Submitted

[1] C. Cancès, C. Chainais-Hillairet, J. Fuhrmann, and B. Gaudeul, “A numerical analysis focused comparison of several Finite Volume schemes for an Unipolar Degenerated Drift-Diffusion Model,” 2019. URL: https://hal.archives-ouvertes.fr/hal-02194604.

Refereed articles

[1] R. Müller, J. Fuhrmann, and M. Landstorfer, J. Electrochem. Soc., vol. 167, no. 10, p. 106512, Jun. 2020. DOI: 10.1149/1945-7111/ab9cca.

[2] D. H. Doan, A. Fischer, J. Fuhrmann, A. Glitzky, and M. Liero, “Drift-diffusion simulation of S-shaped current-voltage relations for organic semiconductor devices,” J Comput Electron, 2020. DOI: 10.1007/s10825-020-01505-6.

[3] A. Kirch, A. Fischer, M. Liero, J. Fuhrmann, A. Glitzky, and S. Reineke, “Experimental proof of Joule heating-induced switched-back regions in OLEDs.” Light Sci Appl, vol. 9, no. 5, 2020. DOI: 10.1038/s41377-019-0236-9.

[4] C. Cancès, C. Chainais-Hillairet, J. Fuhrmann, and B. Gaudeul, “A numerical analysis focused comparison of several Finite Volume schemes for an Unipolar Degenerated Drift-Diffusion Model,” IMA Journal of Numerical Analysis, 2020.

[5] P. Vágner, C. Guhlke, V. Miloš, R. Müller, and J. Fuhrmann, “A continuum model for yttria-stabilized zirconia incorporating triple phase boundary, lattice structure and immobile oxide ions,” Journal of Solid State Electrochemistry, vol. 23, pp. 2907–2926, 2019. DOI: 10.1007/s10008-019-04356-9.

[6] A. Zeghuzi, H.-J. Wünsche, H. Wenzel, M. Radziunas, J. Fuhrmann, A. Klehr, U. Bandelow, and A. Knigge, “Time-dependent simulation of thermal lensing in high-power broad-area semiconductor lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 6, 2019. DOI: 10.1109/JSTQE.2019.2925926.

[7] J. Fuhrmann, C. Guhlke, A. Linke, C. Merdon, and R. Müller, “Induced charge electroosmotic flow with finite ion size and solvation effects,” Electrochimica Acta, vol. 317, pp. 778–785, 2019. DOI: 10.1016/j.electacta.2019.05.051.

[8] M. Radziunas, J. Fuhrmann, A. Zeghuzi, H.-J. Wünsche, T. Koprucki, C. Brée, H. Wenzel, and U. Bandelow, “Efficient coupling of dynamic electro-optical and heat-transport models for high-power broad-area semiconductor lasers,” Optical and Quantum Electronics, vol. 51, no. 3, p. 69, Feb. 2019. DOI: 10.1007/s11082-019-1792-1.

[9] M. Patriarca, P. Farrell, J. Fuhrmann, and T. Koprucki, “Highly accurate quadrature-based Scharfetter–Gummel schemes for charge transport in degenerate semiconductors,” Computer Physics Communications, vol. 235, pp. 40–49, 2019. DOI: 10.1016/j.cpc.2018.10.004.

[10] P. Farrell, M. Patriarca, J. Fuhrmann, and T. Koprucki, “Comparison of thermodynamically consistent charge carrier flux discretizations for Fermi–Dirac and Gauss–Fermi statistics,” Optical and Quantum Electronics, vol. 50, no. 2, p. 101, Feb. 2018. DOI: 10.1007/s11082-018-1349-8.

[11] A. Bradji and J. Fuhrmann, “On the convergence and convergence order of finite volume gradient schemes for oblique derivative boundary value problems,” Computational and Applied Mathematics, vol. 37, no. 3, pp. 2533–2565, 2018. DOI: 10.1007/s40314-017-0463-8.

[12] J. Fuhrmann, A. Glitzky, and M. Liero, “Electrothermal description of organic semiconductor devices by p (x)-laplace thermistor models,” PAMM, vol. 17, no. 1, pp. 701–702, 2017. DOI: 10.1002/pamm.201710319.

[13] M. Radziunas, A. Zeghuzi, J. Fuhrmann, T. Koprucki, H.-J. Wünsche, H. Wenzel, and U. Bandelow, “Efficient coupling of the inhomogeneous current spreading model to the dynamic electro-optical solver for broad-area edge-emitting semiconductor devices,” Optical and Quantum Electronics, vol. 49, no. 10, p. 332, Sep. 2017. DOI: 10.1007/s11082-017-1168-3.

