



# A regularity structure for rough volatility

Christian Bayer

Joint work with: P. Friz, P. Gassiat, J. Martin, B. Stemper

Jim Gatheral's 60'th birthday conference



1 Rough volatility models

2 A minimal view on regularity structures

3 The simple regularity structure for rough volatility

4 The full regularity structure for rough volatility



## Rough volatility models



Some years ago, Jim Gatheral (et al.) kicked off exciting new development in rough volatility. Let  $K(s,t) := \sqrt{2H} |t-s|^{H-1/2} \mathbf{1}_{t>s}$ .

# **Example (Rough Bergomi model)**

# **Example (Rough Heston model)**

$$dS_t = \dots, \quad v_t = v_0 + \int_0^t (a - bv_s)K(s, t)ds + \int_0^t c \sqrt{v_s}K(s, t)dW_s$$
$$\sim Z_t = z + \int_0^t K(s, t)v(Z_s)ds + \int_0^t K(s, t)u(Z_s)dW_s$$





Provide unified analytic (i.e., pathwise) framework for rough volatility models as above.

- Stratonovich version of rough volatility models
- Existence and uniqueness and stability of solutions
- Numerical approximation based on approximation of the driving Brownian motion W
- Large deviation principle for analyzing behaviour of implied volatility

# Requirements

- Smoothness of coefficient functions
- Structure adapted to Hurst index H more detailed structure needed for  $H \ll \frac{1}{2}$





### **Theorem**

Let  $dS_t = f(\widehat{W}_t) (\rho dW_t + \overline{\rho} dW_t^{\perp})$ ,  $W^{\varepsilon}$  approximation (at scale  $\varepsilon$ ) of W.

**1.** There is  $\mathscr{C}^{\varepsilon} = \mathscr{C}^{\varepsilon}(t)$  s.t.  $\widetilde{S}^{\varepsilon} \to S$  (in probability, on [0, T]) with

$$\frac{d}{dt}\widetilde{S}^{\varepsilon} = f\left(\widehat{W}^{\varepsilon}\right)\left(\rho\dot{W}^{\varepsilon} + \overline{\rho}\dot{W}^{\perp,\varepsilon}\right) - \rho\mathcal{C}^{\varepsilon}f'\left(\widehat{W}^{\varepsilon}\right) - \frac{1}{2}f^{2}\left(\widehat{W}^{\varepsilon}\right).$$

For 
$$H < \frac{1}{2}$$
,  $\int_0^T \mathscr{C}^{\varepsilon}(t)dt \xrightarrow{\varepsilon \to 0} \infty$ .

**2.** Let 
$$\Psi(I, V) := C_{BS}\left(S_0 \exp\left(\rho I - \frac{\rho^2}{2}V\right), K, \overline{\rho}^2 V\right)$$
 and

$$\widetilde{\mathscr{J}^{\varepsilon}} := \int_{0}^{T} f\left(\widehat{W}_{t}^{\varepsilon}\right) dW_{t}^{\varepsilon} - \int_{0}^{T} \mathscr{C}^{\varepsilon}(t) f'\left(\widehat{W}_{t}^{\varepsilon}\right) dt, \ \mathscr{V}^{\varepsilon} := \int_{0}^{T} f^{2}\left(\widehat{W}_{t}^{\varepsilon}\right) dt.$$

Then 
$$E\left[(S_T - K)^+\right] = \lim_{\varepsilon \to 0} E\left[\Psi(\widetilde{\mathscr{J}^{\varepsilon}}, \mathscr{V}^{\varepsilon})\right]$$





#### Theorem

Let  $dS_t = f(\widehat{W}_t) (\rho dW_t + \overline{\rho} dW_t^{\perp})$ ,  $W^{\varepsilon}$  approximation (at scale  $\varepsilon$ ) of W.

**1.** There is  $\mathscr{C}^{\varepsilon} = \mathscr{C}^{\varepsilon}(t)$  s.t.  $\widetilde{S}^{\varepsilon} \to S$  (in probability, on [0,T]) with

$$\frac{d}{dt}\widetilde{S}^{\varepsilon} = f\left(\widehat{W}^{\varepsilon}\right)\left(\rho\dot{W}^{\varepsilon} + \overline{\rho}\dot{W}^{\perp,\varepsilon}\right) - \rho\mathcal{C}^{\varepsilon}f'\left(\widehat{W}^{\varepsilon}\right) - \frac{1}{2}f^{2}\left(\widehat{W}^{\varepsilon}\right).$$

For 
$$H < \frac{1}{2}$$
,  $\int_0^T \mathscr{C}^{\varepsilon}(t)dt \xrightarrow{\varepsilon \to 0} \infty$ .

**2.** Let  $\Psi(I, V) := C_{BS}\left(S_0 \exp\left(\rho I - \frac{\rho^2}{2}V\right), K, \overline{\rho}^2 V\right)$  and

$$\widetilde{\mathscr{I}^{\varepsilon}} \coloneqq \int_0^T f\left(\widehat{W}_t^{\varepsilon}\right) dW_t^{\varepsilon} - \int_0^T \mathscr{C}^{\varepsilon}(t) f'\left(\widehat{W}_t^{\varepsilon}\right) dt, \ \mathscr{V}^{\varepsilon} \coloneqq \int_0^T f^2\left(\widehat{W}_t^{\varepsilon}\right) dt.$$

Then 
$$E\left[(S_T - K)^+\right] = \lim_{\varepsilon \to 0} E\left[\Psi(\widetilde{\mathscr{I}^\varepsilon}, \mathscr{V}^\varepsilon)\right].$$





