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Chapter 1

Introduction

One of the goals in mathematical finance is the pricing of derivatives such as options.
While there are certainly also many other mathematically and computationally chal-
lenging areas of mathematical finance (such as portfolio optimization or risk measures),
we will concentrate on the problems arising from option pricing. The techniques pre-
sented in this course are also often used in computational finance in general, as well as
in many other areas of applied mathematics, science and engineering.

The most fundamental model of a financial market consists of a probability space
(Ω,F , P), on which a random variable S is defined. In the simplest case, S is R (or
[0,∞[) valued and simply means the value of a stock at some time T . However, S might
also represent the collection of all stock prices S t for t ∈ [0,T ]. Then S is a random
variable taking values in the (infinite-dimensional) path space, i.e., either the space
of continuous functions C([0,T ];Rd) or the space of càdlàg functions D([0,T ];Rd)
taking values in Rd. Then the payoff function of almost any European option can be
represented as f (S ) for some functional f .

Example 1.1. The European call option (on the asset S 1) is given by

f (S ) =
(
S 1

T − K
)+
.

Example 1.2. An example of a look-back option, consider the contract with payoff

function

f (S ) =

(
S 1

T − min
t∈[0,T ]

S 1
t

)+

.

Example 1.3. A simple barrier option (down-and-out) could look like this (for the
barrier B > 0):

f (S ) =
(
S 1

T − K
)+

1mint∈[0,T ] S 1
t >B.

In all these cases, the problem of pricing the option can therefore be reduced to the
problem of computing

(1.1) E
[
f (S )

]
.

Indeed, here we have assumed that we already started with the (or a) risk neutral
measure P. Moreover, if the interest rate is deterministic, then discounting is triv-
ial. For stochastic interest rates, we may assume that the stochastic interest rate is a
part of S (depending on the interest rate model, this might imply that the state space
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of the stochastic process S t is infinite-dimensional, if we use the Heath-Jarrow-Morton
model, see [16]). Therefore, the option pricing problem can still be written in the
form (1.1) in the case of stochastic interest rates by incorporating the discount factor in
the “payoff function” f .

Of course, we have to assume that X B f (S ) ∈ L1(Ω,F , P). Then the most gen-
eral form of the option pricing problem is to compute E[X] for an integrable random
variable X. Corresponding to this extremely general modeling situation is an extremely
general numerical method called Monte-Carlo simulation. Assume that we can gen-
erate a sequence (Xi)i∈N of independent copies of X.1 Then, the strong law of large
numbers implies that

(1.2)
1
M

M∑
i=1

Xi −−−−→
M→∞

E[X]

almost surely. Since the assumptions of the Monte-Carlo simulations are extremely
weak, we should not be surprised that the rate of convergence is rather slow: Indeed, we
shall see in Section 2.2 that the error of the Monte-Carlo simulation decreases only like

1
√

M
for M → ∞ in a certain sense – note that the error will be random. Nevertheless,

Monte-Carlo simulation as a very powerful numerical method, and we are going to
discuss it together with several modifications in Chapter 2.

While the assumption that we can generate samples from the distribution of S
might seem innocent, it poses problems in many typical modeling situations, namely
when S is defined as the solution of a stochastic differential equation (SDE). Let(
Ω,F , (Ft)t∈[0,T ], P

)
be a filtered probability space satisfying the usual conditions. In

many models, the stock price S t is given as solution of an SDE of the form

(1.3) dS t = V(S t)dt +

d∑
i=1

Vi(S t)dBi
t,

where V,V1, . . . ,Vd : Rn → Rn are vector fields and B denotes a d-dimensional Brown-
ian motion. (If we replace the Brownian motion by a Lévy process, we can also obtain
jump-processes in this way.) In general, it is not possible to solve the equation (1.3)
explicitly, thus we do not know the distribution of the random variable X = f (S ) and
cannot sample from it. In Chapter 3 we are going to discuss how to solve SDEs in a
numerical way, in analogy to numerical solvers for ODEs (ordinary differential equa-
tions). Then, the option price (1.1) can be computed by a combination of the numerical
SDE-solver (producing samples from an approximation of f (S )) and the Monte-Carlo
method (1.2) (applied to those approximate samples).

If the option under consideration is “Markovian” in the sense that the payoff func-
tion only depends on the value of the underlying at time T , i.e., the payoff is given by
f (S T ), then the option price satisfies a partial differential equation (PDE).2 Indeed, let

u(s, t) = E
[
f (S T )|S t = s

]
,

and define the partial differential operator L by

Lg(s) = V0g(s) +
1
2

d∑
i=1

V2
i g(s),

1By this statement we mean that we have a random number generator producing (potentially infinitely
many) random numbers according to the distribution of X, which are independent of each other.

2In fact, we can find such PDEs in much more general situations!
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s ∈ Rn, where the vector field V is applied to a function g : Rn → R giving another
function Vg(s) B ∇g(s) · V(s) from Rn to R and V2

i g(s) is defined by applying the
vector field Vi to the function Vig. Moreover, we have

V0(x) B V(x) −
1
2

d∑
i=1

DVi(x) · Vi(x),

with DV denoting the Jacobian matrix of the vector field V . Then we have (under some
rather mild regularity conditions)

(1.4)


∂

∂t
u(t, s) + Lu(t, s) = 0,

u(T, s) = f (s).

Therefore, another approach to solve our option pricing problem in a numerical way is
to use the well-known techniques from numerics of PDEs, such as the finite difference
or finite element methods. We will present the finite difference method in Section 4.1.
We note that a similar partial differential equation also holds when the SDE is driven
by a Lévy process. Then the partial differential operator L is non-local, i.e., there is an
integral term. Note that there are also finite difference and finite element schemes for
the resulting partial integro-differential equations, see [8] and [29], respectively.

There is a very fast, specialized method for pricing European call options (and
certain similar options) on stocks S T , such that the characteristic function of log(S T ) is
known (we take S T to be one-dimensional). This condition is actually satisfied in quite
a large class of important financial models. Let φT denote the characteristic function
of log(S T ) and let CT = CT (K) denote the price of the European call option with strike
price K. Moreover, we denote its Fourier transform by ĈT . Then

ĈT (µ) =
φT (µ − i)
iµ − µ2 ,

i.e., we have an explicit formula for the Fourier transform of the option price.3 Now
we only need to compute the inverse Fourier transform, which is numerically feasible
because of the FFT-algorithm.

Unfortunately, most options encountered in practise are American options, and the
above treated methods do not directly apply for American options. Indeed, the pricing
problem for an American option is to find

(1.5) sup
τ≤T

E
[
f (S τ)

]
,

where τ ranges through all stopping times in the filtered probability space. So, it is
not obvious how to apply any of the methods presented above. We will discuss one
numerical method for American options in detail and hint at some modifications of the
standard methods suitable for computing prices of American options, see Section 2.4

The book of Glasserman [16] is a wonderful text book on Monte Carlos based meth-
ods in computational finance, i.e., it covers Chapter 2 and Chapter 3 in great detail. On
the other hand, Seydel [36] does also treat Monte Carlo methods, but concentrates
more on finite difference and element methods. Wilmott [41] is a very popular, easily

3For integrability reasons, the above formula is not true. Indeed, we have to dampen the option price,
introducing a damping parameter. For the precise formulation, see Section 4.2.
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accessible book on quantitative finance. It covers many of the topics of the course,
but the level of mathematics is rather low. For the prerequisites in stochastic analysis,
the reader is referred to Øksendal [32] for an introduction of SDEs driven by Brown-
ian motion. Cont and Tankov [7] is the text book of choice for Lévy processes, and
Protter [34] treats stochastic integration and SDEs in full generality.
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Chapter 2

Monte Carlo simulation

2.1 Random number generation
The key ingredient of the Monte Carlo simulation is sampling of independent real-
izations of a given distribution. This poses the question of how we can obtain such
samples (on a computer). We will break the problem into two parts: First we try to find
a method to get independent samples from a uniform distribution (on the interval ]0, 1[,
then we discuss how to get samples from general distributions provided we know how
to sample the uniform distribution.

Uniform pseudorandom numbers
Computers do not know about randomness, so it is rather obvious that we cannot get
truly random numbers if we trust a computer to provide them for us. Therefore, the
numbers produced by a random number generator on a computer are often referred to as
pseudorandom numbers. If the random numbers, say, u1, u2, . . . produced by a random
number generator, are not random (but deterministic), they cannot really be realizations
of a sequence U1,U2, . . . of independent, uniformly distributed random variables. So
what do we actually mean by a random number generator? More precisely, what do we
mean by a good random number generator?

Remark 2.1. Even though the questions raised here are somehow vague, they are re-
ally important for the success of the simulation. Bad random number generators can
lead to huge errors in your simulation, and therefore must be avoided. Unfortunately,
there are still many bad random number generators around. So you should rely on
“standard” random number generators which have been extensively tested. In particu-
lar, you should not use a random number generator of your own. Therefore, the goal of
this section is not to enable you to construct and implement a random number genera-
tor, but rather to make you aware of a few issues around random number generation.

Before coming back to these questions, let us first note that a computer usually
works with finite arithmetic. Therefore, there is only a finite number of floating point
numbers which can be taken by the stream random numbers u1, u2, . . .. Therefore, we
can equivalently consider a random string of integers i1, i2, . . . taking values in a set
{0, . . . ,m} with ul = il/m.1 Then the uniform random number generator producing

1Integer is here used in its mathematical meaning not in the sense of a data type.
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u1, u2, . . . is good, if and only if the the random number generator producing i1, i2, . . .
is a good random number generator for the uniform distribution on {0, 1, . . . ,m − 1}.
Of course, this trick has not solved our problems. For the remainder of the session, we
study the problem of generating random numbers i1, i2, . . . on a finite set {0, 1, . . . ,m −
1}.

Formally, a random number generator can be defined like this (see L’Ecuyer [25]):

Definition 2.2. A random number generator consist of a finite set X (the state space),
an element x0 ∈ X, (the seed), a transition function T : X → X, and a function G :
X → {0, . . . ,m−1}. Given a random number generator and a seed x0, the pseudorandom
numbers are computed via the recursion xl = T (xl−1), l = 1, 2, . . ., and il B G(xl).

There is an immediate (unfortunate) consequence of the definition: since X is finite,
the sequence of random numbers (il) must be periodic. Indeed, there must be an index
` such that x` = xl for some l < `. This implies that x`+1 = xl+1 and so forth. Note
that this index ` can occur much later than the first occurrence of ik = ik′ for some
k′ < k! Nonetheless, it arguably contains all possible candidates for good random
number generators.

The following criteria for goodness have evolved in the literature on random num-
ber generators ([25],[16]):

Statistical uniformity: the sequence of random numbers i1, i2, . . . produced by the
generator for a given seed should be hard to distinguish from truly random sam-
ples (from the uniform distribution on {0, . . . ,m − 1}). This basically means that
no computationally feasible statistical test for uniformity should be able to dis-
tinguish (il)l∈N from a truly random sample. The restraint to computationally
feasible tests is important: since we know that the sequence is actually determin-
istic (even periodic), it is easy to construct tests which can make the distinction.
(The trivial test would be to wait for the period: then we see that the pseudoran-
dom sequence repeats itself.)2

Speed: In modern applications, a lot of random numbers are needed. In molecular
dynamics simulations, up to 1018 random numbers might be used (during sev-
eral months of computer time). Often, the generation of random numbers is the
bottleneck during a simulation. Therefore, it is very important that the RNG is
fast.

Period length: If we need 1018 random numbers, then the period length of the RNG
must be at least as high. In fact, usually the quality of randomness deteriorates
well below the actual period length. As a rule of thumb it has been suggested
that the period length should be an order of magnitude larger than the square of
the number of values used ([35]).

Reproducibility: For instance for debugging code it is very convenient to have a way
of exactly reproducing a sequence of random number generated before. (By
setting the seed this is, of course, possible for any RNG satisfying Definition 2.2.)

2This condition basically means that we cannot guess the next number il+1 given only the previously
realized numbers i1, . . . , il, at least not better than by choosing at random among {0, . . . ,m−1}, if we assume
that we do not know the algorithm. There is a stronger notion of cryptographic security which requires that
we cannot guess il+1 even if we are intelligent in the sense that we do know and use the RNG. In essence this
means that we cannot compute the state xl from i1, . . . , il. While this property is essential in cryptography, it
is not important for Monte Carlo simulations.
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Portability and jumping ahead: The RNG should be portable to different computers.
By “jumping ahead” we mean the possibility to quickly get the state xl+n given
the state xl for n large (i.e., without having to generate all the states inbetween).
This is important for parallelization.

How do RNGs implemented on the computer actually look like? The prototypical
class of RNGs are linear congruential generators. There, we have X = {0, . . . ,m − 1}
and xl = il and the transition map is given by

(2.1) xl+1 = (axl + c) mod m.

Remark 2.3. Linear congruential generators are very well analyzed from a theoretical
point of view, see Knuth [22]. For instance, we know that the RNG (2.1) has full period
(i.e., the period length is m) if c , 0 and the following conditions are satisfied:

• c and a are relatively prime,

• every prime number dividing m also divides a − 1,

• if m is divisible by four then so is a − 1.

Source m a c
Numerical Recipes 232 1664525 1013904223
glibc (GCC) 232 1103515245 12345
Microsoft C/C++ 232 214013 2531011
Apple Carbonlib 231 − 1 16807 0

Table 2.1: List of linear congruential RNGs as reported in [40]

Table 2.1 has a list of linear congruential RNGs used in prominent libraries. Note
that m = 232 is popular, since computing the remainder of a power of 2 in base-2 only
means truncating the representation.

We end the discussion by pointing out a common weakness of all linear congruen-
tial RNGs. Set d ≥ 1 and consider the sequence of vectors (il, il+1, . . . , il+d−1) indexed
by l ∈ N. Note that for every l the truly random vector (Il, . . . , Il+d−1) is uniformly
generated on the set {0, . . . ,m − 1}d. On the other hand, the pseudorandom vectors
generated by linear congruential RNGs fail in that regard: they tend to lie on a (possi-
bly) small number of hyperplanes in the hypercube {0, . . . ,m − 1}d, see Figure 2.1. It
has been proved that they can at most lie on (d!m)1/d hyperplanes, but often the actual
figure is much smaller.

Finally, we would like to mention one of the most popular modern random num-
ber generators: the Mersenne Twister (available on http://www.math.sci.hiroshima-
u.ac.jp/∼m-mat/MT/emt.html). This RNG produces 32-bit integers, the state space
is F32×624

2 , where F2 denotes the finite field of size two, the period is 219937 − 1. It is not
a linear congruential RNG, but the basis of the transformation map T is a linear map in
X – with additional transformations, though.

Non-uniform random numbers
In many applications, we do not need uniform random numbers, but random numbers
from a certain distribution. For instance, the Black-Scholes model represents the stock
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Figure 2.1: Hyperplane property for the linear congruential generator with a = 16807,
c = 0, m = 231 − 1. On the left, we have plotted 2 000 000 points (ui, ui+1), on the right
3000 pairs (i.e., 6000 random numbers plotted as pairs).

prize as

S T = S 0 exp
(
σBT +

(
µ −

1
2
σ2

)
T
)
.

Therefore, the stock prize S T has a log-normal distribution. On the other hand, BT has
a normal distribution. Thus, there are two ways to sample the stock prize: we can either
sample from the log-normal or from the normal distribution.

For the rest of this section, and indeed, the whole text, we assume that we are given
a perfect (i.e., truly random) RNG producing a sequence U1,U2, . . . of independent
uniform random numbers. We will present several general techniques to produce sam-
ples from other distributions, and then some specialized methods for generating normal
(Gaussian) random numbers. An exhaustive treatment of random number generation
can be found in the classical book of Devroye [10].

We start with a well-known theorem from probability theory, which directly implies
the first general method for random number generation.

Proposition 2.4. Let F be a cumulative distribution function and define

F−1(u) B inf { x | F(x) ≥ u } .

Given a uniform random variable U, the random variable X B F−1(U) has the distri-
bution function F.

Proof. Since by definition of F−1 we have F−1(u) ≤ x ⇐⇒ F(x) ≥ u,

P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F(x)) = F(x). �

Example 2.5. The exponential distribution with parameter λ > 0 has the distribution
function F(x) = 1 − e−λx, which is explicitly invertible with F−1(u) = − 1

λ
log(1 − u).

Thus, using the fact that 1−U is uniformly distributed if U is, we can generate samples
from the exponential distribution by

X = −
1
λ

log(U).
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Remark 2.6. If an explicit formula for the distribution function F but not for its inverse
F−1 is available, we can try to use numerical inversion. Of course, this results in
random numbers, which are samples from an approximation of the distribution F only.
Nevertheless, if the error is small and/or the inversion can be done efficiently, this
method might be competitive even if more direct, “exact” methods are available.3 For
instance, approximations of the inverse of the distribution function Φ of the standard
normal distribution have been suggested for the simulation of normal random variables,
see [16].

Remark 2.7. The transparent relation between the uniform random numbers U1, . . . ,Ul

and the transformed random numbers X1, . . . , Xl (with distribution F) underlying the
inversion method allows to translate many structural properties on the level of the uni-
form random numbers to corresponding properties for the transformed random num-
bers. For instance, if we want the random numbers X1, . . . , Xl to be correlated, we can
choose the uniforms to be correlated. Another example is the generation of the max-
imum X∗ B max(X1, . . . , Xl). Apart from the obvious solution (generating X1, . . . , Xl

and finding their maximum), there are also two other possible methods for generating
X∗ based on the inversion method:

• Since X∗ has the distribution function F l, we can compute a sample from X∗ by
(F l)−1(U1). Efficiency of this method depends on the tractability of F l.

• Let U∗ = max(U1, . . . ,Ul). Then X∗ = F−1(U∗). Since we only have to do
one inversion instead of l, this method is usually much more efficient than the
obvious method.

Next we present a general purpose method, which is based on the densities of
the distributions involved instead of their distribution functions. More precisely, let
g : Rd → [0,∞[ be the density of a d-dimensional distribution, from which we can sam-
ple efficiently (by whatever method). We want to sample from another d-dimensional
distribution with density f . The acceptance-rejection method works if we can find a
bound c ≥ 1 such that

f (x) ≤ cg(x), x ∈ Rd.

Algorithm 2.8 (Acceptence-rejection method). Given an RNG producing independent
samples X from the distribution with density g and an RNG producing independent
samples U of the uniform distribution, independent of the samples X.

1. Generate one instance of X and one instance of U.

2. If U ≤ f (X)/(cg(X)) return X;4else go back to 1.

Proposition 2.9. Let Y be the outcome of Algorithm 2.8. Then Y has the distribution
given by the density f . Moreover, the loop in the algorithm has to be traversed c times
on average.

3We should note that many elementary functions like exp and log cannot be evaluated exactly on a
computer. Therefore, one might argue that even the simple inversion situation of Example 2.5 suffers from
this defect.

4Note that P(g(X) = 0) = 0.
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Proof. By construction, Y has the distribution of X conditioned on U ≤ f (X)
cg(X) . Thus,

for any measurable set A ⊂ Rd, we have

P(Y ∈ A) = P
(
X ∈ A

∣∣∣∣∣U ≤ f (X)
cg(X)

)

=
P

(
X ∈ A, U ≤ f (X)

cg(X)

)
P

(
U ≤ f (X)

cg(X)

) .

We compute the nominator by conditioning on X, i.e.,

P
(
X ∈ A, U ≤

f (X)
cg(X)

)
=

∫
Rd

P
(

X ∈ A, U ≤
f (X)

cg(X)

∣∣∣∣∣ X = x
)

g(x)dx

=

∫
A

P
(
U ≤

f (x)
cg(x)

)
g(x)dx

=

∫
A

f (x)
cg(x)

g(x)dx

=
1
c

∫
A

f (x)dx

On the other hand, a similar computation shows that P
(
U ≤ f (X)

cg(X)

)
= 1

c , and together
we get

P(Y ∈ A) =

∫
A

f (x)dx.

Moreover, we have seen that the probability that the sample X is accepted is given by
1/c. Since the different runs of the loop in the algorithm are independent, this implies
that the expected “waiting time” is c. �

Exercise 2.10. Why can c only be larger or equal to 1? What does c = 1 imply?

Naturally, we want c to be as small as possible. That is, in fact, the tricky part of
the endeavour. As an example, we give another method to sample normal random vari-
ables, starting from the exponential distribution, which we can sample by Example 2.5.

Example 2.11. The double exponential distribution (with parameter λ = 1) has the
density g(x) = 1

2 exp(− |x|) for x ∈ R. Let f = ϕ denote the density of the standard
normal distribution. Then

ϕ(x)
g(x)

=

√
2
π

e−
x2
2 +|x| ≤

√
2e
π
≈ 1.315 C c.

Exercise 2.12. Give a method for generating doubly exponential random variables –
using only one uniform random number per output. Moreover, justify our bound c
above.

Solution. The distribution function F of the double exponential distribution satisfies

F(x) =

 1
2 ex, x ≤ 0,
1 − 1

2 e−x, x > 0.
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Thus, we can explicitly compute the inverse and get that

X B

log(2U), U ≤ 1
2 ,

− log(2(1 − U)), U > 1
2 ,

has the double exponential distribution.
For the bound, note that e−x2/2+|x| ≤ e1/2, since − x2

2 + |x| ≤ 1
2 . �

We end the section by presenting a specific method for generating, again, stan-
dard normal random numbers. The Box Muller method is probably the simplest such
method, although not the most efficient one. For a comprehensive list of random num-
ber generators specifically available for Gaussian random numbers, see the survey ar-
ticle [38].

