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Abstract

Iterative subdomain methods for the Stokes–Darcy problem that use Robin boundary conditions
on the interface are reviewed. Their common underlying structure and their main differences are
identified. In particular, it is clarified that there are different updating strategies for the interface
conditions. For small values of fluid viscosity and hydraulic permeability, which are relevant in appli-
cations from geosciences, it is shown in numerical studies that only one of these updating strategies
leads to an efficient numerical method, if this strategy is used in combination with appropriate pa-
rameters in the Robin boundary conditions. In particular, it is observed that the values of appropriate
parameters are larger than those proposed so far. Not only the size but also the ratio of appropriate
Robin parameters depends on the coefficients of the problem.

1. INTRODUCTION

Let us consider a bounded domain Ω ⊂ Rd, d ∈ {2, 3}, and a decomposition

Ω = Ωf ∪ ΓI ∪ Ωp ,

into two disjoint subdomains Ωf and Ωp, denoting a free flow domain and a porous medium, respectively,
and possessing a common interface ΓI, i.e., Ωf ∩ Ωp = ∅ and Ωf ∩ Ωp = ΓI, see Figure 1.

Assuming a moderate flow velocity in the free flow domain, the fluid dynamics in Ωf can be modeled
with the incompressible Stokes equations for the velocity uf : Ωf → Rd [m/s] and the pressure
Pf : Ωf → R [Pa]

−∇ · T
(
uf ,

Pf

ρ

)
= ff in Ωf , (1)

∇ · uf = 0 in Ωf . (2)

In (1), ρ [kg/m3] represents the fluid density and T(uf , pf) [m2/s2] denotes the fluid stress tensor

T(uf , pf) : Ωf → Rd×d, T = 2νD(uf)− pfI,

1
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Figure 1. Sketch of the fluid domain for the Stokes–Darcy problems.

where D(uf) = (∇u+∇u
T )/2 : Ωf → R

d×d [1/s] is the velocity deformation tensor, pf =
Pf/ρ [m2/s2], and ν : Ωf → R [m2/s] denotes the kinematic viscosity of the fluid. Outer
forces acting on the free flow are modeled by ff : Ωf → R

d [m/s2].
The dynamics in the porous medium is described by the Darcy law

K∇ϕp + up = 0 in Ωp, (3)

∇ · up = fp in Ωp, (4)

in terms of the function ϕp : Ωp → R [m], called Darcy pressure or piezometric head, and
of the Darcy velocity up : Ωp → R

d [m/s]. In (3), K : Ωp → R
d×d [m/s] is the hydraulic

conductivity tensor. Generally, it will be assumed that K = K
T , K > 0. Here, only the case

K = KI, K > 0, will be considered. In (4), the function fp : Ωp → R [1/s] describes sinks
and sources.
System (3)–(4) is called the mixed form of the Darcy problem. An alternative formulation

is obtained by taking the divergence of equation (3) and using (4),

−∇ · (K∇ϕp) = fp in Ωp, (5)

which is referred to as the primal form of the Darcy problem.
The mixed form is often more important for applications, as it allows to recover the Darcy

velocity up directly as an unknown of the problem. However, in what follows, we will focus on
the primal formulation, which is generally simpler from the analytical and numerical point of
view. Having computed ϕp with the primal formulation, the velocity up can be computed in
a post-processing step using (3). In the context of finite element methods, the application of
(3) results in loosing one approximation order such that the approximation estimate for up is
worse than for ϕp. On the other hand, velocity post-processing techniques based on gradient
super convergence phenomena have been successfully used to enforce mass conservation and
improve global accuracy, see, e.g., [1]. Our motivation for considering the primal formulation
lies in the fact that for the studied numerical methods there are already open questions for
this formulation. These questions should be studied before proceeding to the more complicated
mixed formulation.
Equations (1), (2), and (5) must be completed with appropriate boundary conditions and in

particular with proper interface conditions at the Stokes–Darcy interface ΓI. Denote by nf and
np the unit outward normal vectors on ∂Ωf and ∂Ωp, respectively, and by τ i, i = 1, . . . , d− 1,
pairwise orthogonal unit tangential vectors on the interface ΓI. Note that nf = −np on ΓI.
Two standard coupling conditions on ΓI model the conservation of mass and the balance of
normal stresses

uf · nf = −K∇ϕp · nf on ΓI, (6)

−nf · T(uf , pf) · nf = gϕp on ΓI, (7)

where g [m/s2] is the gravitational acceleration. A classical third coupling condition is the
so-called Beavers–Joseph condition [2], which is based on experimental findings relating the
jump of the tangential velocity along the interface to the fluid stresses:

(uf − up) · τ i + ατ i · T(uf , pf) · nf = 0 on ΓI, i = 1, . . . , d− 1, (8)
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where

α = α0

√

τ i ·K · τ i

νg
[s/m],

and α0 > 0 is a non-dimensional parameter depending on the properties of the porous medium,
which must be experimentally determined. The well-posedness of the Beavers–Joseph interface
condition (8) for the steady-state Stokes–Darcy problem is established only for particular
values of α0, see, e.g., [3, 4, 5]. Based on the observation that the Darcy velocity on ΓI is often
negligible compared with the Stokes velocity, it was proposed [6, 7] to simplify (8) to

uf · τ i + ατ i · T(uf , pf) · nf = 0 on ΓI, i = 1, . . . , d− 1, (9)

which is called Beavers–Joseph–Saffman condition (or Beavers–Joseph–Saffman–Jones
condition). A further simplification is based on the observation that both terms on the left-
hand side of (9) are small, hence obtaining

uf · τ i = 0 on ΓI, i = 1, . . . , d− 1. (10)

The coupled problem defined by (1), (2), (5) with the conditions (6), (7), and (9) (or (10))
has been studied extensively in the literature both theoretically, see, among others, [3, 5, 8, 9],
and numerically, e.g., [4, 10, 11, 12, 13, 14, 15, 16, 17]. This report will consider the interface
conditions (9) and (10) and different numerical methods to solve the resulting coupled problems
in a finite element framework. Since (9) and (10) do not couple the Stokes and the Darcy
equations, they yield formulations simpler to analyze and to treat numerically than (8), see,
e.g., [10, 16]. Nonetheless, several questions are still open.
The numerical methods for solving the coupled problem might be divided into two main

classes. Direct (also called monolithic or single domain) methods aim at solving in a single step
the whole coupled system. Proposals of finite element based approaches to solve the strongly
coupled Stokes–Darcy problem can be found, among others, in [18, 19, 20, 21, 22, 23, 13].
These techniques are in general stable and robust. However, they might be computationally
costly, depending on the size of the problem and on the physics behind it. Preconditioned
direct methods based on solving the problems on different grids are proposed in [24, 25]. As an
alternative, decoupled (also called domain-decomposition or multidomain) approaches solve the
coupled problem with a subdomain iterative procedure based, at each iteration, on the solution
of the Stokes and Darcy problem separately. On the one hand, an iterative method requires
multiple solutions of the subproblems. On the other hand, the advantage of these techniques
is that they allow to use specialized solvers for Stokes and Darcy problems and to tailor
the algorithms according to their mathematical and physical properties, which might result
in efficient procedures. Furthermore, iterative approaches are generally preferred if efficient
solvers for the subproblems are available. Our motivation for studying the coupled Stokes–
Darcy problem comes from the numerical simulation of the fluid dynamics in water basins
and river beds. The discretization of these problems is characterized by complex geometries
and might lead to large and ill-conditioned systems in three dimensions. For this reason, and
also since an efficient code for the simulation of incompressible free flows and scalar elliptic
problems is available [26], the use of iterative strategies is our preferred option.
Surveying the literature on iterative methods, one finds that depending on the splitting of

