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Abstract. We consider the problem of pricing basket options in a multivariate Black Sc-
holes or Variance Gamma model. From a numerical point of view, pricing such options
corresponds to moderate and high dimensional numerical integration problems with non-
smooth integrands. Due to this lack of regularity, higher order numerical integration tech-
niques may not be directly available, requiring the use of methods like Monte Carlo specif-
ically designed to work for non-regular problems. We propose to use the inherent smooth-
ing property of the density of the underlying in the above models to mollify the payoff

function by means of an exact conditional expectation. The resulting conditional expec-
tation is unbiased and yields a smooth integrand, which is amenable to the efficient use
of adaptive sparse grid cubature. Numerical examples indicate that the high-order method
may perform orders of magnitude faster compared to Monte Carlo or Quasi Monte Carlo
in dimensions up to 25.

1. Introduction

In quantitative finance, the price of an option on an underlying S can typically—disregarding
discounting—be expressed as E[ f (S )] for some (payoff) function f on S and the expec-
tation operator E induced by the appropriate pricing measure. Hence, option pricing is an
integration problem. The integration problem is usually challenging due to a combination
of two complications:

• S often takes values in a high-dimensional space. The reason for the high-dimensionality
may be time-discretization of a stochastic differential equation, path dependence
of the option (i.e., S is actually a path of an asset price, not the value at a specific
time), a large number of underlying assets, or others.

• the payoff function f is typically not smooth.
In this work, we shall focus on the problem of pricing basket options in models, where
the distribution of the underlying is explicitly given to us (more precisely, we consider
multivariate Black-Scholes and Variance-Gamma models), i.e., no time-discretization is re-
quired. We consider a basket option on a d-dimensional underlying asset S T =

(
S 1

T , . . . , S
d
T

)
with payoff function

f (S T ) =

 d∑
i=1

wiS i
T − K


+
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for some positive weights w1, . . . ,wd, a maturity T and a strike price K. Observe in passing
that one could also allow some weights being negative, an option type known as “spread
option”. Note in addition that (discrete) Asian options also fall under this framework.

Even in the standard Black-Scholes framework, closed-form expressions for basket op-
tion prices are not available, since sums of log-normal random variables are generally not
log-normally distributed. Some explicit approximation formulas are based on approximate
distributional identities of sums of lognormal random variables, see, for instance, [25, 11].
Also Laplace’s method, possibly coupled with heat kernel expansions when the distribution
of the factors S i

T are given only as solutions of SDEs, has been shown to yield highly exact
results even in high dimensions, see [4, 6, 5]. In this work, however, we aim at solving the
problem at hand using generic numerical integration techniques, which remain available
beyond the restrictions of the previous methods.

Efficient numerical integration algorithms are available even in high dimensions, but
they usually require smoothness of the integrand. Hence, they are a-priori not applicable
in many option pricing problems. We will specifically focus on (adaptive) sparse grid
methods, see e.g. [7, 16].

Another efficient numerical integration technique is quasi-Monte Carlo. Formally, QMC
methods also rely on smoothness of the integrand to retain first order convergence (up to
multiplicative logarithmic terms), but it has been observed for some time that QMC typi-
cally works very well for integration problems in quantitative finance, even when the the-
oretically required regularity of the integrand is not satisfied, see, for instance, [26] for an
overview. In a series of works, Griebel, Kou and Sloan [19, 20, 21] have analyzed the good
performance of QMC methods for typical option pricing problems based on the ANOVA
decomposition. In particular, they show that all terms of the ANOVA decomposition are
smooth except for the last one. In the context of barrier options, Achtsis, Cools and Nuyens
[1, 2] successfully applied QMC using a conditional sampling strategy to fulfill the barrier
conditions. Moreover, they use a root finding procedure to determine the region where the
payoff function of the option is positive. In other words, this root finding procedure, which
has been discussed in e.g. [17, 24], locates the unsmooth part of the payoff function. Note
that the boundary of the support of the payoff function may be quite complicated in terms
of the coordinates for the integration problem, an issue that may limit the applicability of
such approach.

From a numerical analysis point of view, the obvious solution to the problem seems to
be to smoothen the integrand using standard mollifiers, and there is a prominent history
of successful application of mollification in quantitative finance, see, for instance, [12] in
the context of computing sensitivities of option prices. For many financial applications
there seems a more attractive approach which avoids the balancing act between providing
the smoothness needed for the numerical integration algorithm and introducing bias in
the integrand. Indeed, we suggest to use the smoothing property of the distribution of
the underlying itself for regularizing the integrand. This technique is quite standard in a
time-stepping setting, and we indeed plan to explore its applicability in that context in the
future.

In this work, however, the regularization will be achieved by integrating against one
factor of the multivariate geometric Brownian motion first—conditioning on all the other
factors. More specifically, we show in Section 3 below that we can always decompose

d∑
i=1

wiS i
T
L
= HeY
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for two independent random variables H and Y—for the precise, explicit construction see
Lemma 3.3 together with Lemma 3.1. Here, the random variable Y is normally distributed.
Therefore, by computing the conditional expectation given H, the basket option valuation
problem is reduced to an integration problem in H (corresponding to an integration in Rd−1)
with a payoff function given in this case by the Black Scholes formula, a smooth function.

The idea of integrating out one factor first, thereby obtaining an “option” on the re-
maining factors with payoff function giving by the Black Scholes formula is not new in
finance. For instance, Romano and Touzi [31] have applied this idea in a theoretical study
of stochastic volatility models as a tool to show convexity of admissible prices. In this
vein, see also the work [13]. The above mentioned decomposition (allowing the use of
this trick in the basket option context), however, seems new. As conditional expectations
always reduce the variance of a random variable, this trick can also be useful in a Monte
Carlo setting as well.

Let us point out already here that the smoothing approach proposed in this work can be
applied in more general situation, possibly in modified ways, including more complicated
models, where the asset price process can only be simulated by a time-stepping procedure.
In that case, we may no longer obtain an explicit, exact formula for the smoothed payoff

through the conditional expectation step. Still, a properly constructed numerical quadrature
to the conditional expectation will still inherit the fast convergence rates.

Outline. We start by describing the setting of the problem in more detail. In Section 2 we
recall two popular efficient numerical integration techniques for high dimensions, namely
(adaptive) sparse grids and quasi Monte Carlo. Then, in Section 3 we describe the smooth-
ing of the payoff in the multivariate Black Scholes framework. Confirming the exploratory
style of this work, we give two detailed numerical examples. In Section 4 we present nu-
merical results for the multivariate Black Scholes model, and in Section 5 we consider a
multivariate Variance Gamma model, indicating that the smoothing method proposed here
is applicable beyond the standard Black Scholes regime. Afterwards, we present some
concluding remarks including an outlook on future research.

