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Abstract: In three-dimensional (3D) blood flow simulations, lumped parameter models (0D)
are often used to model the neglected parts of the downstream circulatory system. We analyze
two 3D-0D coupling approaches in which a fractional-step projection scheme is used in the fluid.
Our analysis shows that explicit approaches might yield numerical instabilities, particularly in
the case of realistic geometries with multiple outlets. We introduce and analyze an implicitly
3D-0D coupled formulation with enhanced stability properties and which requires a negligible
additional computational cost. Furthermore, we also address the extension of these methods to
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Schémas à pas fractionnaire pour le couplage de modèles
distribués et localisées en hémodynamique

Résumé : Les modèles à paramètres localisés (0D) sont souvent utilisés dans les simulations
tri-dimensionnelles (3D) d’écoulements sanguins pour modéliser l’effet des parties de l’appareil
circulatoire négligées en aval. Dans cet article nous analysons deux approches pour le cou-
plage de modèles 3D-0D, dans lesquelles un schéma à pas fractionnaire est utilisé dans le fluide.
Notre analyse met en évidence que les schémas de couplage 3D-0D explicites peuvent donner
des instabilités numériques dans le cas de sorties multiples. Nous introduisons et analysons une
formulation 3D-0D implicite avec des propriétés de stabilité améliorées et un coût de calcul sup-
plémentaire négligeable par rapport au cas explicite. Nous abordons également l’extension de
ces méthodes à des problèmes d’interaction fluide-structure. Les résultats théoriques de stabilité
sont confirmés par des expériences numériques dans des géométries et données réalistes.

Mots-clés : Écoulements sanguins, schéma de projection de Chorin-Temam, interaction fluide-
structure, modèles à paramètres localisés, couplage 3D-0D.
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3D-0D coupling schemes in hemodynamics 3

1 Introduction

In 3D distributed models of blood flow (e.g., Navier-Stokes equations, fluid-structure inter-
action), downstream pressure boundary conditions are often used to represent the effect of the
neglected portion of the vessels. In fact, since pressure measurements are invasive and not al-
ways available, the downstream circulation is usually modeled trough lumped parameter (or 0D)
models. This results in a set of algebraic-differential equations, relating fluxes and pressures at
each outlet boundary of the fluid domain (see, e.g., [11, 20, 18, 22] and the references therein).
A widely used lumped parameter model is the so-called three-element Windkessel system (see,
e.g., [11, 12])

The 3D-0D coupling between distributed and lumped models is operated by interface condi-
tions that guarantee the continuity of the fluxes and pressures on the outlet boundaries (3D-0D
interfaces). It is well-known that, when this coupling is treated explicitly in time, the whole
system might suffer from numerical instability, regardless of the solution scheme in the 3D com-
partment. This enforces restrictions on the time-step length, that can considerably increase
computational cost in realistic applications (see, e.g., the discussion in [20]). On the other hand,
implicit 3D-0D coupling schemes overcome this instability issue at the expense of solving a fully
coupled 3D-0D system at each time step. The so-called partitioned approaches solve this system
by sub-iterating between the 3D and 0D models, which might be inefficient in practice (see, e.g.,
[16]). Alternatively, monolithic procedures solve both models simultaneously and yield system
matrices with a modified sparsity pattern, which might lead to preconditioning issues (see, e.g.,
[17]).

This work is devoted to the formulation and analysis of 3D-0D coupling schemes based on a
fractional-step projection time-marching of the fluid (see, e.g., [6, 14, 21]). First, an advection-
diffusion problem is solved to recover an intermediate approximation of the velocity field and,
then, a suitable pressure field is recovered by solving a Poisson problem. We also consider
the case of a 3D fluid-structure interaction modeling, time-discretized by the projection semi-
implicit coupling scheme reported in [9]. In this fractional-step framework, the explicit and
implicit treatments of the 3D-0D coupling lead to different formulations of the pressure-Poisson
projection step. It can be discretized in an explicit fashion by time-advancing the 0D model from
the previously computed intermediate velocity flux, which provides an explicit Dirichlet boundary
data for the 3D pressure-Poisson problem. For a purely fluid 3D distributed modeling with two
or more 3D-0D interfaces, our analysis shows that this approach might compromise stability. We
also show that, in the case of fluid-structure interaction, numerical instabilities might appear
even with a sole downstream boundary. We propose to overcome these instability issues through
the introduction of a implicit 3D-0D formulation with enhanced energy balance across the 3D-
0D interface, both for a fluid and a fluid-structure interaction modeling of blood flow. A salient
feature of the proposed schemes is that they preserve the two-step velocity/pressure splitting of
the original fractional-step scheme, characterized by a 3D-0D coupled problem of reduced size.
Moreover, we show that this coupling strategy can be efficiently implemented by considering a
single unknown per 3D-0D interface. This yields a computational complexity comparable to an
explicit scheme and, hence, overcomes the above mentioned stability/complexity issues.

The rest of the paper is organized as follows. In Section 2 we introduce the 3D fluid equations,
its corresponding time discretization (via a fractional-step projection scheme) and the considered
Windkessel model. Section 3 is devoted to the formulation and analysis of explicit and implicit
3D-0D coupling schemes with a 3D distributed model based on the Navier-Stokes equations, while
Section 4 consider the fluid-structure interaction case. In section 5 we present and discuss the
performed numerical experiments, that is, the Navier-Stokes flow in a realistic aortic geometry
and with measured clinical data, and the fluid-structure interaction in an ideal abdominal aortic
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4 C. Bertoglio, A. Caiazzo & M.A. Fernández

aneurism. At last, Section 6 draws some concluding remarks and lines of future work.

2 The 3D-0D model problem
We first summarize the main ingredients of a 3D-0D model of blood flow coupling the in-

compressible Navier-Stokes equation and a lumped parameter description of the downstream
boundaries. We then present the time-marching schemes considered in each sub-system and
introduce some notation for the spatial discretization of the fluid equations.

2.1 3D fluid equations

We consider a domain Ωf ⊂ R3 with the following partition of its boundary ∂Ωf
def
= Γin ∪Σ∪

Γout. In the context of blood flow simulations, Ωf will represent the lumen of the vessel (see Figure
1), with Γin, Σ and Γout denoting, respectively, the inlet, vessel wall and outlet boundaries. We

Ωf ΣΓ in

Γ 1

Γ 2

π1

R d ,1

C 1

R p,1

C 2

R p,2 R d ,2

π2

Figure 1: Sketch of the fluid domain Ωf with two outlet boundaries Γout = Γ1 ∪ Γ2, (n0D = 2).

now consider the incompressible Navier-Stokes Equations for the velocity u : Ωf ×R+ → R3 and
the pressure p : Ωf × R+ → R:

ρf
∂u

∂t
+ ρfu ·∇u−∇ · σ(u, p) = 0 in Ωf ,

∇ · u = 0 in Ωf ,

u = uin on Γin,

u = 0 on Σ,

(1)

where ρf stands for the density of the fluid and the fluid Cauchy-stress tensor is given by

σ(u, p)
def
= −pI + 2µε(u) and ε(u)

def
=

1

2

(
∇u+ ∇uT

)
, µ being the dynamic viscosity of the

fluid and uin being a given inlet velocity field.

2.2 0D Windkessel model
In what follows, the oulet boundary Γout is assumed to be made of n0D components

Γout =

n0D⋃
l=1

Γl,

Inria

ha
l-0

06
90

49
3,

 v
er

si
on

 1
 - 

23
 A

pr
 2

01
2



3D-0D coupling schemes in hemodynamics 5

such that Γi∩Γj = ∅ for i, j = 1, . . . , n0D with i 6= j (see, e.g., Figure 1). We will consider a three-
element Windkessel model (see, e.g., [11, Chapter 10] and [12]), where the pressure Pl : R+ → R
and the flux Ql : R+ → R on the outlet Γl are related through the following algebraic-differential
equations: Cl

dπl
dt

+
πl
Rd,l

= Ql,

Pl = Rp,lQl + πl,

(2)

for l = 1, . . . , n0D. Here, Rp,l and Rd,l model the proximal and distal vasculature, respectively,
and the capacity Cl, take into account the deformability of the downstream vessels. The values
Pl and πl are also called proximal and distal pressures, respectively.