1 Rough volatility models

2 A minimal view on regularity structures

3 The simple regularity structure for rough volatility

4 The full regularity structure for rough volatility





- ► Model space  $\mathcal{T} := \langle \{\mathbf{1}, X, X^2, \dots, X^M\} \rangle$  with degrees  $|X^k| := k$
- Describes jet of local expansions at any point
- ▶ Model  $(\Pi, \Gamma)$ .  $\Pi_x : \mathcal{T} \to \mathcal{S}'(\mathbb{R})$  local expansion around  $x \in \mathbb{R}$
- $(\Pi_x X^k)(z) := (z x)^k, z \in \mathbb{R}$
- ▶  $\Gamma_{xy}: \mathcal{T} \to \mathcal{T}$  translates a "local expansion" around y to one around x, i.e.,  $\Pi_y = \Pi_x \Gamma_{xy}$
- Canonical choice:  $\Gamma_{xy}X^k := (X + (y x)\mathbf{1})^k$
- ▶ Modelled distribution  $F : \mathbb{R} \to \mathcal{T}$  is in  $\mathcal{D}^{\gamma}$  if it is "regular" in the sense that  $F(x) \Gamma_{xy}F(y)$  "small" at each level
- "Jets" of local expansions in terms of defining symbols
- ► Reconstruction operator  $\mathcal{R}: \mathcal{D}^{\gamma} \to \mathcal{S}'(\mathbb{R})$  such that  $\mathcal{R}F \Pi_x F(x)$  is "small" when tested against test functions centered in  $x \in \mathbb{R}$





- ► Model space  $\mathcal{T} := \langle \{\mathbf{1}, X, X^2, \dots, X^M\} \rangle$  with degrees  $|X^k| := k$
- Describes jet of local expansions at any point
- ▶ Model  $(\Pi, \Gamma)$ .  $\Pi_x : \mathcal{T} \to \mathcal{S}'(\mathbb{R})$  local expansion around  $x \in \mathbb{R}$
- $(\Pi_x X^k)(z) := (z x)^k, z \in \mathbb{R}$
- ▶  $\Gamma_{xy}: \mathcal{T} \to \mathcal{T}$  translates a "local expansion" around y to one around x, i.e.,  $\Pi_y = \Pi_x \Gamma_{xy}$
- Canonical choice:  $\Gamma_{xy}X^k := (X + (y x)\mathbf{1})^k$
- ▶ Modelled distribution  $F : \mathbb{R} \to \mathcal{T}$  is in  $\mathcal{D}^{\gamma}$  if it is "regular" in the sense that  $F(x) \Gamma_{xy}F(y)$  "small" at each level
- "Jets" of local expansions in terms of defining symbols
- ► Reconstruction operator  $\mathcal{R}: \mathcal{D}^{\gamma} \to \mathcal{S}'(\mathbb{R})$  such that  $\mathcal{R}F \Pi_x F(x)$  is "small" when tested against test functions centered in  $x \in \mathbb{R}$





- ► Model space  $\mathcal{T} := \langle \{1, X, X^2, \dots, X^M\} \rangle$  with degrees  $|X^k| := k$
- Describes jet of local expansions at any point
- ▶ Model  $(\Pi, \Gamma)$ .  $\Pi_x : \mathcal{T} \to \mathcal{S}'(\mathbb{R})$  local expansion around  $x \in \mathbb{R}$
- $(\Pi_x X^k)(z) := (z x)^k, z \in \mathbb{R}$
- ▶  $\Gamma_{xy}: \mathcal{T} \to \mathcal{T}$  translates a "local expansion" around y to one around x, i.e.,  $\Pi_y = \Pi_x \Gamma_{xy}$
- ► Canonical choice:  $\Gamma_{xy}X^k := (X + (y x)\mathbf{1})^k$
- ▶ Modelled distribution  $F : \mathbb{R} \to \mathcal{T}$  is in  $\mathcal{D}^{\gamma}$  if it is "regular" in the sense that  $F(x) \Gamma_{xy}F(y)$  "small" at each level
- "Jets" of local expansions in terms of defining symbols
- ► Reconstruction operator  $\mathcal{R}: \mathcal{D}^{\gamma} \to \mathcal{S}'(\mathbb{R})$  such that  $\mathcal{R}F \Pi_x F(x)$  is "small" when tested against test functions centered in  $x \in \mathbb{R}$





- ▶ Model space  $\mathcal{T} := \langle \{\mathbf{1}, X, X^2, \dots, X^M\} \rangle$  with degrees  $|X^k| := k$
- Describes jet of local expansions at any point
- ▶ Model  $(\Pi, \Gamma)$ .  $\Pi_x : \mathcal{T} \to \mathcal{S}'(\mathbb{R})$  local expansion around  $x \in \mathbb{R}$
- $(\Pi_x X^k)(z) := (z x)^k, z \in \mathbb{R}$
- ▶  $\Gamma_{xy}: \mathcal{T} \to \mathcal{T}$  translates a "local expansion" around y to one around x, i.e.,  $\Pi_y = \Pi_x \Gamma_{xy}$
- Canonical choice:  $\Gamma_{xy}X^k := (X + (y x)\mathbf{1})^k$
- ▶ Modelled distribution  $F : \mathbb{R} \to \mathcal{T}$  is in  $\mathcal{D}^{\gamma}$  if it is "regular" in the sense that  $F(x) \Gamma_{xy}F(y)$  "small" at each level
- "Jets" of local expansions in terms of defining symbols
- ► Reconstruction operator  $\mathcal{R}: \mathcal{D}^{\gamma} \to \mathcal{S}'(\mathbb{R})$  such that  $\mathcal{R}F \Pi_x F(x)$  is "small" when tested against test functions centered in  $x \in \mathbb{R}$





