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Abstract

Complex Automata (CxA) have been recently introduced as a paradigm to simulate
multiscale multiscience systems as a collection of generalized Cellular Automata on
different scales. The approach yields numerical and computational challenges and
can become a powerful tool for the simulation of particular complex systems. We
present a mathematical framework for CxA modeling to investigate the behavior
of the model depending on scale separation and modeling choices. For a simple
CxA model for a reaction-diffusion process, we define a Complex Automata model,
deriving theoretical error estimates, which are numerically validated.
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1 Introduction

Among the challenges in computational sciences, the field of multiscale sim-
ulation has become more and more popular in recent years. Due to the large
variety of interesting problems, many approaches for multiscale systems sim-
ulations have been and are continuously developed. We focus on the recently
introduced Complex Automata (CxA) paradigm [9,10].
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Looking at multiscale systems as an ensemble of processes happening on dif-
ferent temporal and spatial scales, the idea behind a Complex Automata is
that a multiscale algorithm, designed to simulate such multiscale system, can
be replaced by many single scale models, constructed to simulate the rele-
vant sub-processes, choosing appropriately different resolution according to
the properties of the original system. According to the original dynamics, the
single scale algorithms have to be coupled across the scales using proper cou-
pling templates. Furthermore, we constrain these single scale models to have
a specific update paradigm. Namely, we consider numerical methods whose
time evolution can be decomposed in a local collision step (when the state
of the system is updated using only local information), plus a propagation

step, when the new states are communicated through the system. Approaches
such as Cellular Automata (CA), lattice Boltzmann methods (LBM), or Agent
Based models (ABM) satisfy these assumption. In the context of CA, it has
been shown [7] that this update paradigm is equivalent to the more popu-
lar choices. Moreover, we observe that many FD schemes can be written in
the same fashion. Focusing on this class of algorithm allows us to introduce
a special formalism to describe CxA modeling [2,10], to formalize classes of
multiscale couplings couplings [9], and it is particularly interesting from the
computational point of view, since it can results in efficient numerical schemes
and it can be used to design a specific CxA simulation framework [8].

In a few words, a CxA model is a reduction of an original (complicated but

accurate) multiscale algorithm to a collection of (simpler but less precise) sin-
gle scale sub-algorithms. Detailed introduction of the Complex Automata ap-
proach and of related issues and perspectives can be found in [9,10]. The aim
of this paper is to describe a formalism for the CxA modeling and investigate
the difference between the numerical solution obtained using a single multi-
scale algorithm, based on fine time and space discretization, and the numerical
solution obtained using a CxA model (extending the results presented in [2].
In particular, we are interested in quantifying the role of the ”scale separa-
tion” in the quality of the results, in order to justify the CxA approach. A
description of a general formalism for the CxA modeling is a rather broad
topic and involves a large set of problems. The goal of this paper is to provide
a first introduction to that formalism. We show the application in a simple
yet very interesting test case of a lattice Boltzmann method (LBM) applied
to a reaction-diffusion system.

As a corollary results, the presented analysis demonstrate general mathemat-
ical properties of LBM operators, which can be of interest for the LBM com-
munity itself, also uncorrelated to the CxA context.

In §2 we introduce our benchmark problem and the numerical scheme, to-
gether with the Complex Automata formulation, which results in an operator
splitting (with multiple time steps) approach for the LBM. In §3 two different
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approaches to derive explicit error estimates will be presented. The first is
based on a direct asymptotic analysis of the Complex Automata model. Since
we cannot expect this technique to be available in general, we discuss also
a hybrid approach, which uses asymptotic analysis and particular properties
of the discrete algorithms. The theoretical expectations will be validated per-
forming several numerical investigations, shown in §4, to investigate also the
influence of the difference scales on the quality of the results. Conclusions are
drawn in §5.

2 A Complex Automaton model for Reaction-Diffusion

Our benchmark is a reaction-diffusion process for a concentration field ρ(t, x)
described by the equation

∂tρ = d∂xxρ + κ(ρλ − ρ), t ∈ (0, Tend], x ∈ (0, 1]

ρ(0, x) = ρin(x)
(1)

with periodic boundary conditions in x-direction and initial condition ρin,
where ρλ is a given function, corresponding to a reaction local equilibrium.

With ρλ(x) = sin(λx), for
λ

2π
∈ Z, problem (1) admits the analytical solution

ρ∗(t, x) = exp(−(4π2d + κ)t) sin(2πx) +
κ

dλ2 + κ
sin (λx) . (2)

Problem (1) is formulated in dimensionless units, introducing characteristic
times and lengths depending on κ, d and λ. We investigate multiscale models
where the (dimensionless) reaction rate κ is much larger than the (dimension-
less) diffusion coefficient d, i.e. when the reaction is characterized by a typical
time scale faster than the diffusion.

2.1 Lattice Boltzmann method

To solve numerically (1) we employ a lattice Boltzmann method (LBM) (see
[3,6,12] and references therein for overview of LBM, while specific applications
to reaction-diffusion have been discussed, for example, in [4,5,13]). To define
the numerical scheme, for a chosen (small) parameter h, we discretize the space
interval with a regular grid Gh = {0, . . . , Nx−1} of step size ∆x = h. We focus
on a D1Q2 model 1 . Namely, it is a one-dimensional model where each grid

1 It must be mentioned that the D1Q2 is not the only possible LB model for (1), but
indeed the simplest. For the sake of simplicity, being interested in the methodology
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node j ∈ Gh holds a two-dimensional vector f̂ =
(

f̂1, f̂−1

)

, representing the
numerical solution for the probability densities traveling forward and backward
with discrete velocities ci ∈ {−1, 1}. The approximation of the concentration
is given by the moment of the distribution f̂ :

ρ̂ = ρ(f̂) =
∑

i=1,−1

f̂i.