Algorithm 2.13. 1. Generate two independent uniform randoms numbers U1,U2;

2. Set θ = 2πU2, ρ =
√
−2 log(U1);

3. Return two independent standard normals X1 = ρ cos(θ), X2 = ρ sin(θ).

Exercise 2.14. Show that (X1, X2) indeed have the two-dimensional standard normal
distribution.
Hint: Show that the density of the two-dimensional uniform variate (U1,U2) is trans-
formed to the density of the two-dimensional standard normal distribution.

Solution: We use the transformation (X1, X2) = h(U1,U2) with h : [0, 1]2 → R2 de-
fined by

h(u) =

(√
−2 log(u1) cos(2πu2)√
−2 log(u1) sin(2πu2)

)
.

h is invertible with inverse

h−1(x) =

exp
(
− 1

2 (x2
1 + x2

2)
)

1
2π arctan

(
x2
x1

)  .
From probability theory we know that the density of (X1, X2) is given by the absolute
value of the determinant of the Jacobian of h−1, namely

∂(u1, u2)
∂(x1, x2)

=

∣∣∣∣∣∣∣−x1 exp
(
− 1

2 (x2
1 + x2

2)
)
−x2 exp

(
− 1

2 (x2
1 + x2

2)
)

− 1
2π

1
1+x2

2/x2
1

x2
x2

1
− 1

2π
1

1+x2
2/x2

1

1
x1

∣∣∣∣∣∣∣
= −

1
2π

exp
(
−

1
2

(x2
1 + x2

2)
)
,

whose absolute value is the two-dimensional Gaussian density. �

Remark 2.15. For generation of samples from the general, d-dimensional normal dis-
tribution N(µ,Σ), we first generate a d-dimensional vector of independent standard
normal variates X = (X1, . . . , Xd) using, for instance, the Box-Muller method. Then we
obtain the sample from the general normal distribution by

µ + AX,

where A satisfies Σ = AAT . Note that A can be obtained from Σ by Cholesky factoriza-
tion.

Exercise 2.16. Implement the different methods for generating Gaussian random num-
bers and compare the efficiency.
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2.2 Monte Carlo method
The Monte Carlo method belongs to the most important numerical methods. It was
developed by giants of mathematics and physics like J. von Neumann, E. Teller and
S. Ulam and N. Metropolis during the development of the H-bomb. (For a short account
of the beginnings of Monte Carlo simulation see [30].) Today, it is widely used in
fields like statistical mechanics, particle physics, computational chemistry, molecular
dynamics, computational biology and, of course, computational finance! For a survey
of the mathematics behind the Monte Carlo method see, for instance, the survey paper
of Caflisch [4] or, as usual, Glasserman [16].

Error control in the Monte Carlo method
As we have already discussed in the introduction, we want to compute the quantity

(2.2) I[ f ; X] B E
[
f (X)

]
,

assuming only that f (X) is integrable, i.e., I[| f | ; X] < ∞, and that we can actually sam-
ple from the distribution of X. Taking a sequence X1, X2, . . . of independent realizations
of X, the law of large numbers implies that

(2.3) I[ f ; X] = lim
M→∞

1
M

M∑
i=1

f (Xi), P − a.s.

However, in numerics we are usually not quite satisfied with a mere convergence state-
ment like in (2.3). Indeed, we would like to be able to control the error, i.e., we would
like to have an error estimate or bound and we would like to know how fast the error
goes to 0 if we increase M. Before continuing the discussion, let us formally introduce
the Monte Carlo integration error by

(2.4) εM = εM( f ; X) B I[ f ; X] − IM[ f ; X], where IM[ f ; X] B
1
M

M∑
i=1

f (Xi)

is the estimate based on the first M samples. Note that IM[ f ; X] is an unbiased estimate
for I[ f ; X] in the statistical sense, i.e., E

[
IM[ f ; X]

]
= I[ f ; X], implying E

[
εM( f )

]
= 0.

We also introduce the mean square error E
[
εM( f ; X)2

]
and its square root, the error in

L2. The central limit theorem immediately implies both error bounds and convergence
rate provided that f (X) is square integrable.

Proposition 2.17. Let σ = σ( f ; X) < ∞ denote the standard deviation of the random
variable f (X). Then the root mean square error satisfies

E
[
εM( f ; X)2

]1/2
=

σ
√

M
.

Moreover,
√

MεM( f ; X) is asymptotically normal (with standard deviation σ( f ; X)).
i.e., for any constants a < b ∈ R we have

lim
M→∞

P
(
σa
√

M
< εM <

σb
√

M

)
= Φ(b) − Φ(a),

where Φ denotes the distribution function of a standard normal random variable.
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Proof. Using independence of the Xi and the fact that IM[ f ; X] is unbiased,

E
[
ε2

M

]
= var

 1
M

M∑
i=1

f (Xi)

 =
1

M2

M∑
i=1

var( f (Xi)) =
M var( f (X1))

M2 =
σ2

M
.

Asymptotic normality is an immediate consequence of the central limit theorem. �

Proposition 2.17 has two important implications.

1. The error is probabilistic: there is no deterministic error bound. For a particular
simulation, and a given sample size M, the error of the simulation can be as large
as you want. However, large errors only occur with probabilities decreasing in
M.

2. The “typical” error (e.g., the root mean square error
√

E
[
ε2

M

]
) decreases to zero

like 1/
√

M. In other words, if we want to increase the accuracy of the result
tenfold (i.e., if we want to obtain one more significant digit), then we have to
increase the sample size M by a factor 102 = 100. We say that the Monte Carlo
method converges with rate 1/2.

Before continuing the discussion of the convergence rate, let us explain how to
control the error of the Monte Carlo method taking its random nature into account.
The question here is, how do we have to choose M (the only parameter available) such
that the probability of an error larger than a given tolerance level ε > 0 is smaller than
a given δ > 0, symbolically

P (|εM( f ; X)| > ε) < δ.

Fortunately, this question is already almost answered in Proposition 2.17. Indeed, it
implies that

P (|εM | > ε) = 1 − P
(
−
σε̃
√

M
< εM <

σε̃
√

M

)
∼ 1 − Φ(ε̃) + Φ(−ε̃) = 2 − 2Φ(ε̃),

where ε̃ =
√

Mε/σ. Of course, the normalized Monte Carlo error is only asymptoti-
cally normal, which means the equality between the left and the right hand side of the
above equation only holds for M → ∞, which is signified by the “∼”-symbol. Equating
the right hand side with δ and solving for M yields

(2.5) M =

(
Φ−1

(
2 − δ

2

))2

σ2ε−2.

Thus, as we have already observed before, the number of samples depends on the
tolerance like 1/ε2.

Remark 2.18. This analysis tacitly assumed that we know σ = σ( f ; X). Since we
started the whole endeavour in order to compute I[ f ; X], it is, however, very unlikely
that we already know the variance of f (X). Therefore, in practice we will have to
replace σ( f ; X) by a sample estimate. (This is not unproblematic: what about the
Monte Carlo error for the approximation of σ( f ; X)?)

Exercise 2.19. Compute the price of a European call option in the Black-Scholes
model using Monte Carlo simulation. Study the convergence of the error and also
the asymptotic normality of the error. Then, use (2.5) for a more systematic approach.
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Exercise 2.20. If we want to compute the expected value of an integrable random vari-
able, which is not square integrable, the above analysis does not apply. Compute the
expected value of E[1/

√
U] for a uniform random variable U using Monte Carlo sim-

ulation. Study the speed of convergence and whether the errors are still asymptotically
normal.

Remark 2.21. Let us come back to the merits of Monte Carlo simulation. For simplic-
ity, let us assume that X is a d-dimensional uniform random variable, i.e.,

I[ f ] B I[ f ; U] =

∫
[0,1]d

f (x)dx.

Note that the dimension of the space did not enter into our discussion of the conver-
gence rate and of error bounds at all. This is remarkable if we compare the Monte
Carlo method to traditional methods for numerical integration. Those methods are
usually based on a grid 0 ≤ x1 < x2 < · · · < xN ≤ 1 of arbitrary length N. The cor-
responding d-dimensional grid is simply given by {x1, . . . , xN}

d, a set of size Nd. The
function f is evaluated on the grid points and an approximation of the integral is com-
puted based on interpolation of the function between grid-points by suitable functions
(e.g., piecewise polynomials), whose integral can be explicitly computed. Given a nu-
merical integration method of order k, the error is the proportional to

(
1
N

)k
. However,

the we had to evaluate the function on Nd points. Therefore, the accuracy in terms of
points merely is like n−k/d, where n denotes the total number of points involved, which
is proportional to the computational cost. This is known as the curse of dimensionality:
even methods, which are very well suited in low dimensions, deteriorate very fast in
higher dimensions.

The curse of dimensionality is the main reason for the popularity of the Monte
Carlo method. As we will see later, in financial applications the dimension of the
state space can easily be in the order of 100 (or much higher), which already makes
traditional numerical integration methods completely unfeasible. In other applications,
like molecular dynamics, the dimension of the state space might be in the magnitude
of 1012!

Variance reduction
While there are no obvious handles of how to increase the convergence rate in Proposi-
tion 2.17, we might be able to improve the constant factor, i.e., the variance σ( f ; X)2 =

var( f (X)). Therefore, the idea is to obtain (in a systematic way) random variables Y
and functions g such that E[g(Y)] = E[ f (X)], but with smaller variance var(g(Y)) <
var( f (X)). Inserting σ(g; Y) =

√
var(g(Y)) into (2.5) shows that such an approach will

decrease the computational work – proportional to the number of trajectories, provided
that generation of samples g(Y) is not prohibitively more expensive than generation of
samples from f (X).

Antithetic variates

If U has the uniform distribution, then the same is true for 1 − U. Similarly, if
B ∼ N(0, Id) (the d-dimensional normal distribution), then so is −B. Therefore, these
transformations do not change the expected value E[ f (X)] if X = U or X = B.5 In gen-

5Since many random number generators for non-uniform distributions are based on uniform ones, we can
often view our integration problem as being of this type.

15



eral, let us assume that we know a (simple) transformation X̃ having the same law as X,
such that a realization of X̃ can be computed from a realization of X by a deterministic
transformation. Define the antithetic Monte Carlo estimate by

(2.6) IA
M[ f ; X] =

1
M

M∑
i=1

f (Xi) + f
(
X̃i

)
2

.

Since E
[
( f (Xi) + f (X̃i))/2

]
= E[ f (X)], this can be seen as a special case of the Monte

Carlo estimate (2.3). If we assume that the actual simulation of ( f (Xi) + f (X̃i))/2 takes
at most two times the computer time as the simulation of f (Xi), then the computing time
necessary for the computation of the estimate IA

M[ f ; X] does not exceed the computing
time for the computation of I2M[ f ; X].6 Then the use of antithetic variates makes sense
if the means square error of IA

M[ f ; X] is smaller than the one for I2M[ f ; X], i.e., if

var
(

f (Xi)+ f (X̃i)
2

)
M

<
var( f (Xi))

2M
.

This is equivalent to var( f (Xi) + f (X̃i)) < 2 var( f (Xi)). Since var( f (Xi) + f (X̃i)) =

2 var( f (Xi) + 2 cov( f (Xi), f (X̃i)), antithetic variates can speed up a Monte Carlo simu-
lation iff

(2.7) cov
(

f (X), f (X̃)
)
< 0.

Control variates

Assume that we are given a random variable Y and a functional g such that we know
the exact value of I[g; Y] = E[g(Y)]. (Note that we allow Y = X.) Then obviously

I[ f ; X] = E
[
f (X) − λ(g(Y) − I[g; Y])

]
,

for any deterministic parameter λ. Thus, a Monte Carlo estimate for I[ f ; X] is given by

(2.8) IC,λ
M [ f ; X] B

1
M

M∑
i=1

( f (Xi) − λg(Yi)) + λI[g; Y],

where (Xi,Yi) are independent realizations of (X,Y). Similar to the situation with anti-
thetic variates, we may assume that simulation of IC,λ

M [ f ] takes at most twice the time
of simulation of IM[ f ], but often it does take less time than that, especially if X = Y .
We are going to choose the parameter λ such that var( f (X) − λg(Y)) is minimized. A
simple calculation gives that

var( f (X) − λg(Y)) = var( f (X)) − 2λ cov( f (X), g(Y)) + λ2 var(g(Y))

is minimized by choosing λ to be equal to

(2.9) λ∗ =
cov( f (X), g(Y))

var(g(Y))
.

6Since we only need to sample one random number Xi and obtain X̃i by a simple deterministic transfor-
mation, in many situations it is much faster to compute ( f (Xi) + f (X̃i))/2 then to compute two realizations
of f (Xi).
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Assuming that the computational work per realization is two times higher using control
variates, (2.5) implies that the control variates technique is 1/(2(1 − ρ2))-times faster
than normal Monte Carlo, where ρ denotes the correlation coefficient of f (X) and g(Y).
For instance, for ρ = 0.95, the use of the control variate improves the speed of the
Monte-Carlo simulation by a factor five. In particular, the speed-up is high if f (X) and
g(Y) are highly correlated.

Remark 2.22. We can only determine the optimal factor λ∗ if we know cov( f (X), g(Y))
and var(g(Y)). If we are not in this highly unusual situation, we can use sample esti-
mates instead (obtained by normal Monte Carlo simulation with a smaller sample size).

Exercise 2.23. In the setting of a Black-Scholes model consider the Asian option ma-
turity T and payoff function 1

n

n∑
i=1

S ti − K

+

.

Moreover, consider the (artificial) geometrical-average Asian option with payoff func-
tion 

 n∏
i=1

S ti

1/n

− K


+

.

a) Find an explicit formula for the geometrical Asian option (see also Glasser-
man [16, page 99 f.]).

b) Simulate the option price of an Asian option using normal Monte Carlo, Monte
Carlo with antithetic variates and Monte Carlo with the geometrical-average
Asian option as control variate. Compare the results in terms of accuracy and
run-time. Finally, try to combine both variance reduction techniques. Is there a
further effect?

Importance sampling

Importance sampling is somehow related to the acceptance-rejection method. The idea
is to sample more often in regions, where the variance is higher. Assume that the
underlying random variable X has a density p (on Rd). Moreover, let q be another
probability density. Then we can obviously write

I[ f ; X] =

∫
Rd

f (x)p(x)dx =

∫
Rd

f (x)
p(x)
q(x)

q(x)dx = E
[

f (Y)
p(Y)
q(Y)

]
= I

[
f

p
q

; Y
]
,

where Y is a d-dimensional random variable with density q. Thus, a Monte Carlo
estimate for I[ f ] is given by

(2.10) ĨM[ f ; X] =
1
M

M∑
i=1

f (Yi)
p(Yi)
q(Yi)

= IM

[
f

p
q

; Y
]
.

As usual, a possible speed up is governed by the variance of f (Y) p(Y)
q(Y) , which is deter-

mined by

var
(

f (Y)
p(Y)
q(Y)

)
+ I[ f ; X]2 = E

( f (Y)
p(Y)
q(Y)

)2 = E
[

f (X)2 p(X)
q(X)

]
.
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So how do we have to choose q? Assume for a moment that f ≥ 0 itself. Take q
proportional to f · p. Then, the new estimator is based on the random variable

f (Y)
p(Y)
q(Y)

≡ 1,

thus, the variance is zero! Of course, there is a catch: q needs to be normalized to one,
therefore in order to actually construct q, we need to know the integral of f · p, i.e., we
would need to know our quantity of interest I[ f ]. However, we can gain some intuition
on how to construct a good importance sample estimate: we should choose q in such a
way that f · p/q is almost flat.

Conclusions

Comparing the three methods of variance reduction presented here, we see that anti-
thetic variates are easiest to implement, but can only give a limited speed-up. On the
other hand, both control variates and importance sampling can allow us to use very spe-
cific properties of the problem at hand. Therefore, the potential gain can be large (in
theory, the variance can be reduced almost to zero). On the other hand, this also means
that there is no general way to implement control variates or importance sampling.

2.3 Quasi Monte Carlo simulation
As we have seen, Monte Carlo simulation is a method to compute

(2.11) I[ f ] B
∫

[0,1]d
f (x)dx

– in fact, by composition with the inverse of the distribution function, all the integra-
tion problems in this section were of the form (2.11). This means that we use the
approximation

(2.12) JM[ f ] B
1
M

M∑
i=1

f (xi),

where the xi ∈ [0, 1]d are chosen in such a way as to mimic the properties of a sequence
of independent uniform random variates – but they are, in fact, still deterministic. The
idea of Quasi Monte Carlo simulation is to instead choose a (deterministic) sequence
xi ∈ [0, 1]d which are especially even distributed in [0, 1]d. Figure 2.2 shows samples in
[0, 1]2 as generated from a uniform (pseudo) RNG. We can see a lot of clumping of the
drawn points. This is not a sign of a bad RNG: indeed, for truly random realizations
of the uniform distribution on [0, 1]2 we would expect a similar kind of clumping.
However, it is easy to see that it should be possible to construct sequences (xi) with
much less clumping, see again Figure 2.2. So, in some sense the idea is the replace
pseudo random number by “more evenly distributed” but deterministic sequences.

For more information on Quasi Monte Carlo methods, we refer to Glasserman [16]
and the survey articles Caflisch [4] and L’Ecuyer [26].
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Figure 2.2: Pseudo random samples in [0, 1]2 (left picture) versus quasi random ones
(right picture)

Discrepancy and variation
In order to proceed mathematically, we need a quantitative measure of “even distri-
bution”. This measure is provided by the notion of discrepancy. Let λ denote the
restriction of the d-dimensional Lebesgue measure to the unit cube [0, 1]d, i.e., the
law of the uniform distribution. Now consider a rectangular subset R of [0, 1]d, i.e.,
R = [a1, b1[× · · · × [ad, bd[ for some a1 < b1, . . . , ad < bd. Then for a given sequence
xi ∈ [0, 1]d we can compare the Monte Carlo error for computing the volume of the set
R using the first M elements of the sequence (xi) and get

1
M

# {1 ≤ i ≤ M : xi ∈ R} − λ(R).

This is the basis of the following two (supremum-norm type) definitions of discrepancy.

Definition 2.24. The discrepancy DM of a sequence (xi)i∈N (or rather of its subsequence
(xi)M

i=1) is defined by

DM = sup
R

∣∣∣∣∣ 1
M

# {1 ≤ i ≤ M : xi ∈ R} − λ(R)
∣∣∣∣∣ .

The star-discrepancy D∗M is defined similar to DM , but the supremum is taken over only
those rectangles containing the origin (0, . . . , 0), i.e.,

D∗M = sup


∣∣∣∣∣ 1
M

# {1 ≤ i ≤ M : xi ∈ R} − λ(R)
∣∣∣∣∣
∣∣∣∣∣∣∣∣ R =

d�
j=1

[0, b j[, b1, . . . , bd ∈ [0, 1]

 .
The quality of the quadrature rule (2.12) will depend both on the uniformity of the

sequence (measured by some form of discrepancy) and the regularity of the function f .
For Monte Carlo simulation, we only needed the function f to be square integrable, and
the accuracy was determined by the variance var( f (X)). Error bounds for Quasi Monte
Carlo will generally require much more regularity. One typical measure of regularity
is the following.
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Definition 2.25. The variation in the sense of Hardy-Krause is recursively defined by

V[ f ] =

∫ 1

0

∣∣∣∣∣d f
dx

(x)
∣∣∣∣∣ dx

for a one-dimensional function f : [0, 1]→ R and

V[ f ] =

∫
[0,1]d

∣∣∣∣∣∣ ∂d f
∂x1 · · · ∂xd (x)

∣∣∣∣∣∣ dx +

d∑
j=1

V[ f ( j)
1 ],

where f ( j)
1 denotes the restriction of f to the boundary x j = 1, for a function f :

[0, 1]d → R.7

Theorem 2.26. For any integrable function f : [0, 1]d → R the Koksma-Hlawka
inequality holds:

|I[ f ] − JM[ f ]| ≤ V[ f ]D∗M .

Remark 2.27. The Koksma-Hlawka inequality is a deterministic upper bound for the
integration error, a worst case bound. For the Monte-Carlo method, we only got prob-
abilistic bounds (see Proposition 2.17), which could be seen as bounds for the average
case. On the other hand, while the Monte-Carlo bounds are sharp, the error estimate
given by the Koksma-Hlawka inequality usually is a gross over estimation of the true
error. Indeed, even the basic assumption that f ∈ Cd turns it useless for most financial
applications. Fortunately, Quasi Monte Carlo works much better in practice!

In the literature, one can find other measures of variation and discrepancy, which
together can give much better estimates than the Koksma-Hlawka inequality. The inter-
ested reader is referred to [26] and the references therein. Still, the good performance
of Quasi Monte Carlo methods in practice seems to defy theoretical analysis.

We give the proof of the Koksma-Hlawka inequality in a special case only (the
extension to the general case is left as an exercise).

Proof of Theorem 2.26 for d = 1. Assume that f ∈ C1([0, 1]). Then for any 0 ≤ x ≤ 1
we have

f (x) = f (1) −
∫ 1

0
f ′(t)1]x,1](t)dt.