- For a degree  $\beta$  and  $\tau \in \mathcal{T}$ , let  $|\tau|_k$  be the modulus of the coefficient  $X^{\beta}$
- ▶ Modelled distributions:  $F \in \mathcal{D}_K^{\gamma}$  for K > 0 iff

$$||F||_{\mathcal{D}_K^{\gamma}} := \sup_{\beta < \gamma, |x| \le K} |F(x)|_{\beta} + \sup_{\beta < \gamma, |x|, |y| \le K, x \ne y} \frac{\left|F(x) - \Gamma_{xy}F(y)\right|_{\beta}}{|x - y|^{\gamma - \beta}}$$

► Example:  $f \in C^{\alpha}(\mathbb{R})$  (in the Lipschitz sense), then

$$F: x \mapsto \sum_{k=0}^{\lfloor \alpha \rfloor} \frac{1}{k!} f^{(k)}(x) X^k \in \mathcal{D}_K^{\alpha}$$





- For a degree  $\beta$  and  $\tau \in \mathcal{T}$ , let  $|\tau|_k$  be the modulus of the coefficient  $X^{\beta}$
- ▶ Modelled distributions:  $F \in \mathcal{D}_K^{\gamma}$  for K > 0 iff

$$||F||_{\mathcal{D}_K^{\gamma}} \coloneqq \sup_{\beta < \gamma, |x| \le K} |F(x)|_{\beta} + \sup_{\beta < \gamma, |x|, |y| \le K, x \ne y} \frac{\left|F(x) - \Gamma_{xy}F(y)\right|_{\beta}}{|x - y|^{\gamma - \beta}}$$

► Example:  $f \in C^{\alpha}(\mathbb{R})$  (in the Lipschitz sense), then

$$F: x \mapsto \sum_{k=0}^{\lfloor \alpha \rfloor} \frac{1}{k!} f^{(k)}(x) X^k \in \mathcal{D}_K^{\alpha}.$$





For  $\varphi \in C_c^M$  (compactly supported in a fixed set), let

$$\varphi_x^{\lambda}(z) := \frac{1}{\lambda} \varphi\left(\frac{z-x}{\lambda}\right), \quad \lambda > 0, \ x \in \mathbb{R}$$

### Theorem and definition

Reconstruction operator  $\mathcal{R}: \mathcal{D}^{\gamma} \to \mathcal{S}'(\mathbb{R})$  defined by the property that

$$\forall x: \ \left| \mathcal{R}F(\varphi_x^{\lambda}) - (\Pi_x F(x))(\varphi_x^{\lambda}) \right| \lesssim \lambda^{\gamma}$$

In the polynomial regularity structure, with  $F \in \mathcal{D}^{\gamma}$  constructed from  $f \in C^{\gamma}$ , we get  $\mathcal{R}F = f$ .



## **Brownian regularity structure**



# Goal: pathwise definition of $\int_0^t f(W_s)dW_s$ , $t \in [0, T]$ , $W \in \mathbb{R}$ Bm

- Symbol \(\sum\_{\text{representing }}\vec{\psi}\) (in distributional sense)
- ▶ Operator I representing antiderivative kernel  $K(s,t) = \mathbf{1}_{t>s}$
- No need to add polynomials as objects will not be smooth
- Fix  $0 < \kappa$  small ("regularity" measured in  $(1/2 \kappa)$ -Hölder space, *small*)
- $\mathcal{T} := \left\langle \{\Xi, \Xi I(\Xi), \dots, \Xi I(\Xi)^M, 1, I(\Xi), \dots, I(\Xi)^M \} \right\rangle$
- ▶  $|\Xi| := -\frac{1}{2} \kappa$ ,  $|I(\Xi)| := \frac{1}{2} \kappa$ ,  $|\tau \cdot \tau'| := |\tau| + |\tau'|$ , M s. t.  $|\Xi I(\Xi)^M| > 0$
- Models will contain true distributions, modelled distributions are local expansions around special distributions
- $\blacktriangleright$  Will define many models, as models will depend on  $\omega$
- ▶ Different natural model classes: Itô, Stratonovich, ...



## **Brownian regularity structure**



# Goal: pathwise definition of $\int_0^t f(W_s)dW_s$ , $t \in [0, T]$ , $W \in \mathbb{R}$ Bm

- Symbol \(\sum\_{\text{representing }}\vec{\psi}\) (in distributional sense)
- ▶ Operator I representing antiderivative kernel  $K(s,t) = \mathbf{1}_{t>s}$
- No need to add polynomials as objects will not be smooth
- Fix  $0 < \kappa$  small ("regularity" measured in  $(1/2 \kappa)$ -Hölder space, *small*)
- $\mathcal{T} := \left\langle \{\Xi, \Xi I(\Xi), \dots, \Xi I(\Xi)^M, \mathbf{1}, I(\Xi), \dots, I(\Xi)^M \} \right\rangle$
- ►  $|\Xi| := -\frac{1}{2} \kappa$ ,  $|I(\Xi)| := \frac{1}{2} \kappa$ ,  $|\tau \cdot \tau'| := |\tau| + |\tau'|$ , M s. t.  $|\Xi I(\Xi)^M| > 0$
- Models will contain true distributions, modelled distributions are local expansions around special distributions
- $\blacktriangleright$  Will define many models, as models will depend on  $\omega$
- ▶ Different natural model classes: Itô, Stratonovich, ...



