b − d ,
[∇zgm,n(z + β)

]
d−
kl

= b . (20)
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Now, a sufficient condition for gradients ∇zgk,l(z + α) and ∇zgm,n(z + β) being
linearly independent is

0 �= det
(

a −a − c
−b − d b

)
= c(b + d) + ad = d(a + c) + bc .

Because Lemma 4.3 implies that a+c>0 and b+d>0, the determinant is
nonzero if c>0 or d>0. It remains to show linear independence even for the
event that c=d=0, where the above determinant is zero. Due to the definitions
of c and d this case implies xt = 0 for all t � d+

kl = d−
mn as well as xt = 0 for all t �

d−
kl . Moreover, from (20) we see that for c=d=0 the gradients are independent

if there exist some component t0 ∈ V such that [∇zgk,l(z + α)]t0 + [∇zgm,n(z +
β)]t0 �= 0. To this end we compute the sum of the constraints gk,l(z + α) and
gm,n(z + β) which, by using (12) and the assumption that the constraints are
active, results in

0 = (pmax
k )2 + (pmax

m )2 − (pmin
l )2 − (pmin

n )2

+
∑

e∈�+
kl\�−

mn

φe

( ∑
t�π(e)

zt
)2

+
∑

e∈�+
mn\�−

kl

φe

( ∑
t�π(e)

zt
)2

−
∑

e∈�−
kl\�+

mn

φe

( ∑
t�π(e)

zt
)2

−
∑

e∈�−
mn\�+

kl

φe

( ∑
t�π(e)

zt
)2

.

Note, joint paths disappear by cancelling out here, due to the fact that xt = 0
along the involved paths. In particular, it follows that

∑
e∈�−

kl\�+
mn

φe

( ∑
t�π(e)

zt
)2

+
∑

e∈�−
mn\�+

kl

φe

( ∑
t�π(e)

zt
)2

> 0 , (21)

i.e. there exists ê with ê ∈ �−
kl \ �+

mn or ê ∈ �−
mn \ �+

kl , respectively, and t̂ with
t̂ � t0 := π(ê) such that zt̂ > 0. However, in both cases with (15) we conclude
that ∣∣ [∇zgk,l(z)

]
t0

+ [∇zgm,n(z)
]
t0

∣∣ ≥ 2φê
∑
t�t0

zt ≥ 2φêzt̂ > 0 .

Thus, in case c) the gradients of the constraints are always linearly independent.
In any cases we have proven that either two active constraints have linearly

independent gradients, or there exist at least two distinct indices i,j with zi =
zj = 0, or one of the two active constraints is redundant at all. �

In fact, property 3 of Theorem 4.6 does not appear if we remove all redundant
inequalities from the inequality system g(z) ≥ 0 first. However, contained redun-
dant inequalities do not affect the feasibility set and the analytical properties of



14 H. HEITSCH

Figure 3. Small gas net example containing 3 pipes as well as 1 entry and 3 exit nodes.

the probability function. Of a somewhat different nature are conditions 1 and 2
of Theorem 4.6. As we will show later on, both conditions are sufficient for the
existence of gradients of the probability function.

The following example shows that beside generic property 1 even property
2 of Theorem 4.6 has to be taken into account when considering gas nets. In
particular, the example shows that the rank 2 conditionmay be violated in special
instances. Recall that we have ∇zg̃kl(x, z) = ∇zgkl(z + ϕ(x)).

Example 4.7: We consider a gas net consisting of one entry and three exit nodes
as displayed in Figure 3. From the system of feasibility constraints g̃k,l(·, ·) in (11)
we select just g̃1,3(·, ·) and g̃2,3(·, ·). For any x ∈ R

3 with x ≥ 0, according to (13),
we have for z ∈ R

3

g̃1,3(x, z) = (pmax
1 )2 − (pmin

3 )2 + φ(0,1)z21 − φ(0,3)(z3 + x3)2 ≥ 0 ,

g̃2,3(x, z) = (pmax
2 )2 − (pmin

3 )2 + φ(0,2)z22 − φ(0,3)(z3 + x3)2 ≥ 0 .

As gradients we obtain

∇zg̃1,3(x, z) =
⎛
⎝ 2φ(0,1)z1

0
−2φ(0,3)(z3 + x3)

⎞
⎠ , ∇zg̃2,3(x, z) =

⎛
⎝ 0

2φ(0,2)z2
−2φ(0,3)(z3 + x3)

⎞
⎠ .

We see that the gradients above are co-linear if both z1 and z2 are zero. More-
over, chose for example pmax

1 = pmax
2 and define (for some given x ≥ 0 with

sufficient large x3) z∗ := (((pmax
1 )2 − (pmin

3 )2)/φ(0,3))
1/2 − x3. Then, we observe

that on the one hand, both constraints are active, i.e. we have g1,3(x, (0, 0, z∗)) =
g2,3(x, (0, 0, z∗)) = 0, on the other hand, the gradients are co-linear. Thus, in this
example the rank 2 condition is violated at z = (0, 0, z∗). But, two components
z1 and z2 turn out to be zero (cf. Theorem 4.6).