Setting. We consider a European basket option in a Black-Scholes model. More specif-
ically, assume that the interest rate r = 0 – i.e., we are working with forward prices. We
consider d ∈ N assets with prices S t =

(
S 1

t , . . . , S
d
t

)
, t > 0, with risk-neutral dynamics

(1) dS i
t = σiS i

tdW i
t , i = 1, . . . , d,

for volatilities σi > 0, i = 1, . . . , d, driven by a correlated d-dimensional Q- Brownian
motion W with

d
〈
W i ,W j

〉
t
= ρi, jdt, i, j = 1, . . . , d.

Obviously, (1) has the explicit solution

(2) S i
t = S i

0 exp
(
−

1
2
σ2

i t + σiW i
t

)
, i = 1, . . . , d, t > 0.

We note that the components of the random vector S t have log-normal distributions and
are correlated.

A basket option is an option on such a collection of assets. We assume a standard call
option with strike K > 0 and maturity T > 0 with price

(3) CB B E


 d∑

i=1

ciS i
T − K


+ .
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Let us next transform the pricing problem (3) into a slightly more abstract form. As already
observed, the random vector

(
c1S 1

T , . . . , cdS d
T

)
can be represented as

(
w1eX1 , . . . ,wdeXd

)
for

scalars w1, . . . ,wd and a zero-mean Gaussian vector X = (X1, . . . , Xd) ∼ N(0,Σ). Indeed,
we may choose

wi = ciS i
0e−

1
2σ

2
i T , i = 1, . . . , d,

Σi, j = σiσ jρi, jT, i, j = 1, . . . , d.

Therefore, we are left with the problem of computing

(4) E


 d∑

i=1

wieXi − K


+

for X ∼ N(0,Σ) and d > 1.

Remark 1.1. Note that the problem of computing the price of a (discretely-monitored)
Asian option on a (one-dimensional) Black-Scholes asset is of the form (4) as well, but
with different covariance matrix Σ.

In Section 5, we will, also consider a Variance Gamma model, see [29] for the univariate
and [27] for the multivariate Variance Gamma model. We first recall the univariate case:
Let

(5) Xt B θt + σWγt

for a standard Brownian motion W and an independent Γ process γt with parameters 1 and
ν, i.e., γ is a process with stationary, independent increments with γt+h − γt Γ-distributed
with mean h and variance νh, for any h > 0, t > 0. Additionally, we impose γ0 = 0.
Under the risk-neutral measure with r = 0 (for simplicity), we then consider the asset price
process

(6) S t = S 0 exp (ωt + Xt) , ω =
log(1 − θν − σ2ν/2)

ν
,

see [29, formula (22)]. Notice that the process X is a Lévy process and can alternatively be
described as the difference of two independent Γ processes.

Economically, the time change γ is often interpreted as “business” or “trading” time.
Hence, it makes sense to assume that different stocks are subject to a single time change.
A reasonable multivariate generalization of the Variance Gamma model (also adopted in
[27]) consists in defining log terms Xi

t as in (5) based on correlated Brownian motions W i
t ,

parameters θi, σi, but a common Γ-process γt (hence, with a fixed parameter ν). The stock
price components S i

t, i = 1, . . . , d, are then defined according to (6) based on Xi
t , θi, σi, but

the common parameter ν.

2. A reminder on efficient multi-dimensional numerical integration

In this section, we give a brief review on efficient multi-dimensional integration schemes,
in particular the Monte Carlo quadrature, the quasi-Monte Carlo quadrature and the adap-
tive sparse grid quadrature. To this end, let us consider a function f : Rd → R and
denote the d-dimensional standard Gaussian density function by φd : Rd → R+, x 7→
(2π)−d/2 ∏d

k=1 exp(−x2
k/2). As we will see later on, the multi-dimensional integration prob-

lem that we are faced with is to find an approximation to the integral

(7)
∫
Rd

f (x)φd(x) dx.
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2.1. Monte Carlo and quasi-Monte Carlo quadrature. The most widely used quadra-
ture technique to tackle high-dimensional integration problems is the Monte Carlo quadra-
ture, see e.g. [22]. This quadrature draws N ∈ N independently and identically distributed
samples ξi ∈ R

d, i = 1, . . . ,N with respect to the d-dimensional standard normal distribu-
tion. Then, the unbiased Monte Carlo estimator for the integral (7) is given by

(8)
∫
Rd

f (x)φd(x) dx ≈
1
N

N∑
i=1

f (ξi).

The big advantage of this quadrature is that it converges with a rate which is independent of
the dimensionality d, but the convergence rate O(N−1/2) is rather low. Another advantage
of this quadrature is that it works under low regularity requirements on the integrand. To
be more precisely, the variance of the integrand is a multiplicative constant in the error
estimate.

The quasi-Monte Carlo quadrature is of the same form (8) as the Monte Carlo quadra-
ture, but the sample points xi are constructed or taken from a predescribed sequence and
not chosen randomly. There are several quasi-Monte Carlo sequences available in the lit-
erature, see e.g. [8, 30]. Nevertheless, almost all the quasi-Monte Carlo sequences refer
to integration over the unit cube [0, 1]d with respect to the Lebesgue measure and, hence,
these points have to be mapped to the domain of integration Γ by the inverse normal distri-
bution. The aim of a quasi-Monte Carlo sequence is to mirror with the first N sample points
the uniformly distribution on the unit cube as good as possible. A measure of the distance
between the uniformly distribution and the first N sample points is then given by the dis-
crepancy of these sample points, see [30]. The reason for this is that the quasi-Monte Carlo
integration error for functions with bounded variation in the sense of Hardy and Krause can
be estimated up to a constant by the discrepancy of the integration points. A quasi-Monte
Carlo sequence is called a low-discrepancy sequence if the discrepancy of the first N points
of this sequence is O(N−1 log(N)d). Thus, for the quasi-Monte Carlo quadrature based on
low-discrepancy sequences can improve the convergence of the Monte-Carlo quadrature.
In our numerical examples, we will use the quasi-Monte Carlo quadrature based on the
Sobol-sequence, cf. [33], which is a classical low-discrepancy sequence.

