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Variance swaps and VIX

I Given a traded asset S t satisfying

dS t =
√

vtS tdZt

I Interest rate r = 0; model formulated under Q

I In this talk, S corresponds to the S & P 500 index (SPX).

I Realized variance wt,T =
∫ T

t vsds

I Variance swaps are swaps on realized variances.

I Allow direct trades in volatility, not indirect via options

I For convenience, CBOE introduced an index (VIX) for the square
root of (annualized) one month variance swaps.

I VIXt ≈

√
1
∆

Etwt,t+∆, ∆ = 1/12
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The log-strip

I Ito’s formula gives for the payoff log(S T )

log S T − log S t =

∫ T

t

dS u

S u
−

1
2

∫ T

t
vudu

I Breeden-Litzenberger formula: p(S T ,T, S t, t) =
∂2C/P(S t ,K,t,T )

∂K2

∣∣∣∣
K=S t

I p . . . density, C, P call and put prices
I Integration by parts, put-call-parity give for smooth payoff g

E[g(S T )|S t] = g(S t) +

∫ S t

0
P(K)g′′(K)dK +

∫ ∞

S t

C(K)g′′(K)dK

I For g(S ) = −2 log S , we have g′′(K) = 2
K2 and

Etwt,T = −2
(∫ S t

0

P(K)
K2 dK +

∫ ∞

S t

C(K)
K2 dK

)
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Stochastic volatility models

dS t =
√

vtS tdZt,

dvt = . . .

I Z, W Brownian motions with correlation ρ

I Goal: model consistent with the full SPX implied volatility surface

I VIXt ≈
√

vt (with ∆ ≈ 0)

I VIX itself is not traded, but the following are:
I VIX futures (rate given by Et VIXT ; traded on CBOE)
I VIX options (i.e., options on VIX futures; traded on CBOE)
I Variance swaps (swap rate Etwt,T ; traded over the counter)

I Fundamental object: forward variance ξt(u) = Etvu, t ≤ u

I Variance swap Etwt,T = Et

∫ T

t
vsds =

∫ T

t
ξt(s)ds
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Some SPX implied volatility surfaces
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SPX ATM volatility skew
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Conclusions

I Since the rough shape of volatility surfaces seems pretty stable,
we look for time-homogeneous models.

I Term structure of ATM volatility skew (k = log(K/S t))

ψ(τ) =

∣∣∣∣∣ ∂∂k
σBS (k, τ)

∣∣∣∣∣
k=0
∼ 1/τα, α ∈ [0.3, 0.5]

I Conventional stochastic volatility models produce ATM skews
which are constant for τ � 1 and of order 1/τ for τ � 1. Hence,
conventional stochastic volatility models cannot fit the full
volatility surface.

I Do we need jumps?

I Stochastic variance has log-normal distribution (under P).
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Bergomi model

I Recall ξt(u) = Etvu

dS t =
√
ξt(t)S tdZt,

ξt(u) = ξ0(u)E

 n∑
i=1

ηi

∫ t

0
e−κi(u−s)dW i

s


I E(X) = exp(X − 1

2 E[|X|2]) for Gaussian r.v. X

I Market model

I In practice, n = 2 needed for good fit, contains seven parameters

I ψ(τ) ∼
n∑

i=1

ηi

κiτ

(
1 −

1 − e−κiτ

κiτ

)
I Tempting to replace the exponential kernel by a power law kernel!
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Rough Fractional Stochastic Volatility

I Gatheral, Jaisson, and Rosenbaum (2014) study time series of
realized variance and find amazing fits of a stochastic volatility
model based on

log vu − log vt = 2ν
(
WH

u −WH
t

)
I Mandelbrot – Van Ness representation of fBm (with γ = 1/2 − H)