## **Brownian regularity structure**



# Goal: pathwise definition of $\int_0^t f(W_s)dW_s$ , $t \in [0, T]$ , $W \in \mathbb{R}$ Bm

- Symbol  $\Xi$  representing  $\dot{W}$  (in distributional sense)
- ▶ Operator I representing antiderivative kernel  $K(s, t) = \mathbf{1}_{t>s}$
- No need to add polynomials as objects will not be smooth
- Fix  $0 < \kappa$  small ("regularity" measured in  $(1/2 \kappa)$ -Hölder space, *small*)
- $\mathcal{T} := \left\langle \{\Xi, \Xi I(\Xi), \dots, \Xi I(\Xi)^M, \mathbf{1}, I(\Xi), \dots, I(\Xi)^M \} \right\rangle$
- ►  $|\Xi| := -\frac{1}{2} \kappa$ ,  $|I(\Xi)| := \frac{1}{2} \kappa$ ,  $|\tau \cdot \tau'| := |\tau| + |\tau'|$ , M s. t.  $|\Xi I(\Xi)^M| > 0$
- Models will contain true distributions, modelled distributions are local expansions around special distributions
- lacktriangle Will define many models, as models will depend on  $\omega$
- Different natural model classes: Itô, Stratonovich, ...





## Itô model

### **Mollified model**

Fix  $\varepsilon>0$ ,  $\dot{W}^{\varepsilon}:=\delta^{\varepsilon}*\dot{W}$  – or wavelet expansion at scale  $\varepsilon=2^{-N}$  Hence,  $\dot{W}^{\varepsilon}$  is a regular function.

- $ightharpoonup \Pi_c^{\varepsilon} \mathbf{1} := 1, \Pi_c^{\varepsilon} \Xi := \dot{W}^{\varepsilon}, \Gamma_c^{\varepsilon} \mathbf{1} := \mathbf{1}, \Gamma_c^{\varepsilon} \Xi := \Xi \text{ for } t, s \in [0, T]$
- $\blacktriangleright \Pi_s^{\varepsilon} I(\Xi)^m \coloneqq (W_s^{\varepsilon} W_s^{\varepsilon})^m, \Gamma_{ts}^{\varepsilon} I(\Xi)^m \coloneqq (I(\Xi) + (W_t^{\varepsilon} W_s^{\varepsilon})1)^m$

Abstract metric  $\|\cdot;\cdot\|_{[0,T]}$  on models  $(\Pi,\Gamma)$ : but  $(\Pi^{\varepsilon},\Gamma^{\varepsilon}) \xrightarrow{\varepsilon \to 0} (\Pi,\Gamma)$ ?





## Itô model

- $\Pi_s \mathbf{1} := 1, \, \Pi_s \Xi := \dot{W}, \, \Gamma_{ts} \mathbf{1} := \mathbf{1}, \, \Gamma_{ts} \Xi := \Xi \text{ for } t, s \in [0, T]$

### **Mollified model**

Fix  $\varepsilon > 0$ ,  $\dot{W}^{\varepsilon} := \delta^{\varepsilon} * \dot{W}$  – or wavelet expansion at scale  $\varepsilon = 2^{-N}$ . Hence,  $\dot{W}^{\varepsilon}$  is a regular function.

Abstract metric  $\|\cdot;\cdot\|_{[0,T]}$  on models  $(\Pi,\Gamma)$ : but  $(\Pi^{\varepsilon},\Gamma^{\varepsilon}) \xrightarrow{\varepsilon \to 0} (\Pi,\Gamma)$ ?





## Itô model

## **Mollified model**

Fix  $\varepsilon > 0$ ,  $\dot{W}^{\varepsilon} \coloneqq \delta^{\varepsilon} * \dot{W}$  – or wavelet expansion at scale  $\varepsilon = 2^{-N}$ . Hence,  $\dot{W}^{\varepsilon}$  is a regular function.

Abstract metric  $[\cdot; \cdot]_{[0,T]}$  on models  $(\Pi, \Gamma)$ : but  $(\Pi^{\varepsilon}, \Gamma^{\varepsilon}) \xrightarrow{\varepsilon \to 0} (\Pi, \Gamma)$ ?





- ► Evaluation against  $\varphi$  means  $\int_0^\infty \cdots \varphi(s) ds \Rightarrow$  anticipative (Skorokhod) integrals!
- By classical results from Mallivin calculus:

$$\Pi_{s}\Xi I(\Xi)^{m}(\varphi) = \int_{0}^{\infty} \varphi(t) \left(W_{t} - W_{s}\right)^{m} \delta W_{t} - m \int_{0}^{\infty} \varphi(t) K(s, t) (W_{t} - W_{s})^{m-1} dt$$

$$\Pi_{s}^{\varepsilon}\Xi I(\Xi)^{m}(\varphi) = \int_{0}^{\infty} \varphi(t) \left(W_{t}^{\varepsilon} - W_{s}^{\varepsilon}\right)^{m} \delta W_{t}^{\varepsilon} - m \int_{0}^{\infty} \varphi(t) \mathcal{K}^{\varepsilon}(s, t) (W_{t}^{\varepsilon} - W_{s}^{\varepsilon})^{m-1} dt$$

$$+ m \int_{0}^{\infty} \varphi(t) \mathcal{K}^{\varepsilon}(t, t) \left(W_{t}^{\varepsilon} - W_{s}^{\varepsilon}\right)^{m-1} dt$$

- ►  $K(s,t) = \mathbf{1}_{s>t}$ ,  $\mathcal{K}^{\varepsilon}(s,t)$ ... mollified version of K
- Note:  $D_t W_s = 0$  for t > s, but  $D_t W_s^{\varepsilon} \neq 0$

 $(\Pi^{\varepsilon}, \Gamma^{\varepsilon})$  does not converge to  $(\Pi, \Gamma)$  as  $\varepsilon \to 0$ . In fact: gives Stratonovich solution!





