



# Simulation of conditional diffusions via forward-reverse stochastic representations

**Christian Bayer and John Schoenmakers** 

Linköping, September 11, 2013



- 1 Introduction
- 2 The forward-reverse method for transition density estimation
- 3 A forward-reverse representation for conditional expectations
- 4 The forward-reverse estimator
- 5 Numerical examples





- 1 Introduction
- 2 The forward-reverse method for transition density estimation
- 3 A forward-reverse representation for conditional expectations
- 4 The forward-reverse estimator
- 5 Numerical examples



### Conditional expectations



Given  $a:[0,T]\times\mathbb{R}^d\to\mathbb{R}^d$ ,  $\sigma:[0,T]\times\mathbb{R}^d\to\mathbb{R}^{d\times m}$ , a standard, m-dimensional Brownian motion B, consider

$$dX(s) = a(s,X(s))ds + \sigma(s,X(s))dB(s), \quad 0 \le s \le T$$

### Goal

Given a grid  $\mathcal{D} = \{0 = s_0 < \dots < s_{K+L+1} = T\}, f : \mathbb{R}^{(K+L)d} \to \mathbb{R} \text{ and } x, y \in \mathbb{R}^d, \text{ compute}$ 

$$\mathbb{E}\left[f\left(X(s_1),\ldots,X(s_{K+L})\right)\mid X(0)=x,\,X(T)=y\right].$$



### Conditional expectations



Given  $a:[0,T]\times\mathbb{R}^d\to\mathbb{R}^d$ ,  $\sigma:[0,T]\times\mathbb{R}^d\to\mathbb{R}^{d\times m}$ , a standard, m-dimensional Brownian motion B, consider

$$dX(s) = a(s, X(s))ds + \sigma(s, X(s))dB(s), \quad 0 \le s \le T$$

# Goal (extended)

Given a grid  $\mathcal{D} = \{0 = s_0 < \dots < s_{K+L+1} = T\}, f : \mathbb{R}^{(K+L)d} \to \mathbb{R} \text{ and } A, B \subset \mathbb{R}^d, \text{ compute}$ 

$$\mathbb{E}\left[f\left(X(s_1),\ldots,X(s_{K+L})\right)\mid X(0)\in A,\,X(T)\in B\right],$$

A, B with positive measure or d'-dimensional hyperplanes,  $0 \le d' \le d$ .





# **Example: Two-stage hierarchical model:**

- ► Random variables *Y* and *U* (multi-variate)
- $U \sim h(\cdot; \theta), Y|U = u \sim f(\cdot|u; \theta), \theta \in \Theta$
- ▶ Data: y (instance of Y), but U not observable

# Algorithm

- (E)  $Q(\theta|\theta_n, y) := E_{\theta_n} [\log (f(y|U, \theta)h(U; \theta)) \mid Y = y]$
- (M)  $\theta_{n+1} := \arg \max_{\theta \in \Theta} Q(\theta | \theta_n, y)$ .
  - $l(\theta_{n+1}; y) \ge l(\theta_n; y)$
  - ▶ Weak conditions:  $\theta_n \to \theta^*$  with  $\nabla l(\theta^*; y) = 0$





# **Example:** Two-stage hierarchical model:

- ► Random variables *Y* and *U* (multi-variate)
- $U \sim h(\cdot; \theta), Y|U = u \sim f(\cdot|u; \theta), \theta \in \Theta$
- Data: y (instance of Y), but U not observable

# Algorithm

- (E)  $Q(\theta|\theta_n, y) := E_{\theta_n} \left[ \log \left( f(y|U, \theta) h(U; \theta) \right) \mid Y = y \right]$
- (M)  $\theta_{n+1} := \arg \max_{\theta \in \Theta} Q(\theta | \theta_n, y)$ .
  - $l(\theta_{n+1}; y) \ge l(\theta_n; y)$
  - ▶ Weak conditions:  $\theta_n \to \theta^*$  with  $\nabla l(\theta^*; y) = 0$





# **Example: Two-stage hierarchical model:**

- ▶ Random variables *Y* and *U* (multi-variate)
- ►  $U \sim h(\cdot; \theta)$ ,  $Y|U = u \sim f(\cdot|u; \theta)$ ,  $\theta \in \Theta$
- ▶ Data: y (instance of Y), but U not observable

# **Algorithm**

- **(E)**  $Q(\theta|\theta_n, y) := E_{\theta_n} \left[ \log \left( f(y|U, \theta) h(U; \theta) \right) \mid Y = y \right]$
- (M)  $\theta_{n+1} := \arg \max_{\theta \in \Theta} Q(\theta | \theta_n, y)$ .
  - $l(\theta_{n+1}; y) \ge l(\theta_n; y)$
  - ▶ Weak conditions:  $\theta_n \to \theta^*$  with  $\nabla l(\theta^*; y) = 0$





# **Example: Two-stage hierarchical model:**

- Random variables Y and U (multi-variate)
- $U \sim h(\cdot; \theta), Y|U = u \sim f(\cdot|u; \theta), \theta \in \Theta$
- Data: y (instance of Y), but U not observable

# **Algorithm**

- (E)  $Q(\theta|\theta_n, y) := E_{\theta_n} \left[ \log \left( f(y|U, \theta) h(U; \theta) \right) \mid Y = y \right]$
- (M)  $\theta_{n+1} := \arg \max_{\theta \in \Theta} Q(\theta | \theta_n, y).$ 
  - $l(\theta_{n+1}; y) \ge l(\theta_n; y)$
  - ▶ Weak conditions:  $\theta_n \to \theta^*$  with  $\nabla l(\theta^*; y) = 0$





# **Example: Two-stage hierarchical model:**

- Random variables Y and U (multi-variate)
- $U \sim h(\cdot; \theta), Y|U = u \sim f(\cdot|u; \theta), \theta \in \Theta$
- Data: y (instance of Y), but U not observable