2.3 3D-0D coupling conditions

The 3D-0D coupling between (1) and (2) is defined through the following relations on each
Γl Ql =

∫
Γl

u · nf ,

σ(u, p)nf = −Plnf on Γl,

(3)

for l = 1, . . . , n0D and where nf denotes the exterior unit-vector normal of Ωf .

Energy balance. Let the quantity

E(t)
def
=

ρf

2
‖u‖20,Ωf

+

n0D∑
l=1

Cl
2
π2
l

denote the total (kinetic + potential) energy of the 3D-0D coupled system given by (1)-(3), while

D(t)
def
= 2µ

∫ t

0

‖ε(u(s))‖20,Ωf
ds+

n0D∑
l=1

∫ t

0

(
π2
l (s)

Rd,l
+Rp,lQ

2
l (s)

)
ds > 0 (4)

represents the dissipative effects. Assuming that uin = 0 (free system) and using a standard
energy argument, we get the following identity

E(t) +D(t) +

∫ t

0

(∫
Γout

ρf

2
|u(s)|2u(s) · nf

)
ds = E(0). (5)

Remark 2.1 Since the last term of the left-hand side can be negative, this expression does not
guarantee a correct energy balance across the 3D-0D interface Γout. This issue is well-known in
computational hemodynamics. The interested reader is referred to [5] for a stabilization technique,
and to [10] for a different 3D-0D coupling. The methods introduced in this paper can be easily
adapted to these alternative formulations.

2.4 Time semi-discretization

We consider a fractional-step time-marching of the fluid equations (1) and a backward Euler
scheme for the lumped parameter model (2). In what follows, the parameter τ denotes the
time-step size, we set tn

def
= nτ for n ∈ N and ∂τxn

def
= (xn − xn−1)/τ stands for the first-order

backward difference.
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6 C. Bertoglio, A. Caiazzo & M.A. Fernández

2.4.1 Fractional-step fluid time-marching

Several variants of the original Chorin-Temam projection scheme [6, 21] have been proposed
in the literature (see, e.g., [14] for a recent review). The methods presented and analyzed in
section 3 below do not a priori depend on the specific formulation considered for the projection
scheme. To fix the ideas and without generality loss, we consider the non-incremental pressure-
correction version (see, e.g., [14, Section 4]). Hence, we set ũ0 = u0 = u0 and, for n ≥ 1, we
compute (un, pn, ũn) by solving:

1. Viscous step: 
ρf
ũn − un−1

τ
+ ρf ũ

n−1 ·∇ũn − 2µ∇ · ε(ũn) = 0 in Ωf ,

ũn = uin(tn) on Γin,

ũn = 0 on Σ.

(6)

2. Projection step: 
ρf
un − ũn

τ
+ ∇pn = 0 in Ωf ,

∇ · un = 0 in Ωf ,

un · nf = uin(tn) · nf on Γin,

un = 0 on Σ.

(7)

From the implementation point of view, the projection step (7) is usually reformulated by as
the pressure-Poisson problem

− τ
ρf

∆pn = −∇ · ũn in Ωf ,

τ

ρf

∂pn

∂nf
= 0 on Γin ∪ Σ.

(8)

Then, the divergence free (or end-of-step) velocity un can be eliminated in (6) using the following
relation (from (7)1)

un = ũn − τ

ρ
∇pn. (9)

2.4.2 Backward-Euler Windkessel time-marching

Without loss of generality, we consider a backward Euler time-discretization of (2), which
yields Cl∂τπ

n
l +

πnl
Rd,l

= Qnl ,

Pnl = Rp,lQ
n
l + πnl

(10)

or, equivalently, {
πnl = αlπ

n−1
l + βlQ

n
l ,

Pnl = γlQ
n
l + αlπ

n−1
l ,

(11)

with the notation αl
def
=

Rd,lCl
Rd,l Cl + τ

, βl
def
= Rd,l(1− αl) and γl

def
= Rp,l + βl.
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3D-0D coupling schemes in hemodynamics 7

2.5 Spatial discretization

In what follows, we will consider the usual Sobolev space H1(Ω), for a given domain Ω ⊂ R3.
Then, for X ⊂ ∂Ω (with meas(X) > 0), we define H1

X(Ω) the subspace of H1(Ω) with vanishing
trace on X. The scalar product in L2(Ω) is denoted by (·, ·)Ω and its associated norm by ‖ · ‖0,Ω.

We consider a family of triangulations {Tf,h}0<h≤1 of the domain Ωf satisfying the usual
requirements of finite element approximations (see, e.g., [7]). The subscript h ∈ (0, 1] refers
to the level of refinement of the triangulations. In order to ease the presentation, we assume
that the family of triangulations is quasi-uniform. For the discretization in space of (1), we
consider continuous Lagrange finite element approximations Vh and Nh of [H1(Ωf)]

3 and H1(Ωf),
respectively. Other choices of approximation spaces are possible for the projection method (see
[15] for a discussion). For a given X ⊂ ∂Ωf (with meas(X) > 0), we set

VX,h
def
= Vh ∩ [H1

X(Ωf)]
3, NX,h

def
= Nh ∩H1

X(Ωf).

3 Fractional-step time-marching and 3D-0D coupling schemes

In this section, we describe two coupling schemes (explicit and implicit) resulting from ap-
propriate time discretizations of the coupling conditions (3).

3.1 Explicit 3D-0D coupling scheme

In this case the 3D-0D coupling conditions (3) are time discretized as follows
Qnl =

∫
Γl

ũn · nf ,

pn = Pnl on Γl,

2µε(ũn)nf = 0 on Γl,

(12)

for l = 1, . . . , n0D. Note that the continuity of fluxes (3)1 is treated explicitly by using the flux
of the latest computed viscous velocity. For the relation (3)2 we consider a Dirichlet boundary
condition for the pressure, while the viscous part of the fluid stresses is set to zero. This is
a usual procedure to decouple the projection and viscous steps in the framework of projection
schemes with natural boundary conditions (see, e.g., [14]).

The resulting fully discrete time-marching procedure is reported in Algorithm 1. The 3D-0D
explicit coupling given by (12) allows a fully uncoupled computation of the Windkessel state, fluid
pressure and velocity. This is particularly appealing from the implementation and computational
efficiency point of view. Nevertheless, as suggested in Section 3.1.1 below (and then confirmed
by numerical experiments in Section 5), Algorithm 1 may suffer from stability issues.

3.1.1 Stability analysis

Let the quantities

En
def
=
ρf

2
‖ũn‖20,Ωf

+

n0D∑
l=1

Cl
2
|πnl |2,

Dn def
= 2µ

n∑
m=1

τ‖ε(ũm)‖20,Ωf
+

n−1∑
m=1

n0D∑
l=1

τ

(
|πml |2

Rd,l
+Rp,l|Qml |2

)
,

RR n° 7937
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8 C. Bertoglio, A. Caiazzo & M.A. Fernández

Algorithm 1 Explicit 3D-0D coupling scheme

Let u0 def
= u0, ũ0 ∈ Vh and π0

1 , . . . , π
0
n0D
∈ R be given initial data. For n ≥ 1 perform:

1. Viscous step: Find ũn ∈ VΣ,h such that
ũn|Γin = uin(tn),
ρf

τ
(ũn,v)Ωf

+ ρf(ũ
n−1 ·∇ũn,v)Ωf

+
ρf

2
((∇ · ũn−1)ũn,v)Ωf

+ 2µ (ε(ũn), ε(v))Ωf
=
ρf

τ
(un,v)Ωf

(13)

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃nl
def
=
∫

Γl
ũn · nf .