2.2. Adaptive sparse grid quadrature. The construction of a sparse grid quadrature is
based on a sequence of one-dimensional quadrature rules, cf. [7, 32]. Hence, we define for
a function f : R→ R quadrature rules

(9)
∫
R

f (x)φ1(x) dx ≈ Q j( f ) =

N j∑
i=1

w( j)
i f

(
η

( j)
i

)
, N j ∈ N, j = 0, 1, . . .

with suitable quadrature points and weights
{(
η

( j)
i ,w( j)

i

)}N j

i=1
⊂ R×R. Usually, the sequence

of quadrature rules is increasing, i.e N0 < N1 < . . ., and the first quadrature uses only one
quadrature point and weight, i.e. N0 = 1. According to the sequence {Q j} j, we introduce
the difference quadrature operator

(10) ∆ j := Q j − Q j−1, where Q−1 := 0.

Assume that the sequence {Q j f } j converges, i.e∫
R

f (x)φ1(x) dx = lim
j→∞

Q j f = lim
n→∞

n∑
j=0

∆ j f .
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This implies, that the sequence {|∆ j f |} j converges to zero and, hence, the importance of the
difference quadrature operators decays in j. Unfortunately, this decay is not necessarily
monotonic, but it builds the basic idea of adaptive sparse grid constructions.

With the difference quadrature operators ∆ j at hand, a generalized sparse grid quadra-
ture for the integration problem (7) is defined by

(11)
∫
Rd

f (x)φd(x) dx ≈
∑
α∈I

∆α f :=
∑
α∈I

∆α1 ⊗ ∆α2 ⊗ · · · ⊗ ∆αd f

for an admissible index set I ⊂ Nd
0. Such an index set I is called admissible if it holds for

j = 1, . . . , n and the unit multi-index e j that

α ∈ I =⇒ α − e j ∈ I if α j > 0.

As can be seen from (10) and (11), a generalized sparse grid quadrature is uniquely deter-
mined by a sequence of univariate quadrature rules {Q j} j and an admissible index set I.
The index set I can be chosen a priori, for example as

(12) I =

α ∈ Nd
0 :

n∑
i=1

αi ≤ q


which corresponds to a total degree sparse grid on level q.

Another option is to adapt I a posteriori. In this case an initial index set is selected,
most often I0 = {(0, . . . , 0)}. Then, the integration error of the sparse grid quadrature with
respect to I0 is estimated by a local error estimator and, afterwards, the indices with the
largest local error estimator are successively added to I0 until a global error estimator η
has reached a certain tolerance. We denote the local error estimator of an index α ∈ I by gα
and use for our purpose simply the absolute value of the associated difference quadrature
formula, i.e. gα := |∆α f |. Of course, we have to guarantee during the algorithm that
the admissible condition of I is not violated. The detailed description of this method is
provided in [16]. We recall here the algorithm from [16] and explain the most important
steps.

In Algorithm 1, the index set I in (11) is partitioned into the old index set O and the
active index setA. The active index sets contains all indices αwhose local error estimators
gα actually contribute to the global error estimator η. Then, the element α of A with the
largest local error estimator is removed from the active to the old index set and the children
of α, i.e. α + e j, are successively added to the active index set, as long as all their parents
belong to the old index set. The last step is necessary in order to guarantee the admissibility
condition. Then, the contribution of the new indices to the value of the integral as well as
the local and global error estimator is updated and the procedure is repeated. The change
in the current index sets during one step of the algorithm is visualized in Figure 1.

We will use as one-dimensional sequences Gauß-Hermite and Genz-Keister quadrature
rules, cf. [15]. Gauß-Hermite quadrature rules have the highest degree of polynomial ex-
actness for integrals as in (9) while Genz-Keister rules have the advantage that they are
nested. More precisely, the Genz-Keister rules are extensions of Gauß-Hermite quadrature
rules of relatively low degree. As the first extension of the one point Gauß-Hermite quadra-
ture we use the three point Gauß-Hermite quadrature. Nevertheless, the further extensions
do not coincide with any other Gauß-Hermite quadrature rule.

At the end of this section, we visualize on the right-hand side of Figure 2 the 2-
dimensional adaptive sparse grid points which are used in our first numerical example.
On the left-hand side of Figure 2, we show the associated adaptive index set.
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Algorithm 1 Adaptive sparse grid quadrature for a function f

α← (0, . . . , 0)
O ← ∅

A ← α
y← ∆α f
η← gα
while (η > TOL) do

select α fromA with largest gα
A ← A \ α
O ← O ∪ α
η← η − gα
for (k = 1, . . . , d) do

β← α + ek

if (β − eq ∈ O for all q) then
A ← A∪ β
x← ∆β f
y← y + x
η← η + gβ

end if
end for

end while
return y

α1

α2

0 1 2 3 4 5 6

0
1
2
3

α1

α2

0 1 2 3 4 5 6

0
1
2
3

Old Index set O Active Index setA

Figure 1. One step of the adaptive quadrature where α = (0, 2) is the
index with largest g(α).

Remark 2.1. A further alternative could be to use multi-dimensional cubature formulas,
see, for instance, [9]. In principle, high-order cubature formulas also require smoothness
of the integrand, therefore we suspect that the approach presented here will also work well
in the cubature context. Still, we do not further discuss these methods in the current paper.

3. Smoothing the payoff

In this section, we will describe a simple technique for smoothing the integrand in (4)
which, at the same time,

• produces an analytic integrand;
• does not introduce a bias error;
• reduces the variance of the resulting integrand.
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α1

α2

0 1 2 3 4 5

0
1
2
3
4

-8 -6 -4 -2 0 2 4 6 8

-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 2. Index set I of the sparse grid on the left and associated sparse
grid points, which are used in the first numerical example, on the right .

For the following, we assume that the covariance matrix Σ is invertible, i.e., a positive
definite symmetric matrix.

The general idea is that we want to integrate out one Gaussian factor in (4), conditioning
on the remaining d − 1 factors. Clearly, the outcome of such a procedure is a smooth
function of the remaining factors. However, generically there is no closed formula for this
function. The reason for this is that there is no closed formula for the simple special case

E
[(

eσ1Z + eσ2Z − K
)+

]
for Z ∼ N(0, 1) and σ1 , σ2. Indeed, eσ1Z + eσ2Z has a log-normal distribution if and
only if σ1 = σ2. In this case, the above expression is given in terms of the celebrated
Black-Scholes formula, to be reviewed below.

It turns out, that a clever choice of factorization of the covariance matrix of the Gauss-
ian factors allows us to factor out one common, independent log-normal term. This is a
consequence of the

Lemma 3.1. Let Σ be a symmetric, positive definite d × d matrix. Then there is a diagonal
matrix D = diag

(
λ2

1, λ
2
d, . . . , λ

2
d

)
and an invertible matrix V ∈ Rd×d with the property that

Vi,1 ≡ 1, i = 1, . . . , d, such that
Σ = VDV>.