Before proving the next result, we are going to simplify the notation. With
respect to the formulation of the problem ofmaximizing bookable capacities (14)
let

J := {j = (k, l) | k, l = 1, . . . , |V|; k �= l}
be the index set of the feasibility constraints. We make use of the notation
g̃j(·, ·) ≡ g̃k,l(·, ·) for j ∈ J and j = (k, l). Moreover, let J ∗ ⊆ J be the index set
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of all nonredundant constraints (cf. Theorem 4.6, item (3)). With this notation
and with g̃kl(x, z) = gkl(z + ϕ(x)), Theorem 4.6 implies the following Corollary.

Corollary 4.8: For given x, z ≥ 0 and i, j ∈ J ∗ let be g̃i(x, z) = g̃j(x, z) = 0 and
i �= j, where g̃(·, ·) is given by (13). Under the assumptions of Theorem 4.6, i.e. if
pmax
s > pmin

t for all s, t ∈ V+, then one of the following statements is satisfied:

(1) The gradient vectors ∇zg̃i(x, z) and ∇zg̃j(x, z) are linearly independent.
(2) It exist indices k, l ∈ V with zk = zl = 0 and k �= l.

The derived constraint qualification for the considered feasibility constraints
turns out to be sufficient to guarantee differentiability of the involved probability
function, as we will show in the following. To this and, we first state the following
Lemma.

Lemma 4.9: For any fixed x ≥ 0 we define

Sj(x) :=
{
z ∈ R

|V|
∣∣∣ g̃j(x, z) = 0, g̃�(x, z) ≥ 0 ∀� ∈ J ∗

}
j ∈ J ∗ .

Then it holds for all i �= j

mes|V|−1
(
Si(x) ∩ Sj(x)

) = 0 ,

wheremes|V|−1(·) denotes the surface Lebesgue measure in R
|V|.

Proof: Due to Corollary 4.8 the intersection of the two active sets decomposes
into two subsets A and B such that A ∪ B = Si(x) ∩ Sj(x) with the property that,
first, z ∈ A implies that rank

{∇zg̃i(x, z),∇zg̃j(x, z)
} = 2, secondly, z ∈ B implies

that there exist zero components zk = zl = 0 (k �= l). It is evidently sufficient to
show mes|V|−1(A) = 0 and mes|V|−1(B) = 0.

Given x, for any i �= j we define a mapping F(·) such that

F(z) :=
(
g̃i(x, z)
g̃j(x, z)

)
∈ R

2, z ∈ R
|V|.

Hence, F(·) is continuously differentiable, and, for arbitrary z̄ ∈ A we obtain
F(z̄) = 0. Moreover, due to the linear independence of the gradients, the Jaco-
bian matrix DF has rank 2 in z̄. Thus, there exist indices k,l (k �= l) such that
the according Jacobian sub-matrix is invertible. Without loss of generality let’s
assume k=1 and l=2. By the Implicit Function Theorem the equation F(z) = 0
can be resolved in a neighbourhood Uz̄ of z̄ equivalently as

z1 = f1(z3, . . . , z|V|) and z2 = f2(z3, . . . , z|V|) ∀(z3, . . . , z|V|) ∈ Vz̄, (22)

where f1, f2 : Vz̄ → R are continuous differentiable functions and Vz̄ is a well-
defined neighbourhood of (z̄3, . . . , z̄|V|). Moreover, the mapping X : R × Vz̄ →
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R
|V| given by

X(t, z3, . . . , z|V|) :=
(
f1(z3, . . . , z|V|) + t, f2(z3, . . . , z|V|) + t, z3, . . . , z|V|

)
defines a parametrization of some surface S in R

|V|. Clearly, the set {z ∈
Uz̄ | F(z) = 0} is a subset of the surface S and due to (22) we observe that

X−1({z ∈ Uz̄ | F(z) = 0}) = {0} × Vz̄ and λ|V|−1({0} × Vz̄) = 0 ,

where λ|V|−1 is the Lebesgue measure in space R
|V|−1. In particular, for the

according surface measure we obtain that mes|V|−1({z ∈ Uz̄ | F(z) = 0}) is zero.
On the other hand, the union of the family of open sets {Uz̄}z̄∈A coversA. Because
R

|V| is separable, a countable selection (z̄n)n∈N in A exists, where we obtain

A =
⋃
n∈N

Uz̄n ∩ A.

Due to the fact that mes|V|−1(Uz̄n ∩ A) = 0 (n ∈ N), we found a union of count-
ablemany subsets of S having surfacemeasure zero that coversA. Therefore, from
[9, Proposition 4.32] we conclude that mes|V|−1(A) = 0.

It remains to show that B has surface measure zero. But, subset B is included
in the finite union of linear subspaces Ukl := {z ∈ R

|V| | zk = 0, zl = 0}, k �= l,
of co-dimension 2 (k, l = 1, . . . , |V|). As a consequence, as well as subset A, also
subset B has surface measure zero. This completes the proof. �

Note that Lemma 4.9 does not make use of the special structure of the con-
straints of the capacity problem and also remains valid in a more general context.
It just requires a finite systems of continuously differentiable inequalities, where
the claim of Corollary 4.8 is satisfied. The property, having surface measure zero
of the intersection with respect to two active constraints, turns out to be the
essential property when asking for differentiability of the probability function,
as shown in [10]. Hence, with Lemma 4.9 we are prepared for the main result of
this section, the differentiability of the capacity problem.