2. Windkessel step: For l = 1, . . . , n0D, compute (Qnl , π
n
l , P

n
l ) ∈ R3 from

Qnl = Q̃nl ,

Cl∂τπ
n
l +

πnl
Rd,l

= Qnl ,

Pnl = Rp,lQ
n
l + πnl .

(14)

3. Projection step: Find pn ∈ Nh such that pn|Γl = Pnl , l = 1, . . . , n0D,
τ

ρf
(∇pn,∇q)Ωf

= − (∇ · ũn, q)Ωf

(15)

for all q ∈ NΓout,h. Thereafter set un
def
= ũn + τ

ρf
∇pn ∈ [L2(Ωf)]

d .

for n ≥ 1, denote the energy and physical dissipation of the discrete system. Let us also set

E0 def
=

ρf

2
‖u0‖20,Ωf

+

n0D∑
l=1

Cl
2
|πn0 |2,

We then have the following energy based result.

Theorem 3.1 Let
{

(ũn, pn)
}
n≥1

and
{

(Qnl , π
n
l , P

n
l )1≤l≤n0D

}
n≥1

be the approximated solution
given by Algorithm 1 and assume that uin = 0 (free system). The following inequality holds for
n ≥ 1

En +Dn +

n∑
m=1

ρf

2
τ(ũm−1 · nf , |ũm|2)Γout ≤ E0 −

n−1∑
m=1

τ2

2ρf
‖∇pm‖20,Ωf

+

n−1∑
m=1

τ (∇ · ũm, φm)Ωf
+

n−1∑
m=1

τ2

ρf
(∇pm,∇φm)Ωf

, (16)

where φn ∈ Nh is an arbitrary discrete lifting of the (unknown) proximal pressures, namely,

φn = Pnl on Γl , l = 1, . . . , n0D. (17)
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3D-0D coupling schemes in hemodynamics 9

Proof. We first test (13) with v = ũn and integrate by parts the convective term. This yields
the identity

ρf

2
∂τ‖ũn‖20,Ωf

+
ρf

2τ

∥∥ũn − ũn−1
∥∥2

0,Ωf
+ 2µ‖ε(ũn)‖20,Ωf

+
(
∇pn−1, ũn

)
Ωf

+
ρf

2
(ũn−1 · nf , |ũn|2)Γout = 0 (18)

for n ≥ 2, and for n = 1 we get

ρf

2τ

(∥∥ũ1
∥∥2

0,Ωf
−
∥∥u0

∥∥2

0,Ωf

)
+
ρf

2τ

∥∥ũ1 − u0
∥∥2

0,Ωf
+ 2µ

∥∥ε(ũ1)
∥∥2

0,Ωf
+
ρf

2
(ũ0 · nf , |ũ1|2)Γout = 0.

(19)

Moreover, integration by parts in (15) at time step n− 1 gives(
∇pn−1,∇q

)
Ωf

=
ρf

τ

(
ũn−1,∇q

)
Ωf
− ρf

τ

∫
∂Ωf

ũn−1 · nfq =
ρf

τ

(
ũn−1,∇q

)
Ωf
,

since q ∈ NΓout,h and ũn−1 ∈ VΓin∪Σ,h, for n ≥ 2. Then, testing the last equation with q =
τ

ρf

(
pn−1 − φn−1

)
∈ NΓout,h we get

τ

ρf

∥∥∇pn−1
∥∥2

0,Ωf
−
(
ũn−1,∇pn−1

)
Ωf

+

(
ũn−1 − τ

ρf
∇pn−1,∇φn−1

)
Ωf

= 0.

Equivalently, we have

τ

ρf

∥∥∇pn−1
∥∥2

0,Ωf
−
(
ũn,∇pn−1

)
Ωf

+
(
ũn − ũn−1,∇pn−1

)
Ωf

= −
(
ũn−1 − τ

ρf
∇pn−1,∇φn−1

)
Ωf

.

By using the Cauchy-Schwarz inequality and an arithmetic-geometric inequality, we get

τ

2ρf

∥∥∇pn−1
∥∥2

0,Ωf
− ρf

2τ

∥∥ũn − ũn−1
∥∥2

0,Ωf
−
(
ũn,∇pn−1

)
Ωf

≤ −
(
ũn−1 − τ

ρf
∇pn−1,∇φn−1

)
Ωf

. (20)

On the other hand, integrating by parts the first term in the right-hand side of (20) and using
(14) and (17), we infer that

τ

2ρf

∥∥∇pn−1
∥∥2

0,Ωf
− ρf

2τ

∥∥ũn − ũn−1
∥∥2

0,Ωf
−
(
ũn,∇pn−1

)
Ωf

≤ −
n0D∑
l=1

Qn−1
l Pn−1

l +
(
∇ · ũn−1, φn−1

)
Ωf

+
τ

ρf

(
∇pn−1,∇φn−1

)
Ωf

(21)

for n ≥ 2. As a result, the summation of (18) and (21) gives

ρf

2
∂τ‖ũn‖20,Ωf

+ 2µ‖ε(ũn)‖20,Ωf
+
ρf

2
(ũn−1 · nf , |ũn|2)Γout

≤ − τ

2ρf

∥∥∇pn−1
∥∥2

0,Ωf
+
(
∇ · ũn−1, φn

)
Ωf

+
τ

ρf

(
∇pn−1,∇φn−1

)
Ωf
−
n0D∑
l=1

Qn−1
l Pn−1

l (22)
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10 C. Bertoglio, A. Caiazzo & M.A. Fernández

for n ≥ 2. At last, we multiply (14)2 by πnl to obtain

Cl
2
∂τ |πnl |2 +

Cl
2
|πnl − πn−1

l |2 +
1

Rd,l
|πnl |2 = Qnl π

n
l , (23)

which combined with (14)3 yields

Cl
2
∂τ |πnl |2 +

1

Rd,l
|πnl |2 +Rp,l|Qnl |2 ≤ Qnl Pnl . (24)

We now proceed by inserting (24) into (22), multiplication by τ and summation overm = 2, ..., n.
This yields the following estimate

En +Dn +

n∑
m=2

ρf

2
τ(ũm−1 · nf , |ũm|2)Γout ≤ E1 −

n−1∑
m=1

τ2

2ρf
‖∇pm‖20,Ωf

.

+

n−1∑
m=1

τ (∇ · ũm, φm)Ωf
+

n−1∑
m=1

τ2

ρf
(∇pm,∇φm)Ωf

for n ≥ 2. The estimate (16) is then recovered by simply adding to this inequality the expression
(19) multiplied by τ , which completes the proof.

The left-hand side of estimate (16) corresponds to the discrete counterpart of (5). Neverthe-
less, the artificial power introduced by the last two terms of (16),

n−1∑
m=1

τ (∇ · ũm, φm)Ωf
+

n−1∑
m=1

τ2

ρf
(∇pm,∇φm)Ωf

, (25)

cannot be controlled, so that this estimate does not guarantee the energy stability of the approx-
imations provided by Algorithm 1. Two remarks are now in order.

Remark 3.2 It is worth mentioning that the term (25) corresponds to the residual of the pro-
jection step (15) (note that φn /∈ NΓout,h). In fact, for the space continuous counterpart of (15)
we have

(∇ · ũn, φn)Ωf
+
τ

ρf
(∇pn,∇φn)Ωf

=
τ

ρf

∫
Γout

∂pn

∂nf
φn = −

n0D∑
l=1

(∫
Γl

un · nf −
∫

Γl

ũn · nf

)
Pnl .

