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Search and matching models

Search and matching models
I Extremely popular these days (and for many years now)
I Inspired by work of Diamond, Mortensen and Pissarides
I Apart from some recent examples (e.g. our companion paper

and the references therein), these models do not include a
saving mechanism

Our setup

I Pissarides textbook model (without Nash-bargaining)
extended for a consumption-saving mechanism

I Process of matching and separation is augmented to allow for
self-insurance of workers

I We describe distributional prediction for labour market status
and wealth using Fokker-Planck equations in a companion
paper
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The model

Matching on the labour market

I Transitions between states z ∈ {w, b} with (state-dependent)
matching rate µ and separation rate s

I Wage w and benefits b are exogenous (in this stability paper,
not in companion paper)

I Representation for maximisation problem as a stochastic
differential equation with two Poisson processes

dz (t) = ∆
[
dqµ − dqs

]
, ∆ ≡ w − b

I Corresponds to cont. time Markov chain

Budget constraint of an individual

da (t) =
{
ra (t) + z (t) − c (t)

}
dt

I Interest rate on wealth r , consumption c (t)
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Optimality

Utility functions

I Intertemporal

U (t) = Et

∫ ∞

t
e−ρ[τ−t]u (c (τ)) dτ

I CRRA instantaneous utility function

u (c (τ)) =
c (τ)1−σ

− 1
1 − σ

, σ > 0

Optimality condition

I Generalized Keynes-Ramsey rule
I Represented for this paper by policy function c (a (t) , z (t))
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Dynamics

System to be understood
I Frictional labour market equation

dz (t) = ∆
[
dqµ − dqs

]
, ∆ ≡ w − b

I Optimal evolution of wealth

da (t) =
{
ra (t) + z (t) − c (a (t) , z (t))

}
dt

Different regimes
I Low interest rate r ≤ ρ: bounded state space [−b/r , a∗w ] for

wealth
I High interest rate r ≥ ρ + µ: at increasing to ∞
I Intermediate case: at increasing to ∞ when larger than a

threshold value
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Setting

I State space (X,B(X)) locally compact separable metric space
I (Xt )t∈[0,∞[ right-continuous, time-homogeneous strong Markov

process
I Transition kernel P t (x,A) B P(Xt ∈ A |X0 = x)

I Semi-group Pt f(x) B E [f(Xt )|X0 = x] =
∫

X f(y)P t (x, dy).

Example

For the wealth-employment process (At , zt ) in the
low-interest-regime, the state space is chosen to be
X = [−b/r , a∗w ] × {w, b}, a compact, separable metric space.
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Methodology

There are (at least) two very different approaches:

Functional analysis: use the classical theory of strongly
continuous semi-groups of linear operators on
Banach spaces

Probability: analogy to discrete-time Markov chains, i.e., study
the recurrence structure

I We are going to follow the probabilistic road, the semi-group
(Pt )t∈[0,∞[ and its infinitesimal generator will not be used.

I Based on a long history of results, ultimate treatment by Meyn
and Tweedie and their co-authors in 90’s.
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Outline

Goal
I Stability is a rather vague concept.
I Here: ergodicity in the sense that for any initial state x,

P t (x, ·)
t→∞
−−−−→ π for some unique probability distribution π.

I No time-averaging necessary.

Definition
A measure µ on X is called invariant, iff

∀A ∈ B (X) , ∀t ≥ 0 : P t
µ(A) B

∫
X

P t (x,A)µ(dx) = µ(A),

i.e., the process Xt with law(X0) = µ is stationary.
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Outline – 2

Outline of the proof of stability:

(1) Existence of an invariant distribution

(2) Uniqueness of invariant measures

(3) Convergence

Remark
(1) and (2) are very different in nature and rely on qualitatively
different assumptions.
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Existence of an invariant probability measure

I Existence of an invariant probability distribution depends on a
growth condition: no mass is allowed to escape to infinity.

I Xt is bounded in probability on average, iff ∀x ∈ X, ε > 0 there
is a compact set C ⊂ X s.t.

lim inf
t→∞

1
t

∫ t

0
Ps(x,C)ds ≥ 1 − ε.

I Compactness of measures 1
t

∫ t
0 Ps(x,C)ds

I Xt has the weak Feller property, iff for any bounded cont.
f : X→ R and t > 0, x 7→

∫
X f(y)P t (x, dy) is continuous.

Theorem (Beneš ’68)

If the process Xt is bounded in probability on average and has the
weak Feller property, then there is an invariant probability measure.



Introduction Abstract stability theory in continuous time Application to the model Conclusions References

Existence of an invariant probability measure

I Existence of an invariant probability distribution depends on a
growth condition: no mass is allowed to escape to infinity.

