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Conditional expectations 4{@

Givena: [0,T]xR? = R? o : [0,T] x RY — R®™ 3 standard,
m-dimensional Brownian motion B, consider

dX(s) = a(s,X(s))ds + o(s,X(s5))dB(s), 0<s<T

Givenagrid D ={0=sy < --- < sgsz41 =T}, f : RE*D? L R and
x,y € R¢, compute

E[fX(s1),...,X(sk+0)) | X(0) = x, X(T) = y].
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Conditional expectations

Givena: [0,T]xR? = R? o : [0,T] x RY — R®™ 3 standard,
m-dimensional Brownian motion B, consider

dX(s) = a(s,X(s))ds + o(s,X(s))dB(s), 0<s<T

Goal (extended)
Givenagrid D ={0=sy<--- < sgsz+1 =T}, f : RE*D? L R and
A, B c R, compute

E[fX(s1),...,X(sk+0)) | X(0) € A, X(T) € B,

A, B with positive measure or d’-dimensional hyperplanes, 0 < d’ < d.
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EM algorithm 'Cff’g

» Algorithm for maximizing likelihood with missing data

Example: Two-stage hierarchical model:
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EM algorithm

» Algorithm for maximizing likelihood with missing data

Example: Two-stage hierarchical model:

» Random variables Y and U (multi-variate)

> U~ h(-;0), YIU =u~ f(lu;0), 0 € O
» Data: y (instance of Y), but U not observable

Forward-reverse for conditional diffusions - September 11, 2013 - Page 5 (25)



gah

EM algorithm

» Algorithm for maximizing likelihood with missing data
Example: Two-stage hierarchical model:

» Random variables Y and U (multi-variate)

> U~h(;0), YU =u~ f(lu;0),0 € ©

» Data: y (instance of Y), but U not observable

Let l(6;y) = log ff(ylu; O)h(u; 0)du, 6 = arg maxg.gq [(0;y). Given 6.
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EM algorithm

» Algorithm for maximizing likelihood with missing data

Example: Two-stage hierarchical model:

» Random variables Y and U (multi-variate)
» U~ h(-;0), YU = u ~ f(-|lu;0), 0 € ©
» Data: y (instance of Y), but U not observable |
Agorithn |
Let l(6;y) = log ff(ylu; O)h(u; 0)du, 6 = arg maxg.gq [(0;y). Given 6.
(E) O(616n,y) = Eqg, [log (fGIU, OAU;0)) | Y = y]
(M) 6,41 = arg maxyeq Q(610,, y).
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EM algorithm

» Algorithm for maximizing likelihood with missing data

Example: Two-stage hierarchical model:

» Random variables Y and U (multi-variate)
» U~ h(-;0), YU = u ~ f(-|lu;0), 0 € ©
» Data: y (instance of Y), but U not observable |
Agorithn |
Let l(6;y) = log ff(ylu; O)h(u; 0)du, 6 = arg maxg.gq [(0;y). Given 6.
(E) O(616n,y) = Eqg, [log (fGIU, OAU;0)) | Y = y]
(M) 6,41 = arg maxyeq Q(610,, y).

> 1(On+15Y) 2 U(On;y)
» Weak conditions: 8, — 6* with VI(§*;y) = 0

Forward-reverse for conditional diffusions - September 11, 2013 - Page 5 (25) %



Drift estimation with the EM algorithm

» OU-process: dX; = —-0Xds + dW;, s€[0,T]
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Drift estimation with the EM algorithm

» OU-process: dX; = —0Xds + dW,, s¢€[0,T]
» On path space:

dPO T 02 T
L(X;0) = m(X) = exp (—9 fo XsdX; = = fo des)
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Drift estimation with the EM algorithm 'Cff’g

» OU-process: dX; = —-0Xds + dW;, s€[0,T]
» On path space:

dP’ T 2 T )
L.(X;0) = ﬁ(X) = exp (—Qfo XdXg — Efo‘ Xsds)

» Discrete observations: x = (xg, ..., xg) of X := (X(sp), ..., X(sk)),
S0 = 0, SK = T

» Discrete likelihood function in general not available or
complicated
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Drift estimation with the EM algorithm . 'éff’g

