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Summary
Strain engineering for semiconductor devices or lithium-ion
batteries requires a good understanding of elastic effects that
strongly influence their functional properties
Problems in the modeling of material systems related to:
– Choice of free energy density with suitable properties
– Dimension reduction for lower-dimensional structures
In lower-dimensional structures, mathematical challenges arise
due to the coupling of mechanical deformation with other
physical effects such as electrostatics
Use variational techniques, e.g., Γ-convergence, combined with
modern tools for nonlinear partial differential equations

Polyconvex energy densities with generic elastic constants
Variational models of elasticity

reference domain Ω ⊆ Rn

deformation v : Ω → Rn

elastic energy
∫
Ω

W(∇v) dx ⇒ min!

Modeling assumptions for free energy density W : Rn×n → [0,∞]:
frame invariance: W(RF) = W(F) for all R ∈ SO(n) and all F ∈ Rn×n

material symmetry: For the point group P ⊆ O(n)
W(PTFP) = W(F) for all P ∈ P and all F ∈ Rn×n

normalization: W(F) ≥ 0 and [W(F) = 0 ⇐⇒ F ∈ SO(n)]
existence of minimizers: W polyconvex [Ball ’77], i.e., there exists a
convex and lower semi-continuous function G : Rτ (n) → [0,∞] s.t.

W(F) = G(T(F)), where T(F) = (F, det(F), cof (F), . . . )
linearization and measured elastic constants:

W(Id + ε) = W(Id) + DW(Id)ε +
1
2
D2W(Id)[ε, ε] + o(|ε|2)

=
1
2
∑
ijkl

Cijklεijεkl + o(|ε|2)

smoothness and non-interpenetration: W ∈ C∞(Rn×n) or
W ∈ C∞(Rn×n ∩ {det > 0}) and W(F) → ∞ as det F → 0

Typical approaches in the literature
linear elastic energy density evaluated at nonlinear strains [?],
which leads to non-polyconvex W
specific ansatz using structural tensors → restrictions on elastic
constants

Result [Conti, Lenz & Zwicknagl, in preparation]:
Let P be a subgroup of O(n), C : Rn×n → Rn×n linear, symmetric s.t.

Cξ : ξ ≥ c̃|ξ + ξT|2, C(ξ − ξT) = 0 for all ξ ∈ Rn×n,

C(RξRT) : (RξRT) = Cξ : ξ for all ξ ∈ Rn×n, R ∈ P.
Then,
(i) there is a polyconvex function W ∈ C∞(Rn×n; [0,∞)) s.t.

W(ξ) ≥ cdist2(ξ,SO(n)), minW = W(Id) = 0, D2W(Id) = C
and

W(QRTξR) = W(ξ) for all Q ∈ SO(n), R ∈ P, ξ ∈ Rn×n.

(ii) there is a polyconvex function W ∈ C∞(Rn×n ∩ {det > 0}; [0,∞))
s.t. W(ξ) → ∞ as det ξ → 0 and (i) holds.

Idea of the proof: Use linear elastic energy density evaluated at non-
linear strain near SO(n), and construct explicit polyconvex extension
using curvature of SO(n).

Rigorous dimension reduction via Γ-convergence
Thin structures with thickness 0 < h ≪ 1

plates Ωplate
h = ω ×

(
−h

2,+
h
2

)
, ω ⊂ Rn−1

rods Ωrod
h = (0, L)× hS, S ⊂ Rn−1

Finite-strain electro-mechanical model for deformation v and
electric potential φ

−div
((

detM(x)∂FW(∇vM(x)−1)M(x)−⊤ − hαdivH(∇2v)
)
= 0,

−div(A(x,∇v)∇φ) = q(x),
hyperstress regul. H leads to 2nd-grade nonsimple materials
prestrain M(x) ∈ Rn×n models lattice mismatch in heterostructures
A(x, F) = (det F)F−1a(x)F−⊤, F = ∇v, is the pulled-back dielectric
coefficient, a ∈ L∞(Ωh) such that a(x) ≥ a0 > 0 a.e. in Ωh, fixed
charge density q ∈ L∞(Ωh)

System has saddle-point structure with energy functional
Eh(v, φ) = Emech

h (v)− Eelec
h (v, φ)

=

∫
Ωh

W(∇vM−1) detM + hαH(∇2v) + qφ− 1
2 A(∇v)∇φ · ∇φ dx

Work in progress: Limit passage for h → 0 for thin plate in the bending
regime, i.e., for the scaling Ẽh =

1
h2Eh via Γ-convergence methods.

At the first stage, we have proved the Γ− convergence result for bend-
ing model with prestrain coupled by the Poisson equation without de-
formation, ∇v = id, and with isotropic permeability.
Outlook: Investigate rod model and different scaling regimes.

Strain distribution in zincblende and wurtzite GaAs nanowires
mathematical model for heterostructures
reacting on strain caused by lattice mismatch [?]
non-linear elasticity with local prestrain
simulations using finite element methods
significant potential of strain to influence
piezoelectricity and electronic band structure

Vacancy assisted charge transport (with PaA-1)
Application: semiconductor/perovskite/semiconductor
heterostructures for perovskite solar cells
analysis of drift-diffusion models including the migration of ions:
existence of weak solutions, boundedness [?], and uniqueness
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1 Introduction and model equations

Perovskite solar cells are a groundbreaking technology in photovoltaics, expecting a significant impact on the field of renew-
able energies. It’s progress is based on perovskite materials’ outstanding optical and electronic properties [10]. Perovskites
belong to a class of crystalline semiconductors and have several advantages like adjustable band gaps, high absorption coef-
ficients, and low exciton binding energies. With power conversion efficiency rates up to 30%, e.g. perovskite-silicon tandem
solar cells beat the efficiency of the widely used silicon solar cells under laboratory conditions [9]. The diffusion engineering
of the ionic migration is an important task to improve the efficiency of perovskite solar cells. Several experimental observations
and simulations indicate the occurrence of ionic vacancy accumulation near the perovskite interfaces [10]. To understand these
phenomena, so called vacancy-assisted charge transport models were derived. They include besides the motion of electrons
and holes also the movement of ionic vacancies in the perovskite material.
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c) un/p density of electrons/holes
ui densities of ionic vacancies, i ∈ I0,
vi chemical potentials, i ∈ I ,
zi charge numbers, i ∈ I ,
Nn/p effective density of states,
Ni maximal density of vacancies, i ∈ I0,
µi mobilities, i ∈ I ,
v0 electrostatic potential
ε dielectric permittivity
C doping density

Fig. 1: a) Principle structure of a perovskite solar cell, b) unit cell of perovskite material, c) notation for the model equations.
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a = 1.0 × 10 50 m2/(Vs)

a = 5.0 × 10 16 m2/(Vs)

a = 1.5 × 10 15 m2/(Vs)

a = 1.0 × 10 2  m2/(Vs)
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