# **Algorithm**

- (E)  $Q(\theta|\theta_n, y) := E_{\theta_n} \left[ \log \left( f(y|U, \theta) h(U; \theta) \right) \mid Y = y \right]$
- (M)  $\theta_{n+1} := \arg \max_{\theta \in \Theta} Q(\theta | \theta_n, y).$ 
  - $l(\theta_{n+1}; y) \ge l(\theta_n; y)$
  - ▶ Weak conditions:  $\theta_n \to \theta^*$  with  $\nabla l(\theta^*; y) = 0$





- ▶ OU-process:  $dX_s = -\theta X_s ds + dW_s$ ,  $s \in [0, T]$
- ► On path space:

$$L_c(X;\theta) = \frac{dP^{\theta}}{dP^0}(X) = \exp\left(-\theta \int_0^T X_s dX_s - \frac{\theta^2}{2} \int_0^T X_s^2 ds\right)$$

- ▶ Discrete observations:  $\mathbf{x} = (x_0, \dots, x_K)$  of  $\mathbf{X} := (X(s_0), \dots, X(s_K)),$   $s_0 = 0, s_K = T$
- Discrete likelihood function in general not available or complicated
- ► EM algorithm with

$$Q(\theta | \theta_n, \mathbf{x}) = \mathbb{E}_{\theta_n} \left[ -\theta \int_0^T X_s dX_s - \frac{\theta^2}{2} \int_0^T X_s^2 ds \, \middle| \, \mathbf{X} = \mathbf{x} \right]$$

$$= \sum_{i=1}^K \mathbb{E}_{\theta_n} \left[ -\theta \int_{s_{i-1}}^{s_i} X_s dX_s - \frac{\theta^2}{2} \int_{s_{i-1}}^{s_i} X_s^2 ds \, \middle| \, X_{s_{i-1}} = x_{i-1}, X_{s_i} = x_i \right]$$





- ▶ OU-process:  $dX_s = -\theta X_s ds + dW_s$ ,  $s \in [0, T]$
- On path space:

$$L_c(X;\theta) = \frac{dP^{\theta}}{dP^0}(X) = \exp\left(-\theta \int_0^T X_s dX_s - \frac{\theta^2}{2} \int_0^T X_s^2 ds\right)$$

- ▶ Discrete observations:  $\mathbf{x} = (x_0, \dots, x_K)$  of  $\mathbf{X} := (X(s_0), \dots, X(s_K)),$   $s_0 = 0, s_K = T$
- Discrete likelihood function in general not available or complicated
- ► EM algorithm with

$$Q(\theta | \theta_n, \mathbf{x}) = \mathbb{E}_{\theta_n} \left[ -\theta \int_0^T X_s dX_s - \frac{\theta^2}{2} \int_0^T X_s^2 ds \, \middle| \, \mathbf{X} = \mathbf{x} \right]$$

$$= \sum_{i=1}^K \mathbb{E}_{\theta_n} \left[ -\theta \int_{s_{i-1}}^{s_i} X_s dX_s - \frac{\theta^2}{2} \int_{s_{i-1}}^{s_i} X_s^2 ds \, \middle| \, X_{s_{i-1}} = x_{i-1}, X_{s_i} = x_i \right]$$





- ▶ OU-process:  $dX_s = -\theta X_s ds + dW_s$ ,  $s \in [0, T]$
- On path space:

$$L_c(X;\theta) = \frac{dP^{\theta}}{dP^0}(X) = \exp\left(-\theta \int_0^T X_s dX_s - \frac{\theta^2}{2} \int_0^T X_s^2 ds\right)$$

- ▶ Discrete observations:  $\mathbf{x} = (x_0, \dots, x_K)$  of  $\mathbf{X} := (X(s_0), \dots, X(s_K))$ ,  $s_0 = 0$ ,  $s_K = T$
- Discrete likelihood function in general not available or complicated
- ► EM algorithm with

$$Q(\theta | \theta_n, \mathbf{x}) = \mathbb{E}_{\theta_n} \left[ -\theta \int_0^T X_s dX_s - \frac{\theta^2}{2} \int_0^T X_s^2 ds \, \middle| \, \mathbf{X} = \mathbf{x} \right]$$

$$= \sum_{i=1}^K \mathbb{E}_{\theta_n} \left[ -\theta \int_{s_{i-1}}^{s_i} X_s dX_s - \frac{\theta^2}{2} \int_{s_{i-1}}^{s_i} X_s^2 ds \, \middle| \, X_{s_{i-1}} = x_{i-1}, X_{s_i} = x_i \right]$$





- ▶ OU-process:  $dX_s = -\theta X_s ds + dW_s$ ,  $s \in [0, T]$
- On path space:

$$L_c(X;\theta) = \frac{dP^{\theta}}{dP^0}(X) = \exp\left(-\theta \int_0^T X_s dX_s - \frac{\theta^2}{2} \int_0^T X_s^2 ds\right)$$

- ▶ Discrete observations:  $\mathbf{x} = (x_0, \dots, x_K)$  of  $\mathbf{X} := (X(s_0), \dots, X(s_K))$ ,  $s_0 = 0$ ,  $s_K = T$
- Discrete likelihood function in general not available or complicated
- EM algorithm with

$$Q(\theta | \theta_n, \mathbf{x}) = \mathbb{E}_{\theta_n} \left[ -\theta \int_0^T X_s dX_s - \frac{\theta^2}{2} \int_0^T X_s^2 ds \, \middle| \, \mathbf{X} = \mathbf{x} \right]$$

$$= \sum_{i=1}^K \mathbb{E}_{\theta_n} \left[ -\theta \int_{s_{i-1}}^{s_i} X_s dX_s - \frac{\theta^2}{2} \int_{s_{i-1}}^{s_i} X_s^2 ds \, \middle| \, X_{s_{i-1}} = x_{i-1}, X_{s_i} = x_i \right]$$





$$dY(s) = \left(a(s, Y(s)) - \frac{Y(s) - y}{T - s}\right)ds + \sigma(s, Y(s))dB(s), \quad Y(0) = x$$

- SDE admits a unique solution Y on [0, T] with  $\lim_{s \to T} Y(s) = y$
- ► The law of *Y* on path-space is absolutely continuous w.r.t. the law of *X* conditioned on X(T) = y, X(0) = x.
- ▶ The Radon-Nikodym derivative is explicitly given (up to a constant) as an integral of Y(s),  $\sigma^{-1}(s, Y(s))$  and quadratic co-variations between them.