Moreover, we may choose the remaining columns of V such that λ2
2 ≥ . . . ≥ λ

2
d ≥ 0.

Proof. From [3, p. 126], we know that for every 0 , s ∈ Rn the rank-1 modification

(13) Ã = A −
(As)(As)>

s>As
of a symmetric and positive definite matrix A ∈ Rd×d yields a symmetric and positive
semidefinite matrix Ã ∈ Rd×d of rank d − 1. Let us denote 1 = [1, . . . , 1]> and choose
v = Σ−11. Then it follows from (13) that

Σ̃ = Σ −
1·1>

1>v
is a symmetric and positive semidefinite matrix of rank d − 1. Denote by (λ2

i , vi) for i =

2, . . . , d the d − 1 eigenpairs corresponding to the d − 1 positive eigenvalues of Σ̃. Defining
V = [v1, v2, . . . , vd] with v1 = 1 and D = diag(λ2

1, λ
2
2, . . . , λ

2
d) with λ2

1 = (1>v)−1 leads to
the desired result. �
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Remark 3.2. Of course, the vector 1 is by no means special in Lemma 3.1 and can be
replaced by any other fixed vector.

In the next step, we replace X by Y B V−1X ∼ N(0,D) and note that the components
of Y are independent. Substituting the decomposition X = VY into (4), we obtain

CB = E


 d∑

i=1

wie(VY)i − K


+

= E


 d∑

i=1

wi exp

Y1 +

d∑
j=2

Vi, jY j

 − K


+

= E
[(

h(Y2, . . . ,Yd)eY1 − K
)+

]
(14)

with

(15) h(y) = h(y2, . . . , yd) B
d∑

i=1

wi exp

 d∑
j=2

Vi, jy j

 , y B (y2, . . . , yd) ∈ Rd−1.

Lemma 3.3 (Conditional Expectation formula). Let Y = (Y2, . . . ,Yd) = ((V−1X)2, . . . , (V−1X)d) ∼
N

(
0,D

)
, D B diag(λ2

2, . . . , λ
2
d). Then

E


 d∑

i=1

wieXi − K


+
∣∣∣∣∣∣∣∣ Y

 = CBS

(
h(Y)eλ

2
1/2,K, λ1

)
,

where

CBS (S 0,K, σ) B Φ(d1)S 0 − Φ(d2)K,

d1/2 B
1
σ

[
log

(S 0

K

)
±
σ2

2

]
,

is the Black-Scholes formula for r = 0, with maturity T = 1.

Proof. As Y1 and Y are independent and Y1 ∼ N(0, λ2
1), we have

E
[ (

h(Y2, . . . ,Yd)eY1 − K
)+

∣∣∣∣ Y = y
]

= E
[(

h(y)eλ1Z − K
)+

]
for some Z ∼ N(0, 1). On the other hand, for r = 0 and maturity T = 1, the Black-Scholes
formula is given by

CBS (S 0,K, σ) = E
[(

S 0e−
1
2σ

2+σZ − K
)+

]
= Φ(d1)S 0 − Φ(d2)K,

since S T = S 0 exp
(
− 1

2σ
2T + σBT

)
for a Brownian motion B. Comparing these expres-

sions, we see that we have to choose K = K, σ = λ1 and S 0 = h(y)e
1
2 λ

2
1 . �

Lemma 3.3 directly implies

Proposition 3.4. The basket option price in the multi-variate Black-Scholes setting satis-
fies

(16) CB = E
[
CBS

(
h
( √

DZ
)

eλ
2
1/2,K, λ1

)]
, Z ∼ N (0, Id−1) ,

√
D = diag(λ2, . . . , λd).
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Remark 3.5. As remarked earlier, a similar closed form expression cannot be obtained
when the first column V·,1 of the matrix V is a general d-dimensional vector. However, we
may still get an explicit formula if V·,1 only takes values in { 0, 1 }. For simplicity, let us
assume that the first k entries of V·,1 are 1 and the remaining entries are 0—by Remark 3.2
this can always be achieved. The computation before Lemma 3.3 then gives

CB = E
[(

h1(Y2, . . . ,Yk)eY1 + h2(Yk+1, . . . ,Yd) − K
)+

]
,

h1(y2, . . . , yk) B
k∑

i=1

wi exp

 d∑
j=2

Vi, jy j

 ,
h2(yk+1, . . . , yd) B

d∑
i=k+1

wi exp

 d∑
j=2

Vi, jy j

 .
Conditioning again on Y , we once again arrive at the Black-Scholes formula, this time
requiring a shift in K, as well. In the end, we obtain

E


 d∑

i=1

wieXi − K


+
∣∣∣∣∣∣∣∣ Y

 = CBS

(
h1(Y2, . . . ,Yk)eλ

2
1/2,K − h2(Yk+1, . . . ,Yd), λ1

)
,

in the sense that

CBS (S 0,K, σ) = S 0 − K for K < 0.

In general, we therefore suggest to choose V·,1 such as to maximize the effective smoothing
parameter λ1.

Remark 3.6. Generally speaking, the decay of derivatives of the integrand in (16) depends
– inter alia – on the size of λ2

1 =
〈
1 ,Σ−11

〉−1
. If we normalize the variances of the individual

components, then λ2
1 mostly depends on the angle of 1 with the eigenspace corresponding

to the largest eigenvalue of Σ.

Remark 3.7. It is worth observing that after the conditional expectation (16) one may also
perform a change of measure on the resulting d−1 dimensions to enhance the convergence
of all the quadratures discussed in this work. For instance, this is particularly important for
out of the money options.

4. Numerical example 1: Multivariate Black Scholes setting

In our first numerical example, we consider the pricing problem (3) of a European bas-
ket option in a Black-Scholes model. This price depends on the strike price K, the weight
vector c and the vector S T containing the values of the different assets at the maturity T .
Moreover, the distribution of S T can be deduced from the initial values of the assets S 0,
the vector of volatilities σ and the correlation matrix ρ which determine the Black-Scholes
model in (1). The initial values in our examples are chosen randomly, i.e. independently
and uniformly distributed from the interval S i

0 ∈ [8, 20]. The volatilities are chosen ran-
domly as well from the interval σi ∈ [0.3, 0.4]. Following [10], the correlation matrix
ρ = ττ> is given by a lower triangular matrix τ which is constructed from a random vector
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x ∈ Rd−1 with independently and uniformly distributed entries xi ∈ [0.8, 1] as follows:

τ1 =

(
1

cp(x)

)
, τ2 =

√
1 − x2

1

 0
1

cp(x2:d−1)

 , . . . , τd =


0
...
0√

1 − x2
d−1

 .
Herein, we employed the MATLAB-inspired notation x2:d−1 = [x2, . . . , xd−1]>. In addition,
we denote by cp: Rd−1 → Rd−1 the cummulative product given by

cp(x) = [x1, x1x2, . . . , x1x2 · · · xd−1]>.