» OU-process: dX; = —-0Xds + dW;, s€[0,T]
On path space:

dP’ T 2 T )
L.(X;0) = ﬁ(X) = exp (—Qfo XdXg — Efo‘ Xsds)

Discrete observations: x = (xg, ..., xg) of X := (X(sp), ..., X(sk)),
S0 = 0, SK = T

Discrete likelihood function in general not available or
complicated

EM algorithm with

v

v

v

v

T 92 T
Q(616,, x) = E, [—9 fo XydXs = = | X2ds

K S 02 S
= ) B, [—9 f XsdX, = — f Xids
i=1 Si-1 Si-1

X =]

Xy = Xi-1, Xy, = xi]
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Bridge simulation using a modified drift (Delyon and Hu 2006)

Y(s)—y
-

dy(s) = (a(s, Y(s)) — )ds + o(s,Y(s))dB(s), Y(0)=x

» SDE admits a unique solution Y on [0, T[ with lim,_7 Y(s) =y

» The law of Y on path-space is absolutely continuous w.r.t. the law
of X conditioned on X(T') = y, X(0) = x.

» The Radon-Nikodym derivative is explicitly given (up to a
constant) as an integral of Y(s), o~ !(s, Y(s)) and quadratic
co-variations between them.
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Bridge simulation by time reversal (Bladt and Serensen 2012)

» Dimensiond =1

> X" solution of SDE started at X" = x

> Xiz) solution of SDE started at X(()Z) =y
»ri=inf{0<r<T X" =XxP )

» Z=XD,0<t<1,Z =X, 1<t<Ton{r<T}
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Bridge simulation by time reversal (Bladt and Serensen 2012)

» Dimensiond =1

X;" solution of SDE started at X, = x
X§2> solution of SDE started at X(()Z) =y
r=inf{0<r<T X" =xP )

Z=X"0<t<1,2 =X, 1<t<Ton{r<T)

v

v

v

>

Theorem (Bladt and Sgrensen 2009)

The distribution of Z given {t < T } is equal to the distribution of a
bridge process given that the bridge is hit by an independent
realization of the SDE with initial distribution p(T,y, x)dx.
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Bridge simulation by time reversal (Bladt and Serensen 2012)

» Dimensiond =1

X;" solution of SDE started at X, = x
X,(2> solution of SDE started at X(()Z) =y
r=inf{0<r<T X" =xP )

Z=X"0<t<1,2 =X, 1<t<Ton{r<T)

v

v

v

>

Theorem (Bladt and Sgrensen 2009)

The distribution of Z given {t < T } is equal to the distribution of a
bridge process given that the bridge is hit by an independent
realization of the SDE with initial distribution p(T,y, x)dx.

» Crucial hitting probability of bridge and time-reversed diffusion
hard to estimate
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Bl The forward-reverse method for transition density estimation
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Forward process 4{@

» Notation: X, .(s) solution of SDE started at X; (1) = x, 1 < s
» Generator of the SDE:

1,
Lef(3) = V@), at.x) + 5 > 6U(1.2)8,:0.f (),
i,j=1

where b/ (x) = o(t, x)o(t, x)T

» Transition density p(t, x, T, y)
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Forward process

» Notation: X, .(s) solution of SDE started at X; (1) = x, 1 < s
» Generator of the SDE:

d

L) = (V0. alt, ) + 5 3 60,200,002,

ij=1

where b/ (x) = o(t, x)o(t, x)T

» Transition density p(t, x, T, y)

Forward representation (Feynman Kac formula)

u(t, %) = E[f (Xial(T)] = f Pt x. T ) f )y = 1(f)

ou(t, x) + Lau(t,x) =0, u(T,x)= f(x)
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Reverse process

» Consider: v(s,y) = fg(x)p(t, X, s,y)dx
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Reverse process 4{@

» Consider: v(s,y) = fg(x)p(t, X, s,y)dx

Fokker-Planck equation:

d

dsp(t,x,5,y) = 5 Z By (D5, P, %, 5,00)= > 0y (' (5, 9)p(t, %, 5, )

i=1
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Reverse process Zﬁ@

» Consider: v(s,y) = fg(x)p(t, X, s,y)dx

Cauchy problem for v

d
05,0 = 3 0y (F5 95, )) = 0 (a5, 0Gs.),

i,j=1 i

w(t,y) = g(y)

d
=1
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Reverse process

» Consider: v(s,y) = fg(x)p(t, X, s,y)dx

Cauchy problem forv(s,y) = w(T + ¢ —s,y)

d d
05, + 5 Y 0y (B, s, ) - 2504 @) =0

i,j=1
WT,y) = gQ),

where

b(s,y) =b(T +t—s,y), a(s,y)=aT +t-s,y)
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Reverse process