the interface conditions, different strategies were proposed. This splitting defines the boundary
condition on ΓI for the individual Stokes and Darcy problems that have to be solved at
each iteration. Principally, it is possible to perform the splitting such that essential, natural,
or Robin (linear combination of essential and natural) boundary conditions on ΓI can be
prescribed. A first approach consists in using natural boundary conditions for the Stokes
problems, i.e., (7), (9) or (7), (10), which involve Dirichlet data from the Darcy problem, and
also natural conditions for the Darcy problems, i.e., (6), which use Dirichlet data from the
Stokes problems, e.g., [27, 12]. Since this strategy results in Neumann problems to be solved in
both subdomains, this approach will be called Neumann–Neumann coupled formulation. It is
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worth noting that, from the point of view of domain decomposition methods, this strategy is
often considered as of Dirichlet-to-Neumann type [27, 12]. However, the Neumann–Neumann
coupling possesses some disadvantages. In particular, it has been shown that it converges
very slowly on fine meshes for small values of the viscosity or the hydraulic conductivity
[12], a configuration which is of utmost importance for applications in geosciences, where,
e.g., ν = 10−6 [m2/s] (water) and K ∈ [10−9I, 10−3I] [m/s] (clay, sand, gravel), are values of
interest.
To overcome these problems, it was first proposed in [12] to use a Robin–Robin coupling. The

numerical results in [12] are very promising, showing that the Robin–Robin decomposition is
robust and efficient in the parameter range that is of interest for geoscientific applications. The
idea behind the Robin–Robin coupling for Stokes–Darcy problems is to solve Robin problems
rather than Neumann problems in both subdomains, introducing two parameters γf and γp,
which determine the linear combination of the essential and natural boundary condition for
Stokes and Darcy problems, respectively. As shown in [12], these additional parameters have
to be tuned in order to achieve fast convergence of the iterative scheme. Moreover, recent
works showed that Robin boundary conditions can be seen, in the context of the finite element
method, as a generalization of Neumann and Dirichlet conditions, without significant loss
of accuracy and stability see, e.g., [28]. After the pioneering work of [12], more variants of
Robin–Robin iterative methods have been proposed and analyzed, see, e.g., [4, 9, 16].
For motivating our work, the discussion of some details of the algorithms proposed in [12]

and [16] is necessary. The sequential algorithm from [12] solves at each iteration a Darcy
and a Stokes problem sequentially, i.e., updating after each step the boundary conditions on
ΓI using the latest solution available on the other subdomain. This approach corresponds
to a Gauss–Seidel strategy for the solution of the coupled problem. The presented numerical
analysis in [12] suggests that the Robin–Robin parameters should satisfy γf > γp at least for ν,
K ≪ 1. The numerical studies considered the choice γf = 0.3 and γp = 0.1, showing robustness
with respect to grid size, viscosity, and permeability, but restricted to the simplified interface
condition (10) and ν < 10−4, K < 10−3. In [9, 16], a very similar algorithm was analyzed,
where the Stokes and the Darcy problem are solved simultaneously in each iteration, updating
simultaneously also the boundary condition on ΓI for both subproblems. This approach,
called parallel algorithm in [16], is the canonical modification of the sequential (Gauss–Seidel)
algorithm proposed in [12] to the Jacobi-type. In fact, one has to solve the same subproblems
and the updates of the Robin boundary data at the interface have the same structure, see
Section 3. The only difference between both algorithms is that in the definition of the Robin
data for the Stokes problem, the solution of the Darcy problem is either from the current or
from the previous iterate. In [16], the convergence was proved theoretically for γf < γp, for the
Beaver–Joseph–Saffman condition (9), and any initial iterate. However, the numerical studies
have been restricted to the value γp = 1, considering also unitary viscosity and permeability,
ν = 1, K = 1.
Hence, although the algorithms proposed in [12] and [16] differ only slightly, the analysis

and the results presented in these papers suggest completely different choices of appropriate
Robin–Robin parameters. This puzzling situation is of course unsatisfactory and it makes
the usage of Robin–Robin coupling prohibitive in practical applications. In particular, several
questions remain to be addressed, concerning the dependence of the numerical parameters on
the coefficients of the problem.
One of the main contributions of this report consists in a unified presentation of the

considered algorithms, thereby identifying the common underlying structure and highlighting
their differences. In particular, it will be clarified that different updating strategies for the
Robin conditions on the interface can be applied. One of them is based on rewriting the
Neumann–Neumann formulation as a Robin–Robin formulation whereas the other one directly
uses a Robin–Robin formulation of the coupled problem. The first approach leads, for standard
finite element methods, to continuous data at the interface and the second one to discontinuous
data. Another main contribution is the assessment of the algorithms for problems whose
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coefficients are of the magnitude which is relevant for applications from geosciences. It will
turn out that only one of the updating strategies will lead to efficient methods, if it is used with
appropriately chosen parameters in the Robin boundary conditions. The size of appropriate
parameters is considerably larger, at least in the studied examples, than proposed so far in
the literature. The numerical studies also show that not only the size but also the ratio of
appropriately chosen Robin parameters depends on the coefficients of the problem.
The remainder of the report is organized as follows. Section 2 introduces the variational and

the finite element formulations of the coupled problems, while Section 3 focuses on the two
iterative strategies considered in the report. Computational results are presented in Section 4,
and Section 5 gives a summary and an outlook.

2. WEAK FORMULATION OF THE COUPLED STOKES–DARCY PROBLEM

The scope of this section is to introduce the basic notation and the weak formulations of
the coupled Stokes–Darcy problem, considering different strategies to include the interface
conditions.

2.1. Weak formulations

The first step of the numerical simulation of any physical model is its non-dimensionalization
using characteristic scales. It will be assumed, without loss of generality, that the equations
(1), (2), and (5) and the interface conditions (6), (7), and (9) (or (10)) are non-dimensionalized
with unity characteristic scales such that the non-dimensional equations have exactly the same
form. Moreover, as usual the Stokes pressure is defined such that it incorporates the density.
For simplicity of presentation, our notation will not distinguish between dimensional and non-
dimensional quantities.
Besides interface conditions on ΓI, also boundary conditions on the external boundaries

(∂Ωf ∪ ∂Ωp) \ ΓI have to be specified. In what follows, only homogeneous conditions will
be considered. However, the presented arguments can be extended also to the general non-
homogeneous case. For the Stokes problem, it is assumed that

uf = 0 on Γf,e (no-flow, essential boundary conditions),

T(uf , pf) · n = 0 on Γf,n (outflow, natural boundary conditions),

where Γf,e ∪ Γf,n = ∂Ωf \ ΓI and Γf,e ∩ Γf,n = ∅. For the Darcy problem, the boundary
conditions are defined by

ϕp = 0 on Γp,e (essential/Dirichlet),

K∇ϕp · n = 0 on Γp,n (natural/Neumann),

with Γp,e ∪ Γp,n = ∂Ωp \ ΓI and Γp,e ∩ Γp,n = ∅. Furthermore, the boundary parts where
essential boundary conditions are prescribed are assumed to have positive measure, |Γf,e| > 0,
|Γp,e| > 0.
For an open set ω ⊂ R

d, let Hm(ω) denote the standard Sobolev spaces and let L2(ω) =
H0(ω). In addition, (·, ·)ω denotes the L2(ω) inner product and 〈·, ·〉ΓI stands for the inner

product in L2(ΓI).
For the derivation of a weak formulation, the essential boundary conditions are incorporated

into the function spaces. Hence, the space for the Stokes velocity is given by

Vf =
{

v ∈
(
H1(Ωf)

)d
: v = 0 on Γf,e

}

.