We insert this representation into the quadrature error

|I[ f ] − JM[ f ]| =

∣∣∣∣∣∣∣ 1
M

M∑
i=1

∫ 1

0
f ′(t)1]xi,1](t)dt −

∫ 1

0

∫ 1

0
f ′(t)1]x,1](t)dtdx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫ 1

0
f ′(t)

 1
M

M∑
i=1

1]xi,1](t) −
∫ 1

0
1]x,1](t)dx

 dt

∣∣∣∣∣∣∣
≤

∫ 1

0

∣∣∣ f ′(t)∣∣∣ ∣∣∣∣∣∣∣ 1
M

M∑
i=1

1[0,t[(xi) −
∫ 1

0
1[0,t[(x)dx

∣∣∣∣∣∣∣︸                                     ︷︷                                     ︸
≤D∗M

dt

≤ V[ f ]D∗M . �

7If the integral is not defined, because the function f is not smooth enough, we set V[ f ] = ∞.
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Sequences of low discrepancy
By Theorem 2.26, we need to find sequences of low discrepancy.

Definition 2.28. We say that a sequence (xi)i∈N, xi ∈ [0, 1]d, has low discrepancy, if
D∗M ≤ c log(M)d M−1.

We give a few examples of sequences of low discrepancy.

Example 2.29. Choose a prime number p (or more generally, an integer p ≥ 2). Define
the map ψp : N0 → [0, 1[ by

ψp(k) =

∞∑
j=0

a j(k)
p j+1 , where k =

∞∑
j=0

a j(k)p j.

The Van der Corput sequence is the one-dimensional sequence xi = ψp(i), i ∈ N0.

Example 2.30. The Halton sequence is a d-dimensional generalization of the Van der
Corput sequence. Let p1, . . . , pd be relatively prime integers. Define a d-dimensional
sequence by xi = (x1

i , . . . , x
d
i ), i ∈ N0, with x j

i = ψp j (i), j = 1, . . . , d.

Remark 2.31. When we work with RNGs, we do not have to define extra multi-
dimensional RNGs. Indeed, if (Xi)i∈N is a sequence of independent, uniform, one-
dimensional random numbers, then the sequence(

X(i−1)d+1, . . . , Xid
)
i∈N

is a sequence of d-dimensional, independent, uniform random variables. On the other
hand, if we take d-tuples of a one-dimensional sequence of low discrepancy, we cannot
hope to obtain a d-dimensional sequence with with low discrepancy, see Figure 2.3.

Remark 2.32. Clearly, a very evenly spaced (finite) sequence is given by taking all
the (n + 1)d points

{
0, 1

n ,
2
n , . . . , 1

}d
for some fixed n ∈ N. However, we would like to

have a sequence of arbitrary length: we want to compute estimates JM[ f ] increasing
M until some stopping criterion is satisfied – and, of course, this is only feasible if
updating from JM[ f ] to JM[ f ] does not require to recompute M + 1 terms. Using the
tensorized sum above, we can only compute J(n+1)d [ f ], since JM[ f ] would probably
give a very bad estimate for M < (n + 1) j and would require recomputing the whole
sum for M > (n + 1)d, unless we refine the grid taking n → 2n, which increases M by
a factor 2d. Thus, taking a regular tensorized grid is not feasible.

Additionally, there are several other prominent families of sequences with low dis-
crepancy, like the Sobol or Faure sequences. For a sequence of low discrepancy, the
Koksma-Hlawka inequality, when applicable, implies that the quadrature error satisfies

(2.13) |I[ f ] − JM[ f ]| ≤
V[ f ]c log(M)d

M
,

i.e., the rate of convergence is given by 1 − ε, as compared to the meagre 1/2 from
classical Monte Carlo simulation. This is indeed the usually observed rate in practice,
however, this statemented should be treated with care: apart from the regularity as-
sumptions of the Koksma-Hlawka inequality, let us point out that log(M)d/M � M−1/2

for all reasonably sized M even in fairly moderate dimensions d. For instance, in di-
mension d = 8, we only have

log(M)d/M ≤ M−1/2, for M ≥ 1.8 × 1029.
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Figure 2.3: Pairs of one-dimensional Sobol numbers

Exercise 2.33. Solve the Exercises 2.19 and 2.23 using Quasi Monte Carlo. Report the
results and compare the speed of convergence with the one obtained by Monte Carlo
simulation.

Remarks on Quasi Monte Carlo
Low dimensionality

It is generally difficult to construct good sequences of low discrepancy in high dimen-
sions d � 1. Indeed, even for the available sequences, it is usually true that the “level
of even distribution” often deteriorates in the dimension in the sense that, e.g., the
projection two the first two coordinates (x1

i , x
2
i )i∈N will often have better uniformity

properties than the projections on the last two coordinates (xd−1
i , xd

i ). Moreover, the
theory suggests that functions need to be more and more regular in higher dimensions.
So why does QMC work so well especially in higher dimensions?

One explanation is that many high-dimensional functionals f , especially those used
in finance, often depend mostly on few dimensions, in the sense that in an ANOVA
decomposition (of f into functions depending only on a few coordinates)

f (x1, . . . , xd) =

d∑
k=0

∑
(i1<i2<···<ik)∈{1,...,d}k

f (i1,...,ik)(xi1 , . . . , xik )

the functions f (i1,...,ik) with big k only contribute little to the values of f . In many
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Figure 2.4: A call option in the Black-Scholes model using Monte Carlo and Quasi
Monte Carlo simulation. Red: MC simulation, blue: QMC simulation, black: Refer-
ence lines proportional to 1/M and 1/

√
M.
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Figure 2.5: The Asian option from Exercise 2.23 using Monte Carlo and Quasi Monte
Carlo simulation (Solid lines: QMC simulation, dashed lines: MC simulation; Red:
normal simulation, blue: antithetic variates, green: control variates, black: references
line proportional to 1/M.

cases, the “low-dimensionality” of a function f can be improved by applying suitable
transformations, thus improving the accuracy of the Quasi Monte Carlo method.
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Randomized QMC

We have seen before that the QMC (Quasi Monte Carlo) method generally converges
faster than plain Monte Carlo simulation, but lacks good error control. On the other
hand, the Monte Carlo method allows for very good error controls (with only very little
before-hand information necessary), even though these are only random. So why note
combine Monte Carlo and Quasi Monte Carlo?

Let x = (xi)i∈N denote a sequence of low discrepancy in dimension d. We can
randomize this sequence, e.g., by applying a random shift, i.e., for a d-dimensional
uniform random variable U consider

(2.14) X B (xi + U (mod 1))i∈N .

(For other possible randomizations see [26].) Let JM[ f ; X] denote the QMC esti-
mate (2.12) based on the randomized sequence X. Now fix a number m ∈ N and
generate m independent realizations Xl, 1 ≤ l ≤ m, of X (by sampling m independent
realizations Ul of U). Then we estimate I[ f ] by the randomized Quasi Monte Carlo
estimate

(2.15) JR
M;m[ f ] B

1
m

m∑
l=1

JM[ f ; Xl].

Now we can use the error estimate of Proposition 2.17 based on var(JM[ f ; X]). By
the good convergence of the QMC estimator JM[ f ], we can expect JM[ f ] to be close
to I[ f ] for most realizations X. Thus, var(JM[ f ; X]) will be small. This means, from
the point of view of the Monte Carlo method, RQMC can be seen as another variance
reduction technique! (L’Ecuyer [26] reports tremendous improvements of the variance
as compared with plain MC or even MC with traditional variance reduction.)

Remark 2.34. How should we divide the computational work between m and M? The
purpose of m is mostly to compute the error estimate, whereas M controls the error
itself. Therefore, in applications m should be chosen quite small, L’Ecuyer suggests
m ≤ 25. On the other hand, for theoretical purposes, e.g., for comparison of RQMC to
other methods, the error control might be more important and might require higher m.

Exercise 2.35. Solve the Exercises 2.19 and 2.23 using RQMC. Report the results and
the reduction in the variance.

2.4 Pricing American options with Monte Carlo
American options are fundamentally different from European options in that they allow
the holder of the option to exercise it at any given time between today and the expiry
date T of the option. Thus, the holder of the option needs to choose the best time to
exercise the option, which mathematically translates to an optimal stopping problem.
Therefore, one can show that an arbitrage-free price of the American option is given
by

(2.16) sup
τ≤T

E
[
e−rτ f (Xτ)

]
,

where the expectation is understood under a risk neutral measure and the sup ranges
over all stopping times τ bounded by T . f denotes the payoff function of the option,
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e.g., f (x) = (K − x)+ in the case of a put option. In most real life situations, one cannot
continuously exercise the option, instead, exercising is only possible at a finite number
of times t1, . . . , tm. In the case of an American option, these dates correspond to all the
trading dates between today (time 0) and the maturity T . On the other hand, we can
also think of options that can only be exercised once per week or at any other collection
of trading days. In the literature, those options are known as Bermudan options, since
they are lying “between” European and American options.

In the last section, we have already seen one possible way to obtain the price of an
American option, namely by solving the corresponding partial differential inequality,
which has the form of a free boundary problem, see (4.6). In this section, we present
a Monte Carlo based method, based on random trees. We are going to work under the
following basic assumptions:

1. The option can only be exercised at the times t1 < t2 < · · · < tm = T . (Hence-
forth, we will identify times with indices, i.e., we will talk about “times” i =

0, . . . ,m.)

2. The stock price process Xi B Xti , 0 ≤ i ≤ m (with t0 B 0), is a Markov chain
in discrete time with state space contained in Rn. Moreover, we assume that we
can exactly sample from X. All these properties hold under a fixed martingale
measure P.

3. The interest rate is equal to r = 0.

Remark 2.36. In the case of an American option (with T > m trading days left),
condition 1 means that we discretize the problem. However, in the following we are
not going to discuss the approximation properties for m → ∞. Instead, we assume
that the option is of Bermudan form. If the stock price is modeled by an SDE, we
usually do not know the distribution of Xti , see Chapter 3. Again, in this section we
assume that the random variables Xi are exactly given. From the point of view of an
SDE, this might mean that we treat the approximation as our true model. (We are only
interested in the Monte Carlo and optimal stopping part here.) Finally, note that we can
treat stochastic interest rates by enhancing the state space of Xt to include a stochastic
interest rt and changing the payoff.

In what follows, we closely follow Glasserman [16, Chapter 8]. We also refer
to the original papers of Broadie and Glasserman, e.g., [3], and to Longstaff and
Schwartz [28].

Dynamic programming and stopping rules
Let fi(x) denote the payoff function of the option at time i for the stock price x and let
Vi(x) the value of the option at time i given Xi = x. (We implicitly assume that the
option has not been exercised before time i.) Obviously, we have Vm(x) = fm(x). By
dynamic programming (Bellman’s equation), we have the backward recursion

(2.17) Vi−1(x) = max ( fi−1(x), E[Vi(Xi)|Xi−1 = x]) , i = 1, . . . ,m.

Since we know Vm(x) = fm(x), (2.17) determines the price V0(x) of the option, but
requires us to compute conditional expectations at each step. Note that, similar to PDE
methods, Bellman’s equation requires us to compute the values Vi(x) for all times i
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and all stock prices x, since we need all the values of Vi to get the continuation value
Ci−1(x) defined by

(2.18) Ci−1(x) B E[Vi(Xi)|Xi−1 = x],

which is the value of the option, if we decide note to exercise at time i − 1. Thus, the
value of the option at time i − 1 is the maximum of the continuation value Ci−1(x) and
the exercise value fi−1(x).

Of course, we can also obtain prices by using particular stopping strategies. Let
τ be a candidate for an optimal stopping time (i.e., a stopping time with values in
{1, . . . ,m}), then the solution V (τ)

0 of the corresponding stopping problem is, by (2.16),
a lower estimate for the option price:

V (τ)
0 (X0) = E[ fτ(Xτ)] ≤ sup

τ≤T
E[ fτ(Xτ)] = V0(X0).

On the other hand, having solved the dynamic program (2.17), we can immediately
construct the optimal stopping time τ∗ by defining

(2.19) τ∗ B min { i ∈ {1, . . . ,m} | fi(Xi) ≥ Vi(Xi) } .

This stopping time satisfies V (τ∗)(X0) = V0(X0). In (2.19), we could have replaced the
option price Vi(Xi) by the continuation value Ci(Xi). Now assume that we are only given
estimate values V i(x) for the option prices (or the continuation values). Inserting them
into (2.19) gives a stopping time τ and a corresponding option price V (τ)

0 (X0) ≤ V0(X0).
(Note that we cannot conclude that V (τ)

0 (X0) = V0(X0). This is only true for the optimal
stopping time!). On the other hand, many estimate values V i(x) obtained by approxi-
mately solving the Bellman equation (2.17) will tend to overestimate the value of the
American option. Indeed, assume that we construct our approximate solution using an
unbiased approximation of the conditional expectation operator denoted by I[Y |X] (or
I[Y |X = x]) in the sense that E[I[g(Xi)|Xi−1]] = E[E[g(Xi)|Xi−1]] = E[g(Xi)]. (One
such choice would be to base the approximation on a sample average.) This means, the
Bellman equation (2.17) is solved by setting Vm(x) = fm(x) and then recursively

(2.20) V i−1(x) B max
(

fi−1(x), I[V i(Xi)|Xi−1 = x]
)
.

Notice that V i(x) will be a random variable, containing information about the future
distributions of the stock price, unless it is a true conditional expectation.) Then we
have the following result:

Lemma 2.37. The approximate solution V defined in (2.20) is biased high, i.e.,

E[V i(Xi)|Xi] ≥ Vi(Xi), i = 0, . . . ,m.

Proof. The statement holds for i = m with equality. We prove the statement for i =

0, . . . ,m − 1 by backward induction. So, assume that the inequality holds for i, i +

1, . . . ,m. Then, Jensen’s inequality and the induction hypothesis imply that

E[V i−1(Xi−1)|Xi−1] = E
[
max

(
fi−1(Xi−1), I[V i(Xi)|Xi−1]

)∣∣∣∣ Xi−1

]
≥ max

(
fi−1(Xi−1), E[I[V i(Xi)|Xi−1]|Xi−1]

)
= max

(
fi−1(Xi−1), E[E[V i(Xi)|Xi−1]|Xi−1]

)
= max

(
fi−1(Xi−1), E[E[V i(Xi)|Xi]|Xi−1]

)
≥ max ( fi−1(Xi−1), E[Vi(Xi)|Xi−1]) = Vi−1(Xi−1). �
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Remark 2.38. Assume we have an approximation technique for solving Bellman’s
equation (2.17) as above. By Lemma 2.37, the corresponding option prices V i will be
biased high. Now use the approximate option prices to construct a stopping time τ
by (2.19). The corresponding option prices V (τ)

i are biased low. Thus, we assume that
the true price is below V0 and above V (τ)

0 .8 In practice, this information is very useful,
especially if the two values are close to each other. On the other hand, one can also try
to combine both techniques into one numerical method, thus correcting the bias already
on a local level. These methods can be much more precise, but on the other hand it is
usually no longer possible to identify, whether the method has a high or low bias – if
the bias has a common sign at all.

Random tree method
Probably the simplest method for pricing American options is by approximating the
conditional expectations in the Bellman equation (2.17) using Monte Carlo simulation,
i.e., by the sample average of b independent copies of Vi(Xi) simulated conditioned on
the value Xi−1 = x. This leads to a random tree with branching parameter b. Indeed,
assume we want to compute the price of the option given X0 = x, i.e., V0(x). Then we
simulate b independent samples from the conditional distribution of X1 given X0 = x –
recall that Xi is assumed to be a Markov chain. We denote these samples by X1

1 , . . . , X
b
1 .

Now pick any 1 ≤ j ≤ b and sample b independent simulations of X2 using the condi-
tional distribution of X2 given that X1 = X j

1 and denote these samples by X j,1
1 , . . . , X j,b

2 .
After having sampled all the values Xi, j

2 , i ≤ i, j ≤ b, we have sampled a tree over
two time periods, where each node at time 0 or 1 is connected with b daughter nodes
at the next time. We continue in this way until time m, sampling simulations denoted
by X j1,..., jm

m under the conditional distribution of Xm given Xm−1 = X j1,..., jm−1
m−1 in the last

step. Now we are ready to solve the dynamic program (2.17) approximately along the
tree. First we set V j1,..., jm

m B fm(X j1,..., jm
m ), and then we define approximate solutions by

backward recursion

(2.21) V j1,..., ji
i B max

 fi(X
j j1,..., ji
i ),

1
b

b∑
j=1

V j1,..., ji, j
i+1

 ,
i.e., by approximating the conditional expectation by the sample average among all
daughter nodes.

Remark 2.39. The random tree method should not be confused with a binomial or
b-ary tree method. For a b-ary tree, the distribution of Xi given Xi−1 is discrete, with
exactly b possible values, usually given in the form u1Xi−1, . . . , ubXi−1. For a random
tree in the above sense, this is not true. In fact, the distribution can be continuous,
and very different nodes can appear on the tree. As a consequence, the expectation
computed in (2.21) is only an approximation, whereas the b-ary tree allows to compute
true conditional expectation, however in a much simpler model.

By Lemma 2.37, the estimator V∅0 is biased high. Indeed, using the approxima-
tion (2.21), we can give a more intuitive reason for this fact: the bias is high, because

8In fact, our results are random variables. This is obvious for V0 and also true for V (τ)
0 , since we cannot

compute the corresponding expectation explicitly, albeit by using an approximate expectation operator I as
above. Thus, we can only claim that the true value is contained in a confidence interval around [V (τ)

0 ,V0]
with high probability.
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the sample average does depend on the future realisations, and not only on their dis-
tribution. Thus, in the case of an American put-option, it might be advantageous to
continue holding the option, even if the current stock price has actually crossed the
exercise threshold, if we see (from the average) that the future stock prices will be
particularly low given the current value.

An elegant low biased estimator can be constructed as follows: in node X j1,..., ji
i

compute the estimator for E[Vi+1(Xi+1)|Xi] using all of the daughter nodes except for
one, say except for X j1,..., ji,b

i+1 . Using that estimate, determine whether to exercise or to
continue holding the option. Then compute the value based on the decision but using
the unused value X j1,..., ji,b

i+1 , i.e., the option value at X j1,..., ji
i is set to fi(X

j1,..., ji
i ) or to

V j1,..., ji,b
i+1 depending on the decision. Finally, we take the average of the option values

based on leaving out all possible daughter nodes. Thus, the low-biased estimator is
defined as follows: v j1,..., jm

m B fm(X j1,..., jm
m ) at time m and then

v j1,..., ji
i,k B

 fi(X
j1,..., ji
i ), 1

b−1
∑b

j=1, j,k v j1,...,Ji, j
i+1 ≤ fi(X

j1,..., ji
i ),

v j1,..., ji,k
i+1 , else,

v j1,..., ji
i B

1
b

b∑
k=1

v j1,..., ji
i,k .

A relatively straightforward argument shows that v∅0 is indeed biased low.
Obviously, we expect the results of the random tree method to improve by increas-

ing the branching number b. Indeed, Broadie and Glasserman [3] show convergence
to the true price V0(X0) for b → ∞. On the other hand, note that size of the tree
is mb, and thus depends exponentially on the branching number. This causes severe
restrictions in the possible size of the branching number (and of m) for actual com-
putations. In particular, relatively small choices of b can already exhaust the memory
of modern computers. While these memory requirements can be overcome by clever
programming (reducing the number of nodes to be kept in memory to mb+1), the expo-
nential growth in the computational time cannot be resolved easily. Thus, the random
tree method is a good “toy method” because of its clarity and ease, but it is not really
suitable for computations.

Pricing based on regression
A different method proposed in the literature is to estimate the conditional expectation
in Bellman’s equation (2.17) by a linear regression, instead of sample averages. Use
the ansatz

(2.22) E[Vi+1(Xi+1)|Xi = x] =

N∑
j=1

βi, jψ j(x)

for given basis functions ψ j : Rn → R, j = 1, . . . ,N. The unknown and time-dependent
coefficients βi, j, j = 1, . . . ,N, then need to be estimated from simulations. From (2.22)
we obtain (denoting ψ(x) = (ψ1(x), . . . , ψN(x))T and βi = (βi,1, . . . , βi,N)T )

E[ψ(Xi)Vi+1(Xi+1)] = E[ψ(Xi)βT
i ψ(Xi)] = E[ψ(Xi)ψ(Xi)T ]βi,

implying that

(2.23) βi =
(
E[ψ(Xi)ψ(Xi)T ]

)−1
E[ψ(Xi)Vi+1(Xi+1)] C M−1

ψ MψV ,
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assuming that the matrix Mψ is non-singular. In order to obtain the matrix Mψ and
the vector MψV , we use sample averages. Summarizing, the whole regression-based
algorithm looks like this:

Algorithm 2.40. Simulate b independent paths of the Markov chain X1, . . . , Xm start-
ing from X0 = x. We denote the simulated values by X( j)

i , i = 1, . . . ,m, j = 1, . . . , b. Set
Vm, j B fm(X( j)

m ) and proceed for i = m − 1, . . . , 0 (backwards in time):

(i) Compute matrices M̂ψ and M̂ψV by

(M̂ψ)l,k B
1
b

b∑
j=1

ψl(X
( j)
i )ψk(X( j)

i ), (M̂ψV )k B
1
b

b∑
j=1

ψk(X( j)
i )Vi+1, j.

(ii) Set the regression coefficient β̂i B M̂−1
ψ M̂ψV .

(iii) Obtain the new option price estimates by

(2.24) Vi, j B max
(

fi(X
( j)
i ), β̂T

i ψ(X( j)
i )

)
.