» Consider: v(s,y) = fg(x)p(t, X, s,y)dx

Cauchy problem for v(s,y) == w(T + 1 —s,y)

O5¥(s,y) + > Z BU(s, )00, 7(s, y) + Z @' (5,)0,¥(s, ) + cOIs, ¥) =

ljl

W(T,y) =80,

where

d
@/(s,y) = Z ByibI(y) =@ (s, y),

d
o(s,y) = Z BB (s, y) = )" Oy (s, y)

ljl i=1
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Reverse process Zﬁ@

» Consider: v(s,y) = fg(x)p(t, X, s,y)dx

Reverse representation (Feynman-Kac formula)

I*(g) = w(T,y) = B [g (Y1 (1)) Y11 ()
dY(s) = a(s, Y(s))ds + a(s, Y(s))dB(s), Y@ =y,
dY(s) = c(s,Y(s)Y(s)ds, MY(@) =1

d
d(s,y) = ) 0BT =T (s.y),
j=1

d d
1 —_. .
c(s.3) = 5 D dyb(s.y) = ) 0,d(5.)
i=1

i.j=1
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Forward-reverse representation %

Theorem (Milstein, Schoenmakers, Spokoiny 2004)

Choose X and (Y, Y) independent, t < t* < T':

E [f (Xt,x(t*)’ Yt*,y(T)) yt*’y(T)] -

= f plt,x, 0, XN f(Y)p(*, Y, T, yydx'dy” = J(f).

v
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Forward-reverse representation

Theorem (Milstein, Schoenmakers, Spokoiny 2004)

Choose X and (Y, Y) independent, t < t* < T':

E [ (Xexlt), Yoo y (D)) Y (T)] =
= f pt, x5, xX) (', y)p(t*,y', T, y)ydx'dy’ =: J(f).

v

» Condition on X, (") and apply the reverse representation

» Integrate with respect to the law of X; (")
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Forward-reverse estimator for p(z, x, T, y) 4{@

» Formally inserting f(x’,y") = do(x’ — ') gives J(f) = p(t,x,T,y)
» Use kernel f(x',y') = e‘dK(@) with bandwidth € > 0

» Define estimator:

N M n (% m
1 m Xt,x(t ) - Yt* y(T)
paMe = > > Y (DK ’
PN.M,e EdMN L L yt ,y( ) ( 6
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Forward-reverse estimator for p(z, x, T, y) ‘ ﬂ@
» Formally inserting f(x’,y") = do(x’ — ') gives J(f) = p(t,x,T,y)

» Use kernel f(x',y") = e“ﬁ((@) with bandwidth € > 0

» Define estlmator

A X;fx(t*) - Y;f,y(T)
DPNMe = ——— dMN Z Z Y (T)K( - )

n=1 m=1

Theorem (Milstein, Schoenmakers, Spokoiny 2004)

Assume that the coefficients of the SDE are C* bounded and satisfy
a uniform ellipticity (or uniform Hérmander) condition.
> Ifd < 4, choose M = N, ey = CN~'/4, then the MSE of py.x.c, is
of order N
» Ford > 4, choose M = N and ey = CN~2/4*+9 then the MSE of
PN.N.ey is of order N=8/4+d),
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A forward-reverse representation for conditional expectations
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Lot

Generalization to multiple time steps

Introduce the re-ordered grid t* < f; < --- < iy = T defined by
i =T+t —t;_;,i=1,...,L. Then

E [ f(Yir y(T), Yir y(Gr1)s .., Yoo y (GO e (T)| =
L
LM fO1.y2, L) l_l P(ti-1,Yi> tis Yir1)dyi.
i=1
< Yt*,y(s) = YO,y(s -t = Yy;T(S - 1),
Y y(8) = Yoy(s — 1) = Yy (s — 1)