[14] M. Liero, J. Fuhrmann, A. Glitzky, T. Koprucki, A. Fischer, and S. Reineke, “3D electrothermal simulations of organic LEDs showing negative differential resistance,” Optical and Quantum Electronics, vol. 49, no. 10, p. 330, Sep. 2017. DOI: 10.1007/s11082-017-1167-4.

[15] P.Farrell, T. Koprucki, and J. Fuhrmann, “Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics,” Journal of Computational Physics, vol. 346, pp. 497–513, 2017. DOI: 10.1016/j.jcp.2017.06.023.

[16] J. Fuhrmann, “A numerical strategy for Nernst–Planck systems with solvation effect,” Fuel cells, vol. 16, no. 6, pp. 704–714, 2016. DOI: 10.1002/fuce.201500215.

[17] C. Merdon, J. Fuhrmann, A. Linke, F. Neumann, T. Streckenbach, H. Baltruschat, and M. Khodayari, “Inverse modeling of thin layer flow cells for detection of solubility, transport and reaction coefficients from experimental data,” Electrochimca Acta, pp. 1–10, 2016. DOI: 10.1016/j.electacta.2016.05.101.

[18] H. Baltruschat, M. Khodayari, P. Reinsberg, A. A. Abd-El-Latif, C. Merdon, and J. Fuhrmann, “Determining solubility and diffusivity using a flow cell coupled to mass spectrometer,” ChemPhysChem, pp. 1647–1655, 2016. DOI: 10.1002/cphc.201600005.

[19] J. Fuhrmann, “Comparison and numerical treatment of generalised Nernst–Planck models,” Computer Physics Communications, vol. 196, pp. 166–178, 2015. DOI: 10.1016/j.cpc.2015.06.004.

[20] T. Koprucki, N. Rotundo, P. Farrell, D. H. Doan, and J. Fuhrmann, “On thermodynamic consistency of a Scharfetter-Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement,” Optical and Quantum Electronics, vol. 57, no. 6, pp. 1327–1332, 2015. DOI: 10.1007/s11082-014-0050-9.

[21] R. Eymard, J. Fuhrmann, and A. Linke, “On MAC schemes on triangular Delaunay meshes, their convergence and application to coupled flow problems,” Numerical Methods for Partial Differential Equations, vol. 30, no. 4, pp. 1397–1424, 2014. DOI: 10.1002/num.21875.

[22] A. Bradji and J. Fuhrmann, “Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes,” Applications of Mathematics, vol. 58, no. 1, pp. 1–38, 2013. DOI: 10.1007/s10492-013-0001-y.

[23] C. Batallion, F.Bouchon, C. Chainais-Hillairet, J. Fuhrmann, E. Hoarau, and R. Touzani, “Numerical methods for the simulation of a corrosion model with moving oxide layer,” Journal of Computational Physics, vol. 213, pp. 6213–6231, 2012. DOI: 10.1016/j.jcp.2012.06.005.

[24] A. Fischer, P. Pahner, B. Lüssem, K. Leo, R. Scholz, T. Koprucki, J. Fuhrmann, K. Gärtner, and A. Glitzky, “Self-heating effects in organic semiconductor crossbar structures with small active area,” Organic Electronics, vol. 13, pp. 2461–2478, 2012. DOI: 10.1016/j.orgel.2012.06.046.

[25] M. Augustin, A. Caiazzo, A. Fiebach, J. Fuhrmann, V. John, A. Linke, and R. Umla, “An assessment of discretizations for convection-dominated convection-diffusion equations,” Comp. Meth. Appl. Mech. Engrg., vol. 200, pp. 3395–3409, 2011. DOI: 10.1016/j.cma.2011.08.012.

[26] J. Fuhrmann, H. Zhao, H. Langmach, Y. E. Seidel, Z. Jusys, and R. J. Behm, “The role of reactive reaction intermediates in two-step heterogeneous electrocatalytic reactions: A model study,” Fuel Cells, vol. 11, no. 4, pp. 501–510, 2011. DOI: 10.1002/fuce.201000112.

[27] J. Fuhrmann, A. Linke, and H. Langmach, “A numerical method for mass conservative coupling between fluid flow and solute transport,” Applied Numerical Mathematics, vol. 61, no. 4, pp. 530–553, 2011. DOI: 10.1016/j.apnum.2010.11.015.

[28] J. Fuhrmann, A. Fiebach, A. Erdmann, and P. Trefonas, “Acid diffusion effects between resists in freezing processes used for contact hole patterning,” Microel. Engrg., vol. 87, nos. 5-8, pp. 951–954, 2010. DOI: 10.1016/j.mee.2009.11.150.