Hence, the uncontrolled artificial power involved in the energy estimate (16) is due to the time-lag
in the flux (

∫
Γl
ũn ·nf instead of

∫
Γl
un ·nf) introduced by the explicit treatment of the continuity

of fluxes (12)1 on the 3D-0D interfaces Γl.

Remark 3.3 In the case of a single outlet (i.e., n0D = 1), we can take φn = Pn in Ωf , so
that the right hand-side of (20) vanishes. From the proof of Proposition 3.1 we then recover the
following energy estimate for the fluid

ρf

2
‖ũn‖20,Ωf

+ 2µ

n∑
m=1

τ‖ε(ũm)‖20,Ωf
+

n∑
m=1

ρf

2
τ(ũm−1 · nf , |ũm|2)Γout

≤ ρf

2
‖u0‖20,Ωf

−
n−1∑
m=1

τ2

2ρf
‖∇pm‖20,Ωf

.

As a result, the energy stability of the fluid does not depend on the imposed outlet pressure.
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3D-0D coupling schemes in hemodynamics 11

3.2 Implicit 3D-0D coupling scheme
In this case the 3D-0D coupling conditions (3) are time-discretized as follows

Qnl =

∫
Γl

un · nf ,

pn = Pnl on Γl,

2µε(ũn)nf = 0 on Γl,

(26)

for l = 1, . . . , n0D. Note that, in comparison with (12), the above coupling scheme treats im-
plicitly the continuity of fluxes on the outlet boundaries. This feature enhances stability, as we
will show in Section 3.2.1. However, from the computational point of view, the relations (26)1,2
and (10) apparently couple the evaluation of (8) and (9). Fortunately, this difficulty can be
circumvented via an appropriate reformulation of the pressure (26)2 boundary condition for the
projection step (8). Indeed, by inserting (9) into (26)1, we get

Qnl = Q̃nl −
τ

ρf

∫
Γl

∂pn

∂nf
, (27)

which with (11) and (26)2 yields the following (implicit) boundary condition for the outlet pres-
sures:

pn|Γl = γlQ̃
n
l −

γlτ

ρf

∫
Γl

∂pn

∂nf
+ αlπ

n−1
l (28)

for l = 1, . . . , n0D. Note that this expression still enforces pn to be constant on each Γl.
Multiplying (8)1 by q ∈ Nh, integrating by parts, using (8)1 and the fact that q|Γl is constant,

we get
τ

ρf
(∇pn,∇q)Ωf

− τ

ρf

n0D∑
l=1

(∫
Γl

∂pn

∂nf

)
q|Γl = − (∇ · ũn, q)Ωf

for all q ∈ Nh. We can eliminate the normal derivative of the pressure using (28), which yields
the following modified variational formulation for the projection step: Find pn ∈ Nh such that

τ

ρf
(∇pn,∇q)Ωf

+

n0D∑
l=1

(pn|Γl)(q|Γl)
γl

=

n0D∑
l=1

(
Q̃nl +

αlπ
n−1
l

γl

)
q|Γl − (∇ · ũn, q)Ωf

(29)

for all q ∈ Nh. We can then set Pnl = pn|Γl and retreive (Qnl , π
n
l ) from (11), for l = 1, . . . n0D.

Remark 3.4 The well-posedness of the pressure-Poisson problem (29) follows from a generalized
Poincaré’s inequality, which guarantees the coercivity of the left-hand side of (29) in Nh.

Remark 3.5 Testing (29) with q = 1, and since Pnl = pn|Γl , we have

n0D∑
l=1

Pnl − αlπ
n−1
l

γl
=

n0D∑
l=1

Q̃nl +

∫
Ωf

∇ · ũn.

Hence, integrating by parts in the last term, using (11)2 and owing to (6)2,3 we get the following
mass conservation for the Windkessel fluxes:

n0D∑
l=1

Qnl = −
∫

Γin

uin(tn).

The complete time-marching procedures is reported in Algorithm 2.
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12 C. Bertoglio, A. Caiazzo & M.A. Fernández

Algorithm 2 3D-0D implicit coupling scheme
Let u0 = u0, ũ0 ∈ Vh, and π0

1 , . . . , π
0
n0D
∈ R be given initial data. For n ≥ 1 perform:

1. Viscous step: Find ũn ∈ VΣ,h such that
ũn|Γin = uin(tn),
ρf

τ
(ũn,v)Ωf

+ ρf(ũ
n−1 ·∇ũn,v)Ωf

+ 2µ (ε(ũn), ε(v))Ωf

+
ρf

2
((∇ · ũn−1)ũn,v)Ωf

=
ρf

τ

(
un−1,v

)
Ωf

(30)

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃nl
def
=
∫

Γl
ũn · nf .

2. Projection-Windkessel step: Find pn ∈ Nh and such that

τ

ρf
(∇pn,∇q)Ωf

+

n0D∑
l=1

(pn|Γl)(q|Γl)
γl

=

n0D∑
l=1

(
Q̃nl +

αlπ
n−1
l

γl

)
q|Γl − (∇ · ũn, q)Ωf

(31)

for all q ∈ Nh. Thereafter, set Pnl = pn|Γl and compute (Qnl , π
n
l ) ∈ R2 from the relations

Qnl =
Pnl − αlπ

n−1
l

γl
, πnl = αlπ

n−1
l + βlQ

n
l , l = 1, . . . n0D (32)

and set un def
= ũn − τ

ρf
∇pn ∈ [L2(Ωf)]

d.
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3D-0D coupling schemes in hemodynamics 13

3.2.1 Stability analysis

The focus of this section is to present the stability result of the formulation (30)-(32) sum-
marized in the following proposition.

Theorem 3.6 Let
{

(ũn, pn)
}
n≥1

and
{

(Qnl , π
n
l , P

n
l )1≤l≤n0D

}
n≥1

be the approximated solution
given by Algorithm 2 and assume that uin = 0 (free system). The following energy inequality
holds

En +Dn +

n∑
m=1

ρf

2
(ũm−1 · nf , |ũm|2)Γout ≤ E0 −

n−1∑
m=1

τ2

2ρf
‖∇pm‖20,Ωf

. (33)

Proof. We proceed as in the proof of Proposition 3.1. Testing the viscous step (30) with
v = ũn yields

ρf

2
∂τ‖ũn‖20,Ωf

+
ρf

2τ

∥∥ũn − ũn−1
∥∥2

0,Ωf
+ 2µ‖ε(ũn)‖20,Ωf

+
(
∇pn−1, ũn

)
Ωf

+
ρf

2
(ũn−1 · nf , |ũn|2)Γout = 0 (34)

for n ≥ 2 and, for n = 1, we get

ρf

2τ

(∥∥ũ1
∥∥2

0,Ωf
−
∥∥u0

∥∥2

0,Ωf

)
+
ρf

2τ

∥∥ũ1 − u0
∥∥2

0,Ωf
+ 2µ

∥∥ε(ũ1)
∥∥2

0,Ωf
+
ρf

2
(ũ0 · nf , |ũ1|2)Γout = 0.