Each component of f̂ is updated according to

f̂
tn+1

i (j + ci) = f̂ tn
i (j) +

1

τ

(

f
eq
i (ρ̂tn(j)) − f̂ tn

i (j)
)

+ ∆t
1

2
R(ρ̂tn(j)). (3)

where R (ρ̂(j)) = κ(ρλ(xj) − ρ̂(j)), tn = n∆t, for n ∈ N0, and the time step
∆t is such that 2

∀h > 0 :
∆t

∆x2
= const. (4)

The equilibrium distribution f
eq
i is a function of the moment ρ defined as

f
eq
i (ρ) =

ρ

2
, i ± 1 . (5)

The parameter τ is chosen according to the diffusion constant in (1)

τ(d, ∆x, ∆t) = 1
2

+ d
∆t

∆x2
. (6)

Observe that τ is independent from h in virtue of (4).

2.2 Asymptotic Analysis

It can be shown [6,11] that algorithm (3) yields a second order accurate ap-
proximation of the solution of (1). We report here only the main lines of the
derivation. For details, we refer to [11].

Since the numerical solution is defined on a grid of spacing h, we will explicitly
denote the dependence of f̂ on the particular discretization using a subscript
h. However, to have simpler notations, this will not be used together with the
index i ∈ {1,−1}, denoting the element of f̂h, unless required in the context
to avoid confusion.

of analysis, we stick to this case. Other realizations of LBM can be analogously
treated.
2 This relation, called in literature diffusive scaling is a necessary condition [6,11]
to preserve accuracy properties of the scheme.
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In order to understand the behavior of the numerical scheme (3) for small h,
we look for an approximation of the numerical solution f̂ tn

h (j) starting with an
ansatz

F tn
h (j) = f (0)(tn, xj) + hf (1)(tn, xj) + h2f (2)(tn, xj) + . . . (7)

where f (k)(t, x) are smooth and h-independent coefficients.

As next, we observe that the LBM (3) can be equivalently rewritten (moving
on the right hand side all the terms) as

Lhi(f̂h) = 0 , (8)

i.e. as a h-depending equation, of which f̂h is a solution. For any function in
the form (7), we can now define the residue as

Lhi(F
tn
h (j)) = F

tn+1

h (j + ci) − F tn
h (j)−1

τ

(

f
eq
i (ρ(F tn

h (j))) − F tn
h (j)

)

− h2

2
R(ρ(F tn

h (j))).

(9)

Driven by (8), we look for an expansion (7) for which the residue stays small.
Using the hypotheses of smoothness, Taylor expanding Lh around (tn, xj), and
sorting the different orders in h, we obtain a set of equations which we can be
recursively solved, allowing to define the coefficients f (k) in order to obtain a
residue of high order in h. The general expression holds [11]

f
(k)
i =

ρk

2
− τ

(

ci∂xf
(k−1)
i +

(

1
2
∂2

x + ∂t

)

f
(k−2)
i +

(

1

6
∂3

x + ∂tdx

)

cif
(k−3)
i + . . .

)

,

(10)
where ρk, for k ≥ 0, are smooth functions to be specified step by step.

For k = 0, 1, 2 we obtain from (10)

f
(0)
i = 1

2
ρ0,

f
(1)
i = 1

2
ρ1 − τ 1

2
ci∂xρ0,

f
(2)
i = 1

2
ρ2 − τ 1

2

(

∂tρ0 −
(

τ − 1
2

)

∂2
xρ0 + ci∂xρ1

)

.

(11)

Simple algebra shows that the resulting expansion Fh cancels the residue (9)
up to order h3 if ρ0 is a solution of (1), taking ρ1 = 0, and for any smooth
function ρ2. Thus, the previous 11 can be simplified as

f
(0)
i = 1

2
ρ0, f

(1)
i = −τ 1

2
ci∂xρ0, f

(2)
i = 1

2
ρ2. (12)

yielding the the expansion

Fhi = ρ0 + h
(

−τ 1
2
ci∂xρ0

)

+ h2 ρ2

2
, (13)
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which we will call prediction, such that

Lh(F
tn
h (j)) = O(h3).

Assuming that the numerical solution f̂h is approximated by Fh up to order
h3 we conclude

ρ̂ = ρ(Fh) + O(h3) = ρ0 + h2ρ2 + O(h3),

i.e. the numerical scheme (3) yields a second order accurate approximation of
the solution of (1) [11,13].

The function ρ2 represents the leading order term of the error. More details
about this term can be derived requiring the prediction to cancel further orders
in the residue (explicit results will be presented in §3).

2.3 Operator Splitting Approach for LBM

Formally, the variable f̂h is a h-grid function, i.e. a real-valued map from a
discrete grid of step h:

f̂h : Gh → R
2, f̂h : j 7→ f̂h(j) = (f̂h1(j), f̂h−1(j)).

Introducing the set Fh = {φ : Gh → R
2} we have f̂h ∈ Fh.

Moreover, using the subscript h for the operators acting from Fh to itself, we
can introduce a propagation operator Ph, which acts on a grid function shifting
the value on the grid according to ci:

∀f̂ ∈ Fh :
(

Phf̂
)

(j) =







f̂1(j − 1)

f̂−1(j + 1)







and diffusion and reaction operators, ΩDh
and (resp.) ΩRh

according to the
right hand side of (3):

∀f̂ ∈ Fh :

(

ΩDh
(∆t)f̂

)

=
1

τ(d, h, ∆d)







f
eq
1 (ρ(f̂)) − f̂1

f
eq
−1(ρ(f̂)) − f̂−1







(

ΩRh
(∆t)f̂

)

=
∆t

2







R
(

ρ(f̂)
)

R
(

ρ(f̂)
)







(14)

(where, in the last definition, the two components are equal).
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Definitions (14) stress that reaction and diffusion operators depends on the
discretization, not only concerning the domain of definition (subscript h, but
also through the particular expressions). In the following part, the argument
∆t will be omitted when equal to h2, unless particularly required by the con-
text.