### Bridge simulation by time reversal (Bladt and Sørensen 2012)



- ▶ Dimension d = 1
- ►  $X_t^{(1)}$  solution of SDE started at  $X_0^{(1)} = x$
- ►  $X_t^{(2)}$  solution of SDE started at  $X_0^{(2)} = y$
- $\tau := \inf \{ 0 \le t \le T \mid X_t^{(1)} = X_{T-t}^{(2)} \}$
- $ightharpoonup Z_t := X_t^{(1)}, \ 0 \le t \le \tau, \ Z_t := X_{T-t}^{(2)}, \ \tau \le t \le T \ \text{on} \ \{ \tau \le T \}.$

### Theorem (Bladt and Sørensen 2009

The distribution of Z given  $\{\tau \leq T\}$  is equal to the distribution of a bridge process given that the bridge is hit by an independent realization of the SDE with initial distribution p(T, y, x)dx.

 Crucial hitting probability of bridge and time-reversed diffusion hard to estimate



### Bridge simulation by time reversal (Bladt and Sørensen 2012)



- ▶ Dimension d = 1
- ►  $X_t^{(1)}$  solution of SDE started at  $X_0^{(1)} = x$
- ►  $X_t^{(2)}$  solution of SDE started at  $X_0^{(2)} = y$
- $\tau := \inf \{ 0 \le t \le T \mid X_t^{(1)} = X_{T-t}^{(2)} \}$
- $ightharpoonup Z_t := X_t^{(1)}, \ 0 \le t \le \tau, \ Z_t := X_{T-t}^{(2)}, \ \tau \le t \le T \ \text{on} \ \{ \tau \le T \}.$

### Theorem (Bladt and Sørensen 2009)

The distribution of Z given  $\{\tau \leq T\}$  is equal to the distribution of a bridge process given that the bridge is hit by an independent realization of the SDE with initial distribution p(T, y, x)dx.

 Crucial hitting probability of bridge and time-reversed diffusion hard to estimate



### Bridge simulation by time reversal (Bladt and Sørensen 2012)



- ▶ Dimension d = 1
- ►  $X_t^{(1)}$  solution of SDE started at  $X_0^{(1)} = x$
- ►  $X_t^{(2)}$  solution of SDE started at  $X_0^{(2)} = y$
- $\tau := \inf \{ 0 \le t \le T \mid X_t^{(1)} = X_{T-t}^{(2)} \}$
- $ightharpoonup Z_t := X_t^{(1)}, \ 0 \le t \le \tau, \ Z_t := X_{T-t}^{(2)}, \ \tau \le t \le T \ \text{on} \ \{ \tau \le T \}.$

### Theorem (Bladt and Sørensen 2009)

The distribution of Z given  $\{\tau \leq T\}$  is equal to the distribution of a bridge process given that the bridge is hit by an independent realization of the SDE with initial distribution p(T, y, x)dx.

 Crucial hitting probability of bridge and time-reversed diffusion hard to estimate





- 1 Introduction
- 2 The forward-reverse method for transition density estimation
- 3 A forward-reverse representation for conditional expectations
- 4 The forward-reverse estimator
- 5 Numerical examples



### **Forward process**



- Notation:  $X_{t,x}(s)$  solution of SDE started at  $X_{t,x}(t) = x$ , t < s
- Generator of the SDE:

$$L_t f(x) = \langle \nabla f(x), a(t, x) \rangle + \frac{1}{2} \sum_{i,j=1}^d b^{ij}(t, x) \partial_{x^i} \partial_{x^j} f(x),$$

where 
$$b^{ij}(x) = \sigma(t, x)\sigma(t, x)^T$$

► Transition density p(t, x, T, y)

# Forward representation (Feynman Kac formula)

$$u(t,x) = \mathbb{E}\left[f\left(X_{t,x}(T)\right)\right] = \int p(t,x,T,y)f(y)dy =: I(f)$$
$$\partial_t u(t,x) + L_t u(t,x) = 0, \quad u(T,x) = f(x)$$



### **Forward process**



- Notation:  $X_{t,x}(s)$  solution of SDE started at  $X_{t,x}(t) = x$ , t < s
- Generator of the SDE:

$$L_t f(x) = \langle \nabla f(x), a(t, x) \rangle + \frac{1}{2} \sum_{i,j=1}^d b^{ij}(t, x) \partial_{x^i} \partial_{x^j} f(x),$$

where 
$$b^{ij}(x) = \sigma(t, x)\sigma(t, x)^T$$

► Transition density p(t, x, T, y)

# Forward representation (Feynman Kac formula)

$$u(t,x) = \mathbb{E}\left[f\left(X_{t,x}(T)\right)\right] = \int p(t,x,T,y)f(y)dy =: I(f)$$
$$\partial_t u(t,x) + L_t u(t,x) = 0, \quad u(T,x) = f(x)$$



