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Abstract

We present an investigation of a boundary condition algorithm for the lattice Boltz-
mann method, which introduces Dirichlet conditions on velocity using a singular
force applied on the fluid-solid interface (immersed boundary method). The algo-
rithm has been proposed in the literature in different versions and mainly numeri-
cally tested, only in specific cases. An approach based on a generalized asymptotic
expansion technique will be used to understand properties and point out problems
of the scheme. As a result, we found that the algorithm achieves a first order accu-
rate velocity in a strong sense, while accuracy for the pressure can be stated only
considering a weak norm. Moreover, the analysis predicts a first order accuracy for
the boundary force although the precision is affected by stability limitations. We
benchmark the method on lattice Boltzmann flows past a rigid disk, comparing its
numerical performances with standard boundary condition approaches.

Key words: lattice Boltzmann method, boundary conditions, asymptotic analysis,
immersed boundary method.

1 Introduction

The lattice Boltzmann method (LBM) [8,14,19], in virtue of its simple formu-
lation and favorable implementation, is an alternative numerical method for
solving the incompressible Navier-Stokes equations used in many applications.
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Due to its relative novelty, many features are object of current investigations
and still represent challenging tasks. We focus on Dirichlet boundary condi-
tions.

One possibility, which we will call classical BC approach, consists of dividing
the domain into a fluid and a solid part, and specifying a boundary rule for
the computational fluid nodes close to the interface. Algorithms belonging
to this family have been proposed and analyzed in several works (see for
example [2,6,10,15]). The immersed boundary methods are based on a different
idea. In this approach, the computational fluid domain discretizes both fluid
and solid physical sub-domains, while the information about the interface and
the boundary conditions is introduced via an additional force applied at the
boundary nodes, i.e. the lattice nodes close to the interface. As a consequence
the algorithmic interface is immersed into the discrete lattice, and it spreads
over a grid cell. Using finer discretizations the width of cells decreases, while
the intensity of the applied force increases, resulting in a singular source in the
limit. Basic ideas of a singular force approach for the Navier-Stokes equation
(out of the LB framework) can be found, for example, in [13].

Within the LBM, a first immersed boundary approach was described in [7].
Later on a novel version was proposed in [18]. Both these approaches can be
directly related to the original idea of immersed boundary described above.

Earlier [1], a model to simulate infinitely small particles in flow was originally
proposed, based on a coupling of an LB-flow solver with a Molecular Dynamics
(MD) model. The solid particles were modeled as points, introducing a friction
force depending on velocity (according to Stokes law) at the closest lattice
nodes. A later generalization of this approach [5] has been used for simulating
colloidal particles in flow. Even if derived from different ideas, the algorithms
in this form can be written as an immersed boundary methods.

To our knowledge, only restricted sets of numerical examples have been pre-
sented in all these formulations. It must be remarked that in [1,5] the algorithm
was designed for a very specific application. However, in the interest of the
community, we investigate possible generalizations.

The scope of this article is twofold. First we aim at a better understanding
of the algorithm based on an asymptotic analysis. Of practical interest is
the study of possible realizations and performances of the algorithm, while
comparing with classical approaches, to investigate whether it represents a
valid alternative. Secondly, from the theoretical point of view, due to the
presence of singular terms we need to develop a generalized formulation of the
classical analysis approach, which allows non-smoothness restricted to regions
close to boundary. We show how weak estimates can be derived, verifying
them numerically on a benchmark problem.
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The article is organized as follows. The lattice Boltzmann method is briefly
introduced in section 2. In section 3 an implementation of boundary conditions
via singular force is described together with a first numerical test. Section 4
presents the asymptotic analysis, the generalization to non-smooth expansions
and further numerical investigations concerning force evaluation and stability
issues. Conclusions and discussion are presented in section 5.

2 Lattice Boltzmann method

Let us consider a domain Ω ⊂ Rd (d = 2, 3), divided into a fluid part ΩF (t),
a solid part ΩS(t) and the interface Γ(t) between them:

Ω = ΩF (t) ∪ Γ(t) ∪ ΩS(t), (1)

In the fluid sub-domain, we consider an incompressible Navier-Stokes problem










∇ · u = 0 t ∈ (0, T ], x ∈ ΩF (t)

∂tu + ∇p + u · ∇u = ν∆u + G t ∈ (0, T ], x ∈ ΩF (t)

u(t,x) = uB(t,x) t ∈ (0, T ], x ∈ Γ(t)

u(0,x) = u0(x) x ∈ ΩF (0),

(2)

u0(x) being the initial fluid velocity and uB(t,x) the prescribed velocity at
the fluid-solid interface. We assume that ΩS(t) is a rigid body with a given
motion, i.e. Γ(t) is known function of time.