Now we can rewrite (3) in the compact form

f̂
tn+1

h = Ph(Ih + ΩDh
+ ΩRh

)f̂ tn
h = Φhf

tn
h , (15)

introducing the update rule Φh = Ph(Ih + ΩDh
+ ΩRh

).

Observe that in this compact notation ρ can be seen as a particular operator
as well:

ρ : Fh → R, ρ(fh) = fh1 + fh−1.

Lemma. According to definitions (14), it can be shown that

∀f̂h ∈ Fh : ΩDh
ΩRh

(f̂h) = 0. (16)

Proof. It follows observing that f eq(ΩRh
(f̂h)) = ΩRh

(f̂h) and ΩDh
(f̂h)) is pro-

portional to f̂h −f eq(ρ(f̂h)) (i.e. the operator ΩRh
maps any grid function onto

the kernel of ΩDh
. �

In virtue of (16), the LB algorithm (3) can be equivalently rewritten as

f̂
tn+1

h = Ph(Ih + ΩDh
)(Ih + ΩRh

)f̂ tn
h = DhRhf̂

tn
h . (17)

In other words, the LBM can be naturally split in a reaction Rh(∆t) =
Ih + ΩRh

(∆t) and a diffusion Dh(∆t) = Ph(Ih + ΩDh
(∆t)) part. The previous

results justify formally basic operator splitting techniques for the reaction-
diffusion LBM (proposed, for example, in [1]). In our case, the formulation
(17) represents the starting point of the Complex Automata approach.

2.4 CxA Formalism and Scale Separation Map

We consider the LBM (17) as the original multiscale process, to which we
apply a Complex Automata formulation. The parameter h determines spatial
and temporal scales, and in this case it is strictly related to the faster process,
since it must be chosen according to the smaller time scale. Assuming that the
two processes involved in (17) are characterized by different typical time scales
(informally, d small compared to κ in (1)), we define a Complex Automaton
composed of two separate algorithms, C1 (reaction) and C2 (diffusion). We
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remark that both C1 and C2 satisfy the collision + propagation update rule,
being formally copies of the original LBM (15).

In practice, we coarsen the time scale of the diffusion, choosing ∆t1 = ∆t = h2,
∆t2 = M∆t1 = Mh2, for some M ∈ N0 (note that the time step of the reaction
coincide with the time step of the original algorithm (17), which was in fact
depending on the reaction time scale).

An important tool to define and graphically visualize a Complex Automaton
is the Scale Separation Map (SSM), which consists of a Cartesian plane whose
axes represents temporal and spatial scales [9,10]. On this map, the multiscale
algorithm and the processes defining the CxA can be represented as boxes,
defined by their discrete resolution in time and space, and by the upper bound
of their domain of definition.

The SSM for the considered system is shown in figure 1. The box representing
the LBM (17) is defined by (∆t, ∆x) (lower-left corner) and (1, Tend) (upper-
right corner). The model C1 is represented by a box, whose lower-left corner
coincides with the original one. For the model C2, coarsened in time, the edge
denoting the time step has been moved to the right. Unlike the box for the
original algorithm, once reaction and diffusion are separated, the boxes for
these sub-processes are not completely defined, and the specification depends
mainly on modeling choices, dictated by the particular physical problem. In
particular, the time step ∆t2 is function of the typical diffusion time, while
the time T1 (upper bound for reaction temporal domain) might be in principle
defined at any point of the temporal axis, within the original interval.

Figure 1 shows two particular realizations, which are more relevant in practical
applications. In figure 1b T1 = ∆t2: the reaction model is iterated in an interval
[t0, t0 + ∆t2], with a time step ∆t1, and re-initialized after an iteration of the
diffusion model, which is iterated between [0, Tend], with time step ∆t2. Given
that ∆t2 = M∆t1, this corresponds in practice to execute M steps of the
reaction C1 within each iteration of C2. The CxA model for this problem can
be seen as an operator splitting approach with multiple time steps.

Figure 1c sketches a case of complete scale-separation. This is the situation
when reaction leads very quickly to an equilibrium state, in a typical time
which is even smaller than the discrete time step of the diffusion. In this case,
the time T1 can be taken less than ∆t2, assuming that further iterating the
model will not lead to significantly different results. This is a rather particular
case, happening if κ � d and for special structure of equation (1). In what
follows, we will focus on the situation of figure 1b.

To formally define the CxA model, we introduce the parameters H = (δ1, δ2),
where each δi = (hi, ∆ti) represents a short notation for a discretization.
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(a) (b) (c)
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LBM

Tend
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∆x

X
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LBM

Tend
∆t1
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T1=∆t2

PSfrag replacements
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Tend
∆t1
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T1=∆t2

∆t2T1

Figure 1. SSM for the reaction-diffusion LBM. In (a) reaction (dashed line) and diffusion
(solid line) are considered as a single multiscale algorithm (17). In (b) we assume to
use different schemes, where the diffusion time step ∆t2 is larger than the original ∆t

(while keeping ∆t1 = ∆t). Figure (c) represents the situation where the two processes
are time separated, with a very fast reaction yielding an equilibrium state in a time
T1 � ∆t2.