If the regression (2.22) holds exactly, then it is not difficult to show that the algo-
rithm converges to the true option price as b → ∞. Longstaff and Schwartz [28] have
introduced a modification, which provides a low-biased estimator.

As compared to the random tree method, the regression based method clearly is
much less restrictive regarding memory and speed. A main difference is that all the
future samples X(1)

i+1, . . . , X
(b)
i+1 are used to provide the estimate at X( j)

i , because they all
enter into the regression (they are used to determine βi). In contrast, in the random tree
method only information coming from daughter nodes enter into the computation at
a particular node. This points to a different class of algorithms, known as stochastic
mesh methods, see Glasserman [16, Section 8.5].

It is well known that the choice of basis functions ψ is of vital importance for the
accuracy of the algorithm. This seems clear from the onset, because in general, we
would only expect the regression-based algorithm to converge for b → ∞ and N →
∞, assuming that ψ1(Xi), . . . , ψN(Xi) are chosen from a basis of L2(Ω). In particular,
practical applications show that it is not enough to use polynomial basis functions only,
and that the accuracy increases when the payoff functions fi are also included – in
particular when they are non-differentiable, as in the cases of put-options or digital
options.
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Chapter 3

Discretization of stochastic
differential equations

3.1 Generating sample paths
A stochastic differential equation describes the dynamics of a stochastic process in
terms of a generating signal, usually a Brownian motion or, more generally, a Lévy
process. Before actually solving SDEs, we are first going to discuss, how to (effec-
tively) sample from the driving signal.

Brownian motion
In what follows, Bt denotes a one-dimensional Brownian motion. This restriction is
imposed purely for convenience: all the methods hold, mutatis mutandis, also for a
multi-dimensional Brownian motion.

Clearly, we cannot sample the full path (Bt)t∈[0,T ], since it is an infinite-dimensional
object. Instead, we concentrate on a finite-dimensional “skeleton” (Bt1 , . . . , Btn ) based
on a partition 0 = t0 < t1 < · · · < tn = T of the interval [0,T ]. If we need an
approximation to the true sample path, we can interpolate – note that interpolation
makes the path non-adapted! For instance, if we want to simulate the payoff of a
path-dependent option (in the Black-Scholes model), we can use interpolation of the
sample path of the underlying Brownian motion to compute the exact payoff given by
the interpolated finite-dimensional sample, or we can compute an approximate payoff

directly from the sample. (In many cases, the two alternatives will actually coincide,
think on Asian options, where the first method using linear interpolation of the finite
sample coincides with a trapezoidal approximation of the integral.)

Cholesky factorization

Luckily, we know that

(Bt1 , . . . , Btn ) ∼ N(0,Σ), with Σi, j = min(ti, t j), 1 ≤ i, j ≤ n.

Moreover, in Remark 2.15 we have indicated how to sample from a general, multi-
dimensional Gaussian distribution: given n independent one-dimensional normal ran-
dom variables X = (X1, . . . , Xn), we a n-dimensional normal random vector with co-
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variance matrix Σ by AX, where Σ = AAT . In this particular case, it is easy to find the
Cholesky factorization A by

(3.1) A =


√

t1 0 . . . 0
√

t1
√

t2 − t1 . . . 0
...

...
. . .

...
√

t1
√

t2 − t1 . . .
√

tn − tn−1

 .

Random walk approach

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

B
t

Figure 3.1: Brownian motion simulated using the random walk approach

An alternative way to sample (Bt1 , . . . , Btn ) is by using the independence of the
increments of the Brownian motion. Indeed, Bt1 can be directly sampled. Given Bt1 , we
have Bt2 = Bt1 + (Bt2 − Bt1 ), where the two summands Bt1 and Bt2 − Bt1 are independent
of each other and both have a normal distribution. We continue iteratively until we
reach Btn = Btn−1 + (Btn − Btn−1 ). Thus, we have seen that we only have to sample the
increments ∆B1 B Bt1 (= Bt1 − Bt0 ), ∆B2 B Bt2 − Bt1 , . . . ∆Bn B Btn − Btn−1 . Denoting
∆t1 B t1, ∆t2 B t2 − t1, . . . , ∆tn B tn − tn−1, this is achieved by

(3.2) ∆B1 =
√

∆t1X1, . . . ,∆Bn =
√

∆tnXn,

where X again denotes an n-dimensional standard normal random variable. A closer
look at the simulation using the Cholesky factorization (3.1) and the simulation of the
increments (3.2) shows that both method give exactly the same samples from the Brow-
nian motion if we start with the same standard normal sample X. Thus, (3.2) (with the
additional summation of the increments ∆B) can be seen as an efficient implementation
of the matrix multiplication AX.
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Brownian bridge construction

Instead of starting with the first random variable Bt1 , let us start with the last one,
Btn = BT ∼ N(0,T ). Obviously, we can directly sample from this random variable.
Next fix some k such that tk ≈ T/2. We want to continue by sampling Btk . But how?
We cannot proceed by considering the corresponding increment, as before. However,
the conditional distribution of Btk given Btn is well known as Brownian bridge1. Indeed,
let u < s < t, then the conditional distribution of Bs given that Bu = x and Bt = y is

(3.3) (Bs|Bu = x, Bt = y) ∼ N
(

(t − s)x + (s − u)y
t − u

,
(s − u)(t − s)

t − u

)
.

Thus, starting with BT , we can sample the remaining values Bt1 , . . . , Btn−1 iteratively and
in any order. For instance, we could sample the value of the Brownian motion at time tk
closest to T/2 first, then continue with the values closest to T/4 and 3T/4, respectively.
While we can still represent the final sample (Bt1 , . . . , Btn ) as a deterministic function of
an n-dimensional standard normal random variable X, this time the functional will not
coincide with the functionals in the first two methods. However, the sampling is still
exact, i.e., the sample (Bt1 , . . . , Btn ) constructed by Brownian bridges has the correct
distribution.

Remark 3.1. Why should we use this complicated approach instead of the much sim-
pler construction based on the increments? Note that the Brownian bridge construction
starts by a very coarse approximation, which is more and more refined. Therefore, in
many applications the final value of the quantity of interest (e.g., of the payoff of an
option) depends much stronger on the coarse structure of the underlying path then on
the details – think of a barrier option in the Black-Scholes model. Thus, if we write
our option payoff as a functional f (X1, X2, . . . , Xn) of the normal random variables used
for the Brownian bridge construction of the Brownian path (in the right order, i.e., X1
is used to sample BT and so on), then f will typically vary much stronger in the first
variables then in the variables with high index. Thus, the Brownian bridge construction
can be seen as a dimension-reduction technique, as discussed in the context of QMC.

Karhunen-Loève expansion

The Karhunen-Loève expansion is a type of Fourier expansion of the Brownian motion.
Thus, it differs from the previous approximations by actually giving a sequence of
continuous processes in time. Consider the eigenvalue problem for the covariance
operator of the Brownian motion on the interval [0, 1], i.e.,

(3.4)
∫ 1

0
min(s, t)ψ(s)ds = λψ(t).

Let λi denote the sequence of eigenvalues and ψi the corresponding sequence of eigen-
functions. Then we have the equality

(3.5) Bt =

∞∑
i=0

√
λiψi(t)Zi,

1More precisely, the Brownian bridge is a Brownian motion on the interval [0, 1] conditioned on B1 = 0.
It is a simple exercise to express the above conditional distribution in terms of the distribution of a Brownian
bridge.
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Figure 3.2: Brownian motion constructed by the Brownian bridge approach. Dashed
lines correspond to the newly inserted Brownian bridge

with Zi denoting a sequence of independent standard normal random variables. Since
we can solve the eigenvalue problem explicitly, with

λi =

(
2

(2i + 1)π

)2

, ψi(t) =
√

2 sin
(

(2i + 1)πt
2

)
,

this leads to an exact approximation of Brownian motion by (random) trigonometric
polynomials.

Remark 3.2. A similar expansion of Brownian motion is related to the Brownian
bridge construction. It was, in fact, first used by P. Lévy for his construction of Brow-
nian motion.

Example 3.3. We can, of course, sample from the paths of the stock prices S t in the
Samuelson model by applying any of the sampling techniques for the Brownian motion
and then using

S t = S 0 exp
(
σBt +

(
µ −

σ2

2

)
t
)
.
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The Poisson process
Many models in mathematical finance include jump processes, which are usually Lévy
processes. The numerical treatment of these jump components is quite simple, pro-
vided that the have finite activity, i.e., only finitely many jumps in compact intervals.
In this case, they are, in fact, compound Poisson processes, i.e., processes of the form

(3.6) Zt = Z0 +

Nt∑
i=1

Xi,

where Nt denotes a (homogeneous) Poisson process and (Xi)∞i=1 are independent sam-
ples of the jump distribution. This motivates the need to sample trajectories of the
Poisson process. For what follows, Nt will denote a Poisson process with parameter
λ > 0.

Sampling values of a Poisson process

We have (at least) two different possibilities if we want to sample the vector (Nt1 , . . . ,Ntn ).
In full analogy to the first method for sampling a Brownian motion, we can use inde-
pendence of the increments of a Poisson process: Nt1 has a Poisson distribution with
parameter λt1, Nt2 − Nt1 has a Poisson distribution with parameter λ(t2 − t1) and is in-
dependent of Nt1 and so forth. Note that samples from a Poisson distribution can be
generated using the inversion method.

On the other hand, there is also a Poisson bridge. Indeed, given Nt = n, we know
that Ns has a binomial distribution with parameters n and p = s/t, 0 < s < t.

Sampling the true trajectory

Unlike in the case of a Brownian motion, we can actually sample the true trajectory of
a Poisson process on an interval [0, t]. Indeed, the trajectory is piecewise constant, so
it suffices to sample the jump times within the interval, which is easily possible since
there can only be finitely many such jumps. Again, two methods exist for sampling the
jump times of a Poisson process. Let us denote the jump times of the Poisson process
by Tn, n ≥ 1. Thus, we have to construct the finite sequence (T1, . . . ,TNt ).

(i) Note that the inter-arrival times τn B Tn − Tn−1 (with T0 B 0) of the jumps are
independent of each other and have an exponential distribution with parameter
λ. Therefore, we can start with T0 = 0 and can iteratively produce τn and set
Tn = Tn−1 + τn and stop when Tn > t. Obviously, the algorithm stops in finite
time with probability one.

(ii) Given Nt = n, the jump times (T1, . . . ,Tn) are uniformly distributed on the
interval [0, t]. More precisely, they are the order statistics of n independent
uniforms on [0, t]. Thus, we can sample the jump times of the Poisson pro-
cess by first sampling the number of jumps Nt, then taking a sequence of in-
dependent uniforms (tU1, . . . , tUNt ) (the Uns are from a uniform distribution on
[0, 1]) and finally ordering them in the sense that T1 = min(tU1, . . . , tUNt ), . . . ,
TNt = max(tU1, . . . , tUNt ).

Example 3.4. Already in the seventies Merton introduced a jump diffusion into finan-
cial modelling. He proposed to model the stock price process by the SDE

(3.7) dS t = µS t−dt + σS t−dBt + S t−dJt,
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Figure 3.3: Trajectory of Merton’s jump diffusion, see Example 3.4.

where Jt denotes a compound Poisson process which we denote by

Jt =

Nt∑
j=1

(X j − 1),

where the X j are independent samples from a distribution supported on the positive
half-line. Moreover, we assume that the Poisson process N is independent of the
Brownian motion B. In this case, it is possible to understand the SDE (3.7) without
appealing to general stochastic integration. Indeed, between two jump times Tn and
Tn+1 of the underlying Poisson process, the stock price evolves according to the SDE
of a geometric Brownian motion, i.e.,

S t = S Tn exp
(
σ(Bt − BTn ) +

(
µ −

σ2

2

)
(t − Tn)

)
, Tn ≤ t < Tn+1.

At the time of the jump of the Poisson process, the stock price jumps as well. By
convention, we require S to be right-continuous, i.e., we assume that S t is the value
of S just after the jump occurs, if there is a jump at time t. Now at time t = Tn+1, we
read (3.7) to mean that

S t − S t− = S t− (Xn+1 − 1),

i.e., S jumps at time t and the value after the jump is given by S t = S t−Xn+1. Sum-
marising, we see that we can actually solve (3.7) explicitly:

S t = S 0 exp
(
σBt +

(
µ −

σ2

2

)
t
) Nt∏

j=1

X j.

If we want to sample trajectories of the Merton jump diffusion, we need to combine
the sampling techniques for the Brownian motion and the Poisson process – of course,
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we also need to sample the jumps X j. Since these three components are assumed to
be independent, no special care is necessary. We can sample (S t1 , . . . , S tn ) on a pre-
defined grid by sampling the Brownian motion (Bt1 , . . . , Btn ) and the Poisson process
(Nt1 , . . . ,Ntn ) along the grid and additionally sampling (X1, . . . , XNtn

) from the jump
distribution. Or we can sample the stock prices on a random grid containing the jump
times. Note that in the original model by Merton, the jump heights X j were assumed
to have a log-normal distribution.

The variance gamma model
In mathematical finance, a very popular class of models for the stock price are the expo-
nential Lévy processes, i.e., the stock price is given by S t = S 0 exp(Zt) for some Lévy
process Zt. By the very definition of a Lévy process as a process with stationary, inde-
pendent increments, we know that the general strategy for sampling used for Brownian
motion can also be applied for more general Lévy processes, i.e., if we want to sample
(Zt1 , . . . ,Ztn ), we can do so by sampling the increments (Zt1 ,Zt2 − Zt1 , . . . ,Ztn − Ztn−1 ),
which are independent. Moreover, in the case of a homogeneous grid ∆t1 = · · · = ∆tn,
we also know that, in fact, all the increments ∆Zi = Zti−Zti−1 have the same distribution.

Moreover, any Lévy process Z can be decomposed into a sum of a deterministic
drift, a Brownian motion (in fact, a Brownian motion multiplied with a constant) and
a pure jump process independent of the Brownian motion. If the process has finite
activity, i.e., jumps only finitely often in each finite interval, then the pure jump process
is a compound Poisson process. This case was, in fact, already treated in Example 3.4.
However, in many popular models, the Lévy process has infinite activity, and is, in
fact, a pure jump process, without Brownian component. One of these models will be
presented a bit more detailed in this section.

One particular pure-jump exponential Lévy model is the variance gamma model.
In this model, Z is the difference of two independent gamma processes, Zt = Ut−Dt. A
gamma process is a Lévy processes, whose increments satisfy the gamma distribution.2

More precisely, a gamma process is a Lévy process whose marginals satisfy the gamma
distribution with constant scale parameter θ and linear shape parameter, i.e., Zt ∼ Γkt,θ,
k ∈ R>0. Therefore, also the increments satisfy Zt − Zs ∼ Γk(t−s),θ. Notice that the
gamma process is a subordinator (i.e., a process with non-decreasing sample paths) of
infinite activity.

Obviously, sampling from the variance gamma process is easy once we can sample
the gamma process – after all, U and D are independent. In order to sample trajectories
of the gamma process, we sample the increments, which have the gamma distribu-
tion. Sampling from the gamma distribution can be done by the acceptance-rejection
method. The density of a Γk,θ-distribution is

f (x) = xk−1 e−x/θ

θkΓ(k)
, x > 0.

Various complimentary distributions have been suggested. First of all note that we may
assume that θ = 1: if X ∼ Γk,1, then θX ∼ Γk,θ. Then [10, Theorem IX.3.2] shows that
the density of the Γk,1-distribution converges to a standard Gaussian density. Therefore,
for the sampling algorithm to work equally well for all values of k, the complimentary

2Recall that the sum of n independent gamma-distributed random variables Xi ∼ Γki ,θ has a gamma
distribution Γ∑

i ki ,θ. Thus, the gamma distribution is infinitely divisible, which implies that there is a Lévy
process with gamma distributed marginals.
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Figure 3.4: Trajectory of the variance-gamma process

density g should be close to a normal density. On the other hand, the gamma distribu-
tion has fatter tails than the normal distribution, i.e., the value of the density converges
much slower to 0 for x→ ∞ than for the normal density. Therefore, we cannot choose
a normal distribution as complimentary distribution. By this reasoning, combinations
of the densities of normal and exponential distributions have been suggested, as well
as many other distributions. (Note that we will usually only need small values of k if
we sample the increments.)

Remark 3.5. If the scale and shape parameters θU , θD and kU , kD of the two gamma
processes U and D satisfy kU = kD C 1/θ, then we can represent the variance gamma
process Zt = Ut − Dt as

Zt = WGt ,

where G is a gamma process with parameters θ and k = 1/θ and W is a Brownian
motion with drift, more precisely

Wt = µt + σBt, µ =
θU − θD

θ
, σ2 = 2

θUθD

θ

for a standard Brownian motion B independent of G. This gives another method of
sampling the variance gamma process: instead of sampling from two gamma processes,
we can also sample from one gamma process and one Brownian motion. Note that this
representation motivates the name “variance gamma process”: conditional on Gt, Zt

is Gaussian with variance σ2Gt. Moreover, this type of construction (log-stock-price
as a random time-change (or subordination) of a Brownian motion) is often used in
financial modelling.
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Approximation of Lévy processes
In the previous sections, we have seen how to sample from compound Poisson pro-
cesses (or, more generally, jump diffusions, i.e., finite activity Lévy processes). More-
over, we have also seen that we can sample the gamma process (and variants like the
variance gamma process), a special example of an infinite activity Lévy process. How-
ever, in general we do not know how to sample increments of a Lévy process, if we
only know its characteristic triple. In the case of a finite Lévy measure ν, we know that
the Lévy process is a compound Poisson process (modulo a Brownian motion), and
then the problem is reduced to the problem of sampling random variables with distri-
bution ν(·)/ν(R) – which might be easy or not. In this section, we concentrate on the
case of infinite activity.

For the rest of this section, let us assume that the Lévy process Z under consid-
eration does not have a Brownian component, i.e., that it has the characteristic triple
(γ, 0, ν). By Theorem B.4, we can write Z as a sum of a compound Poisson process
and a process of (compensated) jumps of size smaller than ε. In fact, we have

Zt = γt +
∑

0<s≤t

∆Zs1|∆Zs |≥1 + lim
ε→0

Nε
t , Nε

t B
∑

0<s≤t

∆Zs1ε≤|∆Zs |<1 − t
∫
ε≤|z|≤1

zν(dz).

Thus, we may approximate Z by fixing a finite ε in the above formula, i.e., by discard-
ing all jumps smaller than ε:

(3.8) Zε
t B γt +

∑
0<s≤t

∆Zs1|∆Zs |≥1 + Nε
t

for some fixed ε > 0. Obviously, Zε is a compound Poisson process with drift, therefore
we can – in principle – sample from this process (even the paths). It is not surprising
that the error of the approximation depends on the Lévy measure ν. Indeed, one can
show (see Cont and Tankov [7, Section 6.3, 6.4]) that

(3.9) var[Zt − Zε
t ] = t

∫
|z|<ε

z2ν(dz) C tσ(ε)2.

This is also relevant for weak approximation in the following sense: assume that f is a
differentiable function whose derivative f ′ is bounded by a constant C. Then one can
show([7, Proposition 6.1]) that∣∣∣E[ f (Zt)] − E[ f (Zε

t )]
∣∣∣ ≤ Cσ(ε)

√
t.

The error Zt − Zε
t consists of all small jumps of Z. It seems naturally to suggest that

these small jumps might, in turn, be approximated by a Brownian motion. This is
indeed the case, but only under certain assumptions on the Lévy measures. Asmussen
and Rosinski [1] show that σ(ε)−1(Z − Zε) converges to a Brownian motion if and only
if

σ(ε)
ε
−−−→
ε→0

∞

(provided that ν has no atoms in a neighborhood of 0). This leads to a jump diffusion
approximation

(3.10) Zt ≈ Zε
t + σ(ε)Bt,

which also improves the weak convergence. Let us conclude with a few examples taken
from [7].
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Example 3.6. Symmetric stable Lévy processes are one-dimensional pure jump pro-
cesses with Lévy measure ν(dx) = C/ |x|1+α for some 0 < α < 2. (Their characteristic
function is then exp(−σα |u|α) at t = 1 for some positive constant σ.) In this case,
σ(ε) ∼ ε1−α/2. Moreover, the intensity λε of the approximating compound Poisson
process Zε satisfies λε ∼ ε−α. This in particular implies that here the approximation
can be further improved by adding a Brownian motion σ(ε)B, since the error of the
approximation is asymptotically a Brownian motion.

These results can be extended to tempered stable processes, i.e., pure jump pro-
cesses with Lévy measure

ν(dx) =
C−e−λ− |x|

|x|1+α−
1x<0dx +

C+e−λ+ |x|

|x|1+α+
1x>0dx.

In finance, S t = exp(Zt) is often used as model for stock prices, when Z is a tempered
stable process. In particular, the prominent CGMY-model, see Carr, Geman, Madan
and Yor [5], is a special case with C− = C+ and α− = α+. Note that in for stable or
tempered stable processes simulation of the compound Poisson process Zε is straight-
forward, by the acceptance-rejection method, while simulation of the increments of the
true process Z is difficult.

Example 3.7. In the case of the gamma process, we have σ(ε) ∼ ε. This means on
the one hand, that the quality of the approximation by the compound Poisson process
Zε is already very good. On the other hand, the error does not converge to a Brownian
motion, thus the jump diffusion approximation will not improve the quality even more.
Here, the intensity of Zε satisfies λε ∼ − log(ε).