- ► Evaluation against  $\varphi$  means  $\int_0^\infty \cdots \varphi(s) ds \Rightarrow$  anticipative (Skorokhod) integrals!
- By classical results from Mallivin calculus:

$$\Pi_{s}\Xi I(\Xi)^{m}(\varphi) = \int_{0}^{\infty} \varphi(t) (W_{t} - W_{s})^{m} \delta W_{t} - m \int_{0}^{\infty} \varphi(t) K(s, t) (W_{t} - W_{s})^{m-1} dt$$

$$\Pi_{s}^{\varepsilon}\Xi I(\Xi)^{m}(\varphi) = \int_{0}^{\infty} \varphi(t) (W_{t}^{\varepsilon} - W_{s}^{\varepsilon})^{m} \delta W_{t}^{\varepsilon} - m \int_{0}^{\infty} \varphi(t) \mathcal{K}^{\varepsilon}(s, t) (W_{t}^{\varepsilon} - W_{s}^{\varepsilon})^{m-1} dt$$

$$+ m \int_{0}^{\infty} \varphi(t) \mathcal{K}^{\varepsilon}(t, t) (W_{t}^{\varepsilon} - W_{s}^{\varepsilon})^{m-1} dt$$

- ►  $K(s,t) = \mathbf{1}_{s>t}$ ,  $\mathcal{K}^{\varepsilon}(s,t)$ ... mollified version of K
- Note:  $D_t W_s = 0$  for t > s, but  $D_t W_s^{\varepsilon} \neq 0$

 $(\Pi^{\varepsilon}, \Gamma^{\varepsilon})$  does not converge to  $(\Pi, \Gamma)$  as  $\varepsilon \to 0$ . In fact: gives Stratonovich solution!





$$\mathsf{Define}\left(\widehat{\Pi}^\varepsilon,\widehat{\Gamma}^\varepsilon\right)\coloneqq (\Pi^\varepsilon,\Gamma^\varepsilon) \ \mathsf{except}$$

$$\widehat{\Pi}_s^{\varepsilon}\Xi I(\Xi)^m:=\Pi_s^{\varepsilon}\Xi I(\Xi)^m-m\mathcal{K}^{\varepsilon}(\cdot,\cdot)\Pi_s^{\varepsilon}I(\Xi)^{m-1}.$$

#### Theorem

 $\left(\widehat{\Pi}^{arepsilon},\widehat{\Gamma}^{arepsilon}
ight)$  is a valid model and satisfies for any  $0<\delta<1$ 

$$E\left[\left\|(\widehat{\Pi}^{\varepsilon},\widehat{\Gamma}^{\varepsilon})\,;\,(\Pi,\Gamma)\right\|_{[0,T]}\right]^{1/p}\lesssim \varepsilon^{\delta\kappa}$$





Define  $(\widehat{\Pi}^{\varepsilon}, \widehat{\Gamma}^{\varepsilon}) := (\Pi^{\varepsilon}, \Gamma^{\varepsilon})$  except

$$\widehat{\Pi}_s^\varepsilon\Xi I(\Xi)^m:=\Pi_s^\varepsilon\Xi I(\Xi)^m-m\mathcal{K}^\varepsilon(\cdot,\cdot)\Pi_s^\varepsilon I(\Xi)^{m-1}.$$

#### **Theorem**

 $\left(\widehat{\Pi}^{arepsilon},\widehat{\Gamma}^{arepsilon}
ight)$  is a valid model and satisfies for any  $0<\delta<1$ 

$$E\left[\left\|(\widehat{\Pi}^{\varepsilon},\widehat{\Gamma}^{\varepsilon});(\Pi,\Gamma)\right\|_{[0,T]}\right]^{1/p}\lesssim \varepsilon^{\delta\kappa}.$$



#### Reconstruction



- Let (for any model  $(\Pi, \Gamma)$ )  $\mathscr{K}\Xi := t \mapsto I(\Xi) + (K * \Pi_t\Xi)(t)\mathbf{1} \in \mathcal{D}_T^{\infty}$ satisfying  $\mathscr{R}(\mathscr{K}F) = K * \mathscr{R}F$  for  $F \in \mathcal{D}^{\gamma}$
- $f(W_t)$  encoded by  $F^\Pi \in \mathcal{D}_T^{\gamma}, \, \frac{1}{2} + \kappa < \gamma < 1$  with

$$F^{\Pi}(t) := \sum_{m=0}^{M} \frac{1}{m!} f^{(m)} \left( \mathcal{R}^{\Pi} \mathcal{K} \Xi(s) \right) I(\Xi)^{m}$$

#### **Theorem**

$$\mathscr{I}_f(t) := \mathcal{R}^{\Pi} \Xi F^{\Pi} \left( \mathbf{1}_{[0,t]} \right) = \int_0^t f(W_r) dW_r,$$

$$\widetilde{\mathscr{J}_f^{\varepsilon}}(t) \coloneqq \mathcal{R}^{\widehat{\Pi}^{\varepsilon}} \Xi F^{\widehat{\Pi}^{\varepsilon}} \left( \mathbb{1}_{[0,t]} \right) = \int_0^t f\left( W_r^{\varepsilon} \right) dW_r^{\varepsilon} - \int_0^t \mathcal{K}^{\varepsilon}(r,r) f'\left( W_r^{\varepsilon} \right) dr.$$