In the case discussed above, and depicted in the SSM in figure 1b, h1 = h2 = h

(the spatial grid is not changed), and the time step of the diffusion is such
that

∆t2 = Mh2. (18)

More in general, we can take into account spatial coarsening choosing

h2 = MXh, ∆t2 = Mh2 (19)

for MX , M ∈ N. We remark that both M and MX are free parameters. How-
ever, the choice M = M 2

X allows to keep constant the relaxation parameter τ ,
according to (6).

We describe the state of the CxA using the variable f̂H =
(

f̂1,h1
, f̂2,h2

)

, whose

components corresponds to the LB variables after reaction and (resp.) diffu-
sion.

Dealing with functions on different spatial grids (for example if h2 6= h), the
space FCxA

H and Fh are connected via non trivial projection ΠHh (fine-to-

coarse) and lift ΛhH (coarse-to-fine) operators, such that

f̂h ∈ Fh
f̂H =

(

f̂1,h1
, f̂2,h2

)

∈ FH

f̂h ∈ Fh f̂H ∈ FH

-
ΠHh=(Πh1,h,Πh2,h)

?

Φh=(DhRh)

?

ΦH=(Rh1
(∆t1),Dh2

(∆t2))

�
ΛhH

Example. Using a coarser grid for the diffusion, the projection Πh2,h could be
a sampling of the fine solution taken on the coarser grid or an average of the
fine-grid points close to a coarse grid node. The lift ΛhH involves in general
an interpolation to reconstruct the function f̂h on the fine grid, based on the
results of reaction (which operates on the same discretization) and diffusion
(which operates on a coarser grid). The above diagram generalizes, in the
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context of CxA, procedures which are standardly used in multiscale problems.
We remark that a similar approach can be used to describe projection and
lifting between different time discretizations.

Coming back to the CxA model for (1), we denote with t1,n1
and t2,n2

the
current simulation times (where tm,n = n∆tm, depending on the iteration
index n and the size time step ∆tm, for m = 1, 2) of reaction and diffusion
algorithms. The state of the CxA is updated according to

C1, t1 ∈ [t0, t0 + ∆t2] C2, t2 ∈ [0, Tend]

set t0 = t2,n2
, f̂ t0

1,h1
= Λh1,h2

f̂
t2,n2

2,h2
,

f̂
t1,n1+1

1,h1
= Rh1

(∆t1)f̂
1,t1,n1

1,h1
, n1≤M−1

f̂0
2,h2

= f̂ init
2,h2

(ρin),

f̂
t2,n2+1

2,h2
= Dh2

(∆t2)Πh2,h1
f̂
t2,n2

+M∆t1
1,h1

.

(20)
A few comments are necessary to explain the formalism introduced in (20). The
left side describe the algorithm C1, which is coupled to C2 through the initial
condition (by setting at the initial time t1,0 = t2,n2

(the current simulation
time of C2) the initial condition equal to the results after a time iteration
of C2. Then, M steps according to an update rule depending only on the
reaction process are performed. On the right, the diffusion part is coupled to
the reaction through the update rule, since the new state of f̂2,h2

is computed

starting from the output state of C1. With f̂ init
2,h2

(ρin) we denoted the original
initial condition, function of the initial concentration in (1).

The operators Λh1,h2
and Πh2,h1

have been used in equation (20) to handle
functions on different discrete spaces. Note also that in (20) we have introduced
the operators Rh1

and Dh2
, which depend on the different discretizations. The

case h2 = h1 = h yields Rh1
= Rh. However, ∆t2 6= ∆th, yields Dh2

(∆t2) 6=
Dh. Namely, the diffusion operator depends on τ , which must be modified
according to (6) as

τ(M) := 1
2

+ Md. (21)

Finally, observe that this situation is a special case where the two processes act
on the same variable, and it is possible to write the algorithm only depending
on f̂2,h (with h2 = h):

f̂
t2,n2+1

2,h = Dh(∆t2) (Rh(∆t))M f̂
t2,n2

2,h ,

f̂0
2,h = f̂ init

2,h (ρin).
(22)

This formulation will be useful analyzing the error contributions.
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3 Error Analysis and Investigations

A CxA model for a multiscale process replaces a single multiscale algorithm
(Ah), related to a discretization h, with a collection of coupled simpler algo-
rithms (CxAH). The simplification in terms of complexity yields an improve-
ment of the performance [10], which is paid by a possible loss of precision.

Focusing on the benchmark (1) in this section we describe possible analysis
approaches to quantify the scale-splitting error [2], i.e. the difference between
the numerical results of the algorithm (Ah), defined by (17), and the formal
(CxAH) (20).

A formal definition of the scale-splitting error depends in general on the par-
ticular problem and on the specific quantities of interests. In this case, since
our algorithm is designed to approximate the variable ρ, we define the scale-
splitting error at time iteration tN taking the difference in the moment of f̂ ,
after both reaction and diffusion have been executed, between ρ(f̂h) (numer-
ical solution of the fine-grid algorithm (17)) and ρ(f̂2,h2

) (the output of the
CxA model (20)):

EA→CxA(tN ) =
∥

∥

∥ρ
(

Πh2,hf̂
tN
h

)

− ρ
(

f̂ tN
2,h2

) ∥

∥

∥ (23)

(evaluating the difference on the coarser spatial grid), where EA→CxA depends
on the simulation parameters (in particular M , MX). The scale-splitting error
is purely a measure of a difference between discrete systems (the two algo-
rithms). In case they are derived from an underlying physical process, as (1),
EA→CxA is a direct measure of the loss of accuracy. In fact, calling ECxA,EX(ρ)
the error of the (CxAH) model with respect to the exact solution of (1) and
EA,EX(ρ) the error of the model (Ah), we can write

∥

∥

∥EA→CxA
∥

∥

∥ ≤
∥

∥

∥EA,EX(ρ)
∥

∥

∥ +
∥

∥

∥EA,CxA(ρ)
∥

∥

∥ . (24)

In the following part, we present two possible methodologies to investigate
and estimate the scale-splitting error. The first method follows the asymptotic
expansion technique, generalizing the conclusions presented in §2.2 to the CxA
model (22). Since we cannot expect a full analysis to be available or feasible
in general, we present a second error investigation approach which combines
basic results of the analysis with the difference between the grid operators
present in (17) and (20), and appears a more general technique to investigate
single-domain CxA models.