The lattice Boltzmann method is employed to solve numerically (2). The al-
gorithm is defined by discretizing the spatial domain with a Cartesian lattice
hZd, where j ∈ Zd denotes the coordinates of a generic node, and the time do-
main [0, T ] with discrete nodes tn = h2n, n ≥ 0. The relation ∆t = ∆x2, called
in literature the diffusive scaling, is necessary to recover the incompressible
problem (2) [9]. In what follows, we introduce

G(h) = Z
d ∩ h−1Ω =

{

j ∈ Z
d | hj ∈ Ω

}

to denote the set of integer coordinates of all computational nodes.

The general iteration of the algorithm reads

f̂i(n+ 1, j + ci) = f̂i(n, j) + Ji(f̂)(n, j) + gi(n, j) (3)

where V = {ci | i = 1, . . . , b} is a discrete velocity set, compatible with the
Cartesian lattice (i.e. the discrete velocity vectors connect neighboring nodes
of the lattice). In this work, we consider the D2Q9 model with nine veloci-
ties in 2D (for details, see [19] and the references therein), depicted in figure
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1a. The variable f̂i(n, j) represents the numerical solution for the density of
particles moving in direction ci at time tn = h2n and position x = hj. For
the collision operator Ji(f̂) on the right hand side of equation (3), we use the
BGK approximation

J(f̂) =
1

τ
(f eq(f̂) − f̂), (4)

i.e. a linear relaxation 1 towards an equilibrium distribution

f eq(f̂) = H
eq
i

(

ρ(f̂),u(f̂)
)

,

which is a function of f̂ through the local density ρ̂ = ρ(f̂) =
∑

i f̂i and the
local velocity û = u(f̂) =

∑

i cif̂i related to the particle distributions.

For the D2Q9 model

H
eq
i (ρ,u) = f ∗

i

(

ρ+ c−2
s ci · u +

c−4
s

2

(

|ci · u|2 − c2su
2
)

)

, (5)

where the lattice sound speed cs and the weights f ∗

i are model dependent
constants [19].

Finally, τ is related to the viscosity via ν = c2s(τ − 1
2
) and the additional

term gi is used to include the volume force G appearing in the Navier-Stokes
problem (2):

gi(n, j) = h3c−2
s f ∗

i ci ·G(tn,xj). (6)

The classical implementation of algorithm (3) is usually split into collision
and propagation sub-steps

(C) f̂C
i (n, j) = f̂i(n, j) +

1

τ
(f eq

i (f̂) − f̂i)(n, j) + gi(n, j),

(P ) f̂i(n + 1, j + ci) = f̂C
i (n, j)

(7)

(where f̂C is called post-collision distribution).

LB boundary conditions In case of classical BC approaches, Ω is divided
into solid and fluid sub-domains and the LB variables are defined only on
the fluid part. Hence, for a node which has at least a neighbor in the solid
domain, a boundary condition rule is necessary (instead of the update (7)) for
the incoming directions, i.e. the LB variables entering the fluid domain.

The immersed boundary approaches (section 3), does not distinguish fluid and
solid nodes. However, in order to make comparisons with classical BC rules

1 We focus on a single relaxation time model. However, the analysis can be applied
also to more general multiple relaxation time (MRT) models.
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Figure 1. (a) The D2Q9 model. Bigger circles indicate larger weights f∗

i . (b) Sketch of
the BFL boundary conditions (8). To update f̂i∗ at the boundary node k, a combination
of the populations after collision at two neighbor nodes is used, depending on the
distance q between the boundary and xk, and the boundary velocity.

for LBM, we use the scheme proposed by Bouzidi, Firdaouss, Lallemand in [2]
(BFL rule), where the incoming variables are defined extrapolating from the
LB variables on the neighboring nodes:

f̂i∗(n + 1,k) =



























2qf̂C
i (n,k) + (1 − 2q)f̂C

i (n,k − ci)+

2c−2
s f ∗

i ci · uB

q ≤ 1
2

1
2q
f̂C

i (n,k) + (1 − 1
2q

)f̂C
i∗ (n,k)+

1
q
c−2
s f ∗

i ci · uB

q > 1
2

(8)

where q denotes the relative distance between the fluid node k and boundary
along the link ci and uB is the velocity of the boundary point along ci (see
figure 1b).