[29] A. Bradji and J. Fuhrmann, “Error estimates of the discretization of linear parabolic equations on general nonconforming spatial grids,” CRAS, vol. 348, nos. 19-20, pp. 1119–1122, 2010. DOI: 10.1016/j.crma.2010.09.020.

[30] H. Si, K. Gärtner, and J. Fuhrmann, “Boundary conforming Delaunay mesh generation,” Comput. Math. Math. Phys., vol. 50, pp. 38–53, 2010. DOI: 10.1134/S0965542510010069.

[31] J. Fuhrmann, A. Linke, H. Langmach, and H. Baltruschat, “Numerical calculation of the limiting current for a cylindrical thin layer flow cell,” Electrochimica Acta, vol. 55, pp. 430–438, 2009. DOI: 10.1016/j.electacta.2009.03.065.

[32] J. Fuhrmann, A. Fiebach, M. Uhle, A. Erdmann, C. Szmanda, and C. Truong, “A model of self-limiting residual acid diffusion for pattern doubling,” Microel. Engrg., vol. 86, nos. 4-6, pp. 792–795, 2009. DOI: 10.1016/j.mee.2008.10.023.

[33] J.Fuhrmann, H.Zhao, E.Holzbecher, H.Langmach, M.Chojak, R.Halseid, Z.Jusys, and R. Behm, “Experimental and numerical model study of the limiting current in a channel flow cell with a circular electrode,” Phys. Chem. Chem. Phys., vol. 10, pp. 3784–3795, 2008. DOI: 10.1039/b802812p.

[34] J.Fuhrmann, H. Zhao, E. Holzbecher, and H. Langmach, “Flow, transport and reactions in a thin layer flow cell,” Journal of Fuel Cell Science and Technology, vol. 5, no. 2, p. 021008, 2008. DOI: 10.1115/1.2821598.

[35] R. Eymard, J. Fuhrmann, and K. Gärtner, “A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems,” Numerische Mathematik, vol. 102, no. 3, pp. 463–495, 2006. DOI: 10.1007/s00211-005-0659-5.

[36] B. Tollkühn, M. Uhle, J. Fuhrmann, K. Gärtner, A. Heubner, and A. Erdmann, “Benchmark of a lithography simulation tool for next generation applications,” Microelectronic Engineering, vol. 83, nos. 4-9, pp. 1142–1147, 2006. DOI: 10.1016/j.mee.2006.01.138.

[37] F. Magri, U. Bayer, V. Clausnitzer, C. Jahnke, H.-J. Diersch, J. Fuhrmann, P. Möller, A. Pekdeger, M. Tesmer, and H. Voigt, “Deep reaching fluid flow close to convective instability in the NE German Basin – results from water chemistry and numerical modelling,” Tectonophysics, vol. 397, nos. 1 – 2, pp. 5–20, 2005. DOI: 10.1016/j.tecto.2004.10.006.

[38] F. Magri, U. Bayer, C. Jahnke, V. Clausnitzer, H.-J. Diersch, J. Fuhrmann, P. Möller, A. Pekdeger, M. Tesmer, and H. Voigt, “Fluid-dynamics driving saline water in the north east german basin.” International Journal of Earth Sciences, vol. 94, nos. 5-6, pp. 1056–1069, 2005. DOI: 10.1007/s00531-005-0497-9.

[39] M. Efendiev, J. Fuhrmann, and S. Zelik, “The long-time behaviour of the thermoconvective flow in a porous medium,” Math. Methods Appl. Sci., vol. 27, no. 4, pp. 907–930, 2004. DOI: 10.1002/mma.478.

[40] J. Divisek, J. Fuhrmann, K. Gärtner, and R. Jung, “Performance modeling of a direct methanol fuel cell,” J. Electrochem. Soc., vol. 150, no. 6, pp. A811–A825, 2003. DOI: 10.1149/1.1572150.

[41] J. Fuhrmann, “Existence and uniqueness of solutions of certain systems of algebraic equations with off-diagonal nonlinearity,” Appl. Numer. Math., vol. 37, no. 3, pp. 359–370, 2001. DOI: 10.1016/S0168-9274(00)00052-0.

[42] J. Fuhrmann and H. Langmach, “Stability and existence of solutions of time-implicit finite volume schemes for viscous nonlinear conservation laws,” Appl. Numer. Math., vol. 37, nos. 1-2, pp. 201–230, 2001. DOI: 10.1016/S0168-9274(00)00039-8.

[43] J. Fuhrmann, D. Hömberg, and M. Uhle, “Numerical simulation of induction hardening of steel,” COMPEL, vol. 18, no. 3, pp. 482–494, 1999. DOI: 10.1108/03321649910275161.