11



3.1 Asymptotic Analysis of a Complex Automata Formulation

We focus on the case h2 = h (only time coarsening). A general result based
on the same approach for the case of CxA coarsened in space will be given at
the end of the section. In this particular problem, the asymptotic expansion
can be fully used to derive a prediction of the numerical solution of (20). To
estimate the difference in the numerical results, we will then compare the CxA
prediction with the fine scale prediction (13).

Considering the algorithm

f̂
tn+1

h = Dh(∆t2) (Rh(∆t))M f̂ tn
h , (25)

we aim to find a prediction using the ansatz

F tn
(M),h(j) = f (0)(tn, xj) + hf (1)(tn, xj) + . . . , (26)

where xj = hj, tn = Mnh2. First of all we observe that the reaction operator
can be written as

Rh(∆t) =

(

Ih −
h2

2
κ(1 − ρ̂λ)

)

(27)

(recalling that ∆t = h2), introducing the matrix 1 =







1 1

1 1





 and denoting

with ρ̂λ a constant grid function such that ρ̂λ(j) = ρλ(xj). Observe that, for
all fh ∈ Fh,

1fh = [ρ(fh), ρ(fh)] , ρ
(

1
2
1fh

)

= ρ(fh).

In virtue of these special properties, we obtain the following operator equality:

(

Ih −
h2

2
κ(1 − ρ̂λ)

)M

= Ih +
M
∑

m=1







M

m





 (−1)m

(

h2κ

2

)m

(1 − ρ̂λ) =

= Ih +



1 −
(

1 − κh2

2

)M


 (1 − ρ̂λ) ,

(28)

which allows to rewrite (25) in a form analogous to the original (3):

f̂
tn+1

i (j + ci) = f̂ tn
i (j) +

1

τ(M)

(

f
eq
i (ρ(f̂ tn

h (j))) − f̂ tn
i (j)

)

+
Mh2

2
(−κ(M),h)(ρ(f̂ tn(j)) − ρλ(xj))

(29)

12



(using also that ∆t2 = Mh2), and

κ(M),h =
2

Mh2



1 −
(

1 − κh2

2

)M


 . (30)

For all h, we have κ(1),h = κ. Moreover, the following Taylor expansion around
h = 0 holds

κ(M),h = κ + h2
(

1 − M

4
κ2
)

+ O(h3) (31)

As before, we insert the expansion (26) into (29), deriving an expansion of the
resulting residue. The main differences respect to the previous case (§2.2) are

• a time step Mh2 must be taken into account, i.e. tn = Mnh2,
• the different relaxation parameter τ(M),
• an h-dependent reaction constant expanded according to (31).

3.1.1 The M-dependent prediction

Omitting the details of the computations (based on the analogous of §2.2), we
obtain the following expressions for the coefficients up to order k = 3:

f
(0)
i = 1

2
ρ0 , f

(1)
i = −τ(M)

1
2
ci∂xρ0 , f

(2)
i = 1

2
ρ(M),2

(analogous to (12)),

f
(3)
i = −τ(M)

2

(

−
(

M2d2 − 1

12

)

ci∂
3
xρ0 − κM

(

1
2
− dM

)

ci∂x(ρλ − ρ0)
)

− τ(M)

2
ci∂xρ(M),2 .

(32)

Where ρ0 solves (1) (and it is therefore independent from M). The derivation
of coefficients of order h3 is needed to specify ρ(M),2 (the leading order of the
error) which turns out to be solution of the following equation

∂tρ(M),2 =d∂2
xρ(M),2 + κρ(M),2

+ C1M
2d3∂4

xρ0 + C2M
2d2κ∂2

x(ρ0 − ρλ) + Mκ2(ρ0 − ρλ)

+ C4Mκ2ρ0

(33)

with bounded constants C1, . . . , C4 (depending on τ(M)). The first three terms
depending on ρ0 come from the different relaxation time, while the fourth is
due to the expansion of the reaction rate κ(M),h.

By setting M = 1 in (29)-(33), the last result can be extended also to the
classical LBM (3). Hence, we can evaluate the scale-splitting error as the

13



difference ρ2,(M)−ρ2,(1), which can be estimated using equation (33) (involving
the time derivative of ρ(M),2):

ρ
(

F(M),h − F(1),h

)

= O
(

M2d3 + M2d2κ2‖∂2(ρ − ρλ)‖ + Mκ2
)

. (34)

Remarks. (i) The predictions differ already in order h. However, taking the
moment ρ(Fh) the first order in h (as well as the order h3) vanishes, for any
value of M . (ii) Estimate (34) contains both quadratic and linear terms in M .
In particular conditions (depending on κ, d, |ρ− ρλ|) the linear growth can be
more relevant than the quadratic one.