3 Force boundary conditions

In this section we describe in detail an immersed boundary approach, based
on [1,5], which can be seen as a particular version of the method in [7,18].

Interface discretization. Primarily, the physical fluid-solid interface Γ is
discretized using a set of points (see figure 2a), called boundary molecules:

M = {P1, . . . ,PNb
} ⊂ Γ. (9)

The set M is constructed using a partition of amplitude O(h) of the boundary.
The number of points Nb depends on h and on the dimension of the interface
(a discretization as fine as the LB grid gives Nb ∼ 1

h
in 2D and Nb ∼ 1

h2 in
3D).

Friction force. According to the original model [1,5], each boundary molecule
feels an ideal friction force due to the fluid flow, which depends on the differ-
ence in velocity. We observe that in [7] an analogous force is introduced, in
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the form of a penalty term, i.e. an additional source designed to reproduce the
desired boundary condition.

Considering a generic Pm ∈ M, calling Vm its velocity, we have:

Fm(t) = ξ(u(t,Pm) − Vm(t)), (10)

where u(t,Pm) is the fluid velocity at Pm and ξ is an opportune friction
coefficient. Since the fluid velocity at Pm is in general not available, we use
the force

F̃m(h, t,u) = −ξ̂h (ũm(h) − Vm(t)) , (11)

depending on ũm, i.e. an approximation of u(t,Pm) based on the values at
the nearest lattice nodes. Note that the resulting force depends on h through
the approximated velocity. Additionally, we have introduced a h-dependent
friction coefficient ξ̂h (the need of this parameter will be clarified later on).

In practice, for the algorithm described below and for the presented numerical
results, we adopted a bilinear interpolation for ũm

2 .

The singular force on the LB nodes. Finally, an equal intensity force has
to be applied on the fluid. In the LBM (3) this is done using a forcing term
in the collision step at the nodes close to the interface. For each Pm we select
a neighborhood

Bh(Pm) =
{

j ∈ G(h) |
∣

∣

∣xj − Pm

∣

∣

∣ < 2h
}

(12)

and distribute the friction force on the nodes belonging to it (figure 2a).
Namely, the force

FLB
m (h, tn,xj,u) = wF

m(h, j)(−F̃m(h, tn,u)), (13)

such that
∑

j

(2h)dFLB
m = −F̃m (14)

(being (2h)d the volume of Bh(Pm), i.e. of the fluid which feels the interface

2 As possible alternatives, we have investigated higher order approximations and
side-dependent interpolations (i.e. computing ũm using lattice nodes on the same
side of the interface). More complicated approximation routines could produce bet-
ter results in some cases, but lead in general to considerable increase of computa-
tional effort. Furthermore, using wider stencils of points, the level of technicality
of the algorithm increases, also due to the need of special geometrical configura-
tions to be taken into account, making it comparable in efficiency with classical BC
approaches.
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Figure 2. (a) The fluid-solid interface Γ is discretized using a set of boundary molecules
(◦), with mutual distance of order of h. After computing the friction force on a bound-
ary molecule P, it is distributed on the LB nodes (�) belonging to h-neighborhood
Bh(P)(dashed-edges square). (b) Considered Benchmark. In a channel of length
L = 1.2m and width W = 0.41m we place a rigid disk of radius R = 0.05m. The
center is located at xC = 0.2m, yC = 0.2m (small vertical offset). We use a parabolic
inflow (with maximum velocity U = 0.3m

s
) on the right boundary and a homogeneous

Neumann condition at the outflow, using the implementation proposed and analyzed in
[11]. Viscosity is ν = 0.005.

force) is applied to the LB nodes close to the interface via

gBC
i (n, j) = h3f ∗

i c
−2
s ci ·

Nb(h)
∑

m=1

FLB
m (h, tn,xj,u). (15)

Expression (13) and (15) can be defined globally on the whole LB lattice,
setting wF

m(h, j) = 0 at the interior nodes (the nodes far from the boundary).