[44] J. Fuhrmann and D. Hömberg, “Numerical simulation of surface heat treatments,” Int. J. Numer. Methods Heat Fluid Flow, vol. 9, no. 6, pp. 705–724, 1999. DOI: 10.1108/09615539910286042.

Edited

[1] R. Klöfkorn, E. Keilegavlen, F. A. Radu, and J. Fuhrmann, Eds., Finite volumes for complex applications IX. Methods, theoretical aspects, examples – FVCA IX, Bergen , Norway, June 2020, vols. Springer Proceedings in Mathematics & Statistics , vol. 323. Springer, 2020. URL: https://link.springer.com/book/10.1007/978-3-030-43651-3.

[2] J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds., Finite volumes for complex applications VII. Methods, theoretical aspects, and elliptic, parabolic and hyperbolic problems - FVCA 7, Berlin, June 2014, vols. Springer Proceedings in Mathematics & Statistics , vol. 77 and 78. Springer, 2014. URL: http://www.springer.com/978-3-319-06402-4.

Refereed proceedings and book chapters

[1] J. Fuhrmann, D. H. Doan, A. Glitzky, M. Liero, and and G. Nika, “Unipolar drift-diffusion simulation of s-shaped current-voltage relations for organic semiconductor devices,” in Finite Volumes for Complex Applications IX, Bergen (Norway), June 2020, R. Klöfkorn, F. Radu, E. Keijgavlen, and J. Fuhrmann, Eds. Springer, 2020. DOI: 10.1007/978-3-030-43651-3_59.

[2] C. Cancès, C. Chainais-Hillairet, J. Fuhrmann, and B. Gaudeul, “On four numerical schemes for a unipolar degenerate drift-diffusion model,” in Finite Volumes for Complex Applications IX, Bergen (Norway), June 2020, R. Klöfkorn, F. Radu, E. Keijgavlen, and J. Fuhrmann, Eds. Springer, 2020. DOI: 10.1007/978-3-030-43651-3_13.

[3] J. Fuhrmann, C. Guhlke, A. Linke, C. Merdon, and R. Müller, “Models and numerical methods for electrolyte flows,” in Topics in applied analysis and optimisation, 2019, pp. 183–209. DOI: 10.1007/978-3-030-33116-0_8.

[4] J. Fuhrmann, C. Guhlke, A. Linke, C. Merdon, and R. Müller, “Voronoi finite volumes and pressure robust finite elements for electrolyte models with finite ion sizes,” in Numerical geometry, grid generation and scientific computing, 2019, pp. 73–83. DOI: 10.1007/978-3-030-23436-2_5.

[5] M. Radziunas, J. Fuhrmann, A. Zeghuzi, H. -. Wünsche, T. Koprucki, H. Wenzel, and U. Bandelow, “Efficient coupling of heat-flow and electro-optical models for simulation of dynamics in high-power broad-area semiconductor lasers,” in 2018 international conference on numerical simulation of optoelectronic devices (nusod), 2018, pp. 91–92. DOI: 10.1109/NUSOD.2018.8570247.

[6] M. Patriarca, P. Farrell, J. Fuhrmann, T. Koprucki, and M. A. der Maur, “Highly accurate discretizations for non-boltzmann charge transport in semiconductors,” in 2018 international conference on numerical simulation of optoelectronic devices (nusod), 2018, pp. 53–54. DOI: 10.1109/NUSOD.2018.8570265.

[7] P. Farrell, N. Rotundo, D. H. Doan, M. Kantner, J. Fuhrmann, and T. Koprucki, “Numerical methods for drift-diffusion models,” in Handbook of optoelectronic device modeling and simulation: Lasers, modulators, photodetectors, solar cells, and numerical methods, vol. 2, J. Piprek, Ed. Boca Raton: CRC Press, 2017, pp. 733–771. URL: https://www.crcpress.com/Handbook-of-Optoelectronic-Device-Modeling-and-Simulation-Two-Volume-Set/Piprek/p/book/9781498749381.

[8] M. Radziunas, A. Zeghuzi, J. Fuhrmann, T. Koprucki, H.-J. Wünsche, H. Wenzel, and U. Bandelow, “Efficient coupling of inhomogeneous current spreading and electro-optical models for simulation of dynamics in broad-area semiconductor lasers,” in Proceedings of the 17th internationl conference on numerical simulation of optoelectronic devices, J. Piprek and M. Willatzen, Eds. Piscataway: IEEE Conference Publications Management Group, 2017, pp. 231–232. DOI: 10.1109/NUSOD.2017.8010076.