The correct choice of the pressure space depends on the boundary conditions. If Γf,n = ∅, then
the pressure is sought in the space

Qf = L20(Ωf) =

{

q ∈ L2(Ωf) :

∫

Ωf

q dx = 0

}

,
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otherwise in Qf = L2(Ωf). For the Darcy problem, the space for the piezometric head is defined
by

Qp =
{
ψ ∈ H1(Ωp) : ψ = 0 on Γp,e

}
.

The weak formulations of the Stokes and the Darcy equations are derived in a standard
way by multiplying (1), (2), and (5) with appropriate test functions and applying integration
by parts. Due to the choice of the boundary conditions, all integrals on (∂Ωf ∪ ∂Ωp) \ ΓI

vanish. One obtains the following weak form of the Stokes–Darcy problem: Find (uf , pf , ϕp) ∈
Vf ×Qf ×Qp such that for all (v, q, ψ) ∈ Vf ×Qf ×Qp

(T(uf , pf),D(v))Ωf + (∇ · uf , q)Ωf − 〈T(uf , pf) · nf ,v〉ΓI = (ff ,v)Ωf , (11)

(K∇ϕp,∇ψ)Ωp + 〈K∇ϕp · nf , ψ〉ΓI = (fp, ψ)Ωp . (12)

The Beavers–Joseph–Saffman condition (9) can be naturally included into the weak
formulation (11) decomposing the integral over ΓI in (11) into normal and tangential
components, yielding

−〈T(uf , pf) · nf ,v〉ΓI = −〈nf · T(uf , pf) · nf ,v · nf〉ΓI −

d−1∑

i=1

〈τ i · T(uf , pf) · nf ,v · τ i〉ΓI
︸ ︷︷ ︸

=− 1
α
〈uf ·τ i,v·τ i〉ΓI

.

Rearranging terms leads to

af(uf ,v) + bf(v, pf)− bf(uf , q)− 〈nf · T(uf , pf) · nf ,v · nf〉ΓI = (ff ,v)Ωf , (13)

ap(ϕp, ψ) + 〈K∇ϕp · nf , ψ〉ΓI = (fp, ψ)Ωp , (14)

with af : Vf × Vf → R, bf : Vf ×Qf → R, and ap : Qp ×Qp → R defined by

af(u,v) = (2νD(u),D(v))Ωf +

d−1∑

i=1

1

α
〈u · τ i,v · τ i〉ΓI ,

bf(v, p) = − (∇ · v, p)Ωf ,

ap(ϕ, ψ) = (K∇ϕ,∇ψ)Ωp .

In the case of the simplified interface condition (10), one obtains equations of the same form
as (13)–(14) with the following bilinear form

af(u,v) = (2νD(u),D(v))Ωf −

d−1∑

i=1

〈τ i · T(uf , pf) · nf ,v · τ i〉ΓI ,

where the second term does not vanish in the case of weakly imposed boundary conditions,
see Section 3.3.

2.2. Neumann–Neumann coupled formulation

For completeness of presentation and for highlighting the differences to the Robin–Robin
formulation, first the Neumann–Neumann coupled formulation is reviewed. Inserting the
interface conditions (7) and (6) into (13)–(14) yields the coupled Stokes–Darcy weak
formulation

af(uf ,v) + bf(v, pf)− bf(uf , q) + 〈gϕp,v · nf〉ΓI = (ff ,v)Ωf , (15)

ap(ϕp, ψ)− 〈uf · nf , ψ〉ΓI = (fp, ψ)Ωp . (16)

Here, the coupling is based on Neumann interface conditions for both the Stokes and the Darcy
domain, and (15)–(16) will be therefore called a Neumann–Neumann coupled problem.
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In order to describe better the different coupled formulations arising from the Stokes–Darcy
problem, it is helpful to rewrite (15)–(16) in a more abstract form. Let Vf = (Vf , Qf) be the
function space in which the solution (velocity and pressure) to the Stokes problem is sought,
and let V ′f denote its dual space. Similarly, let Q

′
p denote the dual of Qp. Then, define the

operators S : Vf → V ′f and D : Qp → Q′p such that

(Dϕ, ψ) := ap(ϕ, ψ),

(Ss, t) := af(u,v) + bf(v, p)− bf(u, q),

for all s = (u, p), t = (v, q) ∈ Vf , and ϕ, ψ ∈ Qp, and the coupling operator C : Vf → Q′p by

(Cs, ψ) := 〈u · nf , ψ〉ΓI .

Then, the Neumann–Neumann coupled problem (15)–(16) can be equivalently written as: Find
ϕ ∈ Qp and s = (u, p) ∈ Vf such that

(
D −C
gC⊤ S

)(
ϕ
s

)

=

(
Fp
Ff

)

. (17)

The operator C⊤ : Qp → C′f is the adjoint of C and the right-hand sides Ff ∈ V
′
f and Fp ∈ Q

′
p

are defined by

(Fp, ψ) := (fp, ψ)Ωp , (Ff , t) := (ff ,v)Ωf ,

for all t = (v, q) ∈ Vf and all ψ ∈ Qp. An equivalent form of the coupled Stokes–Darcy system
can be obtained using Lagrange multipliers on the interface ΓI. This approach allows to
formally decouple the Stokes and the Darcy subproblems, introducing additional interface
variables ηf , ηp ∈ H

1/2(ΓI), and considering the system






D −Ep
Rp −I

−Ef S
Rf −I











ϕ
ηf
s
ηp




 =






Fp
0
Ff
0




 ∈







Q′p
H1/2(ΓI)
V ′f

H1/2(ΓI)






, (18)

where I is the identity operator on H1/2(ΓI),

Ef : H
1/2(ΓI)→ V ′f , (Efηf , t) = 〈ηf ,v · nf〉ΓI ,

Ep : H
1/2(ΓI)→ Q′p, (Epηp, ψ) = 〈ηp, ψ〉ΓI ,

correspond to extension operators into the Stokes and Darcy domain, respectively, and

Rp : Qp → H1/2(ΓI), ψ 7→ gψ
∣
∣
ΓI
,

Rf : Vf → H1/2(ΓI), t 7→ v
∣
∣
ΓI
· nf ,

are restriction operators on H1/2(ΓI) from the two subdomains. The formulation (18) is
equivalent to (17) since, by definition,

gC⊤ = −EfRp and C = EpRf .