N
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Lot

Generalization to multiple time steps

Introduce the re-ordered grid t* < f; < --- < iy = T defined by
i =T+t —t;_;,i=1,...,L. Then

E [ (Ve y(T), YeeyF1)s -, Yo y ()Y (T =
L

fd ) 01,52, ¥0) l_l P(ti-1,Yis ti> Yir1)dYi.
Rex i=1

> Yt*,y(s) = YO,y(s = t*) =4 Yy;T(s = t*),

Y y(8) = Yoy(s — 1) = Yy (s — 1)
> BLf(Yyr(T — ) Yy (T = 1)1 = [ pt*,y', T, ) £ )dy’
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Lot

Generalization to multiple time steps

Introduce the re-ordered grid t* < f; < --- < iy = T defined by
i =T+t —t;_;,i=1,...,L. Then

E[f(Ye y(T), Yo y(Grot)s ..., Yo y ()Y e y(T)] =

L
fRde fO1,y2,.y0) l_l p(ti—1, yis ti, yir1)dyi.
i=1
> Yt*,y(s) = YO,y(s = t*) = Yy;T(s = t*),
Y y(8) = Yoy(s — 1) = Yy (s — 1)
» E[f(Yyr(T =)D Yyg (T —1*)] = fP(f*,y', T,y fO"dy'
» Induction in L. O
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A forward-reverse representation of the conditional expectation . “f@

» ConsideragridO0=sg<---<sgsr =T

» Choose * := sk, rename t; = s;,x, 0<i <L
» Assume p(sg,x,T,y) >0

K:R!SR, [Kudu=1

v

Theorem
Letti =T+ —t1;, Xy = X5 x(2), ¥; = Y y(), Y = Yp,(1), X and
(¥, YY) independent, then

E[g(Xsl""’XSK+L—1)| XT :y] =

—limE[ Xopoo X Ve .
p(sO,X, T,y) 6.],0 g( il 1 11

A )e-dK(@)yT].
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1 The forward-reverse estimator
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Assumptions

Conditions on the diffusion process:
Transition densities p(s, x,t,y) and g(s, x, ¢, y) of X and Y exist and

Iy—XIZ)

i=8

Cy
(t=s)
for multi-indices |a| + |5| < 2 (and sim. for g). Moreover,
p(so, x,T,y) > 0.

aiafp(s, X, 1, y)| < exp (—Cz
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Assumptions : Zﬁ@

Conditions on the diffusion process:
Transition densities p(s, x,t,y) and g(s, x, ¢, y) of X and Y exist and

(t—s) t—s

for multi-indices |a| + |8] < 2 (and sim. for g). Moreover,
p(so, x,T,y) > 0.

)
aiafp(s,x,t,y)|s G eXP(—Czly X|)

Conditions on the kernel:
> [K(wdv =1, [vK(v)dv = 0 (second order)
» K(v) < Cexp (—ozlv|2+ﬁ), C,apB>0,ve R4
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Assumptions : "Z'f&“é

Conditions on the diffusion process:

Transition densities p(s, x,t,y) and g(s, x, ¢, y) of X and Y exist and

C ly - x|2)

(t=s)
for multi-indices |a| + |5| < 2 (and sim. for g). Moreover,
p(so, x,T,y) > 0.

B p(s,x,1,y)| < t
-5

exp (—Cz

Conditions on the kernel:
> [Kw)dv =1, [vK(v)dv = 0 (second order)
» K(v) < Cexp (—ozlv|2+ﬁ), C,apB>0,ve R4
Conditions on the function:

» g and its first and second derivatives are polynomially bounded
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The forward-reverse estimator for the conditional expectation

» Stochastic representation:

H = E[g(Xsla--"XlL—l)| XT :y] =

. _ Yr — X
IEIE)IE[g(XSI, s X Y L Y)E dK(Tt)yT]/p(so,x, T,y)
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The forward-reverse estimator for the conditional expectation ‘Zﬁ";
» Stochastic representation:
H:=E|gXy..... Xy )| Xr =] =
. —d YT - Xt*
lellrg E[g(Xsl, e X Y L Y))ECK (T)yr]/p(so, x,T,y)