3.2 The Euler method
Many financial models are (entirely or partly) determined in terms of a stochastic differ-
ential equation. Therefore, a major area of computational finance is the numerical ap-
proximation of solutions of SDEs. To fix ideas, let us start with a general n-dimensional
SDE driven by a d-dimensional Brownian motion B, i.e.,

(3.11) dXt = V(Xt)dt +

d∑
i=1

Vi(Xt)dBi
t,

for some vector fields V,V1, . . . ,Vd : Rn → Rn, which we assume to be uniformly
Lipschitz and linearly bounded (with the same constant K) – these are the usual as-
sumptions for existence and uniqueness of the solution of (3.11). Notice that the above
formulation includes non-autonomous SDEs, i.e., SDEs where the vector fields depend
explicitly on time. However, since regularity requirements are usually less stringent
on the time-dependence than on the space-dependence, this formulation will not yield
sharp results for the non-autonomous case. See Appendix A for a collection of ba-
sic facts and examples of SDEs in finance. Moreover, we shall assume that the initial
value X0 = x ∈ Rn is a constant. This is mainly for convenience, the theory is not more
difficult as long as the random initial value X0 is independent of the noise.

Of course, we can also consider SDEs driven by more general processes than Brow-
nian motion, for instance an SDE driven by a Lévy process,

dXt = V(Xt)dt +

d∑
i=1

Vi(Xt)dZi
t
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for a d-dimensional Lévy process Z, or even by a general semi martingale. We will not
treat the case of a semimartingale noise, but we will give some results for SDEs driven
by Lévy noise. The main focus – and also the main theoretical difficulty – is however
on diffusions of the type (3.11).

So, the goal of the next part of the course is to derive, for a fixed time interval
[0,T ], approximations X to the solution X. These approximations will be based on a
time gridD = {0 = t0 < t1 < · · · < tN = T } with size N. We denote

|D| B max
1≤i≤N

|ti − ti−1|

the mesh of the grid, and we define the increments of time and of any process Y (which
will usually be either X, B, or Z) along the grid by

∆ti B ti − ti−1, ∆Yi B Yti − Yti−1 , 1 ≤ i ≤ N.

Moreover, for t ∈ [0,T ] we set btc = sup { ti | 0 ≤ i ≤ N, ti ≤ t }. We will define the
approximation along the grid, i.e., we will define the random variables Xi = Xti ,
0 ≤ i ≤ N. We will write X

D
if we want to emphasise the dependence on the grid.

The first natural question arising from this program is in which sense X should be an
approximation to X. The two most important concepts are strong and weak approxi-
mation.

Definition 3.8. The scheme X
D

converges strongly to X if

lim
|D|→0

E
[∣∣∣∣XT − X

D

T

∣∣∣∣] = 0.

Moreover, we say that the scheme X
D

has strong order γ if (for |D| small enough)

E
[∣∣∣∣XT − X

D

T

∣∣∣∣] ≤ C |D|γ

for some constant C > 0, which does not depend on γ > 0.

Definition 3.9. Given a suitable class G of functions f : Rn → R, we say that the
scheme X

D
converges weakly (with respect to G) if

∀ f ∈ G : lim
|D|→0

E
[

f
(
X
D

T

)]
= E[ f (XT )].

Moreover, we say that X
D

has weak order γ > 0 if for every f ∈ G there is a constant
C (not depending on |D|) such that∣∣∣∣∣E [

f
(
X
D

T

)]
− E[ f (XT )]

∣∣∣∣∣ ≤ C |D|γ

provided that |D| is small enough.

The class of functions G in Definition 3.9 should reflect the applications we have
in mind. Of course, there is a strong link between strong and weak convergence. For
instance, if a scheme converges strongly with order γ, then we can immediately con-
clude that it will also converge weakly with order γ, provided that all the functions in G
are uniformly Lipschitz. In principle, however, there is a big difference between these
concepts: for instance, a strong scheme must be defined on the same probability space
as the true solution X, which is clearly not necessary in the weak case. Moreover, since
most approximation problems in finance are of the weak type, this notion seems to be
the more relevant to us.

The classical reference for approximation of SDEs is the book by Kloeden and
Platen [21].
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The Euler-Maruyama method
Fix a gridD and an SDE driven by a Brownian motion, i.e., of type (3.11). We hope to
get some insight into how to approximate the solution by taking a look at a deterministic
ODE

(3.12) ẋ(t) = V(x(t)), x(0) = x0 ∈ R
n.

The simplest method of approximating a value x(ti) given the value x(ti−1) is by doing
a first order Taylor expansion around x(ti−1), giving

x(ti) = x(ti−1) + ẋ(ti−1)∆ti + O(∆t2
i ) = x(ti−1) + V(x(ti−1))∆ti + O(∆t2

i ).

So, the Euler scheme for SDEs is defined by x0 = x0 and xi = V(xi−1)∆ti, 1 ≤ i ≤ N.
Since we have to add up the individual error contributions, we get the global error

|x(T ) − xN | =

N∑
i=1

O(∆t2
i ) ≤ O(|D|)T.

Therefore, the deterministic Euler scheme has order one.
The Euler scheme for SDEs (also known as Euler-Maruyama scheme) is defined in

complete analogy, i.e., we set X0 = x and then continue by

(3.13) Xi = Xi−1 + V(Xi−1)∆ti +

d∑
j=1

V j(Xi−1)∆B j
i , 1 ≤ i ≤ N.

Moreover, we extend the definition of Xi = Xti for all times t ∈ [0,T ] by some kind of
stochastic interpolation between the grid points, more precisely by

(3.14) Xt = Xbtc + V(Xbtc)(t − btc) +

d∑
i=1

Vi(Xbtc)(Bi
t − Bi

btc).

Notice, however, that we should not expect the Euler scheme to converge with order
one as in the ODE setting: the increments of a Brownian motion are much bigger than
the increment of time, since ∆B j

i ∼
√

∆ti, and this is indeed the correct strong order of
convergence.

Theorem 3.10. Suppose that the coefficients of the SDE (3.11) have a uniform Lips-
chitz constant K > 0 and satisfy the linear growth condition with the same constant.
Then the Euler-Maruyama approximation X satisfies

E
[

sup
0≤t≤T

∣∣∣Xt − Xt

∣∣∣] ≤ C
√
|D|

for some constant C only depending on the coefficients, the initial value and the time
horizon T . In particular, the Euler-Maruyama method has strong order 1/2.

Proof. In this proof, C denotes a constant that may change from line to line, but never
in a way depending on the partition. Moreover, for this proof only, we set V0 B V ,
B0

t B t.
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We know from the existence and uniqueness proof of the SDE (3.11) that E
[
sup0≤t≤T |Xt |

2
]
≤

C(1 + |x|2), and in the same fashion we can prove the analogous inequality for X re-
placed by X. Now fix some 0 ≤ t ≤ T . We want to estimate

et B E
[

sup
0≤s≤t

∣∣∣Xs − Xs

∣∣∣2] .
First note that we have the representation

Xs − Xs =

∫ s

0

(
V(Xu) − V(Xbuc)

)
du +

d∑
i=1

∫ s

0

(
Vi(Xu) − Vi(Xbuc)

)
dBi

u

=

d∑
i=0

∫ s

0

(
Vi(Xu) − Vi(Xbuc)

)
dBi

u

=

d∑
i=0

{∫ s

0

(
Vi(Xu) − Vi(Xbuc)

)
dBi

u +

∫ s

0

(
Vi(Xbuc) − Vi(Xbuc)

)
dBi

u

}
.

Therefore, we can bound et by

et ≤ C
d∑

i=0

{
E

[
sup

0≤s≤t

∣∣∣∣∣∫ s

0

(
Vi(Xu) − Vi(Xbuc)

)
dBi

u

∣∣∣∣∣2] + E
[

sup
0≤s≤t

∣∣∣∣∣∫ s

0

(
Vi(Xbuc) − Vi(Xbuc)

)
dBi

u

∣∣∣∣∣2]}

C C
d∑

i=0

(ci
t + di

t).

Using the Ito isometry and Lipschitz continuity of the coefficients, we get

(3.15) di
t = E

[
sup

0≤s≤t

∣∣∣∣∣∫ s

0

(
Vi(Xbuc) − Vi(Xbuc)

)
dBi

u

∣∣∣∣∣2] ≤
K2T

∫ t
0 esds, i = 0,

K2
∫ t

0 esds, 1 ≤ i ≤ d.

For c0
t , we get

c0
t ≤ K2T

∫ t

0
E

[∣∣∣Xu − Xbuc
∣∣∣2] du = K2T

∫ t

0
E


∣∣∣∣∣∣∣
∫ u

buc
V(Xs)ds +

d∑
i=1

∫ u

buc
Vi(Xs)dBi

s

∣∣∣∣∣∣∣
2 du,

which can be estimated (using the uniform bound on the second moment of X) by

c0
t ≤ K2C(1 + |x|2)

∫ t

0

(
(u − buc)2 + d(u − buc)

)
du

≤ T K2C(1 + |x|2)(|D| + d) |D| .

A similar computation for ci
t gives the common bound

(3.16) ci
t ≤

T K2C(1 + |x|2) |D| , i = 0,
K2C(1 + |x|2) |D| , 1 ≤ i ≤ d.

Combining the bounds (3.15) and (3.16), we obtain

et ≤ C |D| + C
∫ t

0
esds,
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and Gronwall’s inequality implies

et ≤ C |D| ,

giving the statement of the theorem by taking the square root and applying the Hölder
inequality. �

Weak convergence of the Euler method
Next we discuss the weak convergence of the Euler method. While the strong con-
vergence problem might seem more natural to consider, in most applications we are
actually mainly interested in weak convergence. This is especially true for mathemat-
ical finance, where the option pricing problem is precisely of the form introduced in
Definition 3.9. Moreover, weak approximation of SDEs can be used as a numerical
method for solving linear parabolic PDEs. Indeed,

(3.17) u(t, x) B E
[

f (XT )| Xt = x
]

satisfies the Kolmogorov backward equation associated to the generator L = V0 +
1
2
∑d

i=1 V2
i , i.e., the Cauchy problem

(3.18)


∂

∂t
u(t, x) + Lu(t, x) = 0,

u(T, x) = f (x),

a PDE known as Black-Scholes PDE in finance. (For details and more precise state-
ments see Appendix A.) Note that similar stochastic representations also exist for the
corresponding Dirichlet and Neumann problems.

On the other hand, strong convergence implies weak convergence. Indeed, assume
that f is Lipschitz, with Lipschitz constant denoted by ‖∇ f ‖∞. Then we have

(3.19)
∣∣∣∣∣E [

f
(
X
D

T

)]
− E

[
f (XT )

]∣∣∣∣∣ ≤ ‖∇ f ‖∞ E
[∣∣∣∣XT − X

D

T

∣∣∣∣] ≤ C ‖∇ f ‖∞
√
|D|,

by Theorem 3.10. Thus, the Euler scheme has (at least) weak order 1/2 for all Lipschitz
functions f – which includes most, but not all the claims used in finance. However, in
many situations the weak order is actually better than the strong order. In the following,
we shall first present (and prove) “the typical situation” under unnecessarily restrictive
regularity assumptions, before we state sharper results (without proofs). Our presenta-
tion is mainly based on Talay and Tubaro [37]. For our discussion we assume that the
grids D are homogeneous, i.e., ∆ti = h B T/N for every i. Of course, the results hold
(with minor corrections) also in the general case, with h being replaced by |D|.

Theorem 3.11. Assume that the vector fields V,V1, . . . ,Vd are C∞-bounded, i.e., they
are smooth and the vector fields together with all there derivatives are bounded func-
tions. Moreover, assume that G consists of smooth, polynomially bounded functions.
Then the Euler method has weak order one. Moreover, the error

e(T, h, f ) B E
[

f
(
X
D

T

)]
− u(0, x)

for the weak approximation problem started at t = 0 at X0 = X0 = x ∈ Rn has the
representation

(3.20) e(T, h, f ) = h
∫ T

0
E[ψ1(s, Xs)]ds + h2e2(T, f ) + O(h3),
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where ψ1 is given by

ψ1(t, x) =
1
2

n∑
i, j=1

V i(x)V j(x)∂(i, j)u(t, x) +
1
2

n∑
i, j,k=1

V i(x)a j
k(x)∂(i, j,k)u(t, x)+

+
1
8

n∑
i, j,k,l=1

ai
j(x)ak

l (x)∂(i, j,k,l)u(t, x) +
1
2
∂2

∂t2 u(t, x)+

+

n∑
i=1

V i(x)
∂

∂t
u(t, x)∂iu(t, x) +

1
2

d∑
i, j=1

ai
j(x)

∂

∂t
u(t, x)∂(i, j)u(t, x),

where ∂I = ∂k

∂xi1 ···∂xik
for a multi-index I = (i1, . . . , ik) and ai

j(x) =
∑d

k=1 V i
k(x)V j

k (x),
1 ≤ i, j ≤ n.

Remark 3.12. The result also holds for the non-autonomous case, i.e., for f = f (t, x)
and the vector fields also depending on time.

We will prove the theorem by a succession of lemmas, starting by a lemma whose
proof is obvious by differentiating inside the expectation (3.17).

Lemma 3.13. Under the assumptions of Theorem 3.11, the solution u of (3.18) is
smooth and all its derivatives have polynomial growth.

In the next lemma, we compute the local error of the Euler scheme, i.e., the weak
error coming from one step of the Euler scheme.

Lemma 3.14. Again under the assumptions of Theorem 3.11, we have

E
[
u(ti+1, Xi+1)

∣∣∣ Xi = x
]

= u(ti, x) + h2ψ1(ti, x) + O(h3).

Proof. Obviously, we may restrict ourselves to i = 0, i.e., we only need to show that

E
[
u(h, X1)

∣∣∣ X0 = x
]

= u(0, x) + h2ψ1(0, x) + O(h3),

since the general situation works precisely the same way. Taylor expansion of u(h, x +

∆x) in h and ∆x around u(0, x) gives

u(h, x + ∆x) = u(0, x) + h∂tu(0, x) +
1
2

h2∂ttu(0, x) + h
n∑

i=1

∆xi∂tu(0, x)∂iu(0, x)+

+
1
2

h
n∑

i, j=1

∆xi∆x j∂tu(0, x)∂(i, j)u(0, x)

+

4∑
k=1

1
k!

n∑
i1,...,ik=1

∆xi1 · · ·∆xik∂(i1,...,ik)u(0, x) + O(h∆x3) + O(∆x5),

where O(∆xk) means that the term is O(∆xi1 · · ·∆xik ) for any multi-index (i1, . . . , ik).
Now insert

∆X = V(x)h +

d∑
i=1

Vi(x)∆Bi
1

in place of ∆x and take the expectation. First we note that there are no terms of order
k/2 for odd numbers k, because they can only appear as odd moments of the Brownian
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increment ∆B1 ∼ N(0, hId), which vanish. Moreover, E
[
O

(
h∆X

3
)]

= O(h3), since

∆Bi
1 ∼ N(0, h), and, similarly, E

[
O

(
∆X

5
)]

= O(h3). Let us know collect all the terms
of order one in h. Apart from the deterministic term h∂tu(0, x) = −hLu(0, x) (since u
solves (3.18)), we have the drift term from the first order Taylor term (in ∆x) (note that
the diffusion part in the first order term vanishes since E[∆Bi

1] = 0), and the diffusion
terms from the second order Taylor term, more precisely, the term of order h is given
by

−hLu(0, x) + h
n∑

i=1

V i(x)∂iu(0, x) +
1
2

h
n∑

i, j=1

d∑
k=1

V i
k(x)V j

k (x)∂(i, j)u(0, x) = 0,

by the definition of the partial differential operator L. Here, we only used that

E[∆X
i
∆X

j
] = h2V i(x)V j(x) + h

d∑
k=1

V i
k(x)V j

k (x).

This shows the main point of the lemma, namely that the local error is of order two in
h. Figuring out the precise form of the leading order error term as given above (i.e.,
figuring out ψ1) is done by computing all the expectations of the terms of the above
Taylor expansion using the moments of ∆X, and is left to the reader. �

Proof of Theorem 3.11. By the final condition of (3.18), we may express the error of
the Euler scheme (for approximating u(0, x)) as

E
[
f (XN)

]
− u(0, x) = E

[
u(T, XN) − u(0, x)

]
=

N−1∑
i=0

E
[
u(ti+1, Xi+1) − u(ti, Xi)

]
=

N−1∑
i=1

{
h2E

[
ψ1(ti, Xi)

]
+ O(h3)

}
.(3.21)

Therefore, we have reduced the global error to the sum of the local errors, whose
leading order terms are given by the expectations of ψ1. By Lemma 3.13, ψ1 has
polynomial growth. Moreover, we know that X has bounded moments – see the proof
of Theorem 3.10. This implies the bound∣∣∣E[ψ1(ti, Xi)]

∣∣∣ ≤ C

by a constant C only depending on the problem and on T , but not on h. Thus, we have∣∣∣∣E [
f (XN)

]
− u(0, x)

∣∣∣∣ ≤ C
N−1∑
i=0

(h2 + O(h3)) = CN(h2 + O(h3)) = CT (h + O(h2)),

implying that the Euler method has weak order one.
All that is left to prove for the error representation is an integral representation for

the error term (3.21). Consider∣∣∣∣∣∣∣h
N−1∑
i=1

E
[
ψ1(ti, Xi)

]
−

∫ T

0
E[ψ1(t, Xt)]dt

∣∣∣∣∣∣∣ ≤ h
N−1∑
i=0

∣∣∣∣E [
ψ1(ti, Xi)

]
− E[ψ1(ti, Xti )]

∣∣∣∣ +
+

∣∣∣∣∣∣∣h
N−1∑
i=0

E[ψ1(ti, Xti )] −
∫ T

0
E[ψ1(t, Xt)]dt

∣∣∣∣∣∣∣ .
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For the first term, note that
∣∣∣∣E [

ψ1(ti, Xi)
]
− E[ψ1(ti, Xti )]

∣∣∣∣ = O(h) for each 0 ≤ i ≤ N−1,
because ψ1(ti, ·) satisfies the assumptions imposed on the function f , therefore we can
use the already proved first order weak convergence for f = ψ1(ti, ·). Thus, the first
term is O(h). For the second term, note that the function t 7→ g(t) B E[ψ1(t, Xt)] is
continuously differentiable, and it is a simple calculus exercise to show that∣∣∣∣∣∣∣h

N−1∑
i=0

g(ti) −
∫ T

0
g(t)dt

∣∣∣∣∣∣∣ = O(h)

for C1-functions g. Therefore, also the second term can be bounded by O(h). Inserting
these results into (3.21), we indeed obtain

E
[
f (XN)

]
− u(0, x) = E

[
u(T, XN) − u(0, x)

]
= h

∫ T

0
E[ψ1(t, Xt)]dt + O(h2).

The higher order expansion can now be obtained by continuing the Taylor expan-
sion of Lemma 3.14 to higher order terms. �

Remark 3.15. The error expansion of Theorem 3.11 now allows us to use Richard-
son extrapolation (also known as Romberg extrapolation). Given a numerical method
for approximating a quantity of interest denoted by A producing approximations A(h)
based on steps of size h such that we have an error expansion of the form

A − A(h) = anhn + O(hm), an , 0, m > n.

Then we can define an approximation R(h) to A by

R(h) = A(h/2) +
A(h/2) − A(h)

2n − 1
=

2nA(h/2) − A(h)
2n − 1

,

leading to a new error A − R(h) = O(hm).
In the case of the Euler method, this means that we can obtain a method of order

two by combining Euler estimates based on step-size h and h/2. Indeed, in the setting
of Theorem 3.11 even more is true: we could iterate the Richardson extrapolation
similar to Romberg’s integration rule and obtain numerical methods of arbitrary order.
However, higher order extrapolation is usually not considered practical.

Remark 3.16. In the derivation of Theorem 3.11, we have never relied on the fact that
the increments ∆B j

i of the Brownian motion have a normal distribution. All we used
to get the first order error representation (and thus the weak order one) was that the
first five (mixed) moments of (∆Bi

j : 1 ≤ i ≤ d, 1 ≤ j ≤ N) coincide with those
of the increments of a Brownian motion, i.e., with a collection of d × N independent
Gaussian random variables with mean zero and variance h. Therefore, we could choose
any such sequence of random variables ∆Bi

j, in particular we could use independent
discrete random variables such that ∆Bi

j has the same first five moments as N(0, h).

The simplest possible choice is ∆Bi
j =
√

hY i
j, where the Y i

j are independent copies of
the random variable Y defined by

Y =


√

3, with probability 1/6,
0, with probability 2/3,
−
√

3, with probability 1/6.
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While this remark also holds true under the assumptions of Theorem 3.17, it is not true
for Theorem 3.18, which does depend on particular properties of the normal distribu-
tion.

Notice that our proof of Theorem 3.11 mainly relied on smoothness of the solution
u(t, x) of the Kolmogorov backward equation. (More precisely, we used that the so-
lution was twice differentiable in time and four times differentiable in space and that
theses derivatives are polynomially bounded in order to show that the Euler scheme
has weak order one.) In Theorem 3.11, these properties were verified by direct dif-
ferentiation inside the expectation – using smoothness of f and of the coefficients, via
existence of the first and higher variations of the SDE. Of course, this approach can
still be done under weaker assumptions. Kloeden and Platen [21, Theorem 14.5.1] is
based on this type of arguments:

Theorem 3.17. Assume that f and the coefficients of the SDE are four times contin-
uously differentiable with polynomially bounded derivatives. Then the Euler method
has weak order one.