The weight vector c is chosen such that the basket is an average of the different assets,
i.e. ci = 1/d. Moreover, we choose three different settings for the strike price, K = c>S 0
(”at the money”), K = 1.2 ·c>S 0 (”out of the money”) and K = 0.8 ·c>S 0 (”in the money”).

Remark 4.1. We tested our experiments with different, randomly chosen weight vectors
c ∈ [0, 1]d and obtained similar results. Hence, it seems that there is only a slight de-
pendence between the weight vector in the basket and the performance of the different
quadrature methods.

We compare several integration schemes applied to the original problem (4) and the
smoothened problem (16). To be more precise, we consider the Monte-Carlo method, the
quasi-Monte Carlo method based on Sobol points and the sparse grid method described in
Section 2.

4.1. Performance of the sparse grid methods. In this subsection, we investigate the con-
vergence behaviour of the adaptive sparse grid method for the smoothened problem (16)
(SGBS). Therefore, we apply the (SGBS) to our model problem in dimension d = 3 in the
“at the money case”, d = 8 in the “out of the money case” and d = 25 in the “in the money
case”, respectively. As a reference solution, we use an adaptive sparse grid quadrature to
determine (16) with a very small tolerance, i.e. ε = 10−11 for d = 3, ε = 10−9 for d = 8,
and ε = 10−7 for d = 25 respectively. As the sequence of univariate quadrature points, we
use the listed Genz-Keister points from [23]. Unfortunately, there exists only 9 different
Genz-Keister extensions and it might happen that a higher precision is needed in a partic-
ular direction. In this case, we use Gauß-Hermite points with a successively higher degree
of precision. The one-dimensional Gauß-Hermite points and weights can be easily con-
structed for an arbitrary degree of precision by solving an associated eigenvalue problem,
see e.g. [14] for the details.

To observe the convergence behaviour of the SGBS, we successively refine the toler-
ance, e.g. from 10−2 to 10−9 for d = 3, and compute the relative error between the corre-
sponding approximation to (16) and the reference solution. In order to compare the results
with other methods and also to validate the reference solution, we additionally apply a
Monte-Carlo quadrature (MC), a quasi-Monte Carlo quadrature (QMC) and an adaptive
sparse grid quadrature (SG) to the original problem (4) and compare the results with the
reference solution as well. Herein, we increase the number of quadrature points for the
(quasi-) Monte Carlo quadrature as 3 · 6q for q = 1, . . . , 8. In addition, we use 20 runs of
the Monte-Carlo estimator on each level q and plot the median of the relative errors to the
reference solution of these 20 runs.

Remark 4.2. The convergence results are shown in terms of quadrature points. Of course,
it is also interesting to compare the computational times to see the overhead of the adaptive
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Figure 3. Errors for d = 3, d = 8 and d = 25 with volatilities selected
randomly from the interval [0.3, 0.4].

sparse grid construction. Therefore, we depict in Table 1 computational times in seconds
and errors for the different quadrature methods at a comparable number of quadrature
points for each dimension. As we can deduce from these times, there is indeed a huge
overhead for the SGBS. In dimension d = 25, for example, the computation of the adaptive
sparse grid method with around 25% more quadrature points requires around 23 times the
computation time in comparison to QMC. Nevertheless, the error of the SGBS is aroud
a factor 600 smaller in comparison to QMC. Note that all the computations are done in

SGBS QMC MC
time error points time error points time error points

d = 3 0.0057 4.9 e-10 104 0.0016 1.25 e-1 108 0.0013 1.77 e-1 108
d = 8 0.3675 1.81 e-9 24622 0.0161 5.39 e-3 23328 0.0135 1.38 e-2 23328
d = 25 5.4283 1.04 e-6 174098 0.2409 6.18 e-4 139968 0.2188 1.29 e-3 139968

Table 1. Computation times for the different quadrature methods

MATLAB and that the evaluation of the integrand is completely vectorized in case of the
(Q)MC. This is, of course, not possible for the adaptive sparse grid quadrature, since we
adaptively add indices, which correspond to difference quadrature rules with a relatively
low number of quadrature points, to the index set. Although, the evaluation of the integrand
in each difference quadrature rule is vectorized, we need to do this several times during the
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algorithm. Hence, a MATLAB implementation is not the most efficient one for adaptive
sparse grid quadratures or adaptive methods in general and the overhead could be reduced
drastically with an efficient implementation in e.g. C.

The results for d = 3, d = 5 and d = 25 are depicted in Figure 3. As expected, the
Monte-Carlo quadrature converges in each dimension algebraically with a rate 1/2 against
the reference solution, while the rate of the quasi-Monte Carlo quadrature is close to 1.
The convergence of the SG is comparable to that of the MC for d = 3 and becomes worse
for d = 8 and d = 25. Hence, it is not very suitable to tackle the original problem (4).
In contrast to that, the SGBS outperforms all the other considered methods, especially for
d = 3 and d = 8, in both convergence rate and constant. For d = 3, the rate is rather
exponential than algebraic and the observed algebraic rate for d = 8 is 2. In d = 25
dimensions, the rate deteriorates to 1 but the constant is still around a factor 100 less
compared to the constant of the QMC.

Summarizing, we find that the adaptive sparse grid quadrature applied to (16) yields
very good results to approximate the value of a basket option. In particular, it significantly
improves the performance of the adaptive sparse grid quadrature applied to (4). This is
due to the fact that the integrand in (16) is smooth while the integrand in (4) is not even
differentiable.
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Figure 4. Smoothing effect for the (quasi)-Monte Carlo quadrature for
d = 3, d = 8 and d = 25 with volatilities selected randomly from the
interval [0.3, 0.4].
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4.2. Smoothing effect for Monte Carlo and quasi-Monte Carlo quadrature. In this
subsection, we examine the smoothing effect on the (quasi-) Monte Carlo quadrature. To
that end, we apply the (quasi-) Monte Carlo quadrature with the same number of quadra-
ture points as before, i.e. 3 · 6q for q = 1, . . . , 8, to approximate the integral in (16) and
compare the results with those of the (quasi-) Monte Carlo quadrature applied to (4). For
the Monte Carlo quadrature, we expect that the smoothing effect is not as strong as for the
sparse grid quadrature. Nevertheless, the convergence constant might be improved since
we determined a conditional expectation to deduce (16) from (4) which should decrease the
variance of the integrand. Figure 4 corroborrates that the smoothing has the expected effect
for the Monte Carlo quadrature, but the effect seems to diminish in higher dimensions. In
case of the quasi-Monte Carlo quadrature, the smoothing does not effect the convergence
rate but improves the convergence constant as well. Moreover, the effect is even stronger
as for the Monte Carlo quadrature. The convergence constant of the quasi-Monte Carlo
quadrature relies on the variation of the integrand and, hence, we suspect a larger decrease
in the variation of the integrand than in the variance. An explanation is that the variation of
a function can be calculated from the first mixed derivatives. Thus, the variation strongly
depends on the smoothness of the integrand, in particular this dependence is stronger than
for the variance of the integrand.
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Figure 5. Acceleration of the (quasi-) Monte Carlo quadrature with a
sparse grid control variate for d = 3, d = 8 and d = 25 with volatilities
selected randomly from the interval [0.3, 0.4].