For f smooth, we have for any  $0 < \delta < 1$ 

$$E\left[\sup_{t\in[0,T]}\left|\widetilde{\mathscr{I}}_{f}^{\varepsilon}(t)-\mathscr{I}_{f}(t)\right|^{p}\right]^{1/p}\lesssim\varepsilon^{\delta/2}$$



#### Reconstruction



- Let (for any model  $(\Pi, \Gamma)$ )  $\mathscr{K}\Xi := t \mapsto \mathcal{I}(\Xi) + (K * \Pi_t \Xi)(t) \mathbf{1} \in \mathcal{D}_T^{\infty}$ satisfying  $\mathscr{R}(\mathscr{K}F) = K * \mathscr{R}F$  for  $F \in \mathcal{D}^{\gamma}$
- $f(W_t)$  encoded by  $F^\Pi \in \mathcal{D}_T^{\gamma}, \, \frac{1}{2} + \kappa < \gamma < 1$  with

$$F^{\Pi}(t) := \sum_{m=0}^{M} \frac{1}{m!} f^{(m)} \left( \mathcal{R}^{\Pi} \mathcal{K} \Xi(s) \right) I(\Xi)^{m}$$

#### **Theorem**

$$\mathscr{I}_f(t) := \mathcal{R}^{\Pi} \Xi F^{\Pi} \left( \mathbf{1}_{[0,t]} \right) = \int_0^t f(W_r) dW_r,$$

$$\widetilde{\mathscr{I}_f^{\varepsilon}}(t) := \mathcal{R}^{\widehat{\Pi}^{\varepsilon}} \Xi F^{\widehat{\Pi}^{\varepsilon}} \left( \mathbf{1}_{[0,t]} \right) = \int_0^t f\left( W_r^{\varepsilon} \right) dW_r^{\varepsilon} - \int_0^t \mathcal{K}^{\varepsilon}(r,r) f'\left( W_r^{\varepsilon} \right) dr.$$

For f smooth, we have for any  $0 < \delta < 1$ 

$$E\left[\sup_{t\in[0,T]}\left|\widetilde{\mathscr{I}_f^{\varepsilon}}(t)-\mathscr{I}_f(t)\right|^p\right]^{1/p}\lesssim \varepsilon^{\delta/2}.$$





1 Rough volatility models

2 A minimal view on regularity structures

3 The simple regularity structure for rough volatility

4 The full regularity structure for rough volatility





$$\int_0^t f\left(\widehat{W}_s\right) dW_s, \quad \widehat{W}_s = \int_0^s K(s,t) dW_t, \quad K(s,t) = \sqrt{2H} \left| t - s \right|^{H - \frac{1}{2}} \mathbf{1}_{t > s}$$

Formally, nothing changes except that K is different – and (inside the integrand)  $W \to \widehat{W}$ ,  $W^{\varepsilon} \to \widehat{W}^{\varepsilon}$ 

- ▶  $I(\Xi)$  represents  $\widehat{W}_t$  and  $|I(\Xi)| = H \kappa$
- ▶  $\mathcal{K}^{\varepsilon}$  is mollified version of K and explodes like  $\mathcal{K}^{\varepsilon}(s,t) \lesssim \varepsilon^{H-\frac{1}{2}}$  as  $\varepsilon \to 0$  corresponding to exploding quadratic variation





$$\int_0^t f\left(\widehat{W}_s\right) dW_s, \quad \widehat{W}_s = \int_0^s K(s,t) dW_t, \quad K(s,t) = \sqrt{2H} \left| t - s \right|^{H - \frac{1}{2}} \mathbf{1}_{t > s}$$

Formally, nothing changes except that K is different – and (inside the integrand)  $W \rightsquigarrow \widehat{W}, W^{\varepsilon} \rightsquigarrow \widehat{W}^{\varepsilon}$ 

- $I(\Xi)$  represents  $\widehat{W}_t$  and  $|I(\Xi)| = H \kappa$
- ▶  $\mathcal{K}^{\varepsilon}$  is mollified version of K and explodes like  $\mathcal{K}^{\varepsilon}(s,t) \lesssim \varepsilon^{H-\frac{1}{2}}$  as  $\varepsilon \to 0$  corresponding to exploding quadratic variation





- ▶ Let (for any model  $(\Pi, \Gamma)$ )  $\mathscr{K}\Xi := t \mapsto I(\Xi) + (K * \Pi_t\Xi)(t)\mathbf{1} \in \mathcal{D}_T^{\infty}$ .
- $f(\widehat{W}_t)$  encoded by  $F^{\Pi} \in \mathcal{D}_T^{\gamma}$ ,  $\frac{1}{2} + \kappa < \gamma < 1$  with

$$F^{\Pi}(t) := \sum_{m=0}^{M} \frac{1}{m!} f^{(m)} \left( \mathcal{R}^{\Pi} \mathcal{K} \Xi(s) \right) I(\Xi)^{m}$$

#### **Theorem**

$$\widetilde{\mathscr{I}_f^{\varepsilon}}(t) := \mathcal{R}^{\widehat{\Pi}^{\varepsilon}} \Xi F^{\widehat{\Pi}^{\varepsilon}} \left( \mathbf{1}_{[0,t]} \right) = \int_0^t f\left( \widehat{W}_r^{\varepsilon} \right) dW_r^{\varepsilon} - \int_0^t \mathcal{K}^{\varepsilon}(r,r) f'\left( \widehat{W}_r^{\varepsilon} \right) dr,$$

$$\mathscr{I}_f(t) := \mathcal{R}^{\Pi} \Xi F^{\Pi} \left( \mathbf{1}_{[0,t]} \right) = \int_0^t f(\widehat{W}_r) dW_r.$$