It is clear that this method of proof must fail if the payoff function f does not
satisfy basic smoothness assumption as in Theorem 3.17. However, there is a second
method to get smoothness of u, based on the smoothing property of the heat kernel, see
Section A.4. The following result is [2, Theorem 3.1].

Theorem 3.18. Assume that the vector fields are smooth and all their derivatives,
but not necessarily the vector fields themselves, are bounded. Moreover, assume they
satisfy the uniform Hörmander condition, cf. Definition A.9. Then, for any bounded
measurable function f , the Euler scheme converges with weak order one. Indeed, the
error representation (3.20) holds with the same definition of the function ψ1.

Comparing Theorem 3.18 and Theorem 3.17, we see that the latter has some smooth-
ness assumptions on both the vector fields and the functional f , whereas the former
does not impose any smoothness assumption on f , while imposing quite severe as-
sumptions on the vector fields.

Example 3.19. Let us consider an example, where the Euler method actually only
converges with order 1/2 – as guaranteed by the strong convergence. Let the vector
fields in Stratonovich formulation be linear, Vi(x) = Aix, i = 0, 1, 2, with

A0 = 0, A1 =

 0 1 1
−1 0 1
−1 −1 0

 , A2 =

 0 1
2 − 1

2
− 1

2 0 1
2

1
2 − 1

2 0

 .
Note that the matrices are antisymmetric, i.e., AT

i + Ai = 0, implying that the vector
fields are tangent to the unit sphere D =

{
x ∈ R3

∣∣∣ |x| = 1
}

in R3. Since we are using
the Stratonovich formulation, this means that the solution Xt will always stay on the
unit sphere provided that the starting value x is chosen from D. Now consider f (x) =

(|x|−1)+, clearly a Lipschitz continuous but otherwise non-smooth function. The vector
fields, on the other hand, are smooth, all derivatives are bounded, but they do not satisfy
the uniform Hörmander condition. Take the starting value x = (1, 0, 0), time horizon
T = 1. Then the exact value is E[ f (XT )] = 0. The weak error from the Euler scheme
(together with the Milstein scheme treated later in these notes) is plotted in Figure 3.5.
We clearly see the order of convergence 1/2.
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Figure 3.5: Weak error for Example 3.19

In many situations, we can expect the Euler scheme to converge with weak order
one, even if the assumptions of neither Theorem 3.17 nor Theorem 3.18 are satisfied.
This is especially true, if the process “does not see” the singularities, e.g., because they
are only met with probability zero. This is the case in many financial applications,
involving standard payoffs like the call or put options. The point of Example 3.19 is
that here the functional f is non-smooth on the unit sphere, i.e., the set of points, where
f is not smooth has probability one under the law of the solution of the SDE.

The Euler scheme for SDEs driven by Lévy processes
Let Zt denote a d-dimensional Lévy process and consider the stochastic differential
equation

(3.22) dXt =

d∑
i=1

Vi(Xt−)dZi
t ,

for vector fields V1, . . . ,Vd : Rn → Rn. For a given function f : Rn → R, we want to
approximate u(t, x) B E[ f (Xt)|X0 = x] – assuming, of course, that the expectation ex-
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ists. We know that u satisfies the partial integro-differential equation (B.3). The Euler
scheme for the SDE (3.22) is defined in the same way as the Euler scheme (3.13), but
the increments Bti+1−Bti of the Brownian motion have to be replaced by the correspond-
ing increments Zti+1 − Zti of the Lévy process Z. By the properties of a Lévy process,
these increments are independent of each other, and, if the grid is homogeneous, identi-
cally distributed. Nevertheless, sampling the increments might be difficult, depending
on the particular Lévy process. We assume here, that exact simulation of the incre-
ments is possible. Then, Protter and Talay [33] have shown weak convergence of the
Euler scheme. However, it turns out that the rate of convergence is smaller than in the
Brownian case (and there might even be no such rate), unless the Lévy measure has
finite moments up to some order.

Theorem 3.20. Assume that the vector fields V1, . . . ,Vd and the functional f are C4

and that their derivatives of order up to four are bounded. Then the Euler scheme
converges in the weak sense to the solution of the SDE (3.22).
If, moreover, the Lévy measure ν associated to Z has bounded moments up to order
eight, then the Euler scheme has weak rate one (among all functions f satisfying the
above conditions).

In the proof of the theorem, the Lévy process is approximated by Lévy processes
Zm

t , where jumps with size larger than m are excluded. Then one obtains an error
estimate based on the grid size |D| and on m. In the case of a Lévy measure admitting
finite moments of high enough order, this intermediate step can be avoided.

In many cases, we cannot sample the increments of a Lévy process, because we do
not know their distribution. Indeed, assume that a Lévy process Z only by its character-
istic triple (α,Σ, ν). In general, there is no feasible way to obtain the distribution of the
increments ∆Z – the possibility to compute the characteristic function using numerical
integration and to apply an inverse Fourier transformation for every point in space is
not considered feasible here – see, however, Section 4.2 for a related numerical method.
We have seen, however, that every (pure jump) Lévy process can be approximated by
compound Poisson processes with drift, see (3.8), and that this approximation can even
be improved by adding an (additional) Brownian component in some cases. Assuming
that we can sample the increments of all compound Poisson processes, this means that
we can sample approximations ∆Zε

i of the increments ∆Zi of the Lévy process along a
gridD. Since the proof of Theorem 3.20 is based on such approximations, it is natural
to suspect that we can still obtain convergence of the Euler scheme using approximate
samples from the increments ∆Zi. The following theorem by Jacod, Kurtz, Méléard
and Protter [18] confirms this suspicion.

Theorem 3.21. Let X be the solution of the SDE (3.22) and let (ζh
i )i∈N be a sequence

of i.i.d. random variables satisfying

∀g ∈ C4
0(Rd) :

∣∣∣E[g(ζh
1 )] − E[g(Zh)]

∣∣∣ ≤ Khuh ‖g‖0,4 ,

where uh > 0 (for every h), K is a constant and C4
0 denotes the space of four times differ-

entiable bounded functions with bounded derivatives. Moreover, assume that the driv-
ing vector fields are contained in C4

0(Rn;Rn) and that Z has finite moments of order up
to eight. Define the approximate Euler scheme for the partitionD = {0, h, 2h, . . . ,Nh},
T = Nh, by X0 = X0 and then

(3.23) Xn+1 = Xn +

d∑
i=1

Vi(Xn)ζh
n+1, n = 0, . . . ,N − 1.
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Then for functions f ∈ C4
0(Rn) the weak error satisfies∣∣∣E[ f (XT )] − E[ f (XN)]

∣∣∣ ≤ C max(uh, h) ‖ f ‖0,4 .

Remark 3.22. Under even stronger assumptions, one can get an error expansion sim-
ilar to Theorem 3.11 for the approximate Euler scheme (3.23). Note that in the case
of exact simulation of the increments of the Lévy process Z, we can choose uh = 0,
which implies that we obtain the same results as in Theorem 3.20 – but under stronger
conditions.

A convenient way to obtain approximations ζh
i of ∆Zi is to use the approximating

compound Poisson process (with drift) Zε obtained by removing all jumps smaller than
ε, see (3.8), and the setting

ζh
i B Zε

ih − Zε
(i−1)h = ∆Zε

i , i = 1, . . . ,N.

Obviously, we would expect uh to depend on ε. Let us assume that Z satisfies the
moment conditions of Theorem 3.21. Define

(3.24) λε B ν ({ z ∈ Rn | |z| > ε }) .

Let us assume that there is a number γ ∈ [0, 2] such that λε ≤ C/εγ, ε ≤ 1. Note that
this condition is always satisfied for γ = 2 because of the integrability condition of the
Lévy measure. Then one can show (see [18, (3.9)]) that

(3.25) uh = ε3−γ

is a possible choice. In order to get uh ∼ h (implying weak order one in Theorem 3.21)
we thus have to choose ε ∼ h1/(3−γ).

Under some conditions, the quality of approximation can be further improved by
the jump-diffusion approximation (3.10), see Kohatsu-Higa and Tankov [23].

The Euler-Monte-Carlo method
The Euler method only solves half the problem in determining the quantity E[ f (XT )],
when XT is given as the solution of an SDE. Indeed, it replaces the unknown random
variable XT by a known random variable XN , which we can sample in a straightfor-
ward way – assuming that we can sample the increments of the driving Lévy process.
Therefore, we want to approximate E[ f (XT )] by E[ f (XN)]. This leaves us with an inte-
gration problem as treated in Chapter 2. Of course, in most cases we cannot integrate f
explicitly with respect to the law of XN , so we will use (Quasi) Monte Carlo simulation.

Remark 3.23. Given an SDE driven by a d-dimensional Lévy process (assuming that
no component is deterministic), XN is a function of the increments (∆Zi

n)i=1,...,d;n=1,...,N .
Thus, the integration problem to compute E

[
f
(
XN

)]
presents itself naturally as an

integral on RNd (with respect to the law of (∆Zi
n). Therefore, the dimension of the

integration problem can be large, even if the dimension of the model itself is small, if
we have to choose N large.

In the end, we approximate our quantity of interest E[ f (XT )] by a weighted average
of copies of f (XN), which are either chosen to be random, independent of each other
in the case of Monte Carlo simulation, or deterministic according to a sequence of
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low discrepancy in the case of Quasi Monte Carlo. Of course, this gives us a natural
decomposition of the (absolute) computational error into two parts:

(3.26) Error =

∣∣∣∣∣∣∣E[ f (XT )] −
1
M

M∑
i=1

f
(
X

(i)
N

)∣∣∣∣∣∣∣
≤

∣∣∣∣E[ f (XT )] − E
[
f
(
XN

)]∣∣∣∣ +

∣∣∣∣∣∣∣E [
f
(
XN

)]
−

1
M

M∑
i=1

f
(
X

(i)
N

)∣∣∣∣∣∣∣ .
The first part captures the error caused by the approximation method to the SDE, there-
fore, we call it the discretization error. The second part corresponds to the error of
our numerical integration method used to integrate f with respect to the law of XN .
Therefore we call it integration error. (If we use the Monte Carlo method, we might
also think about the second part as a statistical error. For the Quasi Monte Carlo
method, this name would not make much sense, however.) Having fixed the discretiza-
tion method (Euler or higher order as presented below) and the integration method
(MC or QMC), the Euler Monte Carlo scheme has only two parameters left: the num-
ber of paths M for the integration part and the time grid for the discretization of the
SDE. For simplicity, let us work with homogeneous grids only. Then the time grid
is uniquely specified by the grid size N (in the sense that the corresponding grid is
{0 = t0 < t1 = T/N < · · · < tN = T }). Ignoring possible cancellation effects, it is clear
that the computational error will be decreased by increasing M (reducing the integra-
tion error) and N (reducing the discretization error). On the other hand, it would not be
efficient, say, to choose N very large, if M is chosen comparatively small, so that the
discretization error is completely overshadowed by the integration error: in an efficient
setup, both error contributions should have the same order of magnitude. This suggests
that we should not choose M and N independent of each other.

Let us make a more careful analysis. Depending on whether we use MC or QMC,
the integration error satisfies

ErrorInt(M) ≤ CI M−q, q ∈
{

1
2
, 1 − δ

}
,

for any δ > 0. Moreover, assume that the discretization error is bounded by

ErrorDisc(N) ≤ CDN−p.

For the Euler method, p is either one or 1/2. In the sequel, we will also present other
discretization methods with higher order p. A priori, CI will depend on N – in the
case of the Monte Carlo simulation, it is the standard deviation of f (XN). However,
asymptotically it is equal to a constant independent of N, namely the standard deviation
of f (XT ). So we assume that both CI and CD are independent of N and M. In the
following, “≈” will mean equality up to a constant. In a real life computation, we
want to obtain the quantity of interest E[ f (XT )] with an error tolerance ε. (In many
cases, the error tolerance would be understood with respect to the relative error, not
the absolute one. On the other hand, these two concepts are roughly equivalent, if we
know the order of magnitude of the quantity of interest before hand, an assumption
which we make here.) On the other hand, we want to reach this objective using as little
computer time as possible. Obviously, the computational work for the Euler Monte
Carlo method is proportional to MN. These considerations have, thus, led us to a
constraint optimization problem of finding

(3.27) min
{

MN
∣∣∣ CI M−q + CDN−p ≤ ε

}
.
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The Lagrangian of this optimization problem is given by

F(M,N, λ) = MN + λ(CI M−q + CDN−p − ε).

The condition ∂F
∂N = 0 leads to M ≈ λN−(p+1). In order to obtain λ, we set ∂F

∂M = 0,
giving us

λ ≈ N p+1+p/q, M ≈ N p/q.

Inserting this in the error bound, reveals that both the integration and the discretization
error or of order N−p, as we have already hinted above. More precisely, we see that
ε ≈ N−p, implying that we need to choose N ≈ ε−1/p and M ≈ ε−1/q. Then, the
computational cost to compute the quantity of interest with a error bounded by ε is
proportional to ε−(1/p+1/q). We summarize our results as a proposition.

Proposition 3.24. Given a discretization scheme with weak order p and an integration
method with order q the optimal choice of the number of timesteps N and the number of
paths M is to choose M (asymptotically) proportional to N p/q. Moreover, the compu-
tational cost for obtaining the quantity of interest with a computational error bounded
by a tolerance ε is (asymptotically) proportional to ε−

(
1
p + 1

q

)
.

If the work in order to guarantee an error bounded by ε is proportional to ε−k, then
one might call k the order of complexity of the problem. The consequence is clear:
in order to reduce the computational error by a factor c, the computational cost will
grow by a factor ck. In Table 3.2 we have collected the order of complexity for certain

Problem description p q M(N) k
Euler (Lipschitz) + MC 1/2 1/2 N 4
Euler (Lipschitz) + QMC 1/2 1 − δ N1/2+δ 3 + δ
Euler (regular) + MC 1 1/2 N2 3
Order p + MC p 1/2 N2p 2 + 1/p

Table 3.1: Complexity of the Euler Monte Carlo method

scenarios. For instance, if the payoff and/or the vector fields are so irregular that the
Euler method only has weak order 1/2, and we use the MC simulation for integration,
then M and N should be chosen proportionally to each other and the overall order of
complexity is four. In the generic case, i.e., when the Euler method has weak order
one, the order of complexity is three and M is chosen to be proportional to N2. The
table also shows that higher order discretization schemes for the SDE cannot really
improve the overall computational cost significantly, when combined with a low order
integration method. For instance, if we use Monte Carlo simulation, then increasing
the weak order from 1/2 to 1 decreases the order of complexity from 4 to 3. But then a
further increase of the weak order to 2, 3 and 4 will only lead to decreases of the order
of complexity to 2.5, 2.33 and 2.25, respectively. Given that higher order methods are
usually more difficult to implement and computationally more costly (thereby possibly
increasing the constant in the complexity), it might not be worthwhile to implement
such methods, if we are only using Monte Carlo simulation. (In principle, the same
holds true for QMC, but then second order methods might still be a good choice.). Of
course, this is only a very rough comparison, and in special applications we might get
a completely different picture.
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3.3 Advanced methods

Stochastic Taylor schemes
Stochastic Taylor expansion

The Euler discretization of the SDE (3.11) (driven by a Brownian motion) was inspired
by a Taylor expansion of the solution of an ODE, giving the deterministic Euler method.
In the deterministic case, higher order Taylor expansions are obviously possible, thus
leading to higher order numerical schemes for ODEs. However, it is not obvious how to
extend these schemes to the stochastic situation: after all, the Brownian motion behaves
fundamentally different than bounded variation functions, especially for small times.
Fortunately, there is a remedy in the form of a genuinely stochastic Taylor expansion.
Because of the easier form of the chain rule, we prefer to work with the Stratonovich
formulation

dXt = V0(Xt)dt +

d∑
i=1

Vi(Xt) ◦ dBi
t

instead of the Ito formulation. Recall that Ito’s formula implies that for every function
f smooth enough
(3.28)

f (Xt) = f (X0) +

∫ t

0
V0 f (Xs)ds +

d∑
i=1

∫ t

0
Vi f (Xs) ◦ dBi

s = f (X0) +

d∑
i=0

∫ t

0
Vi f (Xs) ◦ dBi

s

by appending time as an additional component to the Brownian motion, formally B0
t B

t (with the corresponding integral being the usual Lebesgue integral). For simplicity,
assume that both f and the vector fields V0, . . . ,Vd are smooth. Then, we can also
apply the Ito formula to the function x 7→ Vi f (x), giving

Vi f (Xs) = Vi f (X0) +

d∑
j=0

∫ s

0
V jVi f (Xu) ◦ dB j

u.

Inserting this into (3.28), we get

f (Xt) = f (X0) +

d∑
i=0

Vi f (X0)
∫ t

0
◦dBi

t +

d∑
i, j=0

∫ t

0

∫ s

0
V jVi f (Xu) ◦ dB j

u ◦ dBi
s.

Iterating this procedure, gives an expansion of f (Xt) in terms of the iterated integrals
of the Brownian motion. Before we turn to the exact statement, we also need to think
about the order of our expansion. Clearly, B0 and Bi, i = 1, . . . , d, have a different
scaling. Indeed, B0

t = t = tB0
1, whereas Bi

t ∼
√

tBi
1, “∼” meaning equality in law.

In fact, this scaling propagates to the iterated integrals. For some multi-index I =

(i1, . . . , ik) ∈ {0, . . . , d}k, k ∈ N, denote

BI
t B

∫
0≤t1≤···≤tk≤t

◦dBi1
t1 · · · ◦ dBik

tk .

Then we have the scaling

(3.29) BI
t ∼ tdeg(I)/2BI

1,
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where deg(I) B k + #
{

1 ≤ j ≤ k
∣∣∣ i j = 0

}
for I = (i1, . . . , ik), i.e., we have to count

zeros twice, in order to account for the higher order of B0 compared to the Brownian
motion.

The scaling of the iterated Brownian integrals suggests that we should only include
terms with degree deg(I) ≤ m for a stochastic Taylor expansion of order m (or rather
m/2) instead of including all terms with multi-indices of length smaller or equal m,
because the latter expansion would include terms of much higher degree of the scaling
in t. This leads to the following

Theorem 3.25. Assume that the function f and the vector fields are Cm+1, bounded
with bounded derivatives for some m ∈ N, and that X0 = x ∈ Rn. Then

f (Xt) = f (x) +
∑

I=(i1,...,ik)∈{0,...,d}k
deg(I)≤m, k≤m

Vi1 · · ·Vik f (x)BI
t + Rm(t, x, f )

for an error term Rm satisfying (for t < 1)

sup
x∈Rn

E
[
Rm(t, x, f )2

]1/2
≤ Ct(m+1)/2 sup

m<deg(I)≤m+2

∥∥∥Vi1 · · ·Vik f
∥∥∥
∞
.

Proof. Iterate the procedure as described above until you get the expansion of f (Xt) in
terms of iterated integrals up to order m with remainder terms of the form∫

0≤t1≤···≤tk≤t
Vi1 · · ·Vik f (Xt1 ) ◦ dBii

t1 · · · ◦ dBik
tk ,

with deg(I) > m. To show the error bound stated above, we have to transform the
Stratonovich integrals to Ito integrals, and then repeatedly apply the Ito isometry. �

Remark 3.26. Re-doing the stochastic Taylor expansion of Theorem 3.25 in terms of
Ito integrals gives a similar expansion in terms of iterated Ito integrals. More precisely,
let B̃I

t denote the iterated Ito integral of the Brownian motion B with respect to the
multi-index I. Moreover, let Ṽ0 be the partial differential operator defined by

Ṽ0 f (x) = ∇ f (x) · V(x) +
1
2

d∑
i=1

Vi(x)T H f (x)Vi(x),

where H f denotes the Hessian matrix of f . Note that Ṽ0, contrary to V0, is a second
order differential operator, and therefore not a vector field. Then the stochastic Taylor
expansion in Ito calculus is obtained by replacing every “BI

t ” with “W I
t ” and every “V0”

with “Ṽ0”. For simplicity, we shall also denote Ṽi B Vi, i = 1, . . . , d.

Stochastic Taylor schemes

For m ∈ N set

Am B
{

(i1, . . . , ik) ∈ {0, . . . , d}k
∣∣∣ 1 ≤ k ≤ m, deg((i1, . . . , ik)) ≤ m

}
,

A∗m B
{

(i1, . . . , ik) ∈ {0, . . . , d}k
∣∣∣∣ 1 ≤ k ≤ m, deg((i1, . . . , ik)) ≤ m or k = #

{
j|i j = 0

}
= (m + 1)/2

}
.

54



Moreover, we write VI = Vi1 · · ·Vik for I = (i1, . . . , ik) and likewise for the Ito ex-
pansion. Then we may write the stochastic Taylor expansion of Theorem 3.25 more
compactly as

f (Xt) = f (x) +
∑
I∈Am

VI f (x)BI
t + Rm(t, f , x) = f (x) +

∑
I∈Am

ṼI f (x)B̃I
t + R̃m(t, f , x),

depending on whether we use the Ito or Stratonovich version. For our numerical
scheme, we rather want to approximate the solution Xt itself, instead of f (Xt). To
this end, use the identity function, i.e., id : x 7→ x and insert it into the above equation.
Then we get, defining VI B VI id,

Xt = x +
∑
I∈Am

VI(x)BI
t + Rm(t, id, x) = x +

∑
I∈Am

ṼI(x)B̃I
t + R̃m(t, id, x).