2.3. Robin–Robin coupled formulation

Instead of the interface conditions (6) and (7) one can as well consider two linear combinations

γfuf · nf + nf · T(uf , pf) · nf = −γfK∇ϕp · nf − gϕp on ΓI, (19)

γpK∇ϕp · nf − gϕp = −γpuf · nf + nf · T(uf , pf) · nf on ΓI, (20)
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where γf ≥ 0 and γp > 0 are constant. The conditions (19) and (20) correspond to Robin
boundary conditions for the Stokes and Darcy subproblems, respectively. Inserting them into
the weak formulations (13)–(14) leads to

af(uf ,v) + bf(v, pf)− bf(uf , q)

+〈γfuf · nf ,v · nf〉ΓI + 〈gϕp,v · n〉ΓI + 〈γfK∇ϕp · nf ,v · nf〉ΓI = (ff ,v)Ωf , (21)

ap(ϕp, ψ) +

〈
1

γp
gϕp, ψ

〉

ΓI

+

〈
1

γp
nf · T(uf , pf) · nf , ψ

〉

ΓI

− 〈uf · nf , ψ〉ΓI = (fp, ψ)Ωp , (22)

which will be denoted as the Robin–Robin coupled formulation. The restrictions γf ≥ 0
and γp > 0 guarantee positiveness of the bilinear forms af(uf ,v) + 〈γfuf · nf ,v · nf〉ΓI and

ap(ϕp, ψ) +
〈
1
γp
gϕp, ψ

〉

ΓI
. Introducing the operators SΓI : Vf → V ′f , DΓI : Qp → Q′p, Cp : Vf →

Q′p, and C
⊤
f : Qp → V ′f defined by

(SΓIs, t) = 〈u · nf ,v · nf〉ΓI ,

(DΓIϕ, ψ) = 〈gϕp, ψ〉ΓI ,
(
C⊤f ϕ, t

)
= 〈K∇ϕ · nf ,v · nf〉ΓI ,

(Cps, ψ) = 〈nf · T(u, p) · nf , ψ〉ΓI ,

for all s = (u, p) ∈ Vf , t = (v, q) ∈ Vf , ϕ, ψ ∈ Qp, one can rewrite (21)–(22) as

(
Drob Crob
C⊤rob Srob

)(
ϕ
s

)

:=

((
D −C
gC⊤ S

)

+

(
γ−1p

γf

)(
DΓI Cp
C⊤f SΓI

))(
ϕ
s

)

=

(
Fp
Ff

)

. (23)

The second term represents the additional operators in the Robin–Robin problem (21)–(22)
in comparison with the Neumann–Neumann formulation (15)–(16), compare also with (17).

Remark 2.1

The resulting coupled weak formulations (15)–(16) and (21)–(22) are equivalent if and only
if Vf · nf

∣
∣
ΓI
= Qp

∣
∣
ΓI
. This equality is satisfied if Γf,e ∩ ΓI = Γp,e ∩ ΓI, i.e., if the types of

boundary conditions (essential/natural), imposed on the intersection between interface and
outer boundary, coincide.

Similarly to the Neumann–Neumann case one introduces two interface variables ηf , ηp ∈
H−1/2(ΓI) and considers the system






Drob −Ep
Rp,rob −I

−Ef Srob
Rf,rob −I











ϕ
ηf
s
ηp




 =






Fp
0
Ff
0




 ∈







Q′p
H−1/2(ΓI)

V ′f
H−1/2(ΓI)






, (24)

where I is the identity operator on H−1/2(ΓI). Then, one defines for all t = (v, q) ∈ Vf and all
ψ ∈ Qp:

Rp,rob : Qp → H−1/2(ΓI), ψ 7→ (gψ + γfK∇ψ · nf)
∣
∣
ΓI
,

Rf,rob : Vf → H−1/2(ΓI), t 7→
(
γ−1p nf · T(v, q)− v

)∣
∣
ΓI
· nf .

In (24), the operators Ep and Ef are defined on H
−1/2(ΓI). By construction, (24) is equivalent

to (23), since

C⊤rob = −EfRp,rob and Crob = EpRf,rob.
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2.4. A Robin–Robin formulation for the Neumann–Neumann problem

In the context of finite element methods, computing derivatives of discrete functions in general
leads to loss of approximation orders. Hence, the Robin–Robin formulation might result in a
suboptimal accuracy. On the other hand, Robin boundary conditions allow for additional
flexibility at the interface and they can give efficient algorithms as reported in [12]. An
alternative weak formulation, equivalent to the Neumann–Neumann formulation (17), but
based on the solution of two Robin problems in the subdomains Ωf and Ωp, which do not require
the computation of derivatives, has been proposed in [12, 16] in the context of subdomain
iterative methods. Using the framework introduced above, this coupled formulation can be
written in the form







D + γ−1p DΓI −γ−1p Ep
bRp −I aI

−Ef S + γfSΓI
cI dRf −I












ϕ
ηf
s
ηp




 =






Fp
0
Ff
0




 , (25)

where the factors a, b, c, and d have to be determined in order to obtain a formulation
equivalent to (17) (and to (18)). The choice of the form (25) is motivated by two reasons.
Firstly, it prevents the subproblems to be coupled directly (first and third row). An indirect
coupling is enforced only through the interface functions ηf and ηp (for the Stokes and Darcy
problem, respectively). Secondly, each interface function can be computed from the solution
in a single subdomain (empty blocks in the second and fourth row). The signs of the operators
and the positions of γf and γp are chosen such that the resulting scheme will coincide with the
ones presented in [12, 16]. System (25) is equivalent to (17) if







D + γ−1p DΓI −γ−1p Ep
bRp −I aI

−Ef S + γfSΓI
cI dRf −I












ϕ
ηf
s
ηp




 =







D −C

C⊤ S












ϕ
0
s
0




 =






Fp
0
Ff
0






⇐⇒







γ−1p DΓI C −γ−1p Ep
bRp −I aI
−C⊤ −Ef γfSΓI

cI dRf −I












ϕ
ηf
s
ηp




 = 0,

which yields the conditions







ηp = γpu · nf + gϕ in Λ′p,

ηf = bgϕ+ aηp in H1/2(ΓI),

ηf = γfu · nf − gϕ in Λ′f ,

ηp = du · nf + cηf in H1/2(ΓI),

(26)

with the interface (trace) spaces

Λf := Vf · nf
∣
∣
ΓI
= {v|ΓI · nf : v ∈ Vf} and Λp := Qp

∣
∣
ΓI
= {ψ|ΓI : ψ ∈ Qp} .

Remark 2.2

If the interface spaces Λf and Λp coincide, one can solve (26) for a, b, c, d, obtaining

a =
γf
γp
, b = −1− a, c = −1, d = γf + γp,

as done in [16]. This is the same condition as in Remark 2.1. If the interface spaces are not
equal, we still use these parameters in the numerical simulations.
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Remark 2.3

The difference between the two Robin–Robin formulations is that (23) is derived starting from
two Robin subproblems in strong form, i.e., (19) and (20), while (25) is equivalent to two
Robin problems obtained from the Neumann–Neumann strong form (15)–(16).

Remark 2.4

Unlike the Neumann–Neumann approach (18) and the Robin–Robin approach (24), the Robin–
Robin formulation (26) can only be written in operator form using Lagrange multipliers, as
the interface variables ηf and ηp are coupled to each other.

3. ROBIN–ROBIN SUBDOMAIN ITERATIVE METHODS

In the literature, one can find so-called sequential and parallel Robin–Robin subdomain
iterative methods. This section starts by presenting the principal form of these algorithms.
Then, the important issue of the definition of the boundary data at the interface will be
considered. Finally, some details concerning the implementation of the algorithms will be
presented and possible stopping criteria of the iterative process will be discussed.

3.1. Sequential and parallel approaches

The considered sequential form of the iterative method was proposed and studied, e.g., in
[10, 12].

Algorithm S. (Sequential or Gauss–Seidel-type iteration)

0. Given η0p, η
0
f ∈ L

2(ΓI), γf ≥ 0, γp > 0, θ ∈ (0, 1]. Set k = 0.