Theorem 4.10: Let x̄ ≥ 0 be given such that g̃j(x̄, 0) > 0 for all j ∈ J . Then, the
probability function ϕ(x) := Pξ≥0(g̃j(x, ξ) ≥ 0 , j ∈ J ) of the problem of maxi-
mizing bookable capacities (14) is differentiable on some neighbourhood U of x̄,
if the distribution P of the random vector ξ has a continuous and bounded density
on R

|V|, and if pmax
s > pmin

t for all s, t ∈ V+.

Proof: To prove the result of the Theorem we want to apply a general result
regarding differentiability of probability functions in [10]. To this end, we
first discuss the gradients of the constraints g̃j(x, ·). The special structure of
the constraints allows to derive the following property. With the notation of
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Definition 4.1 and by applying Lemma 4.2 it is easy to show that for any j ∈ J
the equation g̃j(x̄, z̄) = 0 implies that

∥∥∇zg̃j(x̄, z̄)
∥∥ ≥ ∣∣ [∇zg̃j(x̄, z̄)

]
d−
j

∣∣ ≥ 2φmin
(

p
|V|φmax

) 1
2

=: γ ,

where φmax := max{φe | e ∈ E}, φmin := min{φe | e ∈ E} denote maximal and
minimal roughness coefficients, respectively, and p := min{(pmax

k )2 − (pmin
l )2

| k, l ∈ V+} denotes the minimal quadratic pressure difference. As consequence,
due to continuity, we observe that∥∥∇zg̃j(x, z)

∥∥ ≥ γ

2
> 0

on some neighbourhood U of x̄ and V of z̄ for any j ∈ J . Secondly, we state that

Pξ≥0
(
g̃j(x, ξ) ≥ 0 , j ∈ J

) ≡ P
(
g̃j(x, ξ) ≥ 0 , j ∈ J ; ξk ≥ 0, k ∈ V

)
and mention that the additional inequalities ξk ≥ 0 (k ∈ V) are compatible with
the constraint g̃(x, ξ) ≥ 0 in the sense that they do not destroy the recent prop-
erties. In particular, assuming ξk = 0 and g̃j(x̄, ξ) = 0 implies that there exists
some l �= k with ξl �= 0 (due to assumption g̃j(x̄, 0) > 0). Hence, the gradi-
ents to these active constraints are linearly independent. Moreover, the addi-
tional non-negative constraints themselves satisfy the constraint qualifications of
Corollary 4.8. Note that the norm of their gradients each equals one, no matter
what ξ . As consequence, we apply Lemma 4.9 for the total system of inequali-
ties, and, all requirements of [10, Theorem 2.4] are satisfied. We conclude that
the probability function ϕ(x) is differentiable for all x ∈ U. �

We want to complete this section by discussing Example 4.7 again. Therefore,
we illustrate the constraint qualifications of Corollary 4.8 and the resulting sur-
face measure condition for the intersection of the boundary of both involved
constraints for a special instance. By setting quadratic pressure differences and
roughness coefficients equal to 1, for the constraints in Example 4.7 we obtain
for any x, z ∈ R

3

g1(x, z) = 1 + z21 − (z3 + x3)2 ≥ 0,

g2(x, z) = 1 + z22 − (z3 + x3)2 ≥ 0.

Moreover, for the x variable we select x̄ = (12 ,
1
2 ,

1
2). Then, for the gradients with

respect to z we observe the two vectors

∇zg1(x̄, z) =
⎛
⎝ 2z1

0
−2z3 − 1

⎞
⎠ , ∇zg2(x̄, z) =

⎛
⎝ 0

2z2
−2z3 − 1

⎞
⎠ .

The intersection S = S1(x̄) ∩ S2(x̄) of surfaces S1(x̄) = {z | g1(x̄, z) = 0,
g2(x̄, z) ≥ 0} and S2(x̄) = {z | g2(x̄, z) = 0, g1(x̄, z) ≥ 0} decomposes into the
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Figure 4. Boundary of the feasibility region obtained for the special instance of Example 4.7.

two subsets: The regularity set A = {z ∈ S | rank 2 condition satisfied} and the
set of singularities B = {z ∈ S | rank 2 condition violated}. In that example, for
the singularity set we obtain the singleton B = {(0, 0, 12)}. But note, this set is
included in the linear subspace L = {z ∈ R

3 | z1 = 0; z2 = 0} of co-dimension
2 (cf. Proof of Lemma 4.9). However, we have that A ∪ B = S. Figure 4 shows
the surfaces S1 and S2 of the active sets, obtained from the two inequalities, as
well as the intersection curve S represented by the subsets A and B. As shown
in Lemma 4.9, it turns out that the 2-dimensional surface measure of S is zero.
Indeed, we obtain mes2(S) = 0.

5. Algorithmic approach

In this section we want to provide an algorithmic solution for the problem of
maximizing bookable capacities. In the previous sections we have shown that the
capacity problem under weak conditions to the distribution of the random exit
demand is differentiable with respect to the probabilistic constraint. Therefore,
in principle any algorithm of nonlinear optimization that uses derivative infor-
mation could be applied in order to solve the problem numerically. However, an
efficient numerical solution is linked to an efficient computation of the involved
probability function values and its gradients.