[9] M. Liero, J. Fuhrmann, A. Glitzky, T. Koprucki, A. Fischer, and S. Reineke, “Modeling and simulation of electrothermal feedback in large-area organic leds,” in Proceedings of the 17th international conference on numerical simulation of optoelectronic devices, J. Piprek and M. Willatzen, Eds. Piscataway: IEEE Conference Publications Management Group, 2017, pp. 105–106. DOI: 10.1109/NUSOD.2017.8010013.

[10] P. Farrell, T. Koprucki, and J. Fuhrmann, “Comparison of consistent flux discretizations for drift diffusion beyond boltzmann statistics,” in Proceedings of the 17th international conference on numerical simulation of optoelectronic devices, J. Piprek and M. Willatzen, Eds. Piscataway: IEEE Conference Publications Management Group, 2017, pp. 219–220. DOI: 10.1109/NUSOD.2017.8010070.

[11] J. Fuhrmann, A. Glitzky, and M. Liero, “Hybrid finite-volume/finite-element schemes for p(x)-Laplace thermistor models,” in Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017, C. Cancès and P. Omnes, Eds. Cham: Springer International Publishin, 2017, pp. 397–405. DOI: 10.1007/978-3-319-57394-6_42.

[12] J. Fuhrmann and C. Guhlke, “A finite volume scheme for Nernst-Planck-Poisson systems with ion size and solvation effects,” in Finite volumes for complex applications VIII - hyperbolic, elliptic and parabolic problems: FVCA 8, Lille, France, June 2017, C. Cancès and P. Omnes, Eds. Springer, 2017, pp. 497–505. DOI: 10.1007/978-3-319-57394-6_52.

[13] P. Farrell, T. Koprucki, and J. Fuhrmann, “Comparison of Scharfetter-Gummel flux discretizations under Blakemore statistics,” in Progress in industrial mathematics at ECMI 2016, P. Quintela and others, Eds. Springer, 2017, pp. 91–97. DOI: 10.1007/978-3-319-63082-3_13.

[14] M. Liero, A. Fischer, J. J., T. Koprucki, and A. Glitzky, “A PDE model for electrothermal feedback in organic semiconductor devices,” in Progress in industrial mathematics at ECMI 2016, P. Quintela and others, Eds. Springer, 2017, pp. 99–106. DOI: 10.1007/978-3-319-63082-3_14.

[15] T. Koprucki, M. Kantner, J. Fuhrmann, and K. Gaertner, “On modifications of the Scharfetter-Gummel scheme for drift-diffusion equations with Fermi-like statistical distribution functions,” in Proc. NUSOD 2014, J. Piprek, Ed. IEEE, 2014, pp. 155–156. URL: http://ieeexplore.ieee.org/xpl/abstractMetrics.jsp?reload=true&arnumber=6935403.

[16] J.Fuhrmann, A. Linke, and C. Merdon, “Coupling of fluid flow and solute transport using a divergence-free reconstruction of the Crouzeix-Raviart element,” in Finite volumes for complex applications vii, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds. Springer, 2014, pp. 597–605. DOI: 10.1007/978-3-319-05591-6_58.

[17] J.Fuhrmann, “Activity based finite volume methods for generalised Nernst-Planck-Poisson systems,” in Finite volumes for complex applications vii, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds. Springer, 2014, pp. 587–595. DOI: 10.1007/978-3-319-05591-6_59.

[18] A. Glitzky, K. Gärtner, J. Fuhrmann, T. Koprucki, A. Fischer, B. Lüssem, K. Leo, and R. Scholz, “Electro-thermal modeling of organic semiconductors describing negative differential resistance induced by self-heating,” in Proc. NUSOD 2013, J. Piprek, Ed. IEEE, 2013, pp. 77–78. URL: http://www.nusod.org/2013/nusod13_TuC2.pdf.

[19] J. Fuhrmann, M. Hülsebrock, and U. Krewer, “Energy storage based on electrochemical conversion of ammonia,” in Transition to renewable energy systems: Energy process engineering, D. Stolten and V. Scherer, Eds. Wiley, 2013, pp. 691–706. DOI: 10.1002/9783527673872.ch33.

[20] J. Fuhrmann, “Mathematical and numerical modeling of flow, transport and reactions in porous structures of electrochemical devices,” in Simulation of flow in porous media: Applications in energy and environment, P. Bastian, J. Kraus, R. Scheichl, and M. Wheeler, Eds. de Gruyter, 2013, pp. 139–164. DOI: 10.1515/9783110282245.139.

[21] J. Fuhrmann, A. Linke, and H. Langmach, “Mass conservative coupling between fluid flow and solute transport,” in Finite volumes for complex applications vi, J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds. Springer, 2011, pp. 475–483. DOI: 10.1007/978-3-642-20671-9_50.