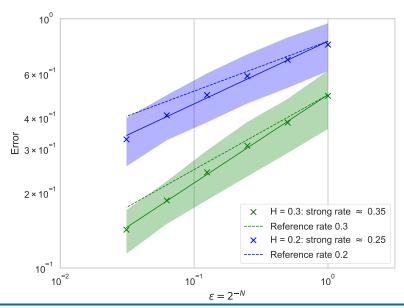
For f smooth, we have for any  $0 < \delta < 1$ 

$$E\left[\sup_{t\in[0,T]}\left|\widetilde{\mathscr{I}_f^{\varepsilon}}(t)-\mathscr{I}_f(t)\right|^p\right]^{1/p}\lesssim \varepsilon^{\delta H}.$$



## **Numerical example:** $f(x) = \exp(x)$ , strong error









1 Rough volatility models

2 A minimal view on regularity structures

3 The simple regularity structure for rough volatility

4 The full regularity structure for rough volatility





$$\begin{split} dS_t &= S_t f(Z_t) \left( \rho dW_t + \overline{\rho} dW^\perp \right), \\ Z_t &= z + \int_0^t K(s,t) v(Z_s) ds + \int_0^t K(s,t) u(Z_s) dW_s \end{split}$$

- ► Special case:  $u(z) = \sqrt{z}$  (rough Heston)
- ▶ Require *f*, *v*, *u* smooth
- ► For  $H > \frac{1}{4}$  (for simplicity), then only need (M = 1):

$$\widehat{\mathcal{T}} \coloneqq \langle \{ \Xi, \Xi I(\Xi), 1, I(\Xi), \overline{\Xi}, \overline{\Xi} I(\Xi) \} \rangle$$

 Generally, fixed point arguments require more operations, need to add symbols like

$$\Xi I \left(\Xi (I(\Xi))^m\right), \quad I \left(\Xi I \left(\Xi I(\Xi)^k\right)^m\right), \dots$$





$$\begin{split} dS_t &= S_t f(Z_t) \left( \rho dW_t + \overline{\rho} dW^\perp \right), \\ Z_t &= z + \int_0^t K(s,t) v(Z_s) ds + \int_0^t K(s,t) u(Z_s) dW_s \end{split}$$

- ► Special case:  $u(z) = \sqrt{z}$  (rough Heston)
- ► Require *f*, *v*, *u* smooth
- For  $H > \frac{1}{4}$  (for simplicity), then only need (M = 1):

$$\widehat{\mathcal{T}} := \langle \{\Xi, \Xi I(\Xi), \mathbf{1}, I(\Xi), \overline{\Xi}, \overline{\Xi} I(\Xi) \} \rangle$$

 Generally, fixed point arguments require more operations, need to add symbols like

$$\Xi I \left(\Xi (I(\Xi))^m\right), \quad I \left(\Xi I \left(\Xi I(\Xi)^k\right)^m\right), \dots$$





Let U and V denote the "lifts" of u and v to modelled distributions. Then

$$Z = z\mathbf{1} + \mathcal{K}(U(Z) \cdot \Xi + V(Z)).$$

#### **Theorem**

- 1. For u,v smooth, there is a unique solution  $\mathcal{Z}\in\mathcal{D}^{\gamma}(\mathcal{T}),$ 
  - $\frac{1}{2} + \kappa < \gamma < 1$ ,  $(u, v, \Pi) \mapsto \mathbb{Z}$  is (loc.) Lipschitz.
- **2.** If  $(\Pi, \Gamma)$  is the Itô model, then  $Z := \mathcal{R} Z$  solves the Itô equation
- 3. The extended renormalized model  $(\Pi^{\varepsilon}, \Gamma^{\varepsilon})$  converges to  $(\Pi, \Gamma)$ , implying that  $Z = \lim_{\epsilon \to 0} Z^{\varepsilon}$ , where

$$Z_t^{\varepsilon} = z + \int_0^t K(s,t)u(Z_s^{\varepsilon})dW_s^{\varepsilon} + \int_0^t K(s,t)\left[v(Z_s^{\varepsilon}) - \mathcal{K}^{\varepsilon}(s,s)uu'(Z_s^{\varepsilon})\right]ds$$





Let U and V denote the "lifts" of u and v to modelled distributions. Then

$$Z = z\mathbf{1} + \mathcal{K}(U(Z) \cdot \Xi + V(Z)).$$

#### **Theorem**

- **1.** For u, v smooth, there is a unique solution  $\mathcal{Z} \in \mathcal{D}^{\gamma}(\mathcal{T})$ ,  $\frac{1}{2} + \kappa < \gamma < 1$ ,  $(u, v, \Pi) \mapsto \mathcal{Z}$  is (loc.) Lipschitz.
- **2.** If  $(\Pi, \Gamma)$  is the Itô model, then  $Z := \mathcal{RZ}$  solves the Itô equation.
- **3.** The extended renormalized model  $(\widehat{\Pi}^{\varepsilon}, \widehat{\Gamma}^{\varepsilon})$  converges to  $(\Pi, \Gamma)$ , implying that  $Z = \lim_{\varepsilon \to 0} Z^{\varepsilon}$ , where

$$Z_t^{\varepsilon} = z + \int_0^t K(s,t)u(Z_s^{\varepsilon})dW_s^{\varepsilon} + \int_0^t K(s,t)\left[v(Z_s^{\varepsilon}) - \mathcal{K}^{\varepsilon}(s,s)uu'(Z_s^{\varepsilon})\right]ds.$$