Returning to the capacity problem (14), for any fixed decision x the set of
feasible nominations is given by

Mx :=
{
ξ ∈ R

|V|
∣∣∣ g̃k,l(x, ξ) ≥ 0; k, l = 0, . . . , |V|

}
, (23)

where g̃k,l(·, ·) taken form (13). Thus, the set Mx is described explicitly and we
might use the finite inequality system in (23) in order to test the feasibility of
simulated outcomes of the random demand ξ according to the given continuous
distribution. Taking the averaged number of feasible simulations would provide
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theMonteCarlo estimation for the desired probabilityP(ξ ∈ Mx). One drawback
carried out in [4] is that the application of Monte Carlo may cause comparatively
large variance for the obtained probability estimation. But, evenmore harmful in
the context of solving an optimization problem is the fact that Monte Carlo sim-
ulation does not provide any information about the sensitivity of the probability
with respect to changes of x. For this reason, an alternative approach is to make
use of the so-called spheric-radial decomposition of Gaussian random vectors.

In general, given a random vector ξ(ω) on some probability space (�,A,P)

the computation of the probability

P {ω ∈ � | ξ(ω) ∈ Mx} (24)

is correlated to resolving a potentially high dimensional multiple integral
(depending on the number of exits). A particular situation to carry out this
computation under Gaussian distribution occurs for polyhedral sets. Under this
assumption in [11] an algorithmic approach is presented in order to compute
Gaussian probabilities efficiently. Unfortunately, in our setting the feasible set
Mx can not expected to be polyhedral, not even convex. Therefore, an efficient
computation in a more general setup is required as we will discuss next.

5.1. Spheric-radial decomposition under Gaussian distribution

We propose here the so-called spheric-radial decomposition of a Gaussian dis-
tribution (e.g. [12]). By this approach a significantly reduce of variance while
estimating (24) can be expected compared to crude sampling. Additionally, the
proposed method offers the possibility of an efficient approximation of gradi-
ents with respect to the optimization parameter x. To consider Gaussian or more
general Gaussian-like distribution in context of gas transmission comes up in
natural way. Even if the main variation of exit load data is temperature driven,
certain temperature classes of sufficient large temperature range (usually 2K) can
be identified such that considerable random variation remains within each tem-
perature class. By this way the exit demandmay be characterized by a finite family
of multivariate distributions covering the given set of exit points according to
different temperature intervals (for more details see [1, Chapter 13]). As stated
in the same reference [1, Table 13.3], these distributions are most likely to be
Gaussian (possibly truncated) or lognormal. We are going to sketch the usage
of the spheric-radial decomposition method by the assumption of a underly-
ing multivariate Gaussian distribution for ξ . As shown in Section 6 later on, the
methodology can easily adapted without much effort to a more realistic setting,
like truncated Gaussian distribution. The following result is well-known.

Theorem 5.1 (spheric-radial decomposition): Let ξ ∼ N (μ,�) be some m-
dimensional Gaussian distribution with mean vector μ and covariance matrix �.
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Then, for any Borel measurable subset M ⊆ R
m it holds that

P(ξ ∈ M) =
∫

Sm−1
μχ {r ≥ 0 | rLv + μ ∈ M}dμη(v),

where S
m−1 is the (m − 1)-dimensional sphere in R

m, μη is the uniform distribu-
tion on S

m−1, μχ denotes the χ-distribution with m degrees of freedom and L is
such that � = LLT (e.g. Cholesky decomposition).

In order to evaluate the integrand in the spheric integral above, for any fixed
direction v ∈ S

m−1 one has to compute theχ-probability of the one-dimensional
set

{r ≥ 0 | (rLv + μ) ∈ M}.
Since we are interested in the probability of the set Mx, this amounts by (23) to
characterizing the set

{r ≥ 0 | g̃k,l(x, rLv + μ) ≥ 0; k, l = 0, . . . , |V|} (v ∈ S
|V|−1). (25)

Using the idea of spheric-radial decomposition presented in Theorem 5.1, we
propose the following algorithm for computing the probability P(ξ ∈ Mx) for a
fixed value x. The conceptual formof the algorithm can be found in [4, Algorithm
4]. Here, we proceed with the reformulation specifically for optimization prob-
lems with probabilistic constraints in [5, Algorithm 3.1].

Algorithm 5.1 (Function evaluation): Let be x ≥ 0, ξ ∼ N (μ,�) and L such
that � = LLT:

(1) Sample N points {v1, v2, . . . , vN} uniformly distributed on the sphere S
|V|−1.

(2) i:=0; S:=0.
(3) i:= i+1. Find the zero’s of the one-dimensional function (in r for x fixed)

θ ix(r) := min
k,l=0,...,|V|

g̃k,l(x, rLvi + μ)

with g̃k,l(·, ·) defined in (13), and, represent the set Mi
x := {r ≥ 0 | θ ix(r) ≥ 0}

corresponding to (25) as a disjoint union of intervals:Mi
x = ∪t

j=1[αj(x),βj(x)],
where αj(x), βj(x) are the zero’s obtained before and ordered appropriately.