### **Reverse process**



• Consider:  $v(s, y) := \int g(x)p(t, x, s, y)dx$ 





# Fokker-Planck equation:

$$\partial_s p(t, x, s, y) = \frac{1}{2} \sum_{i,j=1}^d \partial_{y^i} \partial_{y^j} \left( b^{ij}(s, y) p(t, x, s, y) \right) - \sum_{i=1}^d \partial_{y^i} \left( a^i(s, y) p(t, x, s, y) \right)$$



# Cauchy problem for v

$$\partial_s v(s, y) = \frac{1}{2} \sum_{i,j=1}^d \partial_{y^i} \partial_{y^j} \left( b^{ij}(s, y) v(s, y) \right) - \sum_{i=1}^d \partial_{y^i} \left( a^i(s, y) v(s, y) \right),$$
$$v(t, y) = g(y)$$



# Cauchy problem for $\widetilde{v}(s, y) := v(T + t - s, y)$

$$\begin{split} \partial_s \widetilde{v}(s,y) + \frac{1}{2} \sum_{i,j=1}^d \partial_{y^i} \partial_{y^j} \left( \widetilde{b}^{ij}(s,y) \widetilde{v}(s,y) \right) - \sum_{i=1}^d \partial_{y^i} \left( \widetilde{a}^i(s,y) \widetilde{v}(s,y) \right) &= 0, \\ \widetilde{v}(T,y) &= g(y), \end{split}$$

where

$$\widetilde{b}(s, y) := b(T + t - s, y), \quad \widetilde{a}(s, y) := a(T + t - s, y)$$





# Cauchy problem for $\widetilde{v}(s, y) := v(T + t - s, y)$

$$\partial_{s}\widetilde{v}(s,y) + \frac{1}{2} \sum_{i,j=1}^{d} \widetilde{b}^{ij}(s,y) \partial_{y^{i}} \partial_{y^{j}} \widetilde{v}(s,y) + \sum_{i=1}^{d} \alpha^{i}(s,y) \partial_{y^{i}} \widetilde{v}(s,y) + c(y) \widetilde{v}(s,y) = 0,$$

$$\widetilde{v}(T,y) = g(y),$$

where

$$\alpha^{i}(s, y) := \sum_{j=1}^{d} \partial_{y^{j}} \widetilde{b}^{ij}(y) - \widetilde{a}^{i}(s, y),$$

$$c(s, y) = \frac{1}{2} \sum_{i=1}^{d} \partial_{y^{i}} \partial_{y^{j}} \widetilde{b}^{ij}(s, y) - \sum_{i=1}^{d} \partial_{y^{i}} \widetilde{a}^{i}(s, y)$$





# Reverse representation (Feynman-Kac formula)

$$I^{*}(g) := v(T, y) = \mathbb{E}\left[g\left(Y_{t, y}(T)\right)\mathcal{Y}_{t, y, 1}(T)\right]$$
$$dY(s) = \alpha(s, Y(s))ds + \widetilde{\sigma}(s, Y(s))dB(s), \quad Y(t) = y,$$
$$d\mathcal{Y}(s) = c(s, Y(s))\mathcal{Y}(s)ds, \quad \mathcal{Y}(t) = 1$$

$$\alpha^{i}(s, y) := \sum_{j=1}^{d} \partial_{y^{j}} \widetilde{b}^{ij}(y) - \widetilde{a}^{i}(s, y),$$

$$c(s, y) = \frac{1}{2} \sum_{i,j=1}^{d} \partial_{y^{i}} \partial_{y^{j}} \widetilde{b}^{ij}(s, y) - \sum_{i=1}^{d} \partial_{y^{i}} \widetilde{a}^{i}(s, y)$$





# Theorem (Milstein, Schoenmakers, Spokoiny 2004)

Choose X and  $(Y, \mathcal{Y})$  independent,  $t < t^* < T$ :

$$\mathbb{E}\left[f\left(X_{t,x}(t^*), Y_{t^*,y}(T)\right) \mathcal{Y}_{t^*,y}(T)\right] = \int p(t, x, t^*, x') f(x', y') p(t^*, y', T, y) dx' dy' =: J(f).$$

### Proof

▶ Condition on  $X_{t,x}(t^*)$  and apply the reverse representation

▶ Integrate with respect to the law of  $X_{t,x}(t^*)$ 





### Theorem (Milstein, Schoenmakers, Spokoiny 2004)

Choose X and  $(Y, \mathcal{Y})$  independent,  $t < t^* < T$ :

$$\mathbb{E}\left[f\left(X_{t,x}(t^*), Y_{t^*,y}(T)\right) \mathcal{Y}_{t^*,y}(T)\right] = \\ = \int p(t, x, t^*, x') f(x', y') p(t^*, y', T, y) dx' dy' =: J(f).$$

- ▶ Condition on  $X_{t,x}(t^*)$  and apply the reverse representation
- Integrate with respect to the law of  $X_{t,x}(t^*)$







- ► Formally inserting  $f(x', y') = \delta_0(x' y')$  gives J(f) = p(t, x, T, y)
- ▶ Use kernel  $f(x', y') = \epsilon^{-d} K\left(\frac{x'-y'}{\epsilon}\right)$  with bandwidth  $\epsilon > 0$
- Define estimator:

$$\hat{p}_{N,M,\epsilon} \coloneqq \frac{1}{\epsilon^d MN} \sum_{n=1}^N \sum_{m=1}^M \mathcal{Y}^m_{t^*,y}(T) K\left(\frac{X^n_{t,x}(t^*) - Y^m_{t^*,y}(T)}{\epsilon}\right)$$

# Theorem (Milstein, Schoenmakers, Spokolny 2004)

Assume that the coefficients of the SDE are  $C^{\infty}$  bounded and satisfy a uniform ellipticity (or uniform Hörmander) condition.