[22] R. Eymard, J. Fuhrmann, and A. Linke, “MAC schemes on triangular Delaunay meshes,” in Finite volumes for complex applications vi, J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds. Springer, 2011, pp. 399–407. DOI: 10.1007/978-3-642-20671-9_42.

[23] A. Bradji and J. Fuhrmann, “Some error estimates for the discretization of parabolic equations on general multidimensional nonconforming spatial meshes,” in Proceedings of the 7th international conference on numerical methods and applications, 2011, pp. 369–376. URL: http://dl.acm.org/citation.cfm?id=1945690.1945741.

[24] A. Erdmann, F. Shao, J. Fuhrmann, A. Fiebach, G. P. Patsis, and P. Trefonas, “Modeling of double patterning interactions in litho-cure-litho-etch (LCLE) processes,” in Proc. SPIE optical microlithography xxiii, vol. 7640, 2010, p. 76400B. DOI: 10.1117/12.845849.

[25] J. Fuhrmann, A. Fiebach, and G. P. Patsis, “Macroscopic and stochastic modeling approaches to pattern doubling by acid catalyzed cross-linking,” in Proc. SPIE advances in resist materials and processing technology xxvii, vol. 7639, 2010, p. 76392I. DOI: 10.1117/12.846491.

[26] J. Fuhrmann and K. Gärtner, “Modeling of two-phase flow and catalytic reaction kinetics for DMFCs,” in Device and materials modeling in PEM fuel cells, vol. 113, S. Paddison and K. Promislow, Eds. Springer Topics in Applied Physics, 2009, pp. 297–316. DOI: 10.1007/978-0-387-78691-9_9.

[27] A. Bradji and J. Fuhrmann, “Some error estimates in finite volume methods of parabolic problems,” in Finite volumes for complex application v, R. Eymard and J.-M. Herard, Eds. ISTE Ltd, ISBN 978-1-84821-035-6, 2008, pp. 233–241. URL: http://www.iste.co.uk/index.php?p=a&ACTION=View&id=220.

[28] J. Fuhrmann, H. Zhao, H. Langmach, and E. Holzbecher, “Modeling and simulation of coupled species transport, porous electrode effects and catalytic reactions in a rectangular flow cell,” in Finite volumes for complex applications v, proc. Aussois, R. Eymard and J.-M. Herard, Eds. ISTE Ltd, ISBN 978-1-84821-035-6, 2008, pp. 423–431. URL: http://www.iste.co.uk/book.php?id=220.

[29] T. Koprucki, H.-C. Kaiser, and J. Fuhrmann, “Electronic states in semiconductor nanostructures and upscaling to semi-classical models,” in Analysis, modeling and simulation of multiscale problems, A. Mielke, Ed. Springer, 2006, pp. 365–394. DOI: 10.1007/3-540-35657-6_13.

[30] J. Fuhrmann, “Evaluation of numerical fluxes for a locally exact finite volume scheme using hypergeometric functions,” in Finite volumes in complex applications iv: Proc. Marrakech, F. Benkhaldoun, D. Ouazar, and S. Raghay, Eds. Paris: HERMES, ISBN 905209-48-7, 2005, pp. 337–344. URL: http://www.iste.co.uk/book.php?id=67.

[31] J. Fuhrmann and M. Petzoldt, “Robust error estimators for interface problems occuring in transport processes in porous media,” in Mathematics — key technology for the future, W. Jäger and H. J. Krebs, Eds. Springer, 2003, pp. 127–136. DOI: 10.1007/978-3-642-55753-8_10.

[32] J. Fuhrmann, “Multiphysics systems solution by time-implicit Voronoi box finite volumes,” in Finite volumes in complex applications iii: Proc. Porquerolles, R. Herbin and D. Kröner, Eds. Paris: HERMES, ISBN 1-9039-9634-1, 2002, pp. 551–559.

[33] J. Fuhrmann, D. Hömberg, and J. Sokolowski, “Modeling, simulation and control of laser heat treatments,” in Optimal control of complex structures (oberwolfach, 2000), vol. 139, Birkhäuser, 2002, pp. 71–82. DOI: 10.1007/978-3-0348-8148-7_6.

Theses

[1] J. Fuhrmann, “Zur Verwendung von Mehrgitterverfahren bei der numerischen Behandlung elliptischer partieller Differentialgleichungen zweiter Ordnung mit variablen Koeffizienten,” PhD thesis, Technische Universität Chemnitz-Zwickau; Verlag Shaker, Aachen, ISBN 3-8265-0522-0, 1994. URL: http://www.shaker.de/shop/978-3-8265-0522-5.