I vu is not a Markov process (neither under P or Q).
I With W̃P

t (u) =
√

2H
∫ u

t
dWP

s
(u−s)γ , we get
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The Rough Bergomi model (under Q)

dS t =
√

vtS tdZt

vt = ξ0(t)E
(
ηW̃t

)
I dWtdZt = ρdt,W̃t =

√
2H

∫ t
0

dWs
(t−s)γ , γ = 1/2 − H

I W̃ is a “Volterra” process (or “Riemann-Liouville fBm”)

I Covariance:

E
[
W̃vW̃u

]
=

2H
1/2 + H

u1/2+H

v1/2−H 2F1 (1, 1/2 − H, 3/2 + H, u/v) , u ≤ v,

E
[
W̃vZu

]
= ρ

√
2H

1/2 + H

(
v1/2+H − [v −min(u, v)]1/2+H

)
I ψ(τ) ∼ 1/τγ

I Typical parameter values: H ≈ 0.05, η ≈ 2.5
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KRV estimates of SPX realized variance from 2000 to 2014
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Moments of differences of realized volatility

I The Oxford Man Institute provides estimated realized variances
vt for numerous indices on a daily bases.

I Let σt =
√

vt.

I For some lag ∆ > 0 fix a corresponding time-grid ti (with
ti+1 − ti = ∆) and define the moment of the log-differences by

m(q,∆) B
〈∣∣∣logσt+∆ − logσt

∣∣∣q〉
I 〈·〉 denotes taking sample average.

I m(q,∆) measures smoothness of realized volatility at various
lags.
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Scaling of m in ∆
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Monofractal scaling of m(q,∆)

I We see fractal behaviour: for each moment order q there is a
coefficient ζq such that

m(q,∆) ∼ ∆ζq

I Different q show the same fractal behaviour in the sense that for
some H ≈ 0.1, ζq ≈ qH.

I Log-volatility is also approximately normal.
I These observations hold for all 21 indices in the Oxford Man

database.

Log-volatility seems to be described by a fractional Brownian motion
with Hurst index H ≈ 0.1. This suggests models of the form

dS t = S t exp
(
ηWH

t

)
dZt + · · ·

for 0 < H < 1/2.
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Fractional models in the literature

I Several fractional stochastic volatility models have been
proposed, inevitably with H > 1/2.

I Fractional Brownian motion with H > 1/2 has long memory, i.e.,
the auto-correlation function ρ(∆) (at lag ∆) has power law decay
as ∆→ ∞.

I It was an accepted stylized fact that volatility has long memory.
I In our rough model:

ρ(∆) ∼ exp
(
−
η2

2
∆2H

)
I Hence, no long term memory!
I Estimates and comparisons by Gatheral, Jaisson, Rosenbaum

suggest that there really is no long term memory in volatility.
I Might be an effect of new, better (high-frequency) data.
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I Estimates and comparisons by Gatheral, Jaisson, Rosenbaum

suggest that there really is no long term memory in volatility.
I Might be an effect of new, better (high-frequency) data.
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Empirical auto-correlation against exponential decay
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Comparing with Comte-Renault model

Fractional stochastic volatility model:

dS t = σtS tdZt,

d logσt = −α
(
logσt − θ

)
dt + γdŴH

t

with ŴH
t =

∫ t
0

(t−s)H−1/2

Γ(H+1/2) dWs, 〈Z, W〉t = ρt, 1/2 ≤ H < 1.

I Related to Hull-White stochastic volatility model

I FSV model equivalent to RFSV model of Gatheral, Jaisson,
Rosenbaum (up to choice of H)

I rBergomi: replace fOU-process by fBm

I Get long memory for 1/2 < H < 1.
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t =

∫ t
0

(t−s)H−1/2

Γ(H+1/2) dWs, 〈Z, W〉t = ρt, 1/2 ≤ H < 1.

I Related to Hull-White stochastic volatility model

I FSV model equivalent to RFSV model of Gatheral, Jaisson,
Rosenbaum (up to choice of H)

I rBergomi: replace fOU-process by fBm

I Get long memory for 1/2 < H < 1.