(Strictly speaking, we should insert all the coordinate functions x 7→ xi, i = 1, . . . , n,
and then combine these n components again.)

Given a time grid D = {0 = t0 < t1 < · · · < tN = T }, we thus define the general
Taylor schemes as follows.

Definition 3.27. The strong stochastic Taylor scheme of order m ∈ N for the SDE (3.11)
is defined by X0 = X0 and

X j+1 B X j +
∑
I∈A∗m

Ṽ I(x)∆B̃I
j,

where
∆B̃I

j B

∫
t j≤s1≤s2≤···≤sk≤t j+1

dBi1
s1
· · · dBik

sk
,

when I = (i1, . . . , ik).

Remark 3.28. Note that ∆B̃I
j ∼ B̃I

∆t j
∼
√

∆tdeg(m)B̃I
1.

Remark 3.29. We can also define a stochastic Taylor scheme based on the stochastic
Taylor expansion in terms of Stratonovich integrals.

For the proof of the following Theorem we refer to Kloeden and Platen [21, Theo-
rem 10.6.3]

Theorem 3.30. Given m ∈ N and assume that all the functions Ṽ I for I ∈ Am are
twice differentiable. Then the strong stochastic Taylor scheme converges strongly to
the solution XT of the SDE with strong order m/2.

Example 3.31. The Euler scheme is the strong Taylor scheme for m = 1.

The relevant indices which need to be included in the scheme if we are interested
in weak convergence are different, thereby leading to a different set of schemes.

Definition 3.32. The weak stochastic Taylor scheme of order m ∈ N for the SDE (3.11)
is defined by X0 = X0 and

X j+1 B X j +
∑

I∈
⋃

1≤k≤m{0,...,d}
k

Ṽ I(x)∆B̃I
j.
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Example 3.33. The Euler scheme is also a weak Taylor scheme of order m = 1. (Note
that the Hessian matrix of the function id is zero, thus the second order part of Ṽ0

vanishes when applied to id.)

The weak convergence proof can be found in Kloeden and Platen [21, Theorem
14.5.1].

Theorem 3.34. Let the vector fields V,V1, . . . ,Vd be 2(m + 1)-times continuously dif-
ferentiable. Then the weak stochastic Taylor scheme converges with weak order m for
every 2(m + 1)-times continuously differentiable function, which is together with its
derivative of polynomial growth.

Remark 3.35. Define a weak Stratonovich Taylor scheme by X0 = X0 and

X j+1 B X j +
∑
I∈Am

V I(X j)∆BI
j.

This scheme converges with weak order (m − 1)/2, provided that the functions and
vector fields are regular enough. Indeed, Theorem 3.25 basically shows that the local
error is of order (m + 1)/2, and the usual summation trick gives the global order (m −
1)/2.

Example 3.36. The Milstein scheme is a scheme of weak and strong order one. In fact,
it is the strong scheme of order m = 2. Thus, it is given by

X j+1 = X j + V(X j)∆t j +

d∑
i=1

Vi(X j)∆Bi
j +

∑
(i1,i2)∈{1,...,d}2

V (i1,i2)(X j)∆B̃(i1,i2)
j .

Here, V (i1,i2)(x) = DVi2 (x) · Vi1 (x) and

∆B̃(i1,i2)
j =

∫ t j+1

t j

Bi1
s dBi2

s .

In the case i1 = i2, we can easily compute ∆B(i,i)
j = (∆Bi

j)
2 − ∆t j. However, for

i1 , i j, there is no explicit formula in terms of the Brownian increments. Notice
that we do not need to sample the iterated integrals if the vector fields commute, i.e., if
[Vi1 ,Vi2 ] = 0 for all choices of i1 and i2. See Figure 3.5 for an example of the strong
order convergence of the Milstein scheme.

Sampling of iterated integrals

Apart from the higher complexity of the higher order (strong or weak) Taylor schemes,
the biggest obstacle for a successful implementation is certainly the need to sample the
iterated integrals of Brownian motion. Indeed, every step of the higher order Taylor
schemes requires a sample of

(BI
1)I∈Γ

for some set Γ of multi-indices. (Of course, one could replace BI by B̃I). Note that the
increments used in Definition 3.27 and Definition 3.32 are scaled independent copies of
the above random variables. The simples example is provided by the Milstein scheme
for an SDE driven by a two-dimensional Brownian motion. Then for one step of the
scheme, we need to sample

(B1
1, B

2
1, A1), At B

∫ t

0
B1

sdB2
s −

∫ t

0
B2

sdB1
s .
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At is called Lévy’s area. Lévy’s area is one of the fundamental processes of stochastic
analysis, thus it is a very well-studied object. For instance, there is an explicit formula
for the characteristic function of (B1, B2, A). On the other hand, there is no exact way
to sample from its distribution. In particular, it is not possible to obtain a density
of (B1

1, B
2
1, A1), which would allow one to apply acceptance-rejection. (Note that an

explicit density for At itself is known, see for instance Protter [34, Theorem II.43]. But
we really need the joint distribution here.)

Of course, there are some inexact sampling techniques. The easiest is probably to
approximate the Ito integrals in the definition of A by Riemann sums, i.e., for a partition
D = {0 = t0 < · · · < tN = 1} we can approximate

B1
1 =

N∑
j=1

∆B1
j , B2

1 =

N∑
j=1

∆B2
j , A1 ≈

N∑
i=1

B1
t j−1︸︷︷︸

=
∑ j−1

l=1 ∆B1
l

∆B2
j +

N∑
i=1

B2
t j−1︸︷︷︸

=
∑ j−1

l=1 ∆B2
l

∆B1
j .

However, this sampling method would certainly not lead to a competitive numerical
method.

Remark 3.37. For weak approximation, we could replace (B1
1, B

2
1, A1) by a different

distribution with the same moments up to order two. Then, we still obtain the correct
weak convergence, and can sample the increments. This trick can, naturally, also be
applied to higher order Taylor schemes. However, in many applications one wants to
avoid these moment matched increments, and prefers sampling the true increments.

Multilevel Monte Carlo simulation
In typical situations, the computational work necessary to achieve an (absolute) error
bounded by ε using the Euler Monte Carlo method is of order O(ε−3), as we have
seen in Proposition 3.24. Giles [14], [15] has constructed a method, which leads to
a considerably smaller order of complexity, by a clever combination of simulation of
the Euler scheme (or more general schemes) at different time grids. More precisely,
fix a time horizon T and consider homogeneous grids given by the time increment
h = ∆t. Let Xt denote the solution of an SDE (3.11) driven by a Brownian motion.
We want to compute E[ f (XT )] for a given functional of the solution of the SDE. We
approximate X by approximations X

(h)
based on the grid with increments h. Instead of

simply applying the Monte Carlo method for the random variable f
(
X

(h))
, our estimate

for E[ f (XT )] will be based on a combination of samples from the random variables
X

(h1)
, . . . , X

(hL)
for a sequence h1 > · · · > hL, in such a way that the bias of the estimate,

i.e., the discretization error, is given by the discretization error on the finest level, i.e.,
the discretization error corresponding to hL, whereas the computational work is some
average of the computational works associated to the different grids. This should give
the same error as the method based on hL, whereas the computational work is strongly
reduced.

In order to understand the idea of multilevel Monte Carlo, let us remember the con-
trol variates technique for reducing the variance in an ordinary Monte Carlo problem
(to compute E[ f (X)]). There the idea was to find a random variable Y which is similar
to X and a function g such that I[g; Y] = E[g(Y)] is explicitly known. (It turned out
that “similarity” meant that the correlation of f (X) and g(Y) was high.) Then f (X) is
replaced by f (X) − λ(g(Y) − I[g; Y]), which has the same expected value, but much
smaller variance, if Y and g were wisely chosen. In our case, we want to compute
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the expectation of f
(
X

(hL))
– which is itself a biased estimate of E[ f (XT )]. How can

we find another random variable Y “close” to X with known expectation E[ f (Y)]? If
we believe in the (strong) convergence of our method, we also believe that X

(hL)
and

X
(hL−1 should be close, which implies that the covariance of f

(
X

(hL))
and f

(
X

(hL−1))
is

high, but this choice does not seem to qualify since we do not know the expectation
of f

(
X

(hL−1))
. Notice, however, that it is much cheaper to sample f

(
X

(hL−1))
as opposed

to f
(
X

(hL))
, since the grid corresponding to hL contains hL−1/hL more points than the

grid corresponding to hL−1. Therefore, Monte Carlo simulation to get a good estimate
of the expectation of f

(
X

(hL−1))
is much cheaper. Therefore, the first step for multilevel

Monte Carlo is:

1. Compute an estimate of E
[
f
(
X

(hL−1))]
using Monte Carlo simulation.

2. Compute an estimate for E
[
f
(
X

(hL))]
using variance reduction based on f

(
X

(hL−1))
.

Methods of this form are also known as “quasi control variates”. Now we iterate the
idea, by using variance reduction based on f

(
X

(hL−2))
in order to compute E

[
f
(
X

(hL−1))]
,

which we need for the computation of E
[
f
(
X

(hL))]
. We shall see below that this method

is, indeed, more efficient than simple Monte Carlo simulation at the finest grid.
Before we go on, let us first reflect for a moment on the relation between X

(hL)
and

X
(hL−1)

. Usually, we only cared about the law of our approximations, not on the approx-
imations as actual random variables. Here we have to treat them as random variables,
because we need to sample X

(hL)
(ω) and X

(hL−1)
(ω) for the same ω in the control variates

technique. This can be easily achieved in the following way: sample the Brownian mo-
tion on the finer grid and compute X

(hL)
based on the sampled Brownian increments.

If the coarser grid is actually contained in the finer grid (as will be the case below),
then add the Brownian increments along the fine grid to obtain the corresponding in-
crements on the coarse grid, and use them to obtain X

(hL−1)
. Otherwise, we need to use

a Brownian bridge construction to obtain the Brownian increments on the coarse grid
based on those along the fine grid.

Before finally formulating the main result of multilevel Monte Carlo, let us first
introduce some notation. Fix some N ∈ N, N > 1, and define the step sizes hl B N−lT ,
l = 0, . . . , L. Let Pl B f (X

(hl)) denote the payoff given by the numerical approximation
along the grid with step-size hl. Moreover, let Il denote the Monte Carlo estimator
based on Ml samples P(i)

l − P(i)
l−1 of Pl − Pl−1 for l > 0 and on P0 for l = 0, i.e.,

Il B IMl [Pl − Pl−1] =
1

Ml

Ml∑
i=1

(
P(i)

l − P(i)
l−1

)
.

We assume the estimators Il to be independent of each other.

Theorem 3.38. Assume that there are constants α ≥ 1/2, C1,C2, β > 0 such that
E[ f (XT ) − Pl] ≤ C1hαl and var[Il] ≤ C2hβl M−1

l . Then there is L ∈ N and there are
choices M0, . . . ,ML such that the multilevel estimator I B

∑L
l=0 Il satisfies√

E
[
(I − E[ f (XT )])2] ≤ ε
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and the computational work C is bounded by

C ≤


C3ε

−2, β > 1,
C3ε

−2(log ε)2, β = 1,
C3ε

−2−(1−β)/α, 0 < β < 1.

Corollary 3.39. Assume that the Euler method has weak order 1 and strong order 1/2
for the problem at hand. Choose L =

log(ε−1)
log N + O(1) in ε and choose Ml proportional

to ε−2(L + 1)hl. Then the multilevel estimator has computational error O(ε), while the
computational cost is O(ε−2(log ε)2).

Proof. Note that the corollary follows from the theorem by choosing α = 1 and β = 1.
However, for simplicity we only give (sketch of) a proof of the corollary, but not of the
theorem.

Let L be defined by

L B

 log(
√

2C1T ε−1)
log N


implying that ε/(

√
2M) < C1hL ≤ ε/

√
2, and thus

(E[I] − E[ f (XT )])2 ≤
ε2

2
.

Moreover, choosing

Ml B
⌈
2ε−2(L + 1)C2hl

⌉
, l = 0, . . . , L,

we have

var[I] =

L∑
l=0

var[Il] ≤
L∑

l=0

C2
hl

Ml
≤

1
2
ε2.

Thus, the means square error satisfies

E
[
(I − E[ f (XT ))2]

]
= E[I2] − 2E[I]E[ f (XT )] + E[ f (XT )]2

= var[I] + (E[I] − E[ f (XT )])2 ≤ ε2,

and we are only left to compute the computational cost C.
We assume ε to be small enough. Then L + 1 ≤ C log(ε−1) for some constant C

varying from line to line. Moreover, we bound Ml ≤ 2ε−2(L + 1)C2hl + 1. Then

C ≤ C
L∑

l=0

Ml

hl
≤

L∑
l=0

(
2ε−2(L + 1)C2 + h−1

l

)
≤ 2ε−2(L + 1)2C2 +

L∑
l=0

h−1
l

≤ 2ε−2 log(ε−1)2C2 +

L∑
l=0

h−1
l .

By the geometric series, an elementary inequality and the definition of L, we have

L∑
l=0

h−1
l = h−1

L

L∑
l=0

N−l = h−1
L

N−(L+1) − 1
N−1 − 1

< h−1
L

N
N − 1

≤
N2

N − 1

√
2C1ε

−1 ≤
N2

N − 1

√
2C1ε

−2,
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provided that N > 1. This implies that

C ≤ Cε−2 log(ε−1)2. �
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Chapter 4

Deterministic methods

4.1 The finite difference method

The Black-Scholes PDE
Before going to the numerical treatment of option pricing by solving the associated
partial differential equations, let us first recapitulate these PDEs. in what follows we
mainly follow Seydel [36]. For the theoretical part see also the notes of Kohn on PDEs
for finance.

By the Feynman-Kac formula, see (A.11) for the diffusion case and (B.3) for the
case of an SDE driven by a Lévy process the price of a European option u(t, x) as a
function of calendar time t and stock price S t = x satisfies a parabolic partial differ-
ential equation. In fact, similar relations also hold for more exotic options, like path
dependent options – by enhancing the state space – and American options. For sim-
plicity, let us work in the simplest possible stock model, the Black-Scholes model

dS t = rS tdt + σS tdBt.

Then, by (A.11), the price u(t, x) = E
[
e−r(T−t) f (S T )

∣∣∣ S t = x
]

of a European option with
payoff function f satisfies

(4.1)
∂

∂t
u(t, x) +

1
2
σ2x2 ∂

2

∂x2 u(t, x) + rx
∂

∂x
u(t, x) − ru(t, x) = 0,

with terminal value u(T, x) = f (x). In the following we assume that f is a call or put
option with strike price K.

One of the advantages of the PDE point of view is that it is relatively straight-
forward to treat American options. Indeed, consider an American put option (in our
setting without dividends the American call option would coincide with the European
one). Then its price ũ(t, x) (again, at time t with S t = x, provided that the option has
not been exercised before) satisfies the following conditions:

∂

∂t
ũ(t, x) +

1
2
σ2x2 ∂

2

∂x2 ũ(t, x) + rx
∂

∂x
ũ(t, x) − rũ(t, x) ≤ 0,(4.2a)

ũ(t, x) ≥ (K − x)+,(4.2b)
ũ(T, x) = (K − x)+,(4.2c)

61



where we have equality in (4.2a) whenever there is a strict inequality in (4.2b). It can
be shown that problem (4.1) is a free boundary problem, i.e., there is an (unknown)
value x0 = x0(t) such that ũ solves the PDE (4.2a) with equality (i.e., the classical
Black-Scholes PDE) on the domain ]x0,∞[ and ũ(t, x) = (K − x)+ whenever x ≤ x0.
Thus, it is optimal to exercise the American option iff x < x0(t), and to wait in the other
case. If we are above the exercise boundary x0, the American option (locally) behaves
like a European option, and thus also satisfies the Black-Scholes PDE.

If we want to solve the problems (4.1) or (4.2) numerically, we should first try
to simplify the PDEs. Introduce some new variables, namely y = log(x/K) (the log-
moneyness), τ = 1

2σ
2(T − t), q = 2r/σ2 and

(4.3) v(τ, y) B
1
K

exp
(

1
2

(q − 1)y +

(
1
4

(q − 1)2 + q
)
τ

)
u(t, x),

and obtain ṽ(τ, y) in the same way from ũ(t, x). It is easy to see that the transformed Eu-
ropean option price v now satisfies the heat equation and to figure out the new boundary
condition. For a European put option they read:

(4.4)
∂

∂τ
v(τ, y) =

∂2

∂y2 v(τ, y), v(y, 0) =
(
e

1
2 (q−1)y − e

1
2 (q+1)y

)
+
.

Moreover, one can see that (again for a put option)

(4.5) v(τ, y) = exp
(

1
2

(q − 1)y +
1
4

(q − 1)2τ

)
for y→ −∞, v(τ, y) = 0 for y→ ∞.

In the case of an American put option one can show that ṽ(τ, y) is solution to the fol-
lowing problem: let g(y, τ) B exp

(
1
4 (q + 1)2τ

) (
e

1
2 (q−1)y − e

1
2 (q+1)y

)
+
, then(

∂

∂τ
ṽ(τ, y) −

∂2

∂y2 ṽ(τ, y)
)

(̃v(τ, y) − g(τ, y)) = 0,
∂

∂τ
ṽ(τ, y) −

∂2

∂y2 ṽ(τ, y) ≥ 0,(4.6a)

ṽ(τ, y) ≥ g(τ, y), ṽ(0, y) = g(0, y),(4.6b)
ṽ(τ, y) = g(τ, y) for y→ −∞, ṽ(τ, y) = 0 for y→ ∞.(4.6c)

Moreover, one needs to require ṽ to be continuously differentiable.

Explicit finite differences
For the rest of this section, we change back notation to the more familiar u(t, x) –
instead of v(τ, y). That is, we consider the heat equation

∂

∂t
u(t, x) =

∂2

∂x2 u(t, x), 0 < t ≤ T, x ∈ R,

u(0, x) =
(
e

1
2 (q−1)x − e

1
2 (q+1)x

)
+
, x ∈ R,

u(t, x) ∼ exp
(

1
2

(q − 1)x +
1
4

(q − 1)2t
)

for x→ −∞, u(t, x) ∼ 0 for x→ ∞,

i.e., we consider the transformed European put-option as described in the last subsec-
tion. The general idea of the finite difference method is to replace partial derivative by
finite difference quotients along a grid, thereby transforming a PDE into a difference
equation.
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Therefore, we need to discretize time and space, i.e., we need to have a time grid
and a space grid. For simplicity, let us work with homogeneous grids only. Then the
time grid is determined by its size N, i.e., we set ∆t B T/N and define the grid points
ti B i∆t, i = 0, . . . ,N. For the space grid, we first have to turn our infinite domain R
into a finite domain [a, b]. Then the grid is again determined by its size M by setting
∆x B (b− a)/M and then x j B a + j∆x, j = 0, . . . ,M. The goal of the finite difference
method is to determine approximations vi, j, 0 ≤ i ≤ N, 0 ≤ j ≤ M, of the values
ui, j B u(ti, x j).

Remark 4.1. Note that the values of u for large values of |x| will be necessary to set
the (approximately) correct boundary conditions at x = a and x = b. They are not
necessary for the PDE on the domain R.

Remark 4.2. In a multi-dimensional setting, the same construction applies. Note,
however, that a grid in Rn with the same mesh ∆x has Nn nodes. Therefore, we need to
compute MNn values ui, j1,..., jn . This is the curse of dimensionality: the computational
work for the same accuracy grows exponentially fast in the dimension.

On the other hand, during our finite difference calculation, we compute the option
prices u(t, x) for all times ti and all stock prices x j, not just the price for one particular
time t and one particular stock price x as in the Euler Monte Carlo scheme. It depends
on the application, whether this is constitutes a (possibly big) advantage or not.

Next we replace all derivatives in (4.4) by difference quotients. Note that there
are many different choices, which will lead to different finite difference schemes. For
instance, we can approximate

(4.7)
∂

∂t
u(ti, x j) =

ui+1, j − ui, j

∆t
+ O(∆t) =

ui, j − ui−1, j

∆t
+ O(∆t).

For our first method we choose the former approximation of the time derivative. For
the space derivative, we choose the approximation

(4.8)
∂2

∂x2 u(ti, x j) =
ui, j+1 − 2ui, j + ui, j−1

∆x2 + O(∆x2).

Combining these approximations and solving for ui+1, j (or rather its approximation
vi+1, j), we obtain

vi+1, j = vi, j +
∆t

∆x2 (vi, j+1 − 2vi, j + vi, j−1).

Thus, we use the approximations at time ti to compute the approximations at time ti+1,
and we do so in an explicit and linear way. Note that the approximations at time t0 = 0
are given by the initial condition of the PDE, i.e., we set v0, j B u(0, x j), with u(0, x)
given by (4.4). Obviously, the above iteration is not well defined for j = 0, since this
would require us to use a value vi,−1 outside of our grid. Here the boundary condi-
tions (4.5) come into play: we treat a as being close to −∞, and use the corresponding
boundary value. We obtain vi,M in a similar way by treating b = xM as being close to
+∞. Combining these considerations using the notation λ B ∆t/(∆x)2, we obtain:

v0, j =
(
e

1
2 (q−1)x j − e

1
2 (q+1)x j

)
+
, j = 0, . . . ,M,(4.9a)

vi+1, j = vi, j + λ(vi, j+1 − 2vi, j + vi, j−1), i = 0, . . . ,N − 1, j = 1, . . . ,M − 1,(4.9b)

vi+1,0 = exp
(

1
2

(q − 1)a +
1
4

(q − 1)2ti+1

)
, vi+1,M = 0, i = 0, . . . ,N − 1.(4.9c)
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For numerical analysis, it is useful to obtain a more “compact” notation for the scheme (4.9).
To this end, let us ignore the boundary conditions (4.9c) and just implement the iter-
ations step (4.9b). Let v(i) = (vi,1, . . . , vi,M−1) denote the vector of values along the
whole space grid (except for the boundary points) for one fixed time node ti. Then we
can express the iteration as

(4.10) v(i+1) = Av(i), A B



1 − 2λ λ 0 · · · 0

λ 1 − 2λ
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . λ

0 · · · 0 λ
. . .