(4) Compute the χ-probability of Mi
x according to

μχ(Mi
x) =

∑
j
Fχ

(
βj(x)

) − Fχ

(
αj(x)

)
, (26)

where Fχ refers to the cumulative distribution function of the one-dimensional
χ-distribution with |V| degrees of freedom. Put S := S + μχ(Mi

x).
(5) Continue, if i<N, with step 3.
(6) Finally, set P (ξ ∈ Mx) := S/N.
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It is obvious that the above algorithm only provides an approximation to the
spheric integral in Theorem 5.1. The integral is replaced by a finite sum based on
samples for the unique sphere and representing the average value of the inte-
grand. Nevertheless, the accuracy of approximation can be controlled by the
sampling sizeN that should be chosen reasonably large compared to the problem
dimension |V| (the number of exit nodes). Computation of the zero’s of the one-
dimensional function θ ix(r) (step 3 of the algorithm) can be done analytically.
As disclosed in formula (13) the constraint mappings g̃k,l(·, ·) provide a partic-
ular quadratic structure such that θ ix(r), i = 1, . . . ,N, turn out to be piecewise
quadratic functions as well.

Another remark concerns the sampling scheme on the unique sphere. As it is
comprehensible that the uniform distribution on the sphere S

|V|−1 can be repre-
sented as the distribution of η/‖η‖ (here ‖ · ‖ is the Euclidean norm), where η has
a standard Gaussian distribution in R

|V|, a simple way to sample points vi on the
sphere as in step 1 of Algorithm 5.1 is as follows. Sample independently a num-
ber of |V| values wj of the one-dimensional standard normal distribution, and,
putting vi := w/‖w‖ for w := (w1, . . . ,w|V|). Even if standard random genera-
tors for sampling of the normal distribution could be used, a better choice would
be the application of Quasi-Monte Carlo sampling. Such sampling is based on
deterministic low discrepancy sequences and it provides a relevant improvement
in the precision of the result, as observed in [4], where Monte Carlo as well as
Quasi-Monte Carlo sampling is studied for the problem of nomination validation
in gas networks.

5.2. Computing gradients of the probability function

As well as the function evaluations also gradient computations in view of the
probabilistic constraints within the capacity problem are needed in order to solve
the problemefficiently. The above spheric-radial decomposition approach has the
advantage that inmany situations derivatives with respect to involved parameters
can be computed without additional effort by using nearly the same approxima-
tion scheme.As shown in [7, 13], gradients can be represented as spheric integrals
as well, just with different integrands. The basis for computing derivatives is the
gradient formula for the probability function

ϕ(x) := P
(
g(x, ξ) ≥ 0

)

(see Section 2) formulated in [7, Theorem 4.1]. Under some regularity assump-
tions for the constraintmapping g(·, ·) including differentiability in both and con-
vexity in the second argument we have the following representation. If g(x,μ) ≥
0, in the Gaussian case ξ ∼ N (μ,�) and with the notation of Theorem 5.1, the
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gradient of ϕ(·) is of the form
∇ϕ(x)

=
∫

v∈Sm−1
#J(x,v)=1

− χ(ρ(x, v))

〈∇ξ gj(v)(x, ρ(x, v)Lv + μ), Lv〉∇xgj(v)(x, ρ(x, v)Lv + μ)dμη(v),

(27)

where χ denotes the density of the χ-distribution, ρ(x, v) := max{r ≥
0 | g(x, rLv + μ) ≥ 0} and J(x, v) := {j ∈ {1, . . . , k} | gj(x, ρ(x, v)Lv + μ) = 0}.
Moreover, the index j(v) is the unique index j ∈ {1, . . . , k} satisfying gj(x, ρ(x, v)

Lv + μ) = 0. Unfortunately, as mentioned before the property of convexity with
respect to the capacity problem will not be satisfied in general. Anyway, we are
going to use the gradient formula (27) as pattern for an algorithmic computa-
tion of the gradient similar to Algorithm 5.1. One reason for doing so is that
we consider bounded feasibility sets Mx only, i.e. the above convexity condition
is quite strong just to ensure that the radius function ρ(x, v) is well-defined for
any radial v ∈ S

m−1. Therefore, the convexity condition could be replaced by the
much weaker requirement of starshapeness with respect to the feasibility set in
order to achieve the same gradient formula. Even though starshapeness of fea-
sibility sets is hardly to verify, nevertheless, it is a reasonable condition in the
context of gas transportation networks.

However, by applying formula (27) in a more general case we want to
adapt Algorithm 5.1 in order to compute the gradient of the probability func-
tion, approximately. Therefore, the zero’s αj(x), βj(x) of the functional θ ix(r) in
Algorithm 5.1 play the role of the radius function ρ(x, v) in (27) for any direc-
tion v = vi, i = 1, . . . ,N. By inclusion of the partial derivatives (gradients) of the
constraints g̃k,l(·, ·) we provide the following algorithm.

Algorithm 5.2 (Gradient evaluation): Let be x ≥ 0, ξ ∼ N (μ,�) and L such
that � = LLT:

(1) Sample N points {v1, v2, . . . , vN} uniformly distributed on the sphere S
|V|−1.