3.1.2 Estimates for Space-Coarsened CxA

A similar argument can be used also in case we use a coarser grid for the
diffusion algorithm. Repeating the analysis, the expression of the coefficients
(32) does not change (according to the hypothesis of h-independence). For the
case M2

X = M (∆t is coarsened, but τ remains unchanged), recalling that the
first order coefficients do not give contribution to the moment, we obtain that
the difference in the moment ρ of the expansions on different grid appears in
the second order:

ρ
(

F(M,MX),h − F(1),h

)

= O
(

h2M
)

. (35)

3.2 Algebra of Discrete Operators

Without performing a full analysis, interesting estimates for the scale-splitting
error can be derived based on the properties of the grid operators involved in
(Ah) and (CxAH).

Let us consider the CxA evolution written in the form (22). Since f̂h is the
solution of (17), we can rewrite (23) as

EA→CxA(tN ) =
∥

∥

∥ρ
(

Πh2,h (DhRh)
M f̂ tN−M∆t

h −Dh2
(∆t2)Πh2,hRM

h Λh,h2
f̂ tN−∆t2
2,h2

)∥

∥

∥

(36)

Using ΛhH f̂H = Λh,h2
f̂2,h2

(a lift operator which only depends on the grid h2),
and remarking that tN − M∆t = tN − ∆t2, the latter can be decomposed as

EA→CxA(tN) ≤
≤
∥

∥

∥ρ
(

Πh2,h (DhRh)
M f̂ tN−M∆t

h

)

− ρ
(

Πh2,h (DhRh)
M Λh,h2

f̂ tN−∆t2
2,h2

)∥

∥

∥

+
∥

∥

∥ρ
(

Πh2,h (DhRh)
M Λh,h2

f̂ tN−∆t2
2,h2

−Dh2
(∆t2)Πh2,hRM

h Λh,h2
f̂ tN−∆t2
2,h2

)∥

∥

∥

(37)
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The first part corresponds to the difference in the results of the algorithm (Ah)
and another algorithm obtained starting with a coarse grid function f̂ tN−∆t2

2,h2
,

lifting it to the fine grid and applying the same evolution rule as (Ah). If the
involved operators are stable, the difference will remain small if the difference
in the initial condition is small, i.e.

∥

∥

∥ρ
(

Πh2,h (DhRh)
M f̂ tN−M∆t

h

)

− ρ
(

Πh2,h (DhRh)
M Λh,h2

f̂ tN−∆t2
2,h2

)∥

∥

∥

≤ Ch,h2
(Λ, Π,D,R)EA→CxA(tN − ∆t2) ,

(38)

where Ch,h2
(Λ, Π,D,R) depends on the RD operators and on the accuracy of

the projection and lift operators, and f̂ tN−∆t2
2,h2

is the scale-splitting error at the
previous iteration.

Observing that in case of local reaction, it holds

RM
h Λh,h2

= Λh,h2
RM

h2
, (39)

and that Πh2,hΛh,h2
= Ih2

(projecting after lifting gives the same function),
the second part of (37) can be simplified using

Dh2
(∆t2)Πh2,hRM

h Λh,h2
= Dh2

(∆t2)RM
h2

. (40)

Hence,

EA→CxA(tN) ≤
∥

∥

∥ρ
(

Πh2,h (DhRh)
M Λh,h2

−Dh2
(∆t2)RM

h

)∥

∥

∥

∥

∥

∥f tN−∆t2
2,h2

∥

∥

∥+

+ Ch,h2
(Λ, Π,D,R)EA→CxA(tN − ∆t2) .

(41)

Let us focus on the case of pure temporal coarsening, i.e. h2 = h, MX = 1.
The space-coarsened CxA involves more complicate algebra depending also
on the choice of Π and Λ. As for the previous §3.1, this case will be partially
discussed in a separate paragraph. Applying recursively the methodology de-
scribed above to the error term EA→CxA(tN −∆t2) in equation (41), one obtain
that the distance between the numerical solutions can be estimated of the or-
der of

EA→CxA
op (M) :=

∥

∥

∥ρ
(

(DhRh)
M −Dh(∆t2)RM

h

) ∥

∥

∥ ≤
≤
∥

∥

∥ρ
(

(DhRh)
M −DM

h RM
h

) ∥

∥

∥ +
∥

∥

∥ρ
((

DM
h −Dh(∆t2)

)

RM
h

) ∥

∥

∥ =

= E(1)(M) + E(2)(M).
(42)

Two contributions appear in the last expression. E(1)(M), is due to the com-
mutation of the operators Dh and Rh on the same discrete grid, while E(2)(M)
is related to the usage of a LBM with a different time scale for solving the
diffusion process.
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Commutator Error

The difference (DhRh)
M−DM

h RM
h , can be estimated as a function of [Dh,Rh] =

DhRh−RhDh, i.e. the commutator of the operators Rh and Dh. The following
results will be useful:

ΩRh
(Ih + ΩDh

) = ΩRh
. (43)

Proof. It follows from the fact that ΩDh
depends linearly on the difference

f eq(ρ(f)) − f , i.e. for all fh ∈ Fh

ρ(ΩDh
fh) = 0

(in other words, Dh conserves the moment). Therefore,

ρ(Ih + ΩDh
)fh = ρ(fh) + ρ(ΩDh

fh) = ρ(fh),

which yields (43), since ΩRh
depends on the moment of f . �

In case of linear reaction, with ρλ = 0, (43) reduces to ΩRh
ΩDh

= 0.

Property (43) can be considered a complementary of the previously proved
(16), here reported:

∀fh ∈ Fh : ΩDh
ΩRh

fh = 0.

To derive qualitative estimates from (42), we apply the different discrete op-
erators to an ansatz

Fh = f (0) + hf (1) + h2f (2) (44)

with smooth coefficients. The hypothesis of smoothness allows us to simplify
the expressions of operators, deriving explicit estimates which can be gener-
alized to the numerical solution using an argument based on the asymptotic
expansion technique, similarly to what has been presented in §2.2.

