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Asymptotic Analysis
We investigate extensions of the lattice Boltzmann method towards 
fluid-structure interaction problems.

An additional rule (refill) is needed to initialize 
the nodes entering the fluid domain (fig.1).

The EQ+NE refill initializes new fluid nodes 
approximating the interior prediction (4):

Within LBM, forces on a solid obstacle can be 
efficiently computed using the Momentum 
Exchange Algorithm (MEA) [6] (fig.2).

At each boundary node, the momentum exchanged 
along each LB-link is computed (using the post-
collision distribution pointing into the solid):

Fig. 4 shows the periodic trajectories of the center 
of the disk.

At a time when vertical force is maximum, we 
approximate the local interface stresses 
comparing ME-based and pop-based
extrapolations (fig. 6).

The results show how asymptotic analysis can be used to understand the LBM and to extend it to 
fluid-structure interaction problems, efficiently (limiting the additional computational effort) and 
consistently (without spoiling the accuracy of the standard scheme). 

• Corrected ME provides an accurate (first order 
in h) global force evaluation

At selected points of the interfaces ( ), two 
extrapolation methods are investigated (fig.6):

(A) ME-based extrapolation:

We consider a channel flow past a moving disk, 
whose motion is constrained by a spring (fig.3). 

Local Boundary Forces

Outlook

The numerical solution of (1) can be 
predicted using an asymptotic expansion:

From (3), the prediction can be written as a sum of equilibrium+ 
non-equilibrium, the latter

Note: using only the equilibrium part does not 
produce consistent results [2,4] (fig. 5b).

extrapolating equilibrium (pressure and velocity)  
and non-equilibrium part.

According to (4), a low order 
approximation of non-equilibrium 
is sufficient:

it can be copied from a neighbor

Accuracy Results [2,3]

Corrected Momentum Exchange
Using (3), we found that the following correction 
is needed to obtain a Galilean invariant (in 
relevant orders) force computation:

(B) pop-based extrapolation:

(A) is more efficient within the LBM (no need of off-grid extrapolation), 
while (B) might be better in terms of stability, since it can be combined 
with different extrapolation rules.

stresses are extrapolated from 
(6), using the expansion of the 
momentum exchanged (7)

LB distributions are approximated on the boundary, 
extracting then the stresses using (3)

For the case of maximum oscillation amplitude, drag 
and lift forces on the disk are shown in fig. 5. Moving 
boundaries introduce grid oscillations. However, 
irregularities in the force decrease (first order in h) 
using a finer grid. This validates the accuracy of the 
EQ+NE refill algorithm, against an approximation 
only based on the equilibrium part (fig. 5b).

f (0) = f∗i

(3)

whose coefficients can be defined [5] inserting the 
ansatz (2) into (1), as functions of pressure and 
velocity (solution of Navier-Stokes equations). 

depending on velocity gradients

Figure 1. 
Node initialization in moving 
boundary problems.

Figure 2. MEA approximates 
the force using the difference 
between outgoing and incoming 
momentum at boundary links.

Figure 3. Benchmark problem: flow past a disk, 
driven by a parabolic inlet profile. Geometry as in [8]: 
channel size length=12 x width=4.1, 

Reynolds = 50

Periodic trajectories of 
the disk, for different 
spring stiffness 
(from right to left):

Grid size h=0.025.

Figure 5b. 
Irregular
oscillations are 

first order in h
using EQ+NE 
refill. Grids:

h=0.05, 0.025

D=1 W=4.1

L=12

(6) φCMEi = φMEAi −c−4s

(
(ci · uB)

2 − c2suB
2
)
ci

Outflow: 
homogeneous 
Neumann BC

Forces on the obstacle are computed with (6), and 
Newton equations are integrated (explicit Euler) for 
velocity and position of the disk.
Dirichlet BC on the disk surface implemented as in [1]. 

(1) fi(n+ 1, j+ ci) = fi(n, j) +
1
τ
(feqi (f)− fi) (n, j)

Both methods provide similar results. Due to the 
moving boundary, irregularities may appear.

(5) φMEAi (k) = fCi (k)ci − fi∗(k)ci∗

• Local interface stresses are approximated only

( )hOup to order

the sum of the contributions (5) along the boundary 
is used to approximate hydrodynamic force.

The following asymptotic expansion for (6) holds:

• CME is consistent also for Lees-Edwards BC 
(periodic in Galilean-transformed systems), 
useful tool in suspension simulations [7]
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(where uB is the velocity at the boundary).

Figure 4.

Moving Boundary LBM and evaluation of fluid-solid forces have been investigated. The described 
approaches offer wide space for further improvement. Applications to dense suspension flow and 
deformable interfaces are object of current research. 

Focusing on a D2Q9 model, we consider a LBGK evolution

on a regular h-spaced lattice, with equilibrium 

function

f
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where   ,   are weights depending on the 
particular LBM realization.

*
if sc

κs = 20,25,40,60,80,100

(maximum oscillations):

Lift (top) and drag (bottom) forces 
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diameter D=1, 
center initial 
position xC=(2,2).

θ ∈ [−π, π)

θ ∈ [−π, π) (disk interface)

Figure 6. Local stresses:

horizontal (right) and 
vertical (below) 
forces along the 
interface. 
ME-based (red) and 
pop-based (blue) 
extrapolations are 
compared.
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