- ▶ If  $d \le 4$ , choose M = N,  $\epsilon_N = CN^{-1/4}$ , then the MSE of  $\hat{p}_{N,N,\epsilon_N}$  is of order  $N^{-1}$ .
- ▶ For d > 4, choose M = N and  $\epsilon_N = CN^{-2/(4+d)}$ , then the MSE of  $\hat{p}_{NN,\epsilon_N}$  is of order  $N^{-8/(4+d)}$ .





- ► Formally inserting  $f(x', y') = \delta_0(x' y')$  gives J(f) = p(t, x, T, y)
- Use kernel  $f(x',y')=\epsilon^{-d}K\Big(\frac{x'-y'}{\epsilon}\Big)$  with bandwidth  $\epsilon>0$
- Define estimator:

$$\hat{p}_{N,M,\epsilon} := \frac{1}{\epsilon^d MN} \sum_{n=1}^N \sum_{m=1}^M \mathcal{Y}_{t^*,y}^m(T) K \left( \frac{X_{t,x}^n(t^*) - Y_{t^*,y}^m(T)}{\epsilon} \right)$$

# Theorem (Milstein, Schoenmakers, Spokoiny 2004)

Assume that the coefficients of the SDE are  $C^{\infty}$  bounded and satisfy a uniform ellipticity (or uniform Hörmander) condition.

- ▶ If  $d \le 4$ , choose M = N,  $\epsilon_N = CN^{-1/4}$ , then the MSE of  $\hat{p}_{N,N,\epsilon_N}$  is of order  $N^{-1}$ .
- ► For d > 4, choose M = N and  $\epsilon_N = CN^{-2/(4+d)}$ , then the MSE of  $\hat{p}_{N,N,\epsilon_N}$  is of order  $N^{-8/(4+d)}$ .





- 1 Introduction
- 2 The forward-reverse method for transition density estimation
- 3 A forward-reverse representation for conditional expectations
- 4 The forward-reverse estimator
- 5 Numerical examples





### **Theorem**

Introduce the re-ordered grid  $t^* < \hat{t}_1 < \cdots < \hat{t}_L = T$  defined by  $\hat{t}_i := T + t^* - t_{L-i}, i = 1, \dots, L$ . Then

$$\mathbb{E}\left[f(Y_{t^*,y}(T), Y_{t^*,y}(\hat{t}_{L-1}), \dots, Y_{t^*,y}(\hat{t}_1))\mathcal{Y}_{t^*,y}(T)\right] = \int_{\mathbb{R}^{d \times L}} f(y_1, y_2, ..., y_L) \prod_{i=1}^{L} p(t_{i-1}, y_i, t_i, y_{i+1}) dy_i.$$

- ►  $Y_{t^*,y}(s) = Y_{0,y}(s t^*) =: Y_{y;T}(s t^*),$  $\mathcal{Y}_{t^*,y}(s) = \mathcal{Y}_{0,y}(s - t^*) =: \mathcal{Y}_{y}(s - t^*)$
- $\mathbb{E}[f(Y_{y;T}(T-t^*))\mathcal{Y}_{y;T}(T-t^*)] = \int p(t^*, y', T, y)f(y')dy'$
- ► Induction in L







### **Theorem**

Introduce the re-ordered grid  $t^* < \hat{t}_1 < \cdots < \hat{t}_L = T$  defined by  $\hat{t}_i := T + t^* - t_{L-i}, i = 1, \dots, L$ . Then

$$\mathbb{E}\left[f(Y_{t^*,y}(T), Y_{t^*,y}(\hat{t}_{L-1}), \dots, Y_{t^*,y}(\hat{t}_1))\mathcal{Y}_{t^*,y}(T)\right] = \int_{\mathbb{R}^{d \times L}} f(y_1, y_2, ..., y_L) \prod_{i=1}^{L} p(t_{i-1}, y_i, t_i, y_{i+1}) dy_i.$$

- $Y_{t^*,y}(s) = Y_{0,y}(s-t^*) =: Y_{y;T}(s-t^*),$   $\mathcal{Y}_{t^*,y}(s) = \mathcal{Y}_{0,y}(s-t^*) =: \mathcal{Y}_{y}(s-t^*)$
- $\mathbb{E}[f(Y_{y;T}(T-t^*))\mathcal{Y}_{y;T}(T-t^*)] = \int p(t^*, y', T, y)f(y')dy'$
- ► Induction in L







### **Theorem**

Introduce the re-ordered grid  $t^* < \hat{t}_1 < \cdots < \hat{t}_L = T$  defined by  $\hat{t}_i := T + t^* - t_{L-i}, i = 1, \dots, L$ . Then

$$\mathbb{E}\left[f(Y_{t^*,y}(T), Y_{t^*,y}(\hat{t}_{L-1}), \dots, Y_{t^*,y}(\hat{t}_1))\mathcal{Y}_{t^*,y}(T)\right] = \int_{\mathbb{R}^{d \times L}} f(y_1, y_2, ..., y_L) \prod_{i=1}^{L} p(t_{i-1}, y_i, t_i, y_{i+1}) dy_i.$$

- $Y_{t^*,y}(s) = Y_{0,y}(s-t^*) =: Y_{y;T}(s-t^*),$   $\mathcal{Y}_{t^*,y}(s) = \mathcal{Y}_{0,y}(s-t^*) =: \mathcal{Y}_{y}(s-t^*)$
- $\mathbb{E}[f(Y_{y;T}(T-t^*))\mathcal{Y}_{y;T}(T-t^*)] = \int p(t^*, y', T, y)f(y')dy'$
- ▶ Induction in L.