(2) i := 0; S′ := 0.
(3) i:= i+1. Find the zero’s of the one-dimensional function (in r for x fixed)

θ ix(r) := min
k,l=0,...,|V|

g̃k,l(x, rLvi + μ)

with g̃k,l(·, ·) defined in (13), and, represent the set Mi
x := {r ≥ 0 | θ ix(r) ≥ 0}

corresponding to (25) as a disjoint union of intervals:Mi
x = ∪t

j=1[αj(x),βj(x)],
where αj(x), βj(x) are the zero’s obtained before and ordered appropriately.

(4) To any of the zero’s αj(x), βj(x) select the active constraints, i.e. assign index
mappings τα(j), τβ(j) ∈ {0, . . . , |V|}2 such that

g̃τα(j)(x,αj(x)Lv + μ) = 0 and g̃τβ(j)(x,βj(x)Lv + μ) = 0. (28)
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Compute the derivative of the χ-probability of Mi
x according to

Dα
j (x) = fχ

(
αj(x)

)
〈∇ξ gτα(j)(x,αj(x)Lvi + μ), Lvi〉∇xgτα(j)(x,αj(x)Lvi + μ),

Dβ
j (x) = fχ

(
βj(x)

)
〈∇ξ gτβ(j)(x,βj(x)Lvi + μ), Lvi〉∇xgτβ(j)(x,βj(x)Lvi + μ),

∇x
(
μχ(Mi

x)
) =

∑
j
Dα
j (x) − Dβ

j (x), (29)

where fχ refers to the probability density function of the one-dimensional χ-
distribution with |V| degrees of freedom. Put S′ := S′ + ∇x

(
μχ(Mi

x)
)
.

(5) Continue, if i<N, with step 3.
(6) Finally, set ∇x (P (ξ ∈ Mx)) := S′/N.

Before concluding this section some remarks to the stated Algorithms 5.1
and 5.2 are appropriate. The update formula (29) for the derivative of the proba-
bility function with respect to the parameter x in step 4 of Algorithm 5.2 can be
considered as rigorous differentiation of formula (26) for updating the probability
within step 4 of Algorithm 5.1. Since we have

∇x
(
Fχ

(
βj(x)

) − Fχ

(
αj(x)

)) = fχ
(
βj(x)

)∇xβj(x) − fχ
(
αj(x)

)∇xαj(x),

formula (29) in Algorithm 5.2 appears when inserting the gradients∇xαj(x) and
∇xβj(x) which are obtained by total differentiation of the equations in (28) with
respect to x and resolving them for ∇xαj(x) and ∇xβj(x), respectively. More-
over, note that both algorithms are compatible in a sense that, after computing
the sampling scheme on the unique sphere, one and the same sample vi can be
employed in order to update values and gradients of the involved probability
function. Also the needed zero’s αj(x) and βj(x) are the same here. In general,
determining these zero’s corresponds to the most expensive parts. On the other
hand, due to the analytical representation (13) the partial derivatives of the map-
pings g̃k,l(·, ·) can easily be determined analytically (similar to Lemma 4.2). To
perform both function end gradient evaluations, almost no additional effort for
computing gradients is needed when computing function values and performing
Algorithms 5.1 and 5.2 simultaneously.

The strategy of computing function values and gradients of the probabilistic
constraints of the capacity problem by Algorithms 5.1 and 5.2 can be embedded
into a simple projected gradient method. Clearly, due to the non-convexity of
the model, performing a projected gradient method causes a termination at local
minima, in general. Therefore, the accuracy strongly depend on finding reason-
able starting points heuristically. However, the practicability of the approach is
shown in the next section, where a numerical study related to realistic network
data is presented.
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6. Numerical study

In this section we finally want to test the performance of the presented method-
ology for solving the problem of maximizing bookable capacities. Clearly, here
we use the reformulation in terms of the classical probabilistic constrained opti-
mization problem obtained in (14). In order to solve the underlying non-linear
optimization problem we designed a straight forward descent method based on
projected gradients. The core of the method consists in local linearizations of
the feasibility set and the projection of the negative objective gradient onto these
linearizations. Whenever this projection is non-zero a new descent step can be
performed which results in a feasible point with improved objective. Because the
descent direction could point away from the feasibility set, if necessary, a redirec-
tion back to the feasibility setmust be performed, where the gradient information
of the constraints may be used. The method terminates in a stationary point,
where the projected objective gradient is zero.

The described descentmethod actually aims to solve aminimumproblem that
can be obtained just by switching the sign of the objective function in (14). All
needed to perform thismethod are function and gradient evaluations for both the
objective and constraint function. Function values and derivatives of the objec-
tive are computed analytically. Because we do not assume any preferences in the
allocation of new capacities, the weight vector in the objective of problem (14) is
chosen just as cT = (1, . . . , 1).

For the probabilistic constraint, represented by the probability function, the
spheric-radial decomposition is applied. More precisely, Algorithm 5.1 and
Algorithm 5.2 from the previous section are used in order to compute func-
tion values and gradients. Therefore, we employed Quasi-Monte Carlo (QMC)
sampling on the bases of Sobol sequences as a special case of low-discrepancy
sequences that are included in the category of (t,m, d)-nets and (t, d) sequences
[14]. A QMC sample of 10 000 scenarios was created according to a standard
Gaussian distribution (zero mean and identity covariance matrix). Normalizing
each scenario to unit length provides a sample of the uniform distribution on
the sphere as required in the simultaneous update of values and gradients of the
probability function within Algorithms 5.1 and 5.2.