I Xt is bounded in probability on average, iff ∀x ∈ X, ε > 0 there
is a compact set C ⊂ X s.t.

lim inf
t→∞

1
t

∫ t

0
Ps(x,C)ds ≥ 1 − ε.

I Compactness of measures 1
t

∫ t
0 Ps(x,C)ds

I Xt has the weak Feller property, iff for any bounded cont.
f : X→ R and t > 0, x 7→

∫
X f(y)P t (x, dy) is continuous.

Theorem (Beneš ’68)
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[[SO EXISTENCE FOLLOWS FROM COMPACTNESS, AS THE
ABOVE FAMILY OF MEASURES HAS SOME CONVERGENT
SUBSEQUENCES. EACH LIMIT ALONG A CONVERGENT
SUBSEQUENCE IS AN INVARIANT PROBABILITY MEASURE,
BUT THERE CAN BE MORE THAN ONE.
CONCEPTUALLY, WHY DO WE EVEN NEED WEAK FELLER?
UNDERSTAND THE FOLLOWING PROOF!]]
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Uniqueness of the invariant measure

I Xt is recurrent, iff there is a (non-trivial) σ-finite measure µ
such that

A ∈ B(X), µ(A) > 0⇒ ∀x ∈ X : P (τA < ∞|X0 = x) = 1,

where τA B inf{t ≥ 0|Xt ∈ A }.

Theorem (Azéma, Duflo, Revuz ’69)

If the process Xt is recurrent, then there is a unique σ-finite
invariant measure (up to constant multiples).

Example
Let Wt be 1-dimensional Brownian motion. By recurrence, there is
a unique invariant measure, whose density satisfies ∆f = 0,
implying that f = 1.
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[[UNDERSTAND WHY STRONG FELLER IMPLIES
RECURRENCE/UNIQUENESS]]
[[UNDERSTAND WHY A-PERIODICITY NOT NECESSARY]]
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Stability

I Stability for us means convergence P t (x, ·)→ π for any x in
total variation, i.e.,

dTV (P t (x, ·), π) B sup
{ ∣∣∣P t (x,A) − π(A)

∣∣∣ ∣∣∣ A ∈ B(X)
} t→∞
−−−−→ 0.

I Stability holds for a Harris recurrent Markov process Xt iff for
some ∆ > 0, the skeleton chain (Xn∆)n∈N is irreducible.

Remark
Techniques based on Lyapunov functions even allow to specify the
speed of convergence. But no general way to construct good
Lyapunov functions.
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Existence and stability

I In the regimes of high and intermediate interest rates, wealth
can converge to ∞.

I We concentrate on the low-interest-regime, where wealth is
concentrated in a compact interval [−b/r , a∗w ].

I By continuity of solutions of ODEs in the initial value, (at , zt ) is
a continuous function of (a0, z0), implying the weak Feller
property.

I Existence of invariant probability measures.
I If z0 = b or z0 = w and no jump, then at → −b/r or at → a∗w ,

respectively, implying the existence of an irreducible skeleton.
I But how to prove recurrence?
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Sufficient condition for recurrence

I Recurrence holds when transition kernel is smoothing.
I Diffusion case: recurrence follows under weak conditions
I Jump processes cannot smoothen as long as there is a

positive probability of no jumps before t

Definition & theorem (Meyn and Tweedie ’93)

Xt is called a T -process if there is a Markov kernel T and a
prob. measure ν on [0,∞[ s.t.
I ∀A ∈ B(X) : x 7→ T(x,A) is continuous
I Kν(x,A) B

∫ ∞
0 P t (x,A)ν(dt) ≥ T(x,A)

I ∀x : T(x,X) > 0.

Any irreducible T -process, which is bounded in probability on
average, is recurrent.
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The wealth-employement process is a T -process

I Given (a0, z0), (at , zt ) is a deterministic function of the
jump-times of zt .

I Conditional on the number of jumps, the jump times have
smooth densities.

I (at , zt ) is not smoothing, because no jump might occur.
I If at least one jump occurs, we have smoothing properties.
I Choose ν = δτ and

T((a0, z0),A) B P
(
(aτ, zτ) ∈ A , one jump in [0, τ]

∣∣∣ a0, z0

)
.

I Technical condition: c = c(a, z) is C1.
I Illustration of how T -property replaces strong Feller condition.
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Conclusions

Framework

I Individual maximization problem inspired by search and
matching models

I Extended for consumption-saving problem
I Question: Is there a unique long-run distribution to which

initial distributions converge?

Techniques

I Markov chain-style ergodicity analysis for general, continuous
time Markov processes

I T -processes by Meyn and Tweedie allow to prove recurrence
for a wide class of (degenerate) diffusion and jump models

Result
I Long-run-distribution exists in our matching-saving model
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