# **Abstract Large Deviations**



- $\overline{\mathcal{T}} := \mathcal{T} + \langle \{ \overline{\Xi}, \overline{\Xi}I(\Xi), \dots, \overline{\Xi}I(\Xi)^M \} \rangle$
- Canonical model  $(\Pi, \Gamma)$  extended by

$$\Pi_s \overline{\Xi} I(\Xi)^m := t \mapsto \frac{\partial}{\partial t} \int_s^t \left( \widehat{W}_u - \widehat{W}_s \right)^m d\overline{W}_u$$

▶ Small noise model: for  $\delta > 0$ 

$$\Pi_s^{\delta} I(\Xi)^m := \delta^m \Pi_s I(\Xi)^m, \ \Pi_s^{\delta} \Xi I(\Xi)^m := \delta^{m+1} \Pi_s \Xi I(\Xi)^m, \dots$$

Fix  $h := (h^1, h^2) \in \mathcal{H}^2$  for  $\mathcal{H} := L^2([0, T])$  and let

$$\Pi_s^h \Xi := h^1, \ \Pi_s^h \overline{\Xi} := h^2, \ \Pi_s^h I(\Xi)(t) := \int_0^{t \vee s} (K(u, t) - K(u, s)) h^1(u) du, \dots$$

#### Theorem

The models  $(\Pi^{\delta}, \Gamma^{\delta})$  satisfy an LDP in the space of models with speed  $\delta^2$  and rate function

$$J(\Pi) := \begin{cases} \frac{1}{2} \|h\|_{\mathcal{H}}^2, & \Pi = \Pi^h \\ +\infty, & \textit{else}. \end{cases}$$



# **Abstract Large Deviations**



- $\overline{\mathcal{T}} := \mathcal{T} + \langle \{ \overline{\Xi}, \overline{\Xi} I(\Xi), \dots, \overline{\Xi} I(\Xi)^M \} \rangle$
- ► Canonical model  $(\Pi, \Gamma)$  extended by

$$\Pi_s \overline{\Xi} I(\Xi)^m := t \mapsto \frac{\partial}{\partial t} \int_s^t \left( \widehat{W}_u - \widehat{W}_s \right)^m d\overline{W}_u$$

▶ Small noise model: for  $\delta > 0$ 

$$\Pi_s^{\delta} I(\Xi)^m := \delta^m \Pi_s I(\Xi)^m, \ \Pi_s^{\delta} \Xi I(\Xi)^m := \delta^{m+1} \Pi_s \Xi I(\Xi)^m, \dots$$

Fix  $h := (h^1, h^2) \in \mathcal{H}^2$  for  $\mathcal{H} := L^2([0, T])$  and let

$$\Pi_s^h \Xi := h^1, \ \Pi_s^h \overline{\Xi} := h^2, \ \Pi_s^h I(\Xi)(t) := \int_0^{t \vee s} (K(u,t) - K(u,s)) h^1(u) du, \dots$$

## **Theorem**

The models  $(\Pi^{\delta}, \Gamma^{\delta})$  satisfy an LDP in the space of models with speed  $\delta^2$  and rate function

$$J(\Pi) := \begin{cases} \frac{1}{2} \|h\|_{\mathcal{H}}^2, & \Pi = \Pi^h, \\ +\infty, & \textit{else}. \end{cases}$$





Let 
$$X_t := \log S_t$$
, 
$$z^h(t) = z + \int_0^t K(s, t) u(z^h(s)) h(s) ds.$$

# Corollary

f smooth (without boundedness assumption). Then  $t^{H-\frac{1}{2}}X_t$  satisfies an LDP with speed  $t^{2H}$  and rate function

$$I(x) := \inf_{h \in \mathcal{H}} \left\{ \frac{1}{2} \|h\|_{\mathcal{H}}^2 + \frac{\left(x - I_1^z(h)\right)^2}{2I_2^z(h)} \right\},$$

$$I_1^z(h) := \rho \int_0^1 f(z^h(s))h(s)ds, \quad I_2^z(h) := \int_0^1 f(z^h(s))^2 ds.$$

• Choose  $\delta \equiv t^H$  in the theorem.





# A regularity structure for rough volatility models allows:

- Unified analysis (existence, uniqueness, stability) sketched, but not completely worked out in paper
- Numerical approximation by wavelet approximation to underlying Brownian motion
- Large deviation principle

# Example of a regularity structure:

 Simple one-dimensional regularity structure with genuine need for renormalization.

A regularity structure for rough volatility — preprint available soon!





- Bayer, C., Friz, P., Gatheral, J. *Pricing under rough volatility*, Quantitative Finance, 2016.
- El Euch, O., Rosenbaum, M. *The characteristic function of rough Heston models*, arXiv preprint, 2016.
- Friz, P., Hairer, M. A Course on Rough Paths: With an Introduction to Regularity Structures, 2014.
- Hairer, M. A theory of regularity structures, Invent. math., 2014.
- Hairer, M., Weber, H. Large deviations for white noise driven, nonlinear stochastic PDEs in two and three dimensions, Ann. Fac. Sci. Toulouse Math., 2015.
- Nualart, D., Pardoux, E. Stochastic calculus with anticipating integrands, PTRF, 1988.