SMOOTHING THE PAYOFF FOR EFFICIENT COMPUTATION OF BASKET OPTION PRICING 15

4.3. Acceleration by using a sparse grid interpolant as a control variate. Another op-
tion to exploit the smoothness of the integrand is to combine a (quasi-) Monte Carlo quad-
rature with a sparse grid approximation. To that end, we construct a sparse grid interpolant
on the integrand in (16), i.e. we use sparse grid quadrature nodes as interpolation points,
and employ this interpolant as a control variate. To explain the concept of a control variate,
let us consider the integration problem of a function f : Rd → R and an approximation
g : Rd → R on f . We assume that it is easy to calculate E(g) :=

∫
Rd g(x) dx. Then, we

rewrite the integral as

(17)
∫
Rd

f (x) dx =

∫
Rd

f (x) − g(x) dx + E(g).

Instead of using a (quasi-) Monte Carlo estimate of the integral on the left-hand side of
17, we estimate the integral on the right-hand side. Then, a function g : Rd → R serves
as a control variate, see e.g. [18] for a more detailed description. Of course, the quality
of the control variate depends on how much the variance or the variation of f − g is re-
duced compared with the variance or variation of f . Hence, it is closely connected to the
approximation quality of g on f .

In our examples, we use as interpolation points classical sparse grid quadrature points.
That means that we choose the index set a priori as in (12) on level q = 2. Moreover, as
one-dimensional quadrature points, we use Gauß-Hermite points with N0 = 1, N1 = 3 and
N2 = 5, respectively.

Remark 4.3. The evaluation of this sparse grid interpolant at the (quasi-) Monte Carlo
quadrature points becomes quite costly, especially in high dimensions. Most likely, more
efficient control variates could be used, e.g. by including only the 5 most important dimen-
sions in the sparse grid interpolant. Nevertheless, the aim here is to demonstrate that it is
possible, due to the smoothing, to significantly improve the convergence behaviour of the
(quasi-) Monte Carlo quadrature by a sparse grid control variate on a relatively low level
but we do not incorporate an efficiency analysis in terms of computational times here.

The results of employing such a function as a control variate to improve the convergence
of the (quasi-) Monte Carlo quadrature are visualized in Figure 5. The error reduction is
quite impressive for both methods. Especially the error of the Monte-Carlo quadrature is
reduced by around a factor 103 in d = 3 dimension and still by a factor 102 in d = 8 and
d = 25 dimensions while the convergence rate is preserved. In case of the quasi-Monte
Carlo quadrature, the constant is reduced by a similar factor as in the Monte Carlo case.
Although, the convergence rate seems to be slightly worse in comparison with the quasi-
Monte Carlo quadrature without control variate, the quasi-Monte Carlo quadrature with a
sparse grid control variate achieves the best error behaviour of the four considered methods
in Figure 5.

5. Numerical example 2: Multivariate Variance Gamma setting

In our second numerical example, we consider the pricing of a basket option in a mul-
tivariate variance gamma model as introduced in [28]. Therefore, we recall that the multi-
variate extension of the univariate asset price process (6) is described as follows, cf. [27]
and Section 1 above,

(18) S i
t = S i

0 exp
(
(r + ωi)t + θiγt + σiWi(γt)

)
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with

ωi =
1
ν

log
(
1 −

1
2
σ2

i ν − θiν

)
.

We incorporate here also the deterministic interest rate r in order to compare our results
with those from [27]. The correlated d-dimensional Brownian motion W in (18) is as in
(2) given by its correlation matrix ρ =

(
ρi, j

)d

i, j=1
and its volatility vector σ = [σ1, . . . , σd]>.

The Gamma process γt is independent from W and described by the parameter ν via its
density function

fγt (y) =
y1/ν−1

νt/νΓ(t/ν)
e−y/ν.

The calculation of a European basket call option at time T under the variance gamma model
leads then to

(19) CB B
∫ ∞

0
e−rT E


 d∑

i=1

ciS i
T − K


+ ∣∣∣∣∣∣γT = y

 fγT (y) dy.

Herein, the integrand is for every fixed y ≥ 0 just the value of a basket call option according
to (3). Let us define

(20)
wi = ciS i

0e(r+ωi)T , i = 1, . . . , d,
Σi, j = σiσ jρi, jT, i, j = 1, . . . , d.

Then, we can as in (4) rewrite the integrand in terms of a d-dimensional Gaussian vector
Xy = (Xy

1, . . . , X
y
d) ∼ N(0, y · Σ) to

E


 d∑

i=1

ciS i
T − K


+ ∣∣∣∣∣∣γT = y

 = E


 d∑

i=1

eθiywieXi − K


+ ∣∣∣∣∣∣γT = y

 .
Hence, we can apply the technique from Section 3 to equation (19). Therefore, we recall
the decomposition of the matrix Σ = VDV> according to Lemma 3.1. The first row of the
matrix V is the vector v = [1, . . . , 1]> and we denote the entries of the diagonal matrix by
D = diag(λ2

1, . . . , λ
2
d). Continuing in the same fashion as in Section 3, we end up with the

equivalent integration problem, cf. (16),

(21)
CB =

∫ ∞

0
e−rT E

[
CBS

(
hy

(√
yDZ

)
eyλ2

1/2,K,
√

yλ1

)]
fγT (y) dy,

Z ∼ N (0, Id−1) ,
√

D = diag(λ2, . . . , λd).

Herein, the function hy is given similar as in (15) by

hy(z2, . . . , zd) B
d∑

i=1

eθiywi exp

 d∑
j=2

Vi, jz j

 , z = (z2, . . . , zd) ∈ Rd−1.