The appropriate choice of model parameters is a crucial step in numeri-
cal experiments. In the view of exit load nominations, as already mentioned,
[1, Chapter 13] provides a wide study concerning the statistical analysis of gas
demand data in real gas networks. The approach is based on analyzing historical
data with respect to different temperature classes and in identifying multivariate
distributions coming up into consideration. According to the results, random gas
demand can often be described by combinations of Gaussian-like multivariate
distributions (Gaussian, truncated Gaussian, lognormal). Distribution parame-
ters like mean, standard deviation and correlations can be estimated statistically
from historical data, where the network ownermay benefit from a long term data
record.
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Table 1. Results for the gas net example of medium size.

Probability Average demand (kW) Free capacity (kW) Descent steps Computing time (s)

0.95 19,685.93 1147.73 72 51.14
0.90 19,685.93 2119.57 104 90.08
0.85 19,685.93 2692.52 132 126.68
0.80 19,685.93 3127.60 153 140.95

Notes: Displayed are the obtained free bookable capacities (total sum for all exits) compared to the average of the
total gas demand at all exits computed by solving problem (14) for different chosen probability levels and fixed
underlying multivariate normal distribution for the exit demand.

Figure 5. Network topology of amedium sized gas net for the example of Gaussian exit demand.
Illustration of the solution of the capacity maximization at exit points for different probability lev-
els p= 0.90 (left) and p= 0.80. The entry and exit points are displayed in black (entry) and white
(exit), respectively. A decreasing probability level allows for a higher allocation of capacities in
certain regions of the network highlighted by coloured circles of different size.

6.1. Multivariate Gaussian distribution

We start our numerical experiences with an example wherein assuming a mul-
tivariate Gaussian distributed exit demand as in Theorem 5.1 with parameters
(mean μ, covariance �) chosen in a way to represent real-life data.

The particular gas net is taken from [15]. The parameters are in fact slightly
modified distribution parameters obtained from a real gas network and adapted
to an artificial example net containing one entry node, 11 exit nodes and repre-
senting a tree. All remaining network parameters, particularly roughness, lower
and upper pressure bounds are chosen in range of typical values for existing gas
nets.

Results for solving the problem of maximizing bookable capacities (14) for
Gaussian distributed exit demand are displayed in Table 1. In addition, Figure 5
visualizes the network topology and the allocated free capacities at the exit nodes
for the selected probability levels p=0.90 and p=0.80, respectively. Clearly, a
decreasing probability level for technical feasibility of random demand yields an
increasing free capacity left in the net.

In Figure 6 we perform a posterior check of the computed solution for the
probability level p=0.80. By a simulation of 4 sets of exit load situations accord-
ing to the chosen Gaussian distribution we check the feasibility of the computed
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Figure 6. Four simulated exit demand realizations according to the chosen multivariate Gaus-
sian distribution and the respective available free capacity compared to the allocated capacity
provided by the numerical solution for the medium network for the probability level p= 0.80.
Feasible and infeasible situations are displayed in different shapes.

solution, i.e. the allocated capacity, against the particular exit demand in the
robust sense of (10). Feasibility is displayed by green circles indicating that the
computed capacity as solution of (14) could even be increased by upscaling while
remaining feasible with respect to the simulated scenario. On the other hand, if
the allocated capacity exceeds the possible technical feasibility in the simulated
situation, this is displayed by red circles according to a needed downscale of the
solution in order to become feasible with respect to the robust condition (10). As
seen in Figure 6, three out of four simulated exit demand situations turn out to
be feasible whereas in one case the solution do not satisfy the simulated demand.
However, when simulating a large set of such scenarios, say 1000, it would turn
out that according to the probability level p=0.80 approximately 800 are feasible,
while 200 are infeasible.

6.2. Extension tomore general distributions

As discussed, according to [1] Gaussian and Gaussian-like distributions are
mostly relevant for describing random demand in gas transportation networks.
But in fact, the described methodology to treat optimization problems with
probabilistic constraints via spheric-radial decomposition can be extended even
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to more general distributions. In [16] the class of elliptical distributions is con-
sidered, where the approach is used for the investigation of probability functions
acting on nonlinear systems wherein the random vector can follow an ellip-
tically symmetric distribution. Beside the Gaussian distribution the Student’s
distribution would be another example for an elliptically symmetric distribution.

In the context of capacity optimization in a gas transportation network, we
want to discuss a slightly more realistic situation, where gas nominations are
in fact regulated by contracts between the network owner and the customers.
Such contracts usually provide upper limits for the quantity of gas that could be
delivered to the customers. Therefore, in the second numerical example for the
problem of maximizing bookable capacities we will suppose that the stochastic
exit demand vector ξ follows a truncated multivariate Gaussian distribution

ξ ∼ T N (μ,�, [0, L]). (30)

More precisely, the distribution of ξ is obtained by truncating a |V|-dimensional
Gaussian distribution with mean μ and covariance matrix � to an |V|-
dimensional rectangle [0, L] with upper limits Lk at exit node k. Therefore, the
vector L represents booking limits given by former contracts. Clearly, the net-
work owner is aiming to extend these limits by the allocation of free network
capacities according to the solution of (14).