» Estimator: for (X") i.i.d., (Y",Y™)i.i.d.,

N M 7 =X
~ NoSM e(xn. X;IK,Yf"_,...,Yg’)K( )ym
Hemn = X

Yr-X
N M *
n=1 Zm:l K( : ) T

1 m_xn* ,
et 2 2l k(2 oo
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The forward-reverse estimator for the conditional expectation : “{@

» Estimator: for (X") i.i.d., (Y",Y™)i.i.d.,

N M Y X
— n=1 mlg(X?I, X?K’an 9’Y;]”)K( )ym
Hemn = P = X
n=1 mle( t )ym

n

1 d M Y7r:l_xt* My
NME_ Zn 12m=1K € ‘yT>p/2

Assume p(so, x,T,y) > p > 0, choose M = N.
— 2
~ Ford <4, setey = CN-'/4 then E [(H ~ Hvney) ] — O(NY).

» Ford > 4, setey = CN~2/4+d) then
_ 2
E [(H — HN,N,EN) ] = O(N-8/@+d)y,
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Implementation

» Assume K has compact support in B,(0)
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Implementation Zﬁ&g

» Assume K has compact support in B,(0)

1. Simulate N indep. trajectories (X”)N | Started alth0 = x and
(Y"N_, started at Y, =y on D N [so,7*] and D N [+*, T}, resp.

2. Forfixedm € {1,..., N}, find the sub-sample
{XsOx(t )i k=1, 0} =X () s n= 1,...,N}mB,E(Y,’1’,y)

3. Evaluate

I " ym Xk
ZZ:lezlg(ng XSIIE,YZ” s ..,Yg’)K[ )ym

Hepypy <

Y EE
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Complexity zﬁ@

» Assume that X, «(s), (Y,*,y(t), y,*,y(T)) can be simulated exactly
at constant cost.
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Complexity . “f@

» Assume that X, «(s), (Y,*,y(t),yt*,y(T)) can be simulated exactly
at constant cost.

» Cost of simulation step: O(N)

» Cost of “box-ordering” step: O(N log(N)) (up to comparisons of
integers)

» Cost of evaluation step: O(Nzed)

Complexity estimate
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Complexity . “f@

v

Assume that X, «(s), (Y,*,y(t), yt*,y(r)) can be simulated exactly
at constant cost.

v

Cost of simulation step: O(N)

v

Cost of “box-ordering” step: O(N log(N)) (up to comparisons of
integers)

v

Cost of evaluation step: O (Nzed)

Complexity estimate

> Case d < 4: Choose € = (N/log N)"/¢, achieve MSE O(N~!) at
cost O(N log N)

» Case d > 4: Choose € = N2/4+d achieve MSE O(N~8/4+d)y at
cost O(N log N)
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Outline

H Numerical examples
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Conditional expectations of the realized variance ‘Zﬁ";

» Heston model:
dSt = /JStdt + \/V_tS[dB}a

dv, = (av, + B)dt + &Py (de} +4/1- pdetZ)

N | omx _[x1vx2 0
a(x)_(axwrﬁ)’ (T(x)_(fp\/x_z fx/l—pzx/x_z)
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Conditional expectations of the realized variance 4{4’3

» Heston model:
dSt = /JStdt + \/V_tS[dB;a

dv, = (av, + B)dt + &Py (de} +4/1- pZdBf)

N [ ux _[x1vx2 0
a(x)_(axz+ﬁ)’ (T(X)_(fp\/x_z SVI—PZ\/X_Z)

(2x2 + p& — Wx

» Reverse drift: a(x) = ((p§ 0+

),c(x):xz+p§—,u—a.
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Conditional expectations of the realized variance Zﬁ@

v

Heston model:
dSt = /JStdt + \/V_tS[dB;a

dv, = (av, + B)dt + &Py (de} +4/1- pZdBf)

[ ux 3 X1 X2 0
“(x)’(axﬁﬁ)’ ‘T(x)‘(fpw_z smw—z]

(2x2 + p& — Wx1
(Pé —a)xy + & -
30
Realized variance: RV := > (log(S,,) — log(S )’
i=1
Objective: E[RV |S7 =], T =1/12

v

v

Reverse drift: a(x) = ( ), c(x)=xp+pE—u-—a.

v

v
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Numerical experiment

1e+00
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le-02

Relative MSE

le-04

1 I I I
5 50 500 5000

N
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