### A forward-reverse representation of the conditional expectation



- ► Consider a grid  $0 = s_0 < \cdots < s_{K+L} = T$
- ▶ Choose  $t^* := s_K$ , rename  $t_i := s_{i+K}$ ,  $0 \le i \le L$
- Assume  $p(s_0, x, T, y) > 0$
- $K: \mathbb{R}^d \to \mathbb{R}, \ \int K(u) du = 1$

### **Theorem**

Let  $\hat{t}_i := T + t^* - t_{L-i}$ ,  $X_t = X_{s_0,x}(t)$ ,  $Y_t = Y_{t^*,y}(t)$ ,  $\mathcal{Y}_t = \mathcal{Y}_{t^*,y}(t)$ , X and  $(Y,\mathcal{Y})$  independent, then

$$\mathbb{E}\left[g(X_{s_1},\ldots,X_{s_{K+L-1}}) \mid X_T = y\right] = \frac{1}{p(s_0,x,T,y)} \lim_{\epsilon \downarrow 0} \mathbb{E}\left[g(X_{s_1},\ldots,X_{t^*},Y_{\hat{t}_{L-1}},\ldots,Y_{\hat{t}_1})\epsilon^{-d}K\left(\frac{Y_T - X_{t^*}}{\epsilon}\right)\mathcal{Y}_T\right].$$





- 1 Introduction
- 2 The forward-reverse method for transition density estimation
- 3 A forward-reverse representation for conditional expectations
- 4 The forward-reverse estimator
- 5 Numerical examples





# Conditions on the diffusion process:

Transition densities p(s, x, t, y) and q(s, x, t, y) of X and Y exist and

$$\left|\partial_x^{\alpha}\partial_y^{\beta}p(s,x,t,y)\right| \le \frac{C_1}{(t-s)^{\nu}} \exp\left(-C_2 \frac{|y-x|^2}{t-s}\right)$$

for multi-indices  $|\alpha| + |\beta| \le 2$  (and sim. for q). Moreover,  $p(s_0, x, T, y) > 0$ .

#### Conditions on the kernel

- $\blacktriangleright \mid K(v)dv = 1, \mid vK(v)dv = 0$  (second order)
- $K(v) \leq C \exp(-\alpha |v|^{2+\beta}), C, \alpha, \beta \geq 0, v \in \mathbb{R}^d$

#### Conditions on the function:

g and its first and second derivatives are polynomially bounded





# Conditions on the diffusion process:

Transition densities p(s, x, t, y) and q(s, x, t, y) of X and Y exist and

$$\left|\partial_x^{\alpha}\partial_y^{\beta}p(s,x,t,y)\right| \le \frac{C_1}{(t-s)^{\nu}}\exp\left(-C_2\frac{|y-x|^2}{t-s}\right)$$

for multi-indices  $|\alpha| + |\beta| \le 2$  (and sim. for q). Moreover,  $p(s_0, x, T, y) > 0$ .

# Conditions on the kernel:

- ►  $\int K(v)dv = 1$ ,  $\int vK(v)dv = 0$  (second order)
- $K(v) \le C \exp(-\alpha |v|^{2+\beta}), C, \alpha, \beta \ge 0, v \in \mathbb{R}^d$

Conditions on the function:

g and its first and second derivatives are polynomially bounded





# Conditions on the diffusion process:

Transition densities p(s, x, t, y) and q(s, x, t, y) of X and Y exist and

$$\left|\partial_x^{\alpha}\partial_y^{\beta}p(s,x,t,y)\right| \le \frac{C_1}{(t-s)^{\nu}}\exp\left(-C_2\frac{|y-x|^2}{t-s}\right)$$

for multi-indices  $|\alpha| + |\beta| \le 2$  (and sim. for q). Moreover,  $p(s_0, x, T, y) > 0$ .

## Conditions on the kernel:

- ►  $\int K(v)dv = 1$ ,  $\int vK(v)dv = 0$  (second order)
- $K(v) \le C \exp\left(-\alpha |v|^{2+\beta}\right), C, \alpha, \beta \ge 0, v \in \mathbb{R}^d$

#### Conditions on the function:

g and its first and second derivatives are polynomially bounded





Stochastic representation:

$$\begin{aligned} H &:= \mathbb{E}\left[g(X_{s_1}, \dots, X_{t_{L-1}}) \mid X_T = y\right] = \\ \lim_{\epsilon \downarrow 0} \mathbb{E}\left[g(X_{s_1}, \dots, X_{t^*}, Y_{\hat{t}_{L-1}}, \dots, Y_{\hat{t}_1}) \epsilon^{-d} K\left(\frac{Y_T - X_{t^*}}{\epsilon}\right) \mathcal{Y}_T\right] / p(s_0, x, T, y) \end{aligned}$$





Stochastic representation:

$$\begin{aligned} H &:= \mathbb{E}\left[\left.g(X_{s_1}, \dots, X_{t_{L-1}}) \,\middle|\, X_T = y\right] = \\ \lim_{\epsilon \downarrow 0} \mathbb{E}\left[g(X_{s_1}, \dots, X_{t^*}, Y_{\hat{t}_{L-1}}, \dots, Y_{\hat{t}_1}) \epsilon^{-d} K\left(\frac{Y_T - X_{t^*}}{\epsilon}\right) \mathcal{Y}_T\right] / p(s_0, x, T, y) \end{aligned}$$

► Estimator: for  $(X^n)$  i.i.d.,  $(Y^m, \mathcal{Y}^m)$  i.i.d.,

$$\begin{split} \widehat{H}_{\epsilon,M,N} := \frac{\sum_{n=1}^{N} \sum_{m=1}^{M} g\left(X_{s_{1}}^{n}, \ldots, X_{s_{K}}^{n}, Y_{\hat{t}_{L-1}}^{m}, \ldots, Y_{\hat{t}_{1}}^{m}\right) K\left(\frac{Y_{T}^{m} - X_{r^{*}}^{n}}{\epsilon}\right) \mathcal{Y}_{T}^{m}}{\sum_{n=1}^{N} \sum_{m=1}^{M} K\left(\frac{Y_{T}^{m} - X_{r^{*}}^{n}}{\epsilon}\right) \mathcal{Y}_{T}^{m}} \\ \times \mathbf{1}_{\frac{1}{NM}} \epsilon^{-d} \sum_{n=1}^{N} \sum_{m=1}^{M} K\left(\frac{Y_{T}^{m} - X_{r^{*}}^{n}}{\epsilon}\right) \mathcal{Y}_{T}^{m} > \overline{p}/2}, \end{split}$$