(35)

Thereafter, taking (31) at time step n− 1, testing with q = τ
ρf
pn−1 and integrating by parts in

its right-hand side it yields

τ

ρf

∥∥∇pn−1
∥∥2

0,Ωf
+

n0D∑
l=1

Pn−1
l − αlπn−2

l

γl
Pn−1
l =

(
ũn−1,∇pn−1

)
Ωf
.

for n ≥ 2. Hence, the addition and subtraction of suitable terms and the application of the
Cauchy-Schwarz and arithmetic-geometric inequalities yields

τ

2ρf

∥∥∇pn−1
∥∥2

0,Ωf
− ρf

2τ

∥∥ũn − ũn−1
∥∥2

0,Ωf
−
(
ũn,∇pn−1

)
Ωf

+

n0D∑
l=1

Pn−1
l − αlπn−2

l

γl
Pn−1
l ≤ 0. (36)

As a result, the summation of (34) and (36) gives

ρf

2
∂τ‖ũn‖20,Ωf

+ 2µ‖ε(ũn)‖20,Ωf
+
ρf

2
(ũn−1 · nf , |ũn|2)Γout

+

n0D∑
l=1

Pn−1
l − αlπn−2

l

γl
Pn−1
l ≤ − τ

2ρf

∥∥∇pn−1
∥∥2

0,Ωf
(37)

for n ≥ 2. At last, from (32) and its equivalence to (11), we have

Pnl − αlπ
n−1
l

γl
Pnl = Qnl P

n
l = Rp,l|Qnl |2 +Qnl π

n
l

≥ Cl
2
∂τ |πnl |2 +

1

Rd,l
|πnl |2 +Rp,l|Qnl |2

(38)
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14 C. Bertoglio, A. Caiazzo & M.A. Fernández

for n ≥ 1. Hence, by inserting the last inequality of (38) into (37), multiplying by τ and summing
over m = 2, ..., n we get the estimate

En +Dn +

n∑
m=2

ρf

2
(ũm−1 · nf , |ũm|2)Γout ≤ E1 −

n−1∑
m=1

τ2

2ρf
‖∇pm‖20,Ωf

.

for n ≥ 2. We recover the estimate (33) by simply adding to this inequality the expression (35)
multiplied by τ , which completes the proof.

The estimate (33) corresponds to the discrete counterpart of (5). Note that the right-hand
side of (33) is a pure numerical dissipation term (the natural pressure stabilization of the pro-
jection scheme). Therefore, the 3D-0D coupling reported in Algorithm 2 does not introduce any
uncontrolled artificial power and, hence, a guaranty of numerical stability. This feature will be
illustrated in Section 5 via numerical experiments.

3.2.2 Implementation details

In this section we discuss the implementation of the pressure problem (31) in a finite element
framework. For the sake of simplicity, and without loss of generality, we limit the discussion
to the case of a single outlet. We define the arrays P, V ∈ RN corresponding to the degrees of
freedom (d.o.f.) of the pressure pn ∈ Qh and of a general test function q ∈ Qh, respectively.
The bilinear form (∇pn,∇q)Ωf

, without imposing Dirichlet boundary conditions to pn, can be
written in matrix form as

(∇pn,∇q)Ωf
= V TAP =

[
V TI V TO

] [AII AIO
AOI AOO

] [
PI
PO

]
,

where the subindexes O and I indicate the elements of the array corresponding to the d.o.f. on
Γout and Ω̄\Γout, respectively. Hence, the pressure-Poisson projection step with explicit Dirichlet
data can be formulated as

AIIPI = F̃I −AIO1O pn|Γout , (39)

where the notation in right-hand side is such that

[
V TI V TO

] [ F̃I
F̃O

]
=
ρf

τ
(∇ · ũn, q)Ωf

,

with 1O ∈ RNO denoting a vector of ones, with NO being the number of pressure d.o.f. on Γout.
The linear system (39) is usually solved by means of a preconditioned conjugate gradient methods
(PCG), with the preconditioning operator Â−1

II given, for example, by an incomplete Cholesky
factorization of AII (alternative preconditioners could be used). With the notations introduced
above, the stiffness matrix of the implicit formulation (31) can be derived straightforwardly.
Indeed, since VO = 1Oq|Γout and PO = 1Op

n
|Γout , we obtain

[
AII a
aT b

] [
PI
pn|Γout

]
=

 F̃I

1
T
OF̃I +

ρf

τ

(
Q̃n +

απn−1

γ

) , (40)

with a
def
= AIO1O and b def

= 1
T
OAOO1O +

ρf

τ γ
. It should be noted that the matrix in (40) has a

non-standard sparsity pattern. However, since we use a Krylov linear solver this matrix is never
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3D-0D coupling schemes in hemodynamics 15

assembled in practice (only matrix-vector products are evaluated). In the numerical experiments,
we have considered the block-preconditioner given by[

Â−1
II 0
0 1

]
,

which yielded practically the same number of PCG-iterations than in the solution of (39). In
the general case of a domain Ωf with multiple outlets, the aforementioned considerations can be
extended by considering one additional equation for each 3D-0D interface.

4 Incompressible fluid-structure interaction
Fractional-step time-marching schemes have been a valuable tool for the design of efficient

solution methods for incompressible fluid-structure interaction (FSI) problems, yielding the so-
called projection semi-implicit coupling scheme [9] (see also the subsequent works [1, 2, 19]).
This coupling approach is based on the following three basic ideas:

• treat explicitly the geometrical non-linearities and the viscous-structure coupling, which
reduces computational complexity;

• treat implicitly the presssure-structure coupling, which avoids numerical instability;

• perform this explicit-implicit splitting through a projection scheme in the fluid.

So far, the stability of this method has been analyzed within a simplified framework which
enforces null pressure on the outlet boundaries (see [1, 9]). In this section the analysis is extended
to the case of a lumped parameter modeling of the outlet boundaries, with a pressure-Poisson
formulation of the projection step, based on the methods of Section 3.

4.1 Model problem
For the sake of the analysis (see [9]), we consider as model problem a coupled linear system

in which the fluid is described by the Stokes equations, in the fixed domain Ωf , and the structure
either by the classical linear elastodynamics equations or by equations based on linear thin-solid
models (e.g., plate, shell, etc.). The reference domain of the solid is denoted by Ωs. It will
be either a domain or a 2−manifold of R3 (in this later case the elastic domain is identified to
its mid-surface). We denote by Σ

def
= ∂Ωs ∩ ∂Ωf the fluid-structure interface. In the case the

structure is described by thin-solid model we have Ωs = Σ (see Figure 2). The resulting coupled
system, describing the fluid velocity u : Ωf ×R+ → R3, fluid pressure p : Ωf ×R+ → R and solid
displacement y : Ωs × R+ → R3, is given by

ρf∂tu−∇ · σ(u, p) = 0 in Ωf ,

∇ · u = 0 in Ωf ,

u = uin on Γin,

u = ẏ in Σ,

(41)

{
ρs (∂tẏ,vs)Ωs

+ as(y,vs) = − (σ(u, p)nf ,vs)Σ ∀vs ∈W ,

ẏ = ∂ty in Ωs,
(42)

completed with the lumped-parameter modeling (2)-(3) on the outlet boundary Γout (see Figure
2). Here, ρs denotes the solid density, the abstract bilinear form as : W ×W → R describes
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16 C. Bertoglio, A. Caiazzo & M.A. Fernández

Ωf ΣΓin

Γ1

Γ2
Ωs

Ωs

Ωs

Figure 2: Examples of geometric configuration Ωs 6= Σ (Ωs = Σ, see Figure 1).

the elastic behavior of the structure and W stands for its space of admissible displacements.
It should be noted that the solid problem (42) has been written in weak form, which allows to
treat in the same formulation the case of thin and thick solid models. The relations (41)4 and
(42)1 enforce the so-called kinematic and kinetic interface coupling conditions, respectively. Note
that the latter represents also the variational formulation of the structure subproblem. Though
simplified, problem (41)-(42) features some of the main numerical issues that appear in complex
nonlinear fluid-structure interaction problems involving an incompressible fluid (see, e.g., [8]).

Energy balance Let the quantity

E(t)
def
=

ρf

2
‖u‖20,Ωf

+
ρs

2
‖ẏ‖20,Ωs

+
1

2
‖y‖2s +

n0D∑
l=1

Cl
2
π2
l

denote the total (kinetic + potential) energy of the FSI-0D coupled system given by (41)-(42) and
(2)-(3). Here, ‖ · ‖s stands for the elastic energy norm of the solid, defined as ‖y‖2s

def
= as(y,y).