1. Solve a Darcy problem with Robin boundary data ηkp giving the solution ϕ
k+1
p .

2. Set ηk+1f as a linear combination of ηkf , η
k
p , and the solution of the Darcy problem by

using the damping factor θ.

3. Solve a Stokes problem with Robin boundary data ηk+1f giving the solution (uk+1
f , pk+1f ).

4. Set ηk+1p as a linear combination of ηkp , η
k+1
f , and the solution of the Stokes problem by

using the damping factor θ.

5. If not converged: Increase k by 1 and go to step 1.

A straightforward modification of Algorithm S into a version where the subproblems are
solved in parallel was studied in [16].

Algorithm P. (Parallel or Jacobi-type iteration)

0. Given η0f , η
0
p ∈ L

2(ΓI), γf ≥ 0, γp > 0, θ ∈ (0, 1]. Set k = 0.

1. Do in parallel:

a) Solve a Darcy problem with Robin boundary data ηkp giving the solution ϕ
k+1
p .

b) Solve a Stokes problem with Robin boundary data ηkf giving the solution

(uk+1
f , pk+1f ).

2. Do in parallel:

a) Set ηk+1f as a linear combination of ηkp , η
k
f , and the solution of the Darcy problem

by using the damping factor θ.
b) Set ηk+1p as a linear combination of ηkp , η

k
f , and the solution of the Stokes problem

by using the damping factor θ.

3. If not converged: Increase k by 1 and go to step 1.

Note that in [10, 12, 16] the undamped versions, i.e., θ = 1, were considered.
The Robin problems to be solved in Algorithms S and P have the form
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• Darcy: Find ϕk+1
p ∈ Qp such that for all ψ ∈ Qp

ap
(
ϕk+1
p , ψ

)
+

〈
1

γp
gϕk+1

p , ψ

〉

ΓI

= (fp, ψ)Ωp +

〈
1

γp
ηkp , ψ

〉

ΓI

,

• Stokes: Find (uk+1
f , pk+1f ) ∈ Vf ×Qf such that for all (v, q) ∈ Vf ×Qf

af
(
u
k+1
f ,v

)
+ bf

(
v, pk+1f

)
− bf

(
u
k+1
f , q

)
+

〈
γfu

k+1
f · nf ,v · nf

〉

ΓI

= (ff ,v)Ωf +
〈

ηk̃f ,v · nf

〉

ΓI
,

where in Algorithm S it is k̃ = k + 1 and in Algorithm P it is k̃ = k.
The matrix-vector representation of the two Robin–Robin formulations (24) and (25)

possesses the structure

(
A11 A12
A21 A22

)







(
ϕ
ηf

)

(
s
ηp

)






=







(
Fp
0

)

(
Ff
0

)






.

It can be seen that Algorithm S is a block Gauss–Seidel method (with a forward solve) for
this system, whereas Algorithm P is a block Jacobi method, both methods are not damped.
Moreover, both algorithms solve the subproblems involving the diagonal blocks Aii, i ∈ {1, 2},
with one Gauss–Seidel step. Note that the subblocks Aii, i ∈ {1, 2}, are lower triangular two-
by-two block matrices themselves, with one diagonal block typically much bigger than the other
one. Hence, Algorithm P is strictly speaking a nested Jacobi and Gauss–Seidel algorithm.

3.2. The boundary conditions at the interface

A main issue of the algorithms is updating the Robin data ηk+1f and ηk+1p , steps 2 and 4 of
Algorithm S and step 2 of Algorithm P.
In [10, 12, 16], the following approach was considered, with θ = 1,

ηk+1f = (1− θ)ηkf + θ

(
γf
γp
ηkp −

γp + γf
γp

gϕk+1
p

)

, (27)

ηk+1p = (1− θ)ηkp + θ
(

−ηk̃f + (γp + γf)u
k+1
f · nf

)

. (28)

This updating strategy is a damped version of applying the second and fourth line in (26), i. e.,
it originates from a Robin–Robin formulation for the Neumann–Neumann coupled problem.
Using conforming finite element spaces, then ϕk+1

p and u
k+1
f are continuous functions. Thus,

if η0f and η
0
p are also continuous, then the updating strategy (27), (28) gives also continuous

Robin boundary data at the interface. For this reason, it will be called C-RR (continuous
Robin–Robin).
For θ = 1, Algorithm S with the updating strategy C-RR is the Robin–Robin method that

was analyzed in [12]. This analysis covers the convergence of the method in the setting of
infinite dimensional spaces, where the Stokes–Darcy problem with the interface conditions (6),
(7), and (10) was considered. The updating strategy C-RR (with θ = 1) with Algorithm P

was proposed and analyzed in [16]. In this paper, the Stokes–Darcy problem with the coupling
conditions (6), (7), and the Beavers–Joseph–Saffman condition (9) was studied. Although both
approaches are rather similar, the corresponding algorithms rely on completely different choices
of the Robin parameters: γf > γp for small ν and K in [12] and γf < γp for unitary ν and K
in [16]. In both cases, it was reported that the opposite choice would not lead to an efficient
strategy. On the one hand, both papers [12] and [16] study different regimes of the coefficients
of the Stokes–Darcy problem, but on the other hand, a dependence of the Robin parameters
on these coefficients is not considered. Altogether, it remains still unclear how to choose the
Robin–Robin parameters for given ν and K in general situations.
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A different updating strategy consists in applying

ηk+1f = (1− θ)ηkf + θ
(
−gϕk+1

p − γfK∇ϕ
k+1
p · nf

)
, (29)

ηk+1p = (1− θ)ηkp + θ
(
γpu

k+1
f · nf − nf · T(u

k+1
f , pk+1f ) · nf

)
. (30)

This strategy corresponds to using the second and fourth row of (24), together with a damping,
i. e., it comes from a Robin–Robin formulation. Note that for continuous finite element spaces,
∇ϕk+1

p and T(uk+1
f , pk+1f ) are in general discontinuous functions, such that (29) and (30) lead

to discontinuous Robin boundary data. Thus, this strategy will be called D-RR (discontinuous
Robin–Robin).
In the literature, we could find the use of the D-RR updating strategy only in [29], within

Algorithm S.

Remark 3.1 (Possible variations)
In Algorithm S one could as well solve a Stokes problem first and then a Darcy problem in
every iteration step. Furthermore the damping factor θ could be different for the update of the
two interface variables ηk+1f and ηk+1p . Another modification of the D-RR updating strategy
could be to use the solution from the previous iteration step instead of the previous interface
variable, i. e.,

ηk+1f = (1− θ)
(
−gϕk

p − γfK∇ϕ
k
p · nf

)
+ θ

(
−gϕk+1

p − γfK∇ϕ
k+1
p · nf

)
,

ηk+1p = (1− θ)
(
γpu

k
f · nf − nf · T(u

k
f , p

k
f ) · nf

)
+ θ

(
γpu

k+1
f · nf − nf · T(u

k+1
f , pk+1f ) · nf

)
.

In our experience so far, none of the proposed variations yields a qualitative difference to the
results presented in Section 4.