Pricing under rough volatility · November 3, 2015 · Page 20 (35)



Comparing with Comte-Renault model

Fractional stochastic volatility model:

dS t = σtS tdZt,

d logσt = −α
(
logσt − θ

)
dt + γdŴH
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Moment comparison for realized variance

Blue: FSV model with H = 0.53, orange: rBergomi, H = 0.15
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02/04/2010; SPX Vol surface for H = 0.07, η = 1.9, ρ = −0.9
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02/04/2010; SPX short maturity smile for H = 0.07, η = 1.9, ρ = −0.9
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02/04/2010; SPX volatility skew for H = 0.07, η = 1.9, ρ = −0.9
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02/04/2010; SPX ATM volatility for H = 0.07, η = 1.9, ρ = −0.9
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Variance swap forecast

I Variance v is not a martingale, hence non-trivial forecast.

I Formulate in RFSV model.

EP [
log vt+∆|Ft

]
=

cos(Hπ)
π

∆H+1/2
∫ t

−∞

log vs

(t − s + ∆)(t − s)H+1/2 ds,

EP [vt+∆|Ft] = exp
(
EP [

log vt+∆|Ft
]
+ 2cν2∆2H

)
.

I Use realized variance as proxy for v

I Problem: realized variance only available from opening to close,
not from close to close

I Forecasts must be re-scaled by (time-varying) factor; hence
should predict variance swap curve up to a factor
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Forecasts for the Lehman weekend

Actual and predicted variance swap curves, 09/12/08 (red) and
09/15/08 (blue), after scaling.
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Bergomi-Guyon implied volatility expansion

I Bergomi and Guyon (2012) give a general expansion of implied
volatility in terms of vol-of-vol and maturity for Bergomi-like
stochastic volatility models.

I Expansion is based on auto-covariance C = E
[
〈log S · , ξ·(u)〉t

]
I We derived the formula for the rBergomi model. In the special

case ξ0(·) ≡ σ, we obtain

ψ(τ) = ρηFH
1
τγ

+ ρ2η2στ2HGH + o
(
η3τ3H

)
I Very high accuracy for λ = ητH � 1.

I Unsurprisingly, poor accuracy for λ = ητH not sufficiently small,
as typically the case for real-life situations.
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Bergomi-Guyon formula for H = 0.1, η = 0.4, ρ = −0.85, σ = 0.235
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VIX options and VVIX

I Maybe we can calibrate against VIX options, in particular VIX
variance swaps / VVIX?

I Let
√
ζ(T ) be the terminal value of VIX futures, i.e.,

ζ(T ) =
1
∆

∫ T+∆

T
ET vudu

I Similar to the construction of VIX, we use the log-strip to
construct VVIX (based on VIX options)

VVIX2
t,T (T − t) = −2Et

[
log

√
ζ(T ) − log

√
ζ(t)

]
I Heuristic approximation gives

VVIX2
t,T τ ≈

1
4
η2τ2H fH

(
∆

τ

)
,

fH(θ) =
D2

H

θ2

∫ 1

0

(
(1 + θ + x)1/2+H − (1 − x)1/2+H

)
dx
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Comparison to market VVIX term structure
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Conclusions and outlook

I Rough fractional stochastic volatility models (with H < 1/2)
provide excellent fits with time series of realized variance for
essentially all major stock indices and a variety of other indices.

I The rBergomi model, in particular, can fit the full implied volatility
surface of SPX with only three free parameters (H, η, ρ).

I So far, we use trivial market price of volatility risk, hence we
cannot get a realistic smile for VIX options.

I We can price SPX and VIX options using MC simulation, but
accurate asymptotic formulas for calibration are missing.

I There is a clear mis-fit to volatility of volatility (VVIX).

I Model can be obtained as scaling limit from a micro-structure
model based on Hawkes processes for order flows.
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