Remarks. The friction force acting on the boundary molecule can be inter-
preted as a discrete approximation (according to the weights wF

m(h, j)) of a
delta function centered at Pm. The numerical interface Γ spreads over a nar-
row band of width O(h). As the width decreases (finer grids), the intensity
of the force increases proportionally, resulting for h → 0 in a singular force.
Observe that the force vanishes when the boundary condition

u(t,x) = uΓ(t,x), ∀x ∈ Γ(t)

is satisfied.

Evaluation of the boundary force. The total boundary force acting on the
solid is evaluated (as proposed in [5]) taking the sum of all the friction forces
acting on the ideal particles 3 :

F̂S
h(tn) =

Nb(h)
∑

m=1

F̃m(h, tn,u) . (16)

3 The total boundary torque can be computed in a similar way, considering the
torques of the local friction force respect to the center of mass of the solid.
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(a) (b)

Figure 3. Qualitative results of forceBC algorithm. (a) Contour lines of u2 + v2.(b)
Pressure field.

The force boundary condition algorithm can be summarized as follows:

Algorithm 1 (forceBC)
at time tn, given u(tn, ·), Γ(tn):
define the set of boundary molecules M = {P1, . . . ,PNb(h)}

P -loop: for m = 1, . . . , Nb(h)
compute weights: wu

m(h, jl), jl ∈ Bh(Pm) (for closest nodes)

compute ũm(tn), F̃m = ξ̂h(ũm(tn) −Vm(tn))
for jl ∈ Bh(Pm)
compute wF

m(h, jl), FLB
m (h, tn,xj,u)

gi(n, j) = gi(n, j) + h3f ∗

i c
−2
s ci · FLB

m (h, tn,xj,u)
(note: contributions have to be summed up on each LB node)

end

end (P -loop)
LB-collision (with additional force where needed)
LB-propagation

compute force and torque on particle:

F̂S
h(n) =

∑Nb(h)
m=1 F̃m, T̂S

h(n) =
∑Nb(h)

m=1 (xC − Pm) × F̃m

update particle position and velocity

Benchmarks: disk in channel The force boundary condition algorithm
is used to simulate the flow in a channel past a rigid disk, according to the
benchmark proposed in [17]. The parameters are provided in detail in figure
2b. We compare the results of the force boundary condition algorithm with
the ones obtained employing the BFL rule (8). As an example of application,
in figure 3 we report the results for the flow field at the steady state.

4 Asymptotic Analysis and Numerical Tests

Algorithm 1 is analyzed using the asymptotic expansion technique. We will
first summarize the argument for the classical LBM (following [9]), which, in
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our case, corresponds to the algorithm employed at the interior lattice node,
i.e. far from the interface.

Basically we search an approximation of the LB solution f̂h in form of power
series of the lattice step h

f̂h(n, j) ≈ Fh(n, j) = f
(0)
i (tn,xj) + hf

(1)
i (tn,xj) + h2f

(2)
i (tn,xj) + . . . , (17)

with h-independent coefficients f (k), smooth functions of the physical time t
and space x. The function Fh is called ansatz. To determine the functions f (k)

we insert the ansatz (17) into the algorithm

f̂i(n + 1, j + ci) = f̂i(n, j) +
1

τ
(f eq

i (f(n, j)) − fi(n, j)) + gBC
i (n, j). (18)

Using a Taylor expansion, sorting the orders in h and equating each order
to zero in the resulting expression, we obtain a set of (partial differential)
equations for the coefficients f (k). It can be shown that the choices (see [9] for
details)

f
reg,(0)
i = f ∗

i ,

f
reg,(1)
i = f ∗

i c
−2
s ci · u,

f
reg,(2)
i = f ∗

i c
−2
s p+

f ∗

i c
−4
s

2

(

|ci · u|2 − c2su
2
)

− τf ∗

i c
−2
s ci · ∇u · ci,

(19)

where u and p are a solution of the Navier-Stokes problem (2), define a pre-
diction Fh satisfying (18) up to a residue of order h3. To stress that the above
relations have been obtained considering a regular expansion for the algorithm
in the bulk flow, in what follows we refer to the functions in (19) as interior
or regular coefficients, denoting them with f reg,(k). The (interior) numerical
method is analyzed using the truncated expansion