Assuming that uin = 0 (free system) and using a standard energy argument, we get the following
identity

E(t) +D(t) = E(0), (43)

with the dissipative term D(t) > 0 given as in (4).

4.1.1 Spatial discretization

Let {Ts,h}0<h≤1 be a quasi-uniform family of triangulations of the domain Ωs. In order to
ease the presentation, we assume that the fluid and solid triangulations Tf,h and Ts,h match at
the interface Σ. For the discretization in space of the solid problem (42), we consider continuous
Lagrange finite element approximations,Wh ofW , which match the fluid velocity discretizations
at the interface. Hence,

{v|Σ | v ∈ Vh} = {vs|Σ | vs ∈Wh} .
At last, we introduce the standard fluid-sided discrete lifting operator Lh : Wh → Vh, such that,
the nodal values of Lhvs vanish out of Σ and (Lhvs)|Σ = vs|Σ, for all vs ∈Wh. In what follows
we shall make use of the following continuity estimates (from [9, Lemma 1]) for the discrete
lifting operator Lh:

‖Lhvs‖0,Ωf
≤ CLh

1−α
2 ‖vs‖0,Ωs

, ‖∇Lhvs‖0,Ωf
≤ CLh

− 1+α
2 ‖vs‖0,Ωs

(44)
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3D-0D coupling schemes in hemodynamics 17

for all vs ∈Wh and with the notation

α
def
=

{
0 if Ωs = Σ,

1 if Ωs 6= Σ.
(45)

4.1.2 Semi-implicit FSI coupling scheme with implicit 3D-0D coupling scheme

In this case we consider numerical approximations of the coupled problem FSI-0D system
(41)-(42) and (2)-(3) by combining the projection semi-implicit coupling scheme reported in [9]
with the 3D-0D implicit coupling of Section 3.2. The resulting fully discrete time-marching
procedure is reported in Algorithm 3. In the solid subproblem (49), the fluid residual terms are
given by

〈Rµ(ũn),v〉 def
=

ρf

τ
(ũn,v)Ωf

+ 2µ (ε(ũn), ε(v))Ωf
− ρf

τ

(
un−1,v

)
Ωf
,

〈Rp(pn,un),v〉 def
=

ρf

τ
(un,v)Ωf

− ρf

τ
(ũn,v)Ωf

− (pn,∇ · v)Ωf
.

Let the quantities

En
def
=
ρf

2
‖un‖20,Ωf

+
ρs

2
‖ẏn‖20,Ωs

+
1

2
‖yn‖2s +

n0D∑
l=1

Cl
2
|πnl |2,

Dn def
= 2µ

n∑
m=1

τ‖ε(ũm)‖20,Ωf
+

n−1∑
m=1

n0D∑
l=1

τ

(
|πml |2

Rd,l
+Rp,l|Qml |2

)
for n ≥ 1, denote the energy and physical dissipation of the discrete FSI-0D system. We then
have the following energy based result.

Theorem 4.1 Let
{

(ũn, pn,yn, ẏn)
}
n≥1

and
{

(Qnl , π
n
l , P

n
l )1≤l≤n0D

}
n≥1

be the approximated
solution given by Algorithm 3, and assume that uin = 0 (free system) and that the following
condition holds

ρs ≥ 3CL

(
ρfh

1−α +
µτ

h1+α

)
, (51)

with α given by (45). Then, following energy inequality holds

En +Dn . E0 −
n−1∑
m=1

τ2

ρf

∥∥Π⊥h (∇pn)
∥∥2

0,Ωf
, (52)

with Πh : L2(Ωf) → VΣ∪Γin,h stands for the L2-projection operator into VΣ∪Γin,h, and Π⊥h
def
=

I −Πh for the corresponding orthogonal projection.

Proof. First, testing the viscous step (46) with v = ũn − Lhẏn−1 yields

ρf

2τ

(
‖ũn‖20,Ωf

−
∥∥un−1

∥∥2

0,Ωf

)
+
ρf

2τ

∥∥ũn − un−1
∥∥2

0,Ωf

+ 2µ‖ε(ũn)‖20,Ωf
−
〈
Rµ(ũn),Lhẏn−1

〉
= 0. (53)

On the other hand, testing (48) with v = un − Lhẏn yields

ρf

2τ

(
‖un‖20,Ωf

− ‖ũn‖20,Ωf

)
+
ρf

2τ
‖un − ũn‖20,Ωf

+ (∇pn,un)Ωf
− (pn, ẏn · nf)Σ − 〈Rp(p

n,un),Lhẏn〉 = 0 (54)
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18 C. Bertoglio, A. Caiazzo & M.A. Fernández

Algorithm 3 Semi-implicit FSI coupling scheme with implicit 3D-0D coupling scheme
Let u0 = u0, π0

1 , . . . , π
0
n0D
∈ R and y0, ẏ0 ∈Wh be given initial data. For n ≥ 1 perform:

1. Viscous step: Find ũn ∈ Vh such that
ũn|Σ = ẏn−1|Σ,
ũn|Γin = uin(tn),
ρf

τ
(ũn,v)Ωf

+ 2µ (ε(ũn), ε(v))Ωf
=
ρf

τ

(
un−1,v

)
Ωf

(46)

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃nl
def
=
∫

Γl
ũn · nf .

2. Implicit step (projection-Windkessel-solid step): Find (pn,un,yn) ∈ Nh × Vh ×Wh with
ẏn = ∂τy

n and such that
τ

ρf
(∇pn,∇q)Ωf

+

n0D∑
l=1

(pn|Γl)(q|Γl)
γl

=

n0D∑
l=1

(
Q̃nl +

αlπ
n−1
l

γl

)
q|Γl

− (∇ · ũn, q)Ωf
− ((ẏn − ũn) · nf , q)Σ ,

(47)


un|Γin = uin(tn),

un|Σ = ẏn|Σ,
ρf

τ
(un,v)Ωf

=
ρf

τ
(ũn,v)Ωf

− (∇pn,v)Ωf
,

(48)

ρs (∂τ ẏ
n,vs)Ωs

+ as(y
n,vs) = −〈Rµ(ũn),Lhvs〉 − 〈Rp(un, pn),Lhvs〉 (49)

for all (q,v,vs) ∈ Nh × VΣ∪Γout,h ×Wh.

Thereafter, set Pnl = pn|Γl and compute (Qnl , π
n
l ) ∈ R2 from the relations

Qnl =
Pnl − αlπ

n−1
l

γl
, πnl = αlπ

n−1
l + βlQ

n
l , l = 1, . . . n0D. (50)

and taking vs = ẏn in (49) yields

ρs

2
∂τ‖ẏn‖20,Ωs

+
ρs

2τ

∥∥ẏn − ẏn−1
∥∥2

0,Ωs
+

1

2
∂τ‖yn‖2s +

1

2τ
‖yn − yn−1‖2s

= −〈Rµ(ũn),Lhẏn〉 − 〈Rp(pn,un),Lhẏn〉 . (55)

As a result, by adding the equalities (53)-(55) we get

ρf

2
∂τ‖un‖20,Ωf

+ 2µ‖ε(ũn)‖20,Ωf
+
ρs

2
∂τ‖ẏn‖20,Ωs

+
1

2
∂τ‖yn‖2s

+
ρs

2τ

∥∥ẏn − ẏn−1
∥∥2

0,Ωs
+ (∇pn,un)Ωf

− (pn, ẏn · nf)Σ︸ ︷︷ ︸
T1

−
〈
Rµ(ũn),L(ẏn − ẏn−1)

〉︸ ︷︷ ︸
T2

≤ 0. (56)

Following the argument used in [1, Appendix A], from (47) we infer that

ũn = un + Π⊥h (ũn − Lhẏn) +
τ

ρf
Πh (∇pn) . (57)
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3D-0D coupling schemes in hemodynamics 19

Thereafter, taking q = τ
ρf
pn in (31), integrating by parts in its right-hand side, and since Pnl =

pn|Γl , we have

τ

ρf
‖∇pn‖20,Ωf

+

n0D∑
l=1

Pnl − αlπ
n−1
l

γl
Pnl − (ũn,∇pn)Ωf

+ (pn, ẏn · nf)Σ = 0.