Lemma. For any smooth ansatz Fh it holds

[Dh,Rh](Fh) ∈ O
(

h3κ∂xρ(Fh)
)

. (45)

Proof. In virtue of (16) and (43) the operators Ih+ΩRh
and Ih+ΩDh

commute.
Therefore

[Dh,Rh] =Ph(Ih + ΩDh
)(Ih + ΩRh

) − (Ih + ΩRh
)Ph(Ih + ΩDh

) = (46)

= [Ph(Ih + ΩRh
) − (Ih + ΩRh

)Ph](Ih + ΩDh
). (47)

Due to the linearity of Ph:
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[Dh,Rh] = (PhΩRh
− ΩRh

Ph)(Ih + ΩDh
) =

=PhΩRh
(Ih + ΩDh

) − ΩRh
Ph(Ih + ΩDh

) =

=PhΩRh
− ΩRh

Ph(Ih + ΩDh
), (48)

i.e. (47) depends on the commutator of Ph and ΩRh
.

Computing the difference (48) on an ansatz Fh, the first term gives

[PhΩRh
(Fh)]i(j) = Ph

[

h2

2
R (ρ(Fh(j)))

]

i

=
h2

2
R (ρ(Fh(j − ci))) . (49)

Using F
neq
i,h = Fi,h − f

eq
i (ρ(Fh)) = Fi,h − 1

2
ρ(Fh), the second contribution reads

[ΩRh
Ph(Ih + ΩDh

)(Fh)]i (j) =
[

ΩRh
Ph

(

Fi,h(j) −
1

τ
F

neq
i,h (j)

)]

i

=

= ΩRh

(

Fi,h(j − ci) −
1

τ
F

neq
i,h (j − ci)

)

=

=
h2

2

(

(

1 − 1

τ

)

∑

i

Fi,h(j − ci) +
∑

i

1
2
ρ(Fh(j − ci))

)

.

(50)

Using the smoothness of the coefficients of (44), terms involving grid shifting
j − ci can be expanded around xj. From (49) we have

[PhΩRh
(Fh)]i =

h2

2

(

R

(

ρ(Fh) − hci∂xρ(Fh) +
h2

2
∂2

xρ(Fh) + O(h3)

))

=

h2

2
(−κ)(ρ(0)(Fh) − ρλ) +

h3

2
(−κ)(ci∂xρ

(0)(Fh) + ρ(1)(Fh))

+ O(h4) ,

(51)

where we have used ρ(0)(Fh) = f
(0)
1 + f

(0)
−1 , denoting the moment of the coeffi-

cients of order zero.

To evaluate the second part (50), we introduce the first order moment

φ(Fh) =
∑

i

ciFi,h.

Considerations based on the asymptotic expansion (see §2.2) allow to conclude
that the leading order of Fh is proportional to the moment, and thus φ(Fh) is
also proportional to ∂xρ(Fh) (in leading orders):

φ(Fh) = h∂xρ
(0)(Fh) + O(h2).
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Hence, we have

[ΩR,hPh(Ih + ΩD,h)(Fh)]i (j) =

= −h2

2
(−κ)(ρ(0)(Fh) − ρλ) +

h3

2
(−κ)

(

1 − 1

τ

)

∂xφ
(1)(Fh)

+
h3

2
(−κ)ρ(1)(Fh) + O(h4).

(52)

Finally, (45) follows summing (49) and (50). �

Lemma. For any ansatz Fh (44)

∥

∥

∥

[

(DhRh)
M −DM

h RM
h

]

(Fh)
∥

∥

∥ ≤ M(M − 1) ‖[Dh,Rh]‖ ∈ O(M(M − 1)κh3)

(53)
Proof. It follows counting the number of times the commutator appears in the
difference (DhRh)

M −DM
h RM

h (using a simple induction-based argument), and
applying (45). �

From the proves it can be seen that the (53) is a quite rough estimate. However,
it will be enough for our purposes of understanding the behavior of the error.

Time Coarsening Error

The part E(2) derives from the coarsening of the diffusion part in the original
lattice Boltzmann algorithm. To analyze this contribution we use the asymp-
totic expansion to compute predictions of the numerical solutions of Dh(∆t)M

and Dh(∆t2). evaluating the difference afterward.

Many of the results we proved earlier can be used again. First of all, since
Dh(∆t)M corresponds to the classical LBM diffusion operator applied M times,
it is enough to consider the analysis for M = 1 and evaluate the prediction
coefficients according to the time step ∆t2 = Mh2 = M∆t.

We obtain the coefficients

f
(0)
i = 1

2
ρ0 , f

(1)
i = −τ(M)

1
2
ci∂xρ0 , f

(2)
i = 1

2
ρ(M),2 ,

f
(3)
i = −τ(M)

2

(

−
(

M2d2 − 1

12

)

ci∂
3
xρ0

)

− τ(M)

2
ci∂xρ(M),2

(54)

(where τ(M) depends on M as in (21)) analogous to (32), without reaction
terms.

The function ρ0 is such that ∂tρ0 = d∂2
xρ0, while ρ(M),2 solves the following

diffusion problem

∂tρ(M),2 =d∂2
xρ(M),2 + C1M

2d3∂4
xρ0 (55)
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where C1 is a bounded constant, depending on the parameters of the algorithm.
Estimating the contribution to the scale splitting error can be taking the
moment of the predictions for M = 1 and M 6= 1:

ρ
(

F(M),h − F(1),h

)

= h2(ρ(M),2 − ρ(1),2) + O(h3),

from (55) we can conclude (similarly to what has been done in §3.1)

Lemma. For any Fh ∈ Fh in the form (7), we have

ρ
(

Dh(∆t)M −Dh(M∆t)
)

Fh ∈ O(h2M2d3). (56)

Scale-splitting error as function of M: In conclusion, (53)-(56) yield a
qualitative expectation of the error as a function of M , for a fixed h:

EA→CxA
op (M) ∈ O

(

M2κ + M2d3
)

. (57)

Respect to the results of the full analysis performed in §3.1, equation (57)
shows some differences. The linear term in M , obtained in (34) as a con-
sequence of the modified reaction rate, is not present in (57). Also, (57)
overestimates the components depending on M 2, since the dependence of the
quadratic part on the difference ρ − ρλ is missing.