Fi
reg
h = f

reg,(0)
i + hf

reg,(1)
i + h2f

reg,(2)
i , (20)

which we call regular prediction. Since we can extract the Navier-Stokes so-
lution taking suitable moments of F reg

h , we conclude that the corresponding
moments of the numerical solution

h−1û =

∑

i cif̂ih

h
= u +O(h2),

p̂ = c2s

∑

i f̂ih − 1

h2
= p+O(h),

(21)

yield a second order accurate velocity and a first order accurate pressure.
Additionally, we can approximate (up to first order in h) the viscous stress
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tensor using

Ŝ[u] = − ν

c2sτh
2

∑

i

ci ⊗ ci

(

f̂i − f
eq
i (f̂)

)

=

= ν
(

∇u + ∇uT
)

+O(h).
(22)

The BFL boundary condition scheme (8) can be analyzed in a similar way [10],
giving results consistent with (19), that proves the same accuracy properties
(21)-(22).

The forceBC algorithm 1 differs from the LBM (18) only at the lattice nodes
close to the boundary, where

gBC
i (n, j) = f ∗

i c
−2
s ci ·

Nb(h)
∑

m=1

−ξ̂hh3wF
m(h, j)(ũm − Vm) 6= 0. (23)

To investigate the numerical solution at those points, we introduce a new
ansatz, which has to be consistent with the interior prediction at the lattice
nodes far from the interface.

Dealing with a singular source, we extend the classical analysis approach by
requiring the coefficients f (k) to be smooth only far from the interface, i.e. on
Ω\Γ, and allowing jumps across the boundary. In general, we can write the
coefficient of order k as

f
(k)
i = f

reg,(k)
i + φ

(k)
i (gBC), (24)

where f
reg,(k)
i is the regular coefficient defined in (19) and φ

(k)
i depends on the

forcing term gBC
i (23) and contains the irregular parts.

Leading orders: boundary condition on velocity. We assume that the
velocity is continuous across Γ, differentiable on both sides, with bounded
gradient. Also, we assume the pressure to be smooth on the fluid and solid
domain. A consequence of the continuity condition on the velocity is that
the leading orders f (0) and f (1) of the expansion must be at least continuous
as well. Comparing the coefficients on both sides of the interface yields the
condition

φ
(0)
i = 0, φ

(1)
i = 0, ∀i = 1, . . . , b. (25)

According to the analysis, allowing the friction coefficient to depend on h and
defining ξ̂h proportional to hd−2 (where d is the number of dimensions, i.e. ξ
is independent from h in 2D and O(h) in 3D), equation (25) gives

φ
(0)
i = 0 (identically verified), (26)

φ
(1)
i = 0 ⇐⇒ ci ·

(

u(1) − uΓ

)

, ∀i = {1, . . . , b} ⇐⇒ u(1) = uΓ. (27)

In other words, when the Dirichlet boundary condition is satisfied the leading
order of the singularity vanishes and interior (regular) expansion holds up to
first order in h.
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In general, without continuity properties of the coefficients, it is not possible to
compare pointwise the quantities of higher orders. Therefore, strong accuracy
properties of the velocity higher than first order in h cannot be stated. On
the other hand, possible irregularity can be taken into account by considering
integral fields and weak norms. This will be discussed in the following sections.

Higher orders and force evaluation. Considering the second order co-
efficient, we have to take into account the jumps in the numerical pressure
and velocity gradient across Γ. For this purpose, for any continuous function
v : Ω\Γ → R we introduce the quantities

∀b ∈ Γ vF (b) = lim
x→b,x∈ΩF

v(x), vS(b) = lim
x→b,x∈ΩS

v(x), (28)

and the jump across the interface in b:

[v]b = vF (b) − vS(b).

In view of the previous observations,
[

f (0)
]

b
=
[

f (1)
]

b
= 0, for all b ∈ Γ.

To analyze the force computation, the approach can be generalized considering
f (2) as distributions and introducing an integral semi-norm based on a discrete
integration over the h-size lattice

∀v : Ω → R, ‖v‖1,h :=
∥

∥

∥

∑

j∈G(h)

h2v(xj)
∥

∥

∥. (29)

We investigate the quantity

∆
(2)
1,h = ‖

∑

i

(

f
(2)
i,h − f

reg,(2)
i,h

)

‖1,h. (30)

i.e. the semi-norm of the difference ρ(f (2)) − ρ(f reg,(2)).