Now, by inserting (57) into this expression and using (38), we get

T1 =
τ

ρf

∥∥Π⊥h (∇pn)
∥∥2

0,Ωf
+

n0D∑
l=1

Pnl − αlπ
n−1
l

γl
Pnl −

(
Π⊥h (ũn − Lhẏn) ,∇pn

)
Ωf

≥ τ
ρf

∥∥Π⊥h (∇pn)
∥∥2

0,Ωf
+
Cl
2
∂τ |πnl |2 +

1

Rd,l
|πnl |2 +Rp,l|Qnl |2

−
(
Π⊥h (ũn − Lhẏn) ,∇pn

)
Ωf︸ ︷︷ ︸

T3

.

Therefore, by applying this lower bound to (56) we get

ρf

2
∂τ‖un‖20,Ωf

+
ρf

2τ

∥∥ũn − un−1
∥∥2

0,Ωf
+ 2µ‖ε(ũn)‖20,Ωf

+
ρs

2
∂τ‖ẏn‖20,Ωs

+
1

2
∂τ‖yn‖2s

+
ρs

2τ

∥∥ẏn − ẏn−1
∥∥2

0,Ωs
+
τ

ρf

∥∥Π⊥h (∇pn)
∥∥2

0,Ωf
+
Cl
2
∂τ |πnl |2 +

1

Rd,l
|πnl |2 +Rp,l|Qnl |2

≤ T2 + T3. (58)

Term T2 can be bounded as in [9], using (44), which yields

T2 ≤
ρf

τ
‖ũn − un−1‖0,Ωf

‖Lh(ẏn − ẏn−1)‖0,Ωf
+ 2µ‖ε(ũn)‖0,Ωf

‖ε(Lh(ẏn − ẏn−1))‖0,Ωf

≤ε1
ρf

2τ
‖ũn − un−1‖20,Ωf

+ ε2µ‖ε(ũn)‖20,Ωf

+ CL

(
ρf

2τε1
h1−α +

µ

ε2
h−1−α

)
‖ẏn − ẏn−1‖20,Ωs

.

(59)

Term T3 can be bounded following the argument used in [1], which yields

T3 =
(
Π⊥h

(
Lh(ẏn−1 − ẏn)

)
,Π⊥h (∇pn)

)
Ωf

≤ε3
τ

2ρf
‖Π⊥h (∇pn)‖20,Ωf

+
ρf

2τε3
CLh

1−α‖ẏn − ẏn−1‖20,Ωs
.

(60)

Hence, by inserting (59)-(60) into (58) we get the energy estimate

ρf

2
∂τ‖un‖20,Ωf

+
ρf

2τ
(1− ε1)

∥∥ũn − un−1
∥∥2

0,Ωf
+ µ(2− ε2)‖ε(ũn)‖20,Ωf

+
ρs

2
∂τ‖ẏn‖20,Ωs

+
1

2
∂τ‖yn‖2s +

[
ρs

2τ
− CL

ρf

2τ
h1−α

(
1

ε1
+

1

ε3

)
− CL

µ

ε2
h−1−α

] ∥∥ẏn − ẏn−1
∥∥2

0,Ωs

+
τ

ρf

(
1− ε3

2

)∥∥Π⊥h (∇pn)
∥∥2

0,Ωf
+

n0D∑
l=1

(
Cl
2
∂τ |πnl |2 +

1

Rd,l
|πnl |2 +Rp,l|Qnl |2

)
≤ 0.

At last, the energy estimate (52) follows by taking in the latter ε1 = 1
2 , ε2 = ε3 = 1, summing

over n and using (51), which completes the proof.
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20 C. Bertoglio, A. Caiazzo & M.A. Fernández

Proposition 4.1 guarantees the conditional stability of Algorithm 3. Note that the stability
condition is similar to the one obtained in [9] with a Darcy-like formulation of the projection
step. The estimate (52) corresponds to the discrete counterpart of (43), the right-hand side of
(52) is a dissipative numerical term related to the natural pressure stabilization of the projection
scheme.

4.1.3 Semi-implicit FSI coupling scheme with explicit 3D-0D coupling scheme

We now consider numerical approximations of the coupled problem FSI-0D system (41)-(42)
and (2)-(3) by combining the projection semi-implicit coupling scheme reported in [9] with the
3D-0D explicit coupling of Section 3.1. The resulting fully discrete time-marching procedure is
reported in Algorithm 4.

Algorithm 4 Semi-implicit FSI coupling scheme with explicit 3D-0D coupling scheme
Let u0 = u0, π0

1 , . . . , π
0
n0D
∈ R and y0, ẏ0 ∈Wh be given initial data. For n ≥ 1 perform:

1. Viscous step: Find ũn ∈ Vh such that
ũn|Σ = ẏn−1|Σ,
ũn|Γin = uin(tn),
ρf

τ
(ũn,v)Ωf

+ 2µ (ε(ũn), ε(v))Ωf
=
ρf

τ

(
un−1,v

)
Ωf

(61)

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃nl
def
=
∫

Γl
ũn · nf .

2. Windkessel step: For l = 1, . . . , n0D, compute (Qnl , π
n
l , P

n
l ) ∈ R3 from

Qnl = Q̃nl ,

Cl∂τπ
n
l +

πnl
Rd,l

= Qnl ,

Pnl = Rp,lQ
n
l + πnl .

(62)

3. Implicit projection-solid step: Find (pn,un,yn) ∈ Nh×Vh×Wh with ẏn = ∂τy
n and such

that  pn|Γl = Pnl , l = 1, . . . , n0D,
τ

ρf
(∇pn,∇q)Ωf

= − (∇ · ũn, q)Ωf
− ((ẏn − ũn) · nf , q)Σ

(63)


un|Γin = uin(tn),

un|Σ = ẏn|Σ,
ρf

τ
(un,v)Ωf

=
ρf

τ
(ũn,v)Ωf

− (∇pn,v)Ωf
,

(64)

ρs (∂τ ẏ
n,vs)Ωs

+ as(y
n,vs) = −〈Rµ(ũn),Lhvs〉 − 〈Rp(un, pn),Lhvs〉 (65)

for all (q,v,vs) ∈ NΓout,h × VΣ∪Γin,h ×Wh.

The following proposition provides an energy estimate for the approximations provided by
Algorithm 4.

Inria

ha
l-0

06
90

49
3,

 v
er

si
on

 1
 - 

23
 A

pr
 2

01
2



3D-0D coupling schemes in hemodynamics 21

Theorem 4.2 Let
{

(ũn, pn,yn, ẏn)
}
n≥1

and
{

(Qnl , π
n
l , P

n
l )1≤l≤n0D

}
n≥1

be the approximated so-
lution given by Algorithm 4 and assume that uin = 0 (free system). Then, under the condition
(51), the following energy inequality holds

En +Dn . E0 −
n−1∑
m=1

τ2

2ρf

∥∥Π⊥h (∇pm)
∥∥2

0,Ωf
+

n−1∑
m=1

τ (∇ · ũm, φm)Ωf
+

n−1∑
m=1

τ2

ρf
(∇pm,∇φm)Ωf

+

n−1∑
m=1

τ (ẏm · nf , φ
m)Σ . (66)

Proof. The result follows by combining the arguments involved in the proofs of Propositions
3.1 and 4.1. Hence, only partial details are given. The main difference lies on the estimation of
term T1 in (56). Since q ∈ NΓout,h, integration by parts in (63) gives