4 Numerical tests

We consider problem (1) defined before, with the exact solution (2). By se-
lecting different values of the parameters in (1) we can tune the relevance of
different time scales. Additionally, we introduce the dimensionless parameter

σ =
κ

λ2d

to ”measure” the scale separation of the simulation.

We are primarily interested in the difference between the simulation results
f̂h of algorithm (3) and f̂2,h2

of (20). After performing both simulations, we
evaluate the scale-splitting error (depending on the simulation parameters) as

EA→CxA
max (h, D, κ, M) =max

N

{

1

Nx(h)

∥

∥

∥ρ
(

f̂ tN
h

)

− ρ
(

f̂ tN
2,h

)∥

∥

∥

1

}

. (58)

The error (58) will be also compared with

EAh,EX = max
n

{

1

Nx(h)

∥

∥

∥ρ
(

f̂ tn
h

)

− ρ∗(tn, ·))
∥

∥

∥

1

}

, (59)
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i.e. the error of the original fully fine-discretized algorithm (17) (evaluated
according to the norm chosen in (58)).

In fig. 2 we show the results for the scale-splitting error as a function of M , in
several simulations fixing h and κ, and using different values of d (thus varying
σ). As explained before, this is dictated by the fact that the grid size is strictly
related to the reaction rate for stability reasons. In general, CxA models yield
better results when the scale are more separated (for larger values of σ). Fig. 2a
focuses on the range of moderate M , while 2b shows results for M > 100. We
observe a super-linear increase of the error, becoming linear when M grows.
This effect can be explained looking at the results of the asymptotic analysis
(34). A possible reason is that the M 2-part of the error depends also from
the difference between ρ and the reactive equilibrium ρλ, and becomes smaller
than the part depending on Mκ2 if M and κ are large enough. Observe that
the transition from quadratic to linear slope appears earlier, for smaller values
of σ (κ small compared to d), while the slope is quadratic in the case σ = 5.

Concerning the derivation in §3.2, it is possible that, due to its simplicity, (57)
overestimates the errors.
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Figure 2. Scale-splitting error (58) as a function of M for a time-coarsened CxA, in
double logarithmic scale. The different curves represent different values of σ: σ = 0.5
(diamonds), σ = 1 (circles), σ = 2 (squares), σ = 5 (stars). Simulation parameters:
h = 0.02, λ = 4π, κ = 10, D ∈ {0.05, 0.1, 0.25, 0.5}. (a): 1 < M < 100. The dashed
lines shows reference slopes 1 (bottom) and 2 (top). The approximated slopes (based
on linear least squares fitting) are listed on the top left corner. (b): M > 100.

Results of a further test to link together scale separation and scale-splitting
error are shown in figure 3b-c. Namely, for each simulation drawn in figure
2, we select the first M such that the scale splitting error is below a certain
threshold error Ē(h, H). These values Mth are plotted then as function of
σ, validating the idea that larger scale separation (i.e. larger σ) allows more
efficient CxA formulations.

A further argument to support the analysis is shown in figure 3c, where we
draw the scale-splitting error as a function of M for a particular triple (h, κ, d),
including also the results of a spatial-coarsened CxA and the error of the
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original LBM (17). The error for MX =
√

M increases linearly, also for small
M (see (35)). Moreover, we observe that for a moderate range of M , the
scale-splitting error is of the same magnitude of the discretization error. In
other words the CxA model does not spoil, quantitatively, the accuracy of the
original algorithm.
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Figure 3. (a): Error as function of M , including a threshold error Ē(h,H) = 0.05 (re-
sults with σ = 25 are also shown). (b): Values of Mth such that the scale-splitting
error equates a threshold error Ē(h,H), versus the measure of scale separation

σ = κ
(

λ2D
)−1

(in double logarithmic scale). (c): Error (58) for MX = 1 (◦) and

MX =
√

M (×) over a complete simulation, as a function of M . The dashed line is the
error ‖EAh,EX

h ‖ of the original (fine-discretized) algorithm (17) (∆x = h, ∆t = h2)
with respect to the exact solution (2).

5 Conclusions and Outlook

We have proposed a formal description of Complex Automata modeling and
related error analysis. The approach has been validated on a simple reaction-
diffusion benchmark, investigating theoretically and experimentally the scale-
splitting error using

• a full asymptotic analysis, which yielded detailed information on the behav-
ior of the scheme, but needs also more assumptions,

• an approach combining analysis and properties of discrete operators, more
general, which in the relevant cases provides interesting estimates

• numerical simulations, comparing the results of a multiscale algorithm with
a Complex Automata model

As a side result, the presented operator analysis leads to two interesting prop-
erties, (16) and (43), which holds for LBM applied to reaction-diffusion cases,
and are relevant also independently from the CxA methodology.

The application of the analysis to CxA for more general multiscale models is
a topic of ongoing research. Although we focused on a particular problem, we
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believe that the proposed formalism represents an important intermediate re-
sult for single-domain CxA, and sets the basis to construct a wider framework
to analyze CxA models and of different type of multiscale coupling templates.
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