To evaluate (30), we need to sum over all the lattice nodes and over the discrete
directions ci, for i = 1, . . . , b.

First of all, we remark that φ
(2)
i can be different from zero only for the links

ci crossing the boundary. This can be seen considering the procedure we used
to derive the regular prediction, starting from equation (18). At a boundary
node j, if j and j+ci are located on the same part with respect to the interface
(fluid-fluid or solid-solid links) the residue can be Taylor expanded in term of
smooth functions around (tn,xj). In other words, the prediction contains only

regular parts, i.e. φ
(k)
i = 0 if ci does not cross the interface. Hence, only the

links connecting fluid and solid nodes give non-zero contribution in (30). Since
these links identify uniquely intersection points between lattice and interface,
the summation (30) can be rewritten as a sum over the set of points b(k, i) ∈ Γ
where a crossing link ci starting from k intersects the boundary. According
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to (19), assuming that the regular part of the second order coefficient has the
same structure on both sides of the interface, i.e. for b ∈ Γ

f
F,(2)
i = f ∗

i c
−2
s pF +

f ∗

i c
−4
s

2

(

|ci · u|2 − c2su
2
)

− τf ∗

i c
−2
s ci · [∇u]F · ci

f
S,(2)
i = f ∗

i c
−2
s pS +

f ∗

i c
−4
s

2

(

|ci · u|2 − c2su
2
)

− τf ∗

i c
−2
s ci · [∇u]S · ci

(31)

(where F and S have the same meaning as in (28)), (30) can be expressed as a
sum of discontinuities in pressure and stress tensor (i.e. gradient of the veloc-
ity) across the interface and a sum of the singular forces along the boundary:

∥

∥

∥

∑

b(k,i)

2f ∗

i c
−2
s

(

[p]b +
c−2
s

2
ν [ci · ∇uB · ci]b

)

ci −
Nb(h)
∑

m=1

ψm(û)
∥

∥

∥ =

=
∥

∥

∥

∑

b(k,i)

2f ∗

i c
−2
s

(

[p]b +
c−2
s

2
ν [ci · ∇uB · ci]b

)

ci − F̂h

∥

∥

∥,

(32)

where ψm(û) abbreviates the friction force at Pm and

F̂h(tn) =
Nb(h)
∑

m=1

ψm(û(tn, ·)), (33)

is the approximation of the boundary force used in algorithm 1. Following
[3,4], the sum over b(k, i) in (32) can be related to the integral 4

FS(tn) =
∫

Γ(tn)

(

− p(tn,x) + S[u(tn,x)]
)

· n(x)dx (34)

(being S[u] the viscous stress tensor and n(x) the local outgoing normal to
the interface at point x), defining the force acting on the solid due to the fluid
flow.

Result (32) represents an interesting starting point to relate the force com-
puted using the immersed boundary approach, which has a numerical origin,
to the physical force emerging in problem (2).

However, a practical estimate can be derived only under certain assumptions.
First of all, we observe that if the solution of the original Navier-Stokes prob-
lem can be extended inside the solid domain, defining the pressure to be con-
stantly zero, and the velocity in a way compatible with the rigid body bound-
ary condition (in the considered benchmark, the velocity is also extended by

4 In [3,4], a summation analogous to the one in (32) has been investigated in the
context of the analysis of the Momentum Exchange Algorithm. It has been shown
(detailed proof in [3]) that in virtue of the lattice symmetries it leads a first order
approximation of the integral (34).
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zero), pressure and velocity gradient jumps correspond to the values of those
fields at the interface. Introducing a discretization error, from equation (32),
we need the hypotheses

(i) the jumps in pressure and stress tensor obtained via forceBC algorithm
approximate these fields at the interface (i.e. finer discretizations produces
better approximation of the real jumps), and

(ii) the seminorm (30) can be estimated as O(h).

In this case, according to (32) the forceBC algorithm yields a first order ap-
proximation of the boundary force (34). Moreover, since (30) is connected
with the seminorm of the pressure difference, combining hypothesis (ii) with
the definition (21) we conclude that a first order accurate pressure can be also
achieved, but only in a weak sense.