3.3. Implementation aspects

The matrices corresponding to the Darcy and the Stokes problem with Robin boundary
conditions do not change during the iterative processes in both Algorithms S and P. Therefore,
one assembly prior to the iteration suffices and a factorization can be computed. Furthermore,
the interface contribution

〈
ηk+1f ,v · n

〉

ΓI
(corresponding to Ef in (24) and (25)), which is added

to the right-hand side of the Stokes system, is linear in ηf and can be computed by a matrix-
vector multiplication. Similar ideas apply to the update of the right-hand side in the Darcy
problem, i. e., to the operator Ep, and to the restriction operators Rp, Rf , Rp,rob, Rf,rob in
(24) and (25), respectively. Hence, no further assembling is needed during the iteration.
The simplified condition (10) is implemented weakly, penalizing the tangential component

of the velocity on the interface by a Nitsche technique [30, 31], rather than imposing it directly
in the velocity function spaces. It is assumed that the Stokes subdomain is triangulated with a
regular finite element mesh which induces a partition on the (conformal) interface ΓI. Denoting
by hE the diameter of a face (edge) E ⊂ ΓI, then for imposing the interface condition (10),
the following term is added to the formulation

−

d−1∑

i=1

〈τ i · T(uf , pf) · nf ,v · τ i〉ΓI +

d−1∑

i=1

∑

E∈ΓI

γ

hE
〈uf · τ i,v · τ i〉E ,

where γ > 0 is a constant penalty parameter, whose value depends in general on the particular
problem [30]. We used γ = 10 in all simulations. The first term resulting from integration by
parts is not replaced but it enters the matrix.

3.4. Stopping criteria

Standard stopping criteria, e.g., the ones used in [10, 12], depend on the absolute or relative
differences between successive iterates, computed on pressure or velocity solution vectors or
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on interface variables, i. e., based on terms of the form

∥
∥sk+1h − skh

∥
∥
ℓ2

or

∥
∥sk+1h − skh

∥
∥
ℓ2∥

∥skh
∥
∥
ℓ2

,

where skh stands for u
k
f,h, p

k
f,h, ϕ

k
p,h, η

k
p,h, or η

k
f,h. In [10, 12], the relative increment of the

discrete normal velocity on the interface uf,h · nf |ΓI was used. Another possibility consists in
checking the accuracy of the coupling conditions (6) and (7), i.e., monitoring the term

ek :=
∥
∥u

k
f,h +K∇ϕk

p,h · nf
∥
∥
2

L2(ΓI)
+

∥
∥nf · T(u

k
f,h, p

k
f,h) · nf + gϕk

p,h

∥
∥
2

L2(ΓI)
.

However, these quantities depend on the considered finite element spaces and, in general, they
might not vanish even for the exact solution of the discrete coupled linear system. On the
other hand, the relative difference

Ek :=
ek − ek+1

ek
= 1−

ek+1

ek

provides a measure of the progress made in the iteration. All these criteria can be used on
their own or in some (linear) combination. However these stopping criteria only measure the
progress of the iteration but not the quality of the solution, i. e., they are not able to detect
whether the computed iterate is indeed close to the solution of the discrete problem or if the
iteration sticks at an early stage. Therefore, we considered a further stopping criterion based
on the residual of the (discrete versions of the) equations (17) or (23), i.e.,

Rk :=

∥
∥
∥
∥

(
Dh Ch
C⊤h Sh

)(
ϕk+1
p,h

sk+1f,h

)

−

(
Ff,h
Fp,h

)∥
∥
∥
∥
ℓ2

.

If not stated otherwise, in the simulations presented in Section 4, the iterative procedure has
been stopped when the following conditions were satisfied

Rk < eps and

∥
∥
∥u

k+1
f,h − u

k
f,h

∥
∥
∥
ℓ2∥

∥
∥u

k
f,h

∥
∥
∥
ℓ2

+

∥
∥
∥pk+1f,h − pkf,h

∥
∥
∥
ℓ2∥

∥
∥pkf,h

∥
∥
∥
ℓ2

+

∥
∥
∥ϕk+1

p,h − ϕ
k
p,h

∥
∥
∥
ℓ2∥

∥
∥ϕk

p,h

∥
∥
∥
ℓ2

< eps, (31)

for a prescribed threshold eps. In the second condition, we omitted the denominator whenever
it was smaller than one.

4. COMPUTATIONAL RESULTS

The goal of the numerical studies consists in assessing Algorithms S and P in combination
with the updating strategies C-RR and D-RR with respect to their efficiency. Since in all
methods, the numerical costs per iteration are very similar, the efficiency will be measured
in terms of the number of iterations for reaching convergence. Because of our motivation to
study applications in computational geosciences, the algorithms will be assessed especially for
physical parameters which are relevant in this context.
For all numerical experiments, the Taylor–Hood P2/P1 pair of finite element spaces was

used in the Stokes subdomain, while P2 elements have been used for the piezometric head.
This choice of spaces is the same as, e.g., in [10, 12, 16]. The Robin–Robin updating strategies
were applied with θ = 1. All simulations were performed with the code MooNMD [26]. The
linear systems of equations were solved with the sparse direct solver UMFPACK [32].
To verify the implementation, the solver was benchmarked considering a solution belonging

to the finite element spaces. In these studies, the final errors for ν = 1 and K = I were of the
order of the machine accuracy, but they increased with ν−1 and K

−1. This observation reflects
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the fact that, for small ν and K, the condition numbers of the finite element linear systems
increase.
As already mentioned above, a motivation for the present study is the unclear situation

concerning the choice of the Robin parameters γf and γp. To address this question, we first
validated our implementation against two examples taken from [10, 12, 16], to reproduce the
published results using the algorithms considered in the respective paper. In addition, all other
algorithms were also assessed for these examples. Finally, we studied an example related to a
geoscientific application [33, 34].

4.1. Example 1

This example was used in [16] to illustrate the behavior of Algorithm P with the C-RR updating
strategy for the viscosity ν = 1 and the hydraulic conductivity K = I.
Let Ωp = (0, π)× (−1, 0), Ωf = (0, π)× (0, 1), and ΓI = (0, π)× {0}. The hydraulic

conductivity has the form K = KI, and the solution of the coupled problem (1), (2), (5)
is given by

uf(x, y) =

(
v′(y) cos(x)
v(y) sin(x)

)

, pf(x, y) = 0, ϕp(x, y) = ey sin(x),

where

v(y) = −K −
gy

2ν
+

(

−
αg

4ν2
+
K

2

)

y2 .

On the outer boundaries, i. e., Γf,e = ∂Ωf \ ΓI and Γp,e = ∂Ωp \ ΓI, essential boundary
conditions were prescribed. This example considers the Beavers–Joseph–Saffman condition,
i.e., the coupling conditions at the interface are given by (6), (7), and (9). Numerical simulations
were performed on meshes obtained by uniformly red refining an initial coarse grid (level 0)
consisting of eight triangles, see Figure 2. Note that no information about the mesh is available
in [16], such that our setup might be different in this respect. The initial iterate was always set
to be zero. The iterative algorithm was stopped according to the criterion (31) with a tolerance
eps = 10−10. The use of this stopping criterion is another difference to [16].

Figure 2. Example 1: initial grid (level 0) with Ωf in blue (top) and Ωp in red (bottom).

Since the main goal of this first example is the validation of our results against the results
from [16], only the case ν = 1 and K = I will be considered. Figure 3 shows the evolution of the
relative discrete errors of the iterates of the Stokes velocity, for different choices of the Robin
parameters. In all cases, the curves are in agreement with the results reported in [16, Fig. 6.1].
Details concerning the needed iterations are provided in Table I. For the updating strategy
D-RR, Algorithm S converged faster than Algorithm P. Moreover, for all methods, the number
of iterations is independent of the level. As stated also in [16], one can see in Figure 3 a very
fast convergence if γf < γp, a slow convergence if γf = γp, and divergence in the case γf > γp.
The speed of convergence depends essentially on the ratio γf/γp. In this example, the smallest
number of iterations were needed for γp = 1. We could observe the same convergence behavior
for the Stokes pressure and the piezometric head.
In summary, the results from [16] could be reproduced very well.
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Updating strategy Algorithm Level 1 Level 2 Level 3 Level 4

C-RR Algorithm P 19 19 19 20
C-RR Algorithm S 19 19 19 20
D-RR Algorithm P 34 36 36 36
D-RR Algorithm S 19 19 19 20

Table I. Example 1: Number of iterations for γp = 1 and γf = γp/3.