[2] Ю. Фурман, “Конечная порожденность плюриканонического кольца многообразий общего типа размерностей 2 и 3.” Diploma Thesis, Московский Госурарственный Университет им. М.В.Ломоносова., 1984.

Other contributions

[1] J. Fuhrmann, A. Linke, C. Merdon, M. Khodayari, and H. Baltruschat, “Modellbasierte ermittlung von transport-, reaktions- und löslichkeitsdaten aus dünnschichtzellexperimenten,” in Symposium elektrochemische methoden in der batterieforschung, A. Michaelis and M. Schneider, Eds. Fraunhofer Verlag, 2014, pp. 105–111. URL: http://publica.fraunhofer.de/eprints?urn:nbn:de:0011-n-3180289.pdf.

[2] M. Ehrhardt, J. Fuhrmann, A. Linke, and E. Holzbecher, “Mathematical modeling of channel-porous layer interfaces in PEM fuel cells,” in Fundamentals and developments of fuel cells, B. Davat and D. Hissel, Eds..

[3] E. Holzbecher, J. Fuhrmann, H. Zhao, H. Langmach, and K. Gärtner, “Modelling of direct methanol fuel cells for microelectronical applications,” in World hydrogen technologies convention (whtc2007), Montecatine Terme, Italy, 2007.

[4] E. Holzbecher, J. Fuhrmann, H. Zhao, and H. Langmach, “A model of thin layer flow cells aimed at kinetic parameter estimation,” in European fuel cell technology and applications conference (efc2007), Rome, Italy, 2007.

[5] J. Divisek, R. Jung, K. Gärtner, and J. Fuhrmann, “Numerical Simulation of Direct Methanol Fuel Cells (DMFC),” in Proceedings 3rd european congress of chemical engineering, nuremberg, 26.–28. June 2001, 2001.

[6] J. Fuhrmann and H. Langmach, “Mass conservative numerical solution of subsurface transport problems,” in Proceedings of the 3rd international conference on hydroscience and engineering, btu cottbus, 31.8.-3.9.1998, vol. 3, K. P. Holz, W. Bechteler, S. S. Y. Wang, and M. Kawahara, Eds. Cottbus, 1998.

[7] J. Fuhrmann, “Finite volume methods for the discretization of flow and transport phenomena,” in Fachtagung grafikgestützte grundwassermodellierung, 27.-28. Mai 1998, Berlin: WASY GmbH (Hrsg.), 1998, pp. 25–31.

[8] J. Fuhrmann, Th. Koprucki, and H. Langmach, “Pdelib: An open modular tool box for the numerical solution of partial differential equations. Design Patterns,” in Proceedings of the 14th gamm seminar kiel on concepts of numerical software, january 23-25, 1998, W. Hackbusch and G. Wittum; Eds. Kiel, 2001.

[9] J. Fuhrmann, “Algebraic multigrid methods — a comparision,” in Iterative methods in scientific computing (proc. Jackson hole wy, july 9-12 1997), vol. 4, J. Wang, M. B. Allen, B. M. Chen, and T. Mathew, Eds. 1997, pp. 155–161.

[10] J. Fuhrmann, “Numerical solution schemes for nonlinear diffusion problems based on Newton’s method,” in ALGORITMY ’97, 14th conference on scientific computing, zuberec, slovakia, september 2-5, 1997, contributed papers and posters, K. M. A. Handlovičovaá M.Komorníková, Ed. Slovak Technical University, Bratislava, 1997, pp. 32–42.

[11] J. Fuhrmann, “Outlines of a modular algebraic multigrid method,” in Proceedings of the conference on algebraic multilevel iteration methods, nijmegen, 13.-15.6.1996, O. Axelsson and B. Polman, Eds. Nijmegen: Kath. Univ. Nijmegen, 1996, pp. 141–153.

[12] J. Fuhrmann, “On numerical solution methods for nonlinear parabolic problems,” in Modeling and computation in environmental sciences. Proceedings of the first gamm-seminar at ica stuttgart, october 12-13,1995, vol. 59, R. Helmig, W. Jäger, W. Kinzelbach, P. Knabner, and G. Wittum, Eds. Braunschweig: Vieweg, 1997, pp. 170–180. DOI: 10.1007/978-3-322-89565-3_15.

[13] J. Fuhrmann, “On the numerical solution of the equation of saturated/unsaturated flow in porous media,” in Computational methods in water resources x, A. Peters and others, Eds. Dordrecht: Kluwer, 1994. URL: http://www.springer.com/978-0-7923-2937-4.