Numerical experiments To test the theoretical estimates, we perform fur-
ther numerical investigations on the benchmark described in figure 2b, com-
paring the forceBC algorithm with the BFL.

Cross-sectional views of velocity and pressure fields along the center of channel
are shown in figure 4, which clearly reflects the fact that there is a good
qualitative agreement with the BFL results. It should also be noted that the
forceBC algorithm yields to smooth fields across the numerical interface. A
decrease in the grid size results in a sharper interface, while the magnitudes
of pressure and velocity inside the solid domain decrease, achieving a better
approximation for the pressure jump (figure 4b). In figure 5 we measure the
order of the difference between forceBC and BFL algorithms. Since the BFL
conditions yield a second order in velocity field and first order in force, we
verify whether the forceBC algorithm achieves a similar order of accuracy. In
an affirmative case, the difference between the results should be of the same
order of the error produced by the BFL. But, the order plot in figure 5a confirm
that we can achieve only a first order accurate pointwise approximation of
velocity 5 .

Figure 5a also demonstrates that the difference in pressure, evaluated accord-
ing to the seminorm ‖·‖1,h is first order accurate and the force is approximated
up to the first order in h as well, which is consistent with the predictions
derived with the analysis. In addition, detailed results for drag and lift coeffi-
cients are also reported in table 1. They show satisfying agreement with the
BFL-computed values, although the BFL results are closer to the literature
reference [17].

5 As remarked in section 3, the presented numerical results have been obtained
using a bilinear interpolation for the interface velocity. Experiments with more ac-
curate approximation routines did not bring considerable improvements.
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Figure 4. Cross section for y = yC of pressure and velocity squared near the
disk. Qualitative comparison of forceBC and BFL algorithms on different grids
(◦ : h = 0.050,⋆ : h = 0.025). Note that the fields in the solid domain are set
equal to zero plotting the results of BFL rule. (a) Pressure. (b) Zoom of pressure
closer to the interface, to show how the jump in pressure is smoothed out on a h-cell
by the forceBC. (c) Squared velocity u2 + v2.
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Figure 5. (a) Double logarithmic plot of
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∥ (◦), ‖F fBC
S − FBFL

S ‖ (⋆)
and

∥

∥pfBC − pBFL
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1,h
(2) versus grid size. Reference line of slope 1 is also drawn

(dashed line). (b) Cross section of the velocity squared (as in figure 4b) using forceBC
algorithm with ξ = 1 (◦) and forceBC algorithm with ξ = 4, with modified friction (36)
(⋆). BFL results are shown for comparison. We remark that the forceBC algorithm is
unstable without (36).

Table 1
Values of drag and lift coefficients compared with the one published in [17] and with
the results obtained using the BFL boundary conditions (8)

Standard BC (BFL) LBM with forceBC Reference Values

82× 240 164×480 82× 240 164× 480

Drag Coefficient 5.5790 5.581 5.8630 5.6930 5.5700 - 5.5900

Lift Coefficient 0.0116 0.0109 0.0114 0.0116 0.0104 - 0.0110

Stability discussion. Performing the analysis we found a strict relationship
between the numerical results on the interface, the approximation of the fluid-
solid interaction and the size of the fields computed in the solid domain (which
is only a fictitious fluid). In fact, equation (32) relates all these quantities in a
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single error estimate. This shows that the numerical error can quickly be am-
plified, yielding instability phenomena. Even if the presented benchmark (see
the previous figures 4-5a) showed regular behaviors, a higher friction coeffi-
cient easily yields to stability problems. To better understand the mechanism
triggering the instability we look at the force included in the LB algorithm
(reporting equation (23))

gBC
i (n, j) = f ∗

i c
−2
s ci ·

Nb(h)
∑

m=1

−ξ̂hh3wF
m(h, j)(ũm − Vm). (35)

It can be seen as a penalty term, employed to achieve the desired velocity at the
boundary. However, in case of excessive friction, the penalty can be exaggerate.
Moreover, since the force only controls the sum over i of the previous equation,
spurious oscillations of opposite signs in the velocity can be introduced and
amplified in the following steps.

Although the algorithms as proposed in the original forms [1,5,7,18] show a
common structure of the singular force, we observe that the presented inves-
tigation is partially independent on the explicit form of the friction force. In
fact, the results for the boundary condition only requires the friction to vanish
when u = uB. Hence, it is theoretically possible to employ a modified friction
coefficient, to be able to improve the global stability properties.