#### The forward-reverse estimator for the conditional expectation



► Estimator: for  $(X^n)$  i.i.d.,  $(Y^m, \mathcal{Y}^m)$  i.i.d.,

$$\widehat{H}_{\epsilon,M,N} := \frac{\sum_{n=1}^{N} \sum_{m=1}^{M} g\left(X_{s_1}^n, \dots, X_{s_K}^n, Y_{\hat{t}_{L-1}}^m, \dots, Y_{\hat{t}_1}^m\right) K\left(\frac{Y_T^m - X_{r^*}^n}{\epsilon}\right) \mathcal{Y}_T^m}{\sum_{n=1}^{N} \sum_{m=1}^{M} K\left(\frac{Y_T^m - X_{r^*}^n}{\epsilon}\right) \mathcal{Y}_T^m} \times \mathbf{1}_{\frac{1}{NM} \epsilon^{-d} \sum_{n=1}^{N} \sum_{m=1}^{M} K\left(\frac{Y_T^m - X_{r^*}^n}{\epsilon}\right) \mathcal{Y}_T^m > \overline{p}/2},$$

#### Theorem

Assume  $p(s_0, x, T, y) > \overline{p} > 0$ , choose M = N.

- For  $d \le 4$ , set  $\epsilon_N = CN^{-1/4}$ , then  $\mathbb{E}\left[\left(H \widehat{H}_{N,N,\epsilon_N}\right)^2\right] = O(N^{-1})$ .
- For d > 4, set  $\epsilon_N = CN^{-2/(4+d)}$ , then  $\mathbb{E}\left[\left(H \widehat{H}_{N,N,\epsilon_N}\right)^2\right] = O(N^{-8/(4+d)}).$





Assume K has compact support in B<sub>r</sub>(0)







Assume K has compact support in  $B_r(0)$ 

# **Algorithm**

- **1.** Simulate N indep. trajectories  $(X^n)_{n=1}^N$  started at  $X_{s_0} = x$  and  $(Y^m)_{m=1}^N$  started at  $Y_{t^*} = y$  on  $\mathcal{D} \cap [s_0, t^*]$  and  $\widehat{\mathcal{D}} \cap [t^*, T]$ , resp.
- **2.** For fixed  $m \in \{1, ..., N\}$ , find the sub-sample

$$\{X_{s_0,x}^{n_k^m}(t^*): k=1,\ldots,l_m\} := \{X_{s_0,x}^n(t^*): n=1,\ldots,N\} \cap B_{r\epsilon}(Y_{t^*,y}^m)$$

3. Evaluate

$$\widehat{H}_{\epsilon,M,N} \leftarrow \frac{\sum_{m=1}^{N} \sum_{k=1}^{l_{m}} g\left(X_{s_{1}}^{n_{k}^{m}}, \dots, X_{s_{K}}^{n_{k}^{m}}, Y_{\hat{t}_{L-1}}^{m}, \dots, Y_{\hat{t}_{1}}^{m}\right) K\left(\frac{Y_{T}^{m} - X_{t^{*}}^{n_{k}^{m}}}{\epsilon}\right) \mathcal{Y}_{T}^{m}}{\sum_{m=1}^{N} \sum_{k=1}^{l_{m}} K\left(\frac{Y_{T}^{m} - X_{t^{*}}^{n_{k}^{m}}}{\epsilon}\right) \mathcal{Y}_{T}^{m}}$$





- Assume that  $X_{s_0,x}(s)$ ,  $(Y_{t^*,y}(t), \mathcal{Y}_{t^*,y}(T))$  can be simulated exactly at constant cost.
- ► Cost of simulation step: *O*(*N*)
- ► Cost of "box-ordering" step: O(N log(N)) (up to comparisons of integers)
- ► Cost of evaluation step:  $O(N^2 \epsilon^d)$

# Complexity estimate

- ► Case  $d \le 4$ : Choose  $\epsilon = (N/\log N)^{-1/d}$ , achieve MSE  $O(N^{-1})$  at cost  $O(N \log N)$
- ► Case d > 4: Choose  $\epsilon = N^{-2/(4+d)}$ , achieve MSE  $O(N^{-8/(4+d)})$  at cost  $O(N \log N)$





- Assume that  $X_{s_0,x}(s)$ ,  $(Y_{t^*,y}(t), \mathcal{Y}_{t^*,y}(T))$  can be simulated exactly at constant cost.
- ► Cost of simulation step: *O*(*N*)
- ► Cost of "box-ordering" step: O(N log(N)) (up to comparisons of integers)
- Cost of evaluation step:  $O(N^2 \epsilon^d)$

# **Complexity estimate**

- ▶ Case  $d \le 4$ : Choose  $\epsilon = (N/\log N)^{-1/d}$ , achieve MSE  $O(N^{-1})$  at cost  $O(N\log N)$
- ► Case d > 4: Choose  $\epsilon = N^{-2/(4+d)}$ , achieve MSE  $O(N^{-8/(4+d)})$  at cost  $O(N \log N)$



# Complexity



- Assume that  $X_{s_0,x}(s)$ ,  $(Y_{t^*,y}(t), \mathcal{Y}_{t^*,y}(T))$  can be simulated exactly at constant cost.
- ► Cost of simulation step: *O*(*N*)
- Cost of "box-ordering" step: O(N log(N)) (up to comparisons of integers)
- Cost of evaluation step:  $O(N^2 \epsilon^d)$