[14] J. Fuhrmann and K. Gärtner, “On matrix data structures and the stability of multigrid algorithms,” in Contributions to multigrid. A selection of contributions to the fourth european multigrid conference, amsterdam, july 6-9, 1993, P. W. Hemker and P. Wesseling, Eds. Amsterdam: CWI, 1994, pp. 55–65. URL: http://oai.cwi.nl/oai/asset/13126/13126A.pdf.

[15] J. Fuhrmann and K. Gärtner, “Multigrid becomes a competitive algorithm for some 3D device simulation problems,” in Proceedings of sisdep, wien 1993, S. Selberherr, H. Stippel, and E. Strasser, Eds. Wien: springer, 1993, pp. 421–424. DOI: 10.1007/978-3-7091-6657-4_104.

[16] J. Fuhrmann, “Calculation of saturated-unsaturated flow in porous media with a Newton-multigrid method,” in GAMM-seminar on multigrid methods, gosen, september 1992, S. Hengst, Ed. Berlin: Institut für Angewandte Analysis und Stochastik, 1993.

[17] J. Fuhrmann and K. Gärtner, “Incomplete factorizations and linear multigrid algorithms for the semiconductor device equations,” in Proccedings of the IMACS international symposium on iterative methods in linear algebra, R. Beauwens and P. de Groen, Eds. Amsterdam: Elsevier, 1992, pp. 493–503.

[18] J. Fuhrmann and K. Gärtner, “A multigrid method for the solution of a convection — diffusion equation with rapidly varying coefficients,” in Proceedings of the third european multigrid conference, october 1 - 4,1990, bonn, germany, vol. 98, W. Hackbusch and U. Trottenberg, Eds. Basel: Birkhäuser Verlag, 1991, pp. 179–190. DOI: 10.1007/978-3-0348-5712-3_12.

[19] J. Fuhrmann, “An interpretation of the Scharfetter-Gummel scheme as a mixed finite element discretization,” in Fourth multigrid seminar, unterwirbach, may 1989, G. Telschow, Ed. Berlin: Karl-Weierstraß-Institut für Mathematik, 1990.

[20] J. Fuhrmann, “Multigrid FAS methods for the solution of systems of nonlinear partial differential equations occuring in semiconductor device simulation,” in Third multigrid seminar, biesenthal, may 2-6,1988, G. Telschow, Ed. Berlin: Karl-Weierstraß-Institut für Mathematik, 1989.

Miscellaneous

[1] K. Scheliga, H. Pampel, E. Bernstein, C. Bruch, W. zu Castell, M. Diesmann, B. Fritzsch, J. Fuhrmann, H. Haas, M. Hammitzsch, D. Lähnemann, A. McHardy, U. Konrad, G. Schamberg, A. Schreiber, and D. Steglich, “Helmholtz Open Science Workshop “Zugang zu und Nachnutzung von wissenschaftlicher Software #hgfos16, Report; November 2016.” Potsdam : Deutsches GeoForschungsZentrum GFZ, 2016. DOI: 10.2312/lis.17.01.

[2] J. Fuhrmann, B. Haasdonk, E. Holzbecher, and M. Ohlberger, “Guest editorial: Modelling and simulation of PEM fuel cells,” Journal of Fuel Cell Science and Technology, vol. 5, no. 2, p. 020301, 2008. DOI: 10.1115/1.2822881.

[3] T. Koprucki, R. Eymard, and J. Fuhrmann, “Convergence of a finite volume scheme to the eigenvalues of a schrödinger operator,” WIAS Berlin, 1260, 2007. URL: http://www.wias-berlin.de/preprint/1260/wias_preprints_1260.pdf.

[4] U. Bayer, V. Clausnitzer, and J. Fuhrmann, “Unsteady thermal convection in the North-East German Basin,” WIAS Berlin, 741, 2002. URL: http://www.wias-berlin.de/preprint/741/wias_preprints_741.pdf.

[5] V. Clausnitzer, U. Bayer, and J. Fuhrmann, “Large-scale thermal convective instability in sedimentary basins,” Eur. Geophys. Soc., Geophys. Res. Abstracts, vols. HS02-2, 2001.

[6] J. Fuhrmann, “A modular algebraic multilevel method,” Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, 203, 1995. URL: http://www.wias-berlin.de/preprint/203/wias_preprints_203.pdf.

[7] J. Fuhrmann, “On the convergence of algebraically defined multigrid methods,” Institut für Angewandte Analysis und Stochastik, 1992.

[8] K. Gärtner, G. Telschow, F. Grund, H. Langmach, J. Fuhrmann, H. Szillat, and C. Keusch, “MEDEA-Anwendungsbeschreibung,” Karl-Weierstraß-Institut für Mathematik, Berlin, technical documentation, 1989.


This page has been generated using markdown , pandoc and GNU make.