A detailed investigation in this direction can be an interesting topic of future
research. To show how the idea could work, we test the choice

FLB
m (h, tn,xj,u) = max{FLB,0

m (h, tn,xj,u), K(h)}, (36)

(where FLB,0
m is the force computed as in (13)). It is equivalent to employing

an adaptive friction coefficient at each lattice node, which drastically bounds
the friction force below a pre-assigned value. An optimal choice for the bound
K(h) might depend on the specific test case. In simulating a flow field reaching
a stationary profile, it is necessary to control the size of the friction force only
during the transient flow and a bound K(h) ∼

√
h (i.e. order of magnitude

higher than the lattice size h) might be a good choice. Results of this simple
modification are shown in figure 5b. In more general situations, the values of
K(h) could also be investigated experimentally.

We observe that in practical applications, the reliability of an enhanced fric-
tion force can also achieve better qualitative approximation of the boundary
condition.
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5 Discussion and Conclusions

We have performed an asymptotic analysis of a force-boundary condition al-
gorithm, viewed as an immersed boundary approach for the lattice Boltzmann
method. Comparisons with a classical approach have been shown, based on
a well known benchmark, to investigate the quality of this approach being
an alternative. The investigation is useful from the practical and theoretical
points of view.

In practice, the forceBC algorithm has the advantage of not requiring explicit
boundary condition rules structurally different from the inner LBM, since
it does not distinguish fluid and solid nodes, but only those nodes that are
close to and far from the interface. This simplifies the implementation. On the
other hand, depending on the size of fluid and solid domain, it might be more
expensive than a classical fluid-solid approach, due to the need of running the
LBM on a larger set of nodes.

However, the origin of instability represents a serious drawback. In [1] a sta-
tistical noise was included to enhance the stability. This cannot be done in
the context of more general Dirichlet conditions. A different correction was
proposed in [18], involving higher order interpolation and semi-implicit time
discretizations. These features can be extremely costly (especially when accu-
rate geometric characteristic of the interface are required) within the LBM,
making the efficiency of the forceBC comparable (or even worse) than the
classical approaches.

Concerning the accuracy, we have shown that the analysis predicts in general
a first order accurate velocity field, confirmed by the numerical experiments.
The presence of singular sources near the boundary does not allow to define
properly a pointwise error for the pressure field. Thus, we have proposed a
way to analyze the algorithm in a weak sense, i.e. considering a notion of
precision weaker than the usual one. From the theoretical point of view, the
introduction of a seminorm to evaluate the accuracy represents an interesting
generalization, which can be useful when applying the analysis to problems
involving irregularities or singular terms. In the particular case described here,
this approach allowed us to conclude a weak first order accuracy for the pres-
sure, also validated numerically. Additionally, the method has been used to
derive an interesting result concerning the accuracy of the force computation.

The presented analysis helps to understand in which practical situations the
forceBC algorithm can be used. We can conclude that the scheme produces
satisfactory results when we are mainly interested in averaged behaviors (such
as fluid-solid forces, look for example at table 1). The cases of flows with
moderate speed past many particles (which represent a common benchmark
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in the previously presented versions of the method [1,5,7,18]) also belong to
this class of problems.

Since in those cases the algorithm can indeed improve the global efficiency,
we have also proposed the idea of an adaptive friction, as an additional pa-
rameter to bound the numerical friction force in order to enhance the stability
properties.

As a final remark, we observe that the idea of modifying the friction coefficient
could be extended to enforce other types of boundary conditions. For example,
the implementation of slip boundary conditions using a friction depending on
the normal component of velocity and/or directed along the normal to the
interface might represent an interesting topic for future research.
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[17] M. Shäfer, S. Turek. Benchmark Computations of Laminar Flow around a
Cylinder, Notes on Numerical Fluid Mechanics, 52, 547-566, Flow Simulation
with High-Performance Computers II, Vieweg, co. F. Durst, E. Krause, R.
Rannacher, 1996.

[18] C. Shu, N.Liu, Y.T. Chew. A novel immersed boundary velocity correction-
lattice Boltzmann method and its application to simulate flow past a circular
cylinder. J. Comp. Phys., 226, 1607-1622, 2007.

[19] Sauro Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.
Oxford University Press, 2001.

18