We want to proceed with the same methodology from Section 5, in particular,
we want to apply Algorithms 5.1 and 5.2 based on spheric-radial decomposition
in order to solve the capacity problem (14), but under truncated instead of Gaus-
sian distribution. Therefore, a transformation back to a normal distribution can
be discovered as follows. By definition of the truncated normal distribution, (30)
is equivalent to the property

P (ξ ∈ A) = P
(
ξ̃ ∈ A ∩ [0, L]

)
P
(
ξ̃ ∈ [0, L]

)
for all Borelmeasurable subsetsA ofR|V|, and, where ξ̃ is the associatedGaussian
random vector with ξ̃ ∼ N (μ,�). Hence, in order to determine probabilities
under a truncated Gaussian distribution, it is sufficient to be able to determine
probabilities under the Gaussian distribution itself. Applying this observation to
the probabilistic constraint of the capacity problem, the equivalent representation
to the reformulation (14) of the problem of maximizing bookable capacities with
truncated Gaussian exit load distribution T N (μ,�, [0, L]) reads

maximize cTx subject to

P

⎛
⎝

⎧⎨
⎩
g̃k,l(x, ξ̃ ) ≥ 0 (k, l = 0, . . . ,V)

ξ̃k ≥ 0 (k = 1, . . . ,V)

ξ̃k ≤ Lk (k = 1, . . . ,V)

⎫⎬
⎭

⎞
⎠ ≥ p · P

(
ξ̃ ∈ [0, L]

)
, (31)
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Table 2. Numerical results for the gas net example of large size.

Probability Average demand (kW) Free capacity (kW) Descent steps Computing time (s)

0.95 28,870.74 727.08 20 212.66
0.90 28,870.74 1271.07 32 277.58
0.85 28,870.74 1654.31 53 362.09
0.80 28,870.74 1941.04 45 363.83

Notes: Displayed are the obtained free capacities (total sum for all exits) compared to the average of the total gas
demand at all exits computed by solving problem (14) for different chosen probability levels and fixed underlying
multivariate truncated normal distribution for the exit demand.

Figure 7. Network topology of the large sizednetwork for the example of truncatedGaussian exit
demand. Illustration of the solution of the capacity maximization at exit points for the probability
level of p= 0.80. The entry and exit points are displayed as before. The picture shows the allocated
free capacities obtained at the particular exit nodes of the network. Quantities are highlighted by
coloured circles of different size.

where ξ̃ ∼ N (μ,�) is the Gaussian distribution with mean μ and covariance
matrix � and g̃k.l(·, ·) ≥ 0 corresponds to the system of inequalities obtained
in (13). Hence, the modified problem formulation (31) arises from (14) only by
adding additional box constraints to the system of random inequalities, and, by
scaling the given probability accordingly. The probability value P(ξ̃ ∈ [0, L]) can
easily be computed by the spheric-radial decomposition, or alternatively, by other
efficient computation schemes for the probability of rectangles when dealingwith
multivariate normal distributions [11].

The following numerical results are obtained for a larger example network
containing 1 entry and 43 exit nodes. The more realistic sized network could be
viewed as a topological extension of the medium size network before. Although
this network is academical constructed as well, the network parameters are
adapted from real networks in the same way as before. The initial multivari-
ate truncated Gaussian distribution again involves correlations between the exit
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points. The truncation limits are chosen in a way that one obtains an initial prob-
ability level of approximately p=0.98 for the technical feasibility of the random
demand (with no capacity extension). The truncation probability in (31), i.e. the
Gaussian probability of the rectangle [0, L], turns out to be P(ξ̃ ∈ [0, L]) = 0.71.
However, the high initial probability level allows for allocating free capacities
when decreasing the prescribed probability as shown in Table 2. In Figure 7,
a visualization of the network topology and the allocated free capacities at the
exit nodes for the second example under truncated Gaussian distribution and
for a selected probability level of p=0.80 is given. It turns out that, although no
preferences such as certain weights are assigned to the different exit points, the
total amount of allocated free capacity is not uniformly distributed at the whole
network. In fact, network and distribution specifics play the major role when
answering the question of allocating and maximizing free bookable capacities.

Conclusion

This paper concerns a deep theoretical analysis of a class of optimization prob-
lems with probabilistic constraints. The investigation is motivated by an applica-
tion coming up with optimization in gas transport under uncertainty. Substantial
structural questions are answered in that context. But themain theoretical results
of this paper allow for application beyond the gas context. A constraint quali-
fication for the differentiability of probability functions has been provided for
situations, where the rank 2 condition is violated in some points. Some easily ver-
ifiable measure zero condition based on the general result in [10, Theorem 2.4]
has been added for such cases. The paper is completed by a numerical study of a
highly relevant problem, themaximization of bookable capacities in an entry/exit
gas transportation model. The presented methodology and algorithmic pro-
vide a pattern for general numerical treatment of problems with probabilistic
constraints.
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