(∇pn,∇q)Ωf
=
ρf

τ
(ũn,∇q)Ωf

− (ẏn · nf , q)Σ ,

so that by testing with q =
τ

ρf
(pn − φn) ∈ NΓout,h we get

τ

ρf
‖∇pn‖20,Ωf

−(ũn,∇pn)Ωf
+(ẏn · nf , p

n)Σ+

(
ũn − τ

ρf
∇pn,∇φn

)
Ωf

−(ẏn · nf , φ
n)Σ = 0. (67)

As in the proof of Proposition 4.1, from (64) we get (57). Hence, inserting this expression into
(67) we get

− (∇pn,un)Ωf
+ (pn, ẏn · nf)Σ +

τ

ρf

∥∥Π⊥h (∇pn)
∥∥2

0,Ωf
−
(
Π⊥h (ũn − Lhẏn) ,∇pn

)
Ωf

= −
(
ũn − τ

ρf
∇pn,∇φn

)
Ωf

+ (ẏn · nf , φ
n)Σ

−
n0D∑
l=1

Qnl P
n
l + (∇ · ũn, φn)Ωf

+
τ

ρf
(∇pn,∇φn)Ωf

+ (ẏn · nf , φ
n)Σ (68)

and the estimate (66) follows using the same arguments than in the proof of Proposition 4.1.

Remark 4.3 A comparison of the energy estimates (16) and (66) suggests that the fluid-solid
interaction introduces and additional destabilizing effect in the explicit splitting of the 3D-0D
coupling (12), due to the presence of the artificial interface term

n−1∑
m=1

τ (ẏm · nf , φ
m)Σ .

In particular, it is worth noting that the observation made in Remark 3.3 for the case of a single
outlet is not valid in the FSI framework, since the above term does not vanish for φm = Pm in
Ωf . This point will be illustrated trough numerical experiments in Section 5.2.

5 Numerical experiments
In this section we present two numerical experiments that confirm the analysis of the previous

sections.
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22 C. Bertoglio, A. Caiazzo & M.A. Fernández

5.1 Blood flow in a patient-specific aorta
Our first example is a pure Navier-Stokes flow within a patient-specific aorta with repaired

coarctation (see Figures 3-Left-Center). The geometry comes from the euHeart database1. A
segment growing registration algorithm (see [3, 4]) was used for the segmentation of the geometry
from the medical image. The resulting surface was pre-processed with 3-matic (Materialise) and
the final mesh was generated with Gmsh [13].

Figure 3: Patient-specific aorta. Left: geometry. Center: surface mesh. Right: simulation results
for the aorta (vector velocity field and pressure distribution).
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Figure 4: Mean pressures at inlet (black) and outlets 1 to 4 (blue, green, red, cyan). Explicit
(left) and implicit (right) schemes.

The inflow curve used as boundary condition (Figure 4-Right, black-line) was obtained from
the same patient with Phase Contrast MRI. The initial constant pressure was set to 62650 bary,
and the Windkessel parameters (reported in Table 1) where calibrated in order to approximate
the measured pressure at the coarctation and the measured flow on each outlet. The physical
parameters of the fluid are µ = 0.035Po and ρf = 1 gr/cm3. For the numerical simulation, we

1www.euheart.eu

Inria

ha
l-0

06
90

49
3,

 v
er

si
on

 1
 - 

23
 A

pr
 2

01
2



3D-0D coupling schemes in hemodynamics 23

0 0.2 0.4 0.6 0.8 1 1.2

−50

0

50

100

150

200

250

300

350

400

Time [s]

Fl
ux

  [
cm

3 /s
]

0 0.2 0.4 0.6 0.8 1 1.2

−50

0

50

100

150

200

250

300

350

400

Time [s]

Fl
ux

  [
cm

3 /s
]

Figure 5: Fluxes for inlet (black) and outlets 1 to 4 (blue, green, red, cyan). Explicit (left) and
implicit (right) schemes.

use P1 finite elements for both pressure and velocity fields (SUPG stabilization in the viscous-
convective step) and a time step τ = 10−3 s. A snapshot of the simulation results is shown in
Figure 3-Right. Figures 4 and 5 show the pressure and flow results for both schemes (Algorithms
1 and 2, respectively). The spurious oscillations in the approximation provided by the explicit
3D-0D coupling scheme are clearly visible, while the implicit formulation guarantees stability
within the whole cardiac cycle. Hence, in agreement with the stability estimates provided by
Theorems 3.1 and 3.6.

Outlet 1 Outlet 2 Outlet 3 Outlet 4
Rp (dyn · s · cm−5) 250 683 615 94
Rd (dyn · s · cm−5) 104 1.296 · 104 1.1664 · 104 0.1794 · 104

C (cm5 · dyn−1) 4 · 10−4 2 · 10−4 2 · 10−4 14 · 10−4

Table 1: Parameters for the Windkessel’s model. The outlets are ordered in direction of the flow.

5.2 Fluid-structure interaction in an idealized AAA

We consider an idealized abdominal aortic aneurysm (AAA) of length 22.95 cm, minimal
diameter 1.7 cm (tubular part), maximal diameter 4.98 cm (aneurysm) and wall thickness 0.2 cm
(see Figure 6). The structure is described by the linear elastodynamics equations and the fluid by
the incompressible Navier-Stokes equations in a moving domain (ALE formalism). We considered
the non-linear counterpart of Algorithms 3 and 4 using the projection semi-implicit coupling
scheme reported in [9]. The solid has Young’s modulus 1MPa, Poisson ratio is 0.46 and density
1.2 g/cm3. The fluid viscosity is µ = 0.035Po and its density 1 g/cm3. The inlet and the
outlet parts of the solid are clamped. In the fluid, a parabolic velocity profile is enforced at
the inlet, with a realistic inflow (peak velocity ≈ 96 cm/s). The Windkessel parameters are
Rp = 700 dyn · s · cm−5, Rd = 5 · 103 dyn · s · cm−5 and C = 2 · 10−4 cm5 · dyn−1. At t = 0,
the pressure is constant and equal to 80 mmHg, whereas all the other state variables are zero.
During the whole simulation, the stress received by the structure is corrected by the initial one,
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24 C. Bertoglio, A. Caiazzo & M.A. Fernández

Figure 6: Snapshot of the velocity field inside the idealized AAA. The curves show outlet pressure
and displacements of the aneurysm wall.

and the solid only responds to the difference with the diastolic phase. This is a simple way to
account for prestress in linear elastodynamics.

The results are summarized in Figure 7, showing the Windkessel pressures in time for a
time step P for τ = 0.001 s. Note that the semi-implicit algorithm with explicit 0D-3D coupling
(Algorithm 4) is unstable whereas with the implicit 3D-0D treatment (Algorithm 3) the numerical
solution remains stable. In fact, from the results one can infer that the interface term outlined in
Remark 4.3, namely (ẏn, Pnnf)Σ, injects a positive artificial power into the system (an increased
pressure Pn > 0 leads to ẏn · nf > 0).
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Figure 7: Windkessel pressure for the AAA: comparison between implicit (solid line) and explicit
(dashed line) fluid-Windkessel coupling.

6 Conclusions

In this paper we formulated and analyzed the treatment of a 3D-0D coupling between the
3D distributed (fluid, fluid-structure interaction) models and a set of Windkessel 0D models.
The key ingredient in the proposed schemes is the use of a fractional-step time-marching in the
3D compartment. For purely fluid problems with multiple outlets, our energy based stability
analysis showed that numerical instabilities might appear when using an explicit 3D-0D coupling.
Interestingly, this result also holds with a single outlet in the case of fluid-structure interaction.
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3D-0D coupling schemes in hemodynamics 25

We proposed to overcome this issues via an implicit treatment of the 3D-0D coupling, which
involves a negligible additional computational cost with respect to the explicit strategy. These
theoretical expectations were confirmed by numerical experiments in realistic geometries and
physiological data.
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