Note that the integrand in (21) is very easy to calculate with respect to y since we only need
to incorporate the factor eθiy in front of each weight wi and scale the matrix D by y. Thus,
the decomposition of the correlation matrix in view of Lemma 3.1 has only to be computed
once although the correlation matrix of the Gaussian vector Xy depends on the parameter
y.

In Figure 6, we present two examples for basket option pricing under the variance
gamma model. The first picture on the right-hand side depicts the error of the calcula-
tion of an at the money basket call, cf. (19). We choose the parameters r = 0 and ν = 0.3
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Figure 6. Errors of an at the money basket call under a variance gamma
model with parameters ν = 0.3 and θi ∈ [−0.1, 0.05] for d = 8 assets on
the right and for an example from [27] with d = 3 assets on the left.

in (18) deterministically and randomly select θi ∈ [−0.1, 0.05]. Moreover, the correla-
tion matrix ρ, the volatilities σi and the initial values S i

0 are constructed as in Section 4.
We compare the convergence of the Monte-Carlo quadrature and the adaptive sparse grid
quadrature for the d-dimensional integral in (21). Note that the integration domain and the
density function in (21) are given by

Γ = [0,∞] × Rd−1, p(y, z2, . . . , zd) = fγT (y) ·
1

(2π)d/2 exp

1
2

d∑
i=2

z2
i

 .
Hence, we use as samples for the Monte-Carlo quadrature d-dimensional random vectors
where the first component is distributed with respect to fγT and independent to the remain-
ing d − 1 variables which are normally distributed and independent as well. In case of the
adaptive sparse grid quadrature, we apply tensor products of difference quadratures rules,
cf. (11), where we use as quadrature sequence in the first variable differences of gener-
alized Gauss-Laguerre quadrature rules. In the remaining variables, we set the univariate
quadratures as in Section 4. Afterwards, we select the indices which are included in the
sparse grid adaptively as described in Section 2.2. As expected, the Monte Carlo method
converges exactly with a rate N−1/2. Moreover, the result demonstrates that the adaptive
quadrature outperforms the Monte Carlo method even in this variance gamma example
with an observed rate of nearly N−2.

The second numerical example is taken from the recent work [27] and stems originally
from a parameter fitting of the variance gamma model in [29]. It describes a 3-dimensional
model as in (18) where θ = [−0.1368,−0.056,−0.1984]>, σ = [0.1099, 0.1677, 0.0365]>

and S 0 = [100, 200, 300]>. Additionally, the weight vector c = [1/3, 1/6, 1/9]> and the
correlation matrix

ρ =

 1 0.6 0.9
0.6 1 0.8
0.9 0.8 1


are used. In [27], several different settings for the parameter ν and the strike price K are
considered. We restrict ourselves to the setting ν = 0.5 and K = 75 which corresponds to
an ”in the money” basket. On the left-hand side of picture 6 the convergence results for
the Monte Carlo and the adaptive approach are shown. We observe that the Monte Carlo
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quadrature converges as before. Although the convergence of the adaptive sparse grid
quadrature is still better than that of the Monte Carlo method, an exponential rate as could
be expected for such a low dimensional example cannot be obtained. This deterioration
in the convergence rate does not depend on the variance gamma setting but, according to
Remark 3.6, there is a connection of the smoothing to the entries of the diagonal matrix D
from Lemma 3.1. For the considered example, the matrix D has the entries λ2

1 = 0.00023,
λ2

2 = 0.03432 and λ2
3 = 0.00652. In particular, the small value of λ2

1 explains the relatively
low smoothing effect. In view of Remark 3.5, the vector 1 in Lemma 3.1 can be replaced by
any other vector 0 , v ∈ {0, 1}d in order to obtain a closed-form expression in Lemma 3.3.
Therefore, we investigated also the convergence behaviour when we used a vector v , 1.
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Figure 7. Errors for the example from [27] with d = 3 assets. On
the left-hand side, we included the convergence when the vector 1 is
replaced by v = [1, 1, 0]>. On the right-hand side, we used the modified
volatility σ3 = 0.1365.

On the left-hand side of Figure 7, the result is visualized for the vector v = [1, 1, 0]>, which
is the best possible choice for this example. We observed an improved convergence with
this choice of v, which comes in concordance with an increase in the size of λ2

1,v = 0.00109,
i.e. (λ2

1,v is five times as high as λ2
1. Nevertheless, λ2

1,v is still quite small compared with
λ2

2,v = 0.03294 and, hence, the improvement in the convergence is not that extraordinary.
This leads to the supposition that the considered example is not that well suited for our
proposed method. In particular, the low value of σ3 = 0.0365 compared with the other
volatilities seems to have a negative effect on the smoothing. Hence, we tested this example
also for the modified volatility σ3 = 0.1365. The results for this case are depicted on the
right-hand side of figure 7 and, indeed, we observe a drastically improved convergence.
Furthermore, the entries of D are given by λ2

1 = 0.01034, λ2
2 = 0.02255 and λ2

3 = 0.00526
which demonstrates the influence of the differences in the volatilities on the size of λ2

1 and,
thus, on the smoothing.

Conclusions

In the context of basket options, we show that the inherent smoothing property of a
Gaussian component of the underlying can be used to mollify the integrand (payoff func-
tion) without introducing an additional bias. Having obtained a smooth integrand, we can
now directly apply (adaptive) sparse grid methods. We observe that these methods are
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highly efficient in low and moderately high dimensions. For instance, the error can be
improved by two orders of magnitude in dimension 25 compared to (Q)MC methods. In
dimension 3, we even obtain exponential convergence. We have also discussed improve-
ments for MC and QMC methods by introducing the smoothed payoff. In the Monte Carlo
case, we do not observe a significant improvement of the computational error, as the vari-
ance reduction seems rather negligible. For QMC methods—Sobol numbers, to be more
precise—we do see considerable improvements in the constant. As expected, the rate stays
the same.

We note that the method employed in this work is not restricted to basket options in
a multivariate Black Scholes or Variance Gamma setting, but can be generalized consid-
erably. For instance, each step of an Euler discretization of an SDE corresponds to a
Gaussian mixture model. Hence, the conditional expectation of the final integrand given
all the Brownian increments but the last one is of the form of a Gaussian integral of the
payoff function w.r.t. to a normal distribution with possibly complicated mean vector and
covariance matrix. If this integral can be computed explicitly, then we can directly obtain
mollification of the payoff without introducing a bias.

Even if the integral cannot be computed in closed form, there may be use cases for
employing numerical integration. For instance, in the basket option case, a fast and highly
accurate numerical integration of the one-dimensional log-normal integral, coupled with
regression/interpolation (to avoid re-computation of the one-dimensional integral for each
new (sparse) gridpoint) could well turn out to be more efficient than a numerical integration
technique applied to the full problem.