4.2. Example 2

This example was used in [10, 12] for assessing Algorithm S with the C-RR updating strategy
for different values of the kinematic viscosity ν and the hydraulic conductivity K.
Let Ωp = (0, 1)2 and Ωf = (0, 1)× (1, 2), with the interface ΓI = ∂Ωp ∩ ∂Ωf = (0, 1)× {1},

the hydraulic conductivity of the form K = KI, and the solution given by

us(x, y) =

(
y2 − 2y + 1
x2 − x

)

,

pf(x, y) = 2ν(x+ y − 1) +
g

3K
, (32)

ϕp(x, y) =
1

K

(

x(1− x)(y − 1) +
y3

3
− y2 + y

)

+
2ν

g
x.

Dirichlet boundary conditions were imposed on ∂Ωf \ ΓI and on the bottom boundary
(0, 1)× {0}. On the remaining parts, Neumann boundary conditions were prescribed. In this
example, the simplified Beavers–Joseph–Saffman condition (6), (7), and (10) is considered. We
used unstructured grids with 98 (mesh 1), 470 (mesh 2), 1914 (mesh 3) and 8216 (mesh 4)
cells with a total of 406 (mesh 1), 1690 (mesh 2), 6553 (mesh 3) and 27402 (mesh 4) degrees
of freedom. The initial iterate was always chosen to be zero.
Using values for the parameters ν and K relevant for geoscientific applications, which are

typically very small, the pressure and the piezometric head in (32) consist of two parts. A
very small contribution scaled with ν and a very large part due to the scaling with K−1. This
second part leads to values of pf and ϕp which are unrealistic in applications. In this respect,
this example has some deficiencies.
To reproduce the results from [10, 12], we first used as stopping criterion only

∥
∥u

k+1
f − u

k
f

∥
∥

∥
∥uk

f

∥
∥

< 10−6, (33)

similarly as it has been applied in [10, 12], where the relative increment of the discrete normal
velocity on the interface and a somewhat smaller tolerance were used. Note that uf is the only
part of the solution that does not scale with K−1. Because of the large condition number of
the linear system of equations for small ν and K, which was already mentioned above, one
generally has to relax the tolerances of stopping criteria in this case compared with the case
ν = 1, K = 1.
Table II reports the results with Robin parameters γp = 1, γf =

γp
3 , which was the most

efficient choice in Example 1, in combination with the stopping criterion (33). Clearly, all
algorithms failed for those parameters in the case of small ν and small K.
Indeed, following [10, 12], one would expect efficient simulations for a different choice of the

Robin parameters, namely γp = 0.1, γf = 3γp. In this case, one obtains the results presented in
Table III. One can see that the algorithms with the updating strategy D-RR converged for all
choices of physical parameters. We observed a similar behavior of the algorithms with the D-
RR updating strategy also for γf = 3γp with γp ∈ {1, 10, 50, 100, 200}. The results are similar
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Relative discrete errors for the Stokes velocity
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Figure 3. Example 1: Relative discrete errors
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for different values of γp and γf on refinement level 4.
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Updating strategy Algorithm ν K mesh 1 mesh 2 mesh 3 mesh 4

C-RR

Algorithm P
1 1 7 7 7 7
10 10−1 25 25 25 25
10−2 10−2 — — — —

Algorithm S
1 1 7 7 7 7
10 10−1 11 11 11 11
10−2 10−2 — — — —

D-RR

Algorithm P
1 1 9 9 11 11
10 10−1 18 20 20 20
10−2 10−2 +++ +++ +++ +++

Algorithm S
1 1 5 6 7 7
10 10−1 10 11 11 11
10−2 10−2 — — — —

all both

10−3 10−2 — — — —
10−4 10−3 — — — —
10−6 10−4 — — — —
10−6 10−7 — — — —

Table II. Example 2 Number of iterations for γp = 1 and γf = γp/3, stopping criterion (33), ”+++”
means did not converge within 100 iterations and ”—” means diverged.

type algorithm ν K mesh 1 mesh 2 mesh 3 mesh 4

C-RR

Algorithm P
10−4 10−3 — — — —
10−6 10−4 — — — —
10−6 10−7 — — — —

Algorithm S
10−4 10−3 207 51 27 21
10−6 10−4 274 12 12 12
10−6 10−7 12 12 12 12

D-RR

Algorithm P
10−4 10−3 15 15 17 17
10−6 10−4 7 9 9 9
10−6 10−7 7 9 9 9

Algorithm S
10−4 10−3 11 11 11 11
10−6 10−4 12 12 12 12
10−6 10−7 12 12 12 12

Table III. Example 2: Number of iterations for the stopping criterion (33), γp = 0.1 and γf = 0.3,
“—” means diverged.

to those reported in [10, 12] for the updating strategy C-RR. In our simulations, however, the
C-RR updating strategy was less successful for all studied choices of the Robin parameters
and we could not reproduce the results from [10, 12]. Consulting the Ph.D. thesis [29], one
gets the impression that in [10, 12] the C-RR updating strategy is presented and analyzed but
the numerical studies in these papers were performed with the D-RR updating strategy.
In Table III, one can see that Algorithm P was (for the D-RR updating strategy) more

efficient than Algorithm S for very small values of the physical coefficients. For both algorithms,
the number of iterations is independent of the mesh.
Next, the convergence properties of the algorithms using the harder stopping criterion (31),

also with eps = 10−6, were investigated. One can observe in Figure 4 that for γp = 0.1, γf = 3γp
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(we obtained similar results for γp ∈ {
1
30 ,

1
3 , 1}) even if the criterion (33) is satisfied, the residual

of the complete coupled problem is far from being small. Figure 4 shows also that relative
changes of the pressure and the piezometric head are still large. For further comparisons,
we computed the solution of the monolithic discrete Stokes–Darcy problem by applying a
direct solver to the coupled finite element problem (an approach which is not feasible in many
applications). Then, one can see that the iterates for the pressure and the piezometric head still
differ considerably from the discrete solution. These observations confirm that the stopping
criterion (33) is not sufficient to assess the properties of the iterative algorithms, and the
number of iterations given in Table III might provide a wrong impression of their efficiency.
Further numerical studies revealed that a considerable speed-up of the algorithms with

the D-RR updating strategy could be achieved by increasing the Robin parameters, thereby
keeping the relation γf = 3γp, see Figure 5 and Table IV. Similar results were obtained for
γp ∈ {50, 200}. We think that the slow convergence in the case K = 10−7 is due to the
unrealistic large values for the pressure and the hydraulic head. One can see in Table IV that
Algorithm S performed better than Algorithm P. The number of iterations is independent of
the mesh.
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Figure 4. Example 2: Evolution of the residual, discrete errors, and relative differences for Algorithm S,
mesh 4, using the D-RR updating strategy and γp = 0.1, γf = 3γp, ν = 10−4, and K = 10−3.