# **Complexity estimate**

- ► Case  $d \le 4$ : Choose  $\epsilon = (N/\log N)^{-1/d}$ , achieve MSE  $O(N^{-1})$  at cost  $O(N\log N)$
- ► Case d > 4: Choose  $\epsilon = N^{-2/(4+d)}$ , achieve MSE  $O(N^{-8/(4+d)})$  at cost  $O(N \log N)$





- 1 Introduction
- 2 The forward-reverse method for transition density estimation
- **3** A forward-reverse representation for conditional expectations
- 4 The forward-reverse estimator
- 5 Numerical examples



## Conditional expectations of the realized variance



Heston model:

$$\begin{split} dS_t &= \mu S_t dt + \sqrt{v_t} S_t dB_t^1, \\ dv_t &= (\alpha v_t + \beta) dt + \xi \sqrt{v_t} \left( \rho dB_t^1 + \sqrt{1 - \rho^2} dB_t^2 \right) \end{split}$$

$$a(x) = \begin{pmatrix} \mu x_1 \\ \alpha x_2 + \beta \end{pmatrix}, \quad \sigma(x) = \begin{pmatrix} x_1 \sqrt{x_2} & 0 \\ \xi \rho \sqrt{x_2} & \xi \sqrt{1 - \rho^2} \sqrt{x_2} \end{pmatrix}$$

► Reverse drift: 
$$\alpha(x) = \begin{pmatrix} (2x_2 + \rho\xi - \mu)x_1 \\ (\rho\xi - \alpha)x_2 + \xi^2 - \beta \end{pmatrix}$$
,  $c(x) = x_2 + \rho\xi - \mu - \alpha$ .

- ► Realized variance:  $RV := \sum_{i=1}^{30} (\log(S_{t_{i+1}}) \log(S_{t_i}))^2$
- ▶ Objective:  $\mathbb{E}[RV | S_T = s], T = 1/12$





Heston model:

$$\begin{split} dS_t &= \mu S_t dt + \sqrt{v_t} S_t dB_t^1, \\ dv_t &= (\alpha v_t + \beta) dt + \xi \sqrt{v_t} \left( \rho dB_t^1 + \sqrt{1 - \rho^2} dB_t^2 \right) \end{split}$$

$$a(x) = \begin{pmatrix} \mu x_1 \\ \alpha x_2 + \beta \end{pmatrix}, \quad \sigma(x) = \begin{pmatrix} x_1 \sqrt{x_2} & 0 \\ \xi \rho \sqrt{x_2} & \xi \sqrt{1 - \rho^2} \sqrt{x_2} \end{pmatrix}$$

► Reverse drift: 
$$\alpha(x) = \begin{pmatrix} (2x_2 + \rho\xi - \mu)x_1 \\ (\rho\xi - \alpha)x_2 + \xi^2 - \beta \end{pmatrix}$$
,  $c(x) = x_2 + \rho\xi - \mu - \alpha$ .

- ► Realized variance:  $RV := \sum_{i=1}^{30} (\log(S_{t_{i+1}}) \log(S_{t_i}))^2$
- ▶ Objective:  $\mathbb{E}[RV | S_T = s]$ , T = 1/12



## Conditional expectations of the realized variance



Heston model:

$$\begin{split} dS_t &= \mu S_t dt + \sqrt{v_t} S_t dB_t^1, \\ dv_t &= (\alpha v_t + \beta) dt + \xi \sqrt{v_t} \left( \rho dB_t^1 + \sqrt{1 - \rho^2} dB_t^2 \right) \end{split}$$

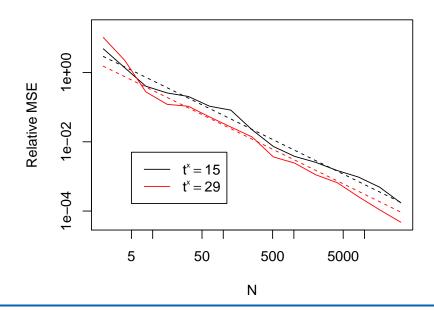
$$a(x) = \begin{pmatrix} \mu x_1 \\ \alpha x_2 + \beta \end{pmatrix}, \quad \sigma(x) = \begin{pmatrix} x_1 \sqrt{x_2} & 0 \\ \xi \rho \sqrt{x_2} & \xi \sqrt{1 - \rho^2} \sqrt{x_2} \end{pmatrix}$$

► Reverse drift: 
$$\alpha(x) = \begin{pmatrix} (2x_2 + \rho\xi - \mu)x_1 \\ (\rho\xi - \alpha)x_2 + \xi^2 - \beta \end{pmatrix}$$
,  $c(x) = x_2 + \rho\xi - \mu - \alpha$ .

- ► Realized variance:  $RV := \sum_{i=1}^{30} (\log(S_{t_{i+1}}) \log(S_{t_i}))^2$
- ▶ Objective:  $\mathbb{E}[RV | S_T = s], T = 1/12$











- Bayer, C., Schoenmakers, J.: Simulation of conditional diffusions via forward-reverse stochastic representations, preprint 2013.
- Bladt, M., Sørensen, M.: Simple simulation of diffusion bridges with application to likelihood inference for diffusions, preprint 2012.
- Delyon, B., Hu, Y.: Simulation of conditioned diffusion and application to parameter estimation, SPA 116(11), 1660–1675, 2006.
- Kusuoka, S., Stroock, D.: *Applications of the Malliavin calculus, Part II*, J. Fac. Sci. Univ. Yokyo Sec. 1A 32, 1–76, 1985.
- Milstein, G., Schoenmakers, J. G. M., Spokoiny, V.: *Transition density estimation for stochastic differential equations via forward–reverse representations*, Bernoulli 10(2), 281–312, 2004.