Finally, note that there are also clear limitations of the technique. For instance, consider
a variety of the basket option studied in this work, namely a best of call option. Here, the
payoff is given by (

max
i=1,...d

S i
T − K

)+

for log-normally distributed, correlated variables S i
T (in the Black-Scholes setting). Clearly,

we can use Lemma 3.1 in order to construct a common normal factor Y and other factors
Y1, . . . ,Yd (all jointly normal, Y independent of the rest), such that S i

T = eYeYi . Therefore,
we obtain for the price of the best of call option

E
[(

max
i=1,...d

S i
T − K

)+]
= E

[(
eY max

i=1,...d
eYi − K

)+]
.

Taking the conditional expectation, we obtain the Black-Scholes formula applied at maxi=1,...d eYi ,
which is still a non-smooth payoff. The mollification can only remove one source of ir-
regularity in this case, not all of them. Indeed, as currently presented in this work, the
conditional expectation step is most effective when the discontinuity surface of the op-
tion’s payoff has codimension one.
Acknowledgements. R. Tempone is a member of the KAUST Strategic Research Initia-
tive, Center for Uncertainty Quantification in Computational Sciences and Engineering. C.
Bayer and M. Siebenmorgen received support for research visits related to this work from
R. Tempone’s KAUST baseline funds.

References

[1] Nico Achtsis, Ronald Cools, and Dirk Nuyens. Conditional Sampling for Barrier Option Pricing Under the
Heston Model, pages 253–269. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[2] Nico Achtsis, Ronald Cools, and Dirk Nuyens. Conditional sampling for barrier option pricing under the
LT method. SIAM J. Financial Math., 4(1):327–352, 2013.



20 C. BAYER, M. SIEBENMORGEN, AND R. TEMPONE

[3] W. Alt. Nichtlineare Optimierung: Eine Einführung in Theorie, Verfahren und Anwendungen.
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[12] Eric Fournié, Jean-Michel Lasry, Jérôme Lebuchoux, Pierre-Louis Lions, and Nizar Touzi. Applications of

Malliavin calculus to Monte Carlo methods in finance. Finance Stoch., 3(4):391–412, 1999.
[13] Jim Gatheral. The Volatility Surface: A Practitioner’s Guide. Wiley, 2006.
[14] John H. Welsch Gene H. Golub. Calculation of gauss quadrature rules. Mathematics of Computation,

23(106):221–s10, 1969.
[15] Alan Genz and B.D. Keister. Fully symmetric interpolatory rules for multiple integrals over infinite regions

with gaussian weight. Journal of Computational and Applied Mathematics, 71(2):299 – 309, 1996.
[16] T. Gerstner and M. Griebel. Dimension–adaptive tensor–product quadrature. Computing, 71(1):65–87,

2003.
[17] Thomas Gerstner. Sparse grid quadrature methods for computational finance. Habilitation, University of

Bonn, 77, 2007.
[18] P. Glasserman. Monte Carlo Methods in Financial Engineering. Applications of mathematics : stochastic

modelling and applied probability. Springer, 2004.
[19] M. Griebel, F. Y. Kuo, and I. H. Sloan. The smoothing effect of integration in Rd and the ANOVA decom-

position. Math. Comp., 82:383–400, 2013. Also available as INS preprint No. 1007, 2010.
[20] M. Griebel, F. Y. Kuo, and I. H. Sloan. The ANOVA decomposition of a non-smooth function of infinitely

many variables can have every term smooth. Submitted to Mathematics of Compuation. Also available as
INS preprint No. 1403, 2014, 2014.

[21] M. Griebel, F. Y. Kuo, and I. H. Sloan. Note on ”The smoothing effect of integration in Rd and the ANOVA
decomposition”. Submitted to Mathematics of Compuation. Also available as INS preprint No. 1513, 2015.

[22] J. M. Hammersley and D. C. Handscomb. Monte Carlo methods. Methuen, London, 1964.
[23] Florian Heiss and Viktor Winschel. Likelihood approximation by numerical integration on sparse grids.

Journal of Econometrics, 144(1):62–80, 2008.
[24] Markus Holtz. Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance.

Springer Verlag, Berlin, Heidelberg, 2011.
[25] Martin Krekel, Johan de Kock, Ralf Korn, and Tin-Kwai Man. An analysis of some methods for pricing

basket options. Wilmott, pages 82–89, 2004.
[26] Pierre L’Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance and Stochastics,

13(3):307–349, 2009.
[27] Danil Linders and Ben Stassen. The multivariate variance gamma model: basket option pricing and calibra-

tion. Quantitative Finance, 0(0):1–18, 0.
[28] Elisa Luciano and Wim Schoutens. A multivariate jump-driven financial asset model. Quantitative Finance,

6(5):385–402, 2006.
[29] Dilip B. Madan, Peter P. Carr, and Eric C. Chang. The variance gamma process and option pricing. Eur.

Finance Rev., 2(1):79–105, 1998.
[30] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and

Applied Mathematics, Philadelphia, PA, 1992.
[31] Marc Romano and Nizar Touzi. Contingent claims and market completeness in a stochastic volatility model.

Math. Finance, 7(4):399–412, 1997.
[32] S. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dok-

lady Akademii Nauk SSSR, 4:240–243, 1963.



SMOOTHING THE PAYOFF FOR EFFICIENT COMPUTATION OF BASKET OPTION PRICING 21

[33] I.M Sobol’. On the distribution of points in a cube and the approximate evaluation of integrals. USSR
Computational Mathematics and Mathematical Physics, 7(4):86 – 112, 1967.

Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin, Germany
E-mail address: christian.bayer@wias-berlin.de

Institute for Numerical Simulation, University of Bonn, Wegelerstr. 6, 53115 Bonn, Germany
E-mail address: siebenmo@ins.uni-bonn.de

CEMSE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Ara-
bia

E-mail address: raul.tempone@kaust.edu.sa


	1. Introduction
	Outline
	Setting

	2. A reminder on efficient multi-dimensional numerical integration
	2.1. Monte Carlo and quasi-Monte Carlo quadrature
	2.2. Adaptive sparse grid quadrature

	3. Smoothing the payoff
	4. Numerical example 1: Multivariate Black Scholes setting
	4.1. Performance of the sparse grid methods
	4.2. Smoothing effect for Monte Carlo and quasi-Monte Carlo quadrature
	4.3. Acceleration by using a sparse grid interpolant as a control variate

	5. Numerical example 2: Multivariate Variance Gamma setting
	Conclusions
	References