In summary, despite the shortcomings of the used example, it was clarified that for the case
of small viscosity and small hydraulic conductivity, the use of the D-RR updating strategy and
the choice γf > γp, e.g., γf = 3γp, of the Robin parameters are important to obtain an efficient
subdomain iteration.

4.3. Example 3: Water flow over a porous river bed

As a final example, a model of a unidirectional steady water flow over a porous bed is
considered, separated by a non-straight interface. In the context of computational geosciences,
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Figure 5. Example 2: Evolution of the residual, discrete errors, and relative differences versus the
number of iterations for Algorithm S, mesh 4, using the D-RR updating strategy and γp = 100,

γf = 3γp, ν = 10−4, and K = 10−3.

type algorithm ν K mesh 1 mesh 2 mesh 3 mesh 4

C-RR

Algorithm P
10−4 10−3 — — — —
10−6 10−4 — — — —
10−6 10−7 — — — —

Algorithm S
10−4 10−3 — — — —
10−6 10−4 432 422 413 —
10−6 10−7 +++ +++ +++ +++

D-RR

Algorithm P
10−4 10−3 76 74 72 71
10−6 10−4 841 823 805 787
10−6 10−7 +++ +++ +++ +++

Algorithm S
10−4 10−3 32 32 32 32
10−6 10−4 326 316 307 298
10−6 10−7 +++ +++ +++ +++

Table IV. Example 2: Number of iterations for the stopping criterion (31), γp = 100 and γf = 300,
“+++” means did not converge within 1000 iterations, “—” means diverged.

this model has been proposed for the study of the hydrodynamic interactions between the
water flow and the underlying river bed [33, 34].
In order to simulate the water flow over two triangular dunes, consider a rectangular domain

Ω = [0, 2L]× [0, Hf +Hp],
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where Hf and Hp denote the heights of the water flow domain and the porous river bed
at x ∈ {0, L, 2L}. The interface, representing the dune, is composed of two triangles, whose
highest points are located at x ∈ {lD, L+ lD}, while the maximum height of the dunes, with
respect to the entrance porous bed, is denoted by hD, see Figure 6.

2L

Hp

Hf

︷ ︸︸ ︷
lD

} hD

Figure 6. Computational domain for the water flow over a porous river bed model, mesh 1.

The boundary conditions and the values of the physical parameters have been chosen as in
the numerical simulations presented in [33, 34]. In particular, the lower boundary is considered
impermeable (no flow boundary condition), while no-slip conditions are imposed at the upper
boundary. At inlet and outlet boundaries, the following inhomogeneous periodic boundary
conditions for Stokes and Darcy problems have been imposed:

uinlet = uoutlet,

T (uinlet, pinlet) · nf = T (uoutlet, poutlet) · nf + p0,

ϕinlet = ϕoutlet + p0 .

Note that the pressure is unique only up to an additive constant in this example. We fixed this
constant by forcing one pressure node to be zero. Furthermore, the simulation parameters are

L = 1, Hf = 0.5, Hp = 1.5 ,

lD = 0.9, hD = 0.1 ,

p0 = 10−3, ff = 0, fp = 0 .

Figure 7 depicts the numerical solution for ν = 10−6 and K = 10−7. The prescribed pressure
drop p0 induces a flow from left to right, which partially penetrates the porous bed due to the
inclination of the interface. However, the impact of the water flow onto the porous media (and
vice versa) remains local, i. e., the flow remains unperturbed and unidirectional away from the
interface. Note the pressure drop arising behind the dunes, which locally causes a flow in the
opposite direction underneath the dunes.
For assessing the performance of the iterative algorithms, three different unstructured meshes

were considered, see Figure 6 for an example and Table V for detailed information. From the
results obtained in Example 2, it can be expected that one has to use the updating strategy
D-RR. In fact, we could observe in this example that the subdomain iteration did not converge
if the updating strategy C-RR was employed. The obtained results are presented in Tables VI
and VII, where the threshold of the stopping criterion (31) was set to be eps = 10−6. Different
values of the Robin parameters γf and γp were chosen, always satisfying the same ratio as in
Example 2 and in [10, 12]. One can see that both algorithms performed well on all meshes for
the Robin parameters γp ∈ {10, 100} and γf = 3γp. The number of iterations for Algorithm S

was in the most cases independent of the mesh. For some physical parameters, in particular
for very small ν and K, Algorithm P converged faster than Algorithm S.
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Figure 7. Example 3: Numerical solution for ν = 10−6 and K = 10−7, showing the velocity field uf
and ∇ϕp (unscaled arrows, top left), the velocity streamlines (top right) and a pressure elevation plot
which is semi-transparent in the Darcy subdomain (bottom). All three plots are colored according to

the pressure field, scaled so that the minimum value is zero.

mesh interface edges cells degrees of freedom
Stokes Darcy Stokes Darcy

1 32 277 1 009 1 392 2 098
2 68 1 285 4 513 6 093 9 196
3 138 5 234 18 322 24 181 36 987

Table V. Example 3: Number of interface edges, Stokes and Darcy cells, and degrees of freedom for
the three different meshes used.

5. SUMMARY AND OUTLOOK

This paper reviewed iterative subdomain methods for solving the Stokes–Darcy problem that
use Robin boundary conditions at the interface. In particular, it was clarified that there are
different updating strategies for the Robin boundary conditions. For coefficients in the Stokes–
Darcy problem that are relevant for applications from geosciences, the use of the updating
strategy D-RR, in combination with an appropriate choice of the Robin parameters, turned out
to be crucial for designing an efficient numerical method. Concerning the Robin parameters, the
choice γf = 3γp resulted in efficient methods if γp was chosen appropriately, in the considered
examples γp ∈ [10, 100]. These values are considerably larger than those proposed so far in
the literature. Finally, it was observed that the serial update of the interface conditions,
Algorithm S, needed often less iterations than the parallel update, Algorithm P.
Altogether, the main goal of our studies was achieved: the identification of an efficient

iterative subdomain method for the Stokes–Darcy problem with coefficients that are relevant
in geosciences.
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γp γf ν K mesh 1 mesh 2 mesh 3

1 3
10−4 10−3 +++ +++ +++
10−6 10−4 +++ +++ +++
10−6 10−7 +++ +++ +++

10 30
10−4 10−3 11 11 11
10−6 10−4 12 12 13
10−6 10−7 12 12 13

100 300
10−4 10−3 12 15 20
10−6 10−4 12 12 13
10−6 10−7 12 12 13

Table VI. Example 3: Number of iterations for the D-RR updating strategy and Algorithm S, ”+++”
means did not converge within 100 iterations.

γp γf ν K mesh 1 mesh 2 mesh 3

1 3
10−4 10−3 +++ +++ +++
10−6 10−4 +++ +++ +++
10−6 10−7 +++ +++ +++

10 30
10−4 10−3 15 15 17
10−6 10−4 11 11 13
10−6 10−7 9 7 9

100 300
10−4 10−3 17 27 39
10−6 10−4 13 13 15
10−6 10−7 3 5 7

Table VII. Example 3: Number of iterations for the D-RR updating strategy and Algorithm P, ”+++”
means did not converge within 100 iterations.

Further research include, e.g., studies of iterative subdomain methods for the Navier–Stokes–
Darcy problem and a detailed investigation for the dual formulation of the Darcy problem,
focusing on relevant situations for geoscientific applications. The numerical results presented
in this paper showed that an appropriate choice of the Robin parameters γf and γp depends on
the coefficients of the problem. Further comprehensive studies of this topic will be necessary
to clarify the form of the dependence.
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