.

Therefore, the bulk in the computations of the explicit finite difference scheme (4.9)
consists of matrix multiplications v(i+1) = Av(i) with a tridiagonal matrix A. (Strictly
speaking, this is only true for zero boundary conditions. However, the analysis remains
correct even for our non-trivial boundary conditions (4.9c).)

Example 4.3. Consider the following problem (Seydel [36], Beispiel 4.1): let u solve
the heat equation with u(0, x) = sin(πx) on the space domain [0, 1] with boundary
condition u(t, 0) = u(t, 1) = 1. It is easy to see that the explicit solution for this
problem is

u(t, x) = sin(πx)e−π
2t.

In particular, we obtain u(0.5, 0.2) = 0.004227. Next we are going to calculate this
value using the finite difference scheme. We fix the space grid by ∆x = 0.1. First we
choose a time grid ∆t = 0.0005, i.e., u(0.5, 0.2) = u1000,2, and we obtain a reasonably
good approximations v1000,2 = 0.00435. Next, we choose a smaller time grid given by
∆t = 0.01. In this case, we have u(0.5, 0.2) = u50,2 and the explicit finite difference
scheme gives a value v50,2 = −1.5 × 108.

Obviously, the second choice of parameters makes the explicit finite difference
scheme (4.9) unstable, i.e., round-off errors propagate and explode by iterated mul-
tiplication with the matrix A. (In this case, the boundary values are in fact trivial.)

It is easy to see that the map x 7→ Ax is stable in the sense that round-off errors fade
out iff the spectral radius of A is smaller than one. By a tedious calculation, one can
show that the eigenvalues of A have the form

(4.11) σk = 1 − 2λ
(
1 − cos

(
kπ
M

))
, k = 1, . . . ,M − 1.

Thus, the spectral radius is smaller than one if λ ≤ 1/2. Thus, we have (partially)
proved the following

Theorem 4.4. If we choose the time mesh ∆t and the space mesh ∆x in such a way that
∆t ≤ 1

2 ∆x2, then the explicit finite difference method is stable and converges with error
O(∆t) + O(∆x2), provided that the given boundary conditions are exact.

Remark 4.5. Given N ≈ M2, we have an error proportional to M−2 and the compu-
tational work is proportional to M3. Thus, the computational work needed to get the
result with error tolerance ε is proportional to ε−3/2, which is much better than any
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of the complexity estimates given in Table 3.2 for the Euler method or even the com-
plexity estimate in Theorem 3.38 for the multi-level Monte Carlo method. However,
the picture changes dramatically in dimension n > 1. In this case, the error is still
proportional to M−2, but the work is now proportional to M2+n. Thus, we obtain a
complexity

Work ≈ ε−(2+n)/2.

One can see that already in dimension n > 4 this crude estimate is much worse than
plain Euler Monte Carlo.

Crank-Nicolson
The right hand side of (4.7) an be interpreted both as a forward difference quotient for
∂
∂t u(ti, x j), involving the values ui+1, j and ui, j and as a backward difference quotient,

∂

∂t
u(ti+1, x j) =

ui+1, j − ui, j

∆t
+ O(∆t)

for ∂
∂t u(ti+1, x j). Both of them agree. If we use the central difference quotient (4.8)

for the second derivative of u at (ti, x j) and (ti+1, x j), equate them to the respective
forward and backward difference quotients and average these two equations, we obtain
the Crank-Nicolson scheme

(4.12)
vi+1, j − vi, j

∆t
=

1
2∆x2

(
vi, j+1 − 2vi, j + vi, j−1 + vi+1, j+1 − 2vi+1, j + vi+1, j−1

)
.

Note that this scheme is not explicit anymore: values of v at time ti+1 appear on both
sides of the equation, in fact, on the right hand side we even have the three different
values vi+1, j−1, vi+1, j and vi+1, j+1. As a consequence, (4.12) should be understood as
a linear equation for (vi+1, j)M−1

j=1 given all the values of vi, j. (Schemes like this, where
equations have to be solved for every time step, are called implicit schemes.) By sim-
ilar methods as for the explicit finite difference method, one can prove the following
theorem (see Seydel [36, Satz 4.4]).

Theorem 4.6. Assume that the solution u of the heat equation with the given initial
and boundary conditions is four times continuously differentiable. Then the solution
of the Crank-Nicolson method is stable for every choice of ∆x and ∆t. Moreover, the
solution converges approximation error of the solution of the Crank-Nicolson method
is O(∆t2) + O(∆x2).

4.2 Fourier methods
So far, we have explored several possible ways to compute option prices e−rT E[g(S T )]
using sophisticated techniques like Monte Carlo simulation and finite difference meth-
ods. We have not, however, commented on the seemingly most straightforward ap-
proach, namely to just compute an integral with respect to the density of the price
(under the risk neutral measure). Indeed, let us change variables to the log-spot-price
sT B log(S T ) and assume that sT has a density denoted by qT . Then, the option price
is given by

e−rT
∫
R

f (s)qT (s)ds,
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where f (s) B g(exp(s)). In most models, the density qT is not known, but in sur-
prisingly many cases, its Fourier transform q̂T , which coincides with the characteristic
function of sT is known.

Example 4.7. In the Black-Scholes model, we have sT = log(S 0) +σBT + (r− 1
2σ

2)T ,
and thus the characteristic function of the log-price is given by

φT (u) = exp
(
iu

(
log(S 0) + (r −

1
2
σ2)T

)
−

1
2
σ2Tu2

)
.

In order to simplify notations, we will often (but not always) set S 0 = 1 and r = 0
in the following considerations.

Example 4.8. In Section 3.1 we have introduced a wide class of models called expo-
nential Lévy models, where the log-price is given by a Lévy process X, i.e., sT = XT .
For most Lévy processes, the density is not known explicitly. However, due to the
Lévy-Khintchine formula, see Theorem B.5, there is a fairly explicit formula for the
characteristic function φT in terms of the characteristic triple. When the Lévy process
id defined in terms of the characteristic triple, it is therefore often possible to get (semi)
explicit formulas for the characteristic function of the log-price.

Example 4.9. If the log-price process is given by an affine model, see Appendix C, the
generalized Fourier transform of the log-price process solves a (generalized) system of
Riccati ODEs, see (C.2) and (C.3). Many stochastic volatility models are in affine form,
i.e., the log-price is given as the first component of an n-dimensional affine process,
where the other components are interpreted as some sort of volatility, e.g., volatility,
volatility of volatility and so on. For the interpretation of the Heston model as an affine
process see Example C.4.

Remark 4.10. Fourier methods for certain path-dependent and Bermudan options also
exist. We will, however, concentrate on the European framework.

Now assume that the payoff function f also has a Fourier transform

f̂ (z) =

∫
R

f (s)eizsds.

Then, by Plancharel’s theorem, we can express the option price by integrating the
Fourier transforms, i.e.,

(4.13)
∫
R

f (s)qT (s)ds =
1

2π

∫
R

f̂ (z)φT (−z)dz,

where φT is the Fourier transform of qT , i.e., the characteristic function of the log-price
sT , and z denotes the conjugate of a complex number z. Of course, any sensible option
payoff f is real-valued, thus f = f . In typical situations, f̂ will not exist, because
the payoff function is not square integrable (e.g., the payoff function of a call option).
This problem can be avoided, however, by either dampening the payoff function or by
introducing some generalized Fourier transform instead. In this case, the corresponding
integrand f̂ often is of exponential form, and thus the above integral can, in turn, be
interpreted as an inverse Fourier transform, allowing us to use numerical methods for
computing Fourier transforms like the Fast Fourier Transform (FFT). As references we
use the seminal paper of Carr and Madan [6] and the clarifying work by Lewis [27].
See also [13] for a very fast alternative.
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Contours and damping
The following discussion is mainly taken from Lewis [27]. Take f (s) = (es − K)+, the
payoff function of a European call option. This function is clearly not square integrable,
implying that the Fourier transform f̂ (z) does not exist for z ∈ R. It does, however, exist
for =(z) > 1:

(4.14) f̂ (z) =

∫
R

f (x)eizxdx = −
K1+iz

z2 − iz
, =(z) > 1.

Indeed, for general z ∈ C, we have∫ ∞

log(K)
(ex − K)eixzdx =

(
exp((iz + 1)x)

iz + 1
− K

exp(izx)
iz

)∣∣∣∣∣∣x=∞

x=log(K)
,

which exists (and simplifies to (4.14)) if and only if =(z) > 1. We call f̂ (z) for general
z ∈ C the generalized Fourier transform of f .

Thus, we cannot use the Plancherel identity (4.13) directly, since it requires us to
integrate along the contour

{
=(z) = 0

}
⊂ C, which is not contained in the domain of

definition
{
=(z) > 1

}
of f̂ (in the case of a European call option). Our task is therefore

to extend the Plancherel theorem to other domains of the form
{
=(z) = ν

}
.

Assumption 4.11. The payoff function f (x) (as a function of the log-stock-price x) has
a regular (i.e., holomorphic and single valued) generalized Fourier transform f̂ (z) on a
domain S f =

{
z
∣∣∣ a < =(z) < b

}
. Moreover, we assume that f is locally bounded.

Remark 4.12. The assumption basically means that f does not grow faster than an
exponential function for x → ±∞. As we have seen above, the condition is satisfied
for the payoff function of a European call option (with a = 1 and b = ∞).

The generalized Fourier transform can be inverted along any straight line in the
complex plain parallel to the real axis, i.e.,

(4.15) f (x) =
1

2π

∫ iν+∞

iν−∞
e−izx f̂ (z)dz,

a < ν < b. Moreover, we can generalize the Plancherel equality to hold for complex
integration along straight lines parallel to the real axis, as long as both (generalized)
Fourier transforms are regular along the line of integrations, i.e., assume that both
generalized Fourier transforms f̂ and ĝ are regular around the strip

{
=(z) = ν

}
, then

(4.16)
∫
R

f (x)g(x)dx =
1

2π

∫ iν+∞

iν−∞
f̂ (z)ĝ(z)dz.

This leaves us with the task of determining the regions of regularity of the characteristic
function φT (z), z ∈ C.

Assumption 4.13. The characteristic function φT (z) of the log-price process sT exists
and is regular on the strip SX B

{
z ∈ C

∣∣∣ α < =z < β
}

with α < −1 and β > 0.

As a justification, Lewis [27] shows that this is true for a large class of exponential
Lévy models.
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Lemma 4.14. Assume that sT is a Lévy process such that S T is a true martingale
and such that the moment generating function exists in a complex neighborhood of 1.
Then Assumption 4.13 holds and the characteristic function φT is given by the Lévy-
Khintchine formula (Theorem B.5), i.e., φT (z) = exp(−Tψ(z)), with ψ defined as in the
real case.

Proof. Note that φT (z) exists for =z = 0 and z = −i (by the martingale property)
and is regular in a neighborhood of 0. By a theorem of Lukacs, this implies that the
characteristic function is regular in a strip parallel to the real axis and can be represented
as a Fourier integral there – thus the Lévy-Khintchine formula holds. Moreover, the
maximal strip of regularity is either the whole complex domain C, or it has one or two
horizontal boundary lines. In the latter case, the purely imaginary points on these lines
are points of singularity. Thus, the maximal domain of regularity must contain the
purely imaginary points z = 0 and z = −i, establishing the result. �

Finally, under Assumptions 4.11 and 4.13, the following option valuation formula
using contour integrals can be given.

Theorem 4.15. Let C = e−rT E[ f (sT )] denote the price of the option f satisfying As-
sumption 4.11 in a model satisfying Assumption 4.13 and assume that S f ∩ SX , ∅.
Then the option price is given by

C =
e−rT

2π

∫ iν+∞

iν−∞
e−izyφT (−z) f̂ (z)dz,

where y B log S 0 + rT and iν ∈ S f ∩ SX .

Proof. This is a consequence of Plancherel’s formula (4.16) together with the assump-
tions imposed in the theorem, noting that

φT (u + iν) = E[ei(u+iν)sT ] = E[ei(u+iν)sT ] = E[e−i(−u+iν)sT ] = φT (−(−u + iν)),

implying that we can replace φ(z) by φT (−z) by implicitly changing the direction of the
integration. �

By equation (4.14), we see that S f ∩ SX is indeed non-empty for European call
and put options. Thus, we obtain the following formula for the price of a European
call-option (with strike-price K, using the notation k B log(S 0/K) + rT :

(4.17) C(S 0,K,T ) = −
Ke−rT

2π

∫ iν+∞

iν−∞
e−izk φT (−z)

z2 − iz
dz,

valid for 1 < ν < β, where β is the upper bound of the stripe of regularity in Assump-
tion 4.13.

From (4.14), we see that the integrand in (4.17) has two singularities, namely at
z = 0 and z = i. Complex analysis shows us that contour integrals can be moved
over singularities of the integrand by subtracting the residue1 multiplied by 2πi at the

1The residue of a holomorphic function f with an isolated singularity at a point a ∈ C is given by the
coefficient a−1 of (z− a)−1 in the Laurent series expansion of f (z). It is also given as the value of the integral

1
2πi

∫
γ

f (z)dz for any curve γ around a but no other singularity of f .
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singularity. Moving the contour over the first singularity z = i (with residue iS 0/(2π))
gives the formula

(4.18) C(S 0,K,T ) = S 0 −
Ke−rT

2π

∫ iν+∞

iν−∞
e−izk φT (−z)

z2 − iz
dz, 0 < ν < 1,

which is preferable to (4.17) for numerical reasons.

Remark 4.16. The residue at z = 0 is −iKe−rT /(2π), which means that the total resid-
ual term when moving past both singularities has the form S 0 − Ke−rT . This term
reminds us of the put-call-parity and, indeed, the remaining integral along the contour{
=z = ν

}
for ν < 0 is the price of the European put-option, whose payoff has the same

generalized Fourier transform (4.14) as the call-option, but only valid for=z < 0. Thus,
we get the put-call-parity

C(S 0,K,T ) = P(S 0,K,T ) + S 0 − Ke−rT

by moving the contour over both singularities. In fact, we can even get a generalized
Black-Scholes formula, namely by moving the contour exactly over the singularities
and combining the results. Indeed, Lewis [27] shows that this gives the formula

(4.19) C(S 0,K,T ) = S 0Π1 + Ke−rT Π2,

where

Π1 =
1
2

+
1
π

∫ ∞

0
<

(
eiukφT (u − i)

iu

)
du, Π2 =

1
2

+
1
π

∫ ∞

0
<

(
eiukφT (u)

iu

)
du.

Moreover, note that Π1 is the option-delta, whereas Π2 = P[S T > K].

In Theorem 4.15, we have to integrate along a contour parallel, but not equal to
the real axis, because option payoff functions like the one of the call-option are not
square integrable, thus they do not have a classical Fourier transform. For the gener-
alized Fourier transform we only needed an exponential bound condition, imposed in
Assumption 4.11. Under that condition, we could, on the other hand, also multiply
the payoff by an exponential function in such a way that the product is square inte-
grable and then apply the classical Fourier transform to the product. This approach of
dampening the payoff function is proposed in the seminal paper of Carr and Madan [6].
Theoretically, these approaches are, of course, equivalent, because the classical Fourier
transform of the dampened payoff is nothing but a generalized Fourier transform, it
leads, however, to different computational formulations.

For simplicity we will only consider put and call options in the sequel. Let k B
log(K). In contrast to the previous approach we will apply the Fourier transform with
respect to the variable k, which, by (4.14), is essentially equivalent to transforming the
stock price. Then the price of a European call option with maturity T satisfies

C(S 0,T, k) =

∫ ∞

k
e−rT (es − ek)qT (s)ds,

which tends to S 0 for k → −∞, and consequently is not square integrable in k. For
some positive choices of α, we might hope that c(S 0,T, k) B eαkC(S 0,T, k) is square
integrable, implying that its Fourier transform denoted by ψT (u) exists. In this case, we
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obviously get back the option price C by inverting the Fourier transform and multiply-
ing by e−αk, i.e.,

(4.20) C(S 0,T, k) =
e−αk

2π

∫ ∞

−∞

e−iukψT (u)du =
e−αk

π

∫ ∞

0
e−iukψT (u)du,

which leaves us with the task of computing ψT . Changing the order of integration, we
obtain

(4.21) ψT (u) =

∫ ∞

−∞

eiuk
∫ ∞

k
eαke−rT (es − ek)qT (s)dsdk =

e−rTφT (u − (α + 1)i)
α2 + α − u2 + i(2α + 1)u

.

Note that the inverse Fourier transform (4.20) applied to the formula (4.21) gives the
same expression as the contour integral (4.17) under the change of variables z = (α +

1)i − u for ν = α. Clearly, we need here that φT (−(α + 1)i) is defined, which leads
us back to our Assumption 4.13. Thus, we see that using contour integrals is really
equivalent to using a damping term.

Remark 4.17. Since we can bound |ψT (u)|2 ≤ A/u4, one can bound the tail of the
integral in (4.20) by ∫ ∞

a
|ψT (u)| du ≤

√
A

a
.

Thus, if we want the error from integrating on a finite domain only to be less than ε,
we have to choose a ≥ e−αk

√
A/(επ).

Remark 4.18. Carr and Madan [6] note that the integrands in the representations of
option prices can have large oscillations, leading to low accuracy. Indeed, consider
for instance the price Z(S 0,T, k) of a function with payoff max(S T − K,K − S T ). The
Fourier transform ζT (u) of Z can be shown to be

ζT (u) = e−rT
(

1
1 + iu

−
erT

iu
−
φT (u − i)
u2 − iu

)
,

which has large oscillations in u when T is small. In this case, the authors recommend
to multiply the price Z with the function sinh(αk) for some constant α. Then the Fourier
transform γT of the modified option price is given by

γT (u) =
ζT (u − iα) − ζT (u + iα)

2
,

which mollifies the oscillations.

Fast Fourier Transform
In the previous part we derived concrete formulas for option prices in terms of an
inverse Fourier transform. After cutting off to obtain an integral on a finite domain, see
Remark 4.17, we are left with a problem of the form

(4.22) C(k) ≈
e−αk

π

∫ a

0
e−iukψ(u)du

for some complex function ψ = ψT . In the first step, let us apply the trapezoidal rule to
the above integral, using a uniform grid ul B η(l−1) for a constant η and for 1 ≤ l ≤ N,
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implying that a = Nη. This means we approximate∫ a

0
e−iukψ(u)du ≈ η

ψ(0)
2

+

N∑
l=2

e−iulkψ(ul) +
e−iakψ(a)

2

 ≈ η N∑
l=1

e−iulkψ(ul).

In general, the last term is in order two approximation (in terms of η) of the integral
only if ψ(0) = ψ(a), i.e., in the periodic case. Otherwise, it reduces the order of the
trapezoidal rule. For ease of notation we will still use the second approximation in the
following, even though we suggest to use the true trapezoidal rule in implementations.
As it is, this approximation requires a computational work proportional to N.

Now assume that we do not only want to compute the price at one log-strike k, but
for a whole variety of log-strikes – as it is the case in a typical calibration situation. We
again choose a uniform grid in the log-strike domain, i.e., we set k j B −b + λ( j − 1)
where b B Nλ/2. Thus, we want to compute the values

N∑
l=1

e−iηλ( j−1)(l−1)eibulψ(ul)η, j = 1, . . . ,N.

Next, choose the grid parameters η and λ such that the Nyquist relation λη = 2π/N
holds. Then, the computational problem can be written as

(4.23) X j =

N∑
l=1

e−i 2π
N (l−1)( j−1)xl, j = 1, . . . ,N,

where xl B eibulψ(ul) and X j is an approximation of the option price with strike price
k j in the sense that

C(k j) ≈
e−αk j

π
ηX j +

e−αk j

π
O

 √A
a

+ η2


(provided that we are, in fact, using the true trapezoidal rule). We used all these as-
sumptions and notations, because the vector X defined in (4.23) is the discrete Fourier
transform of the vector x, and there is a very good numerical algorithm for comput-
ing discrete Fourier transforms. The computational cost of a usual implementation
of (4.23) is proportional to N2, but the so-called Fast Fourier Transform (FFT) reduces
the work to N log2(N).

Let ωN B e−2πi/N and define the N × N-matrix TN by

TN B



ω0
N ω0

N ω0
N · · · ω0

N
ω0

N ω1
N ω2

N · · · ωN−1
N

ω0
N ω2

N ω4
N · · · ω2(N−1)

N
...

...
...

. . .
...

ω0
N ωN−1

N ω2(N−1)
N · · · ω(N−1)(N−1)

N


.

Then we can obviously express the discrete Fourier transform (4.23) as X = TN x.

Lemma 4.19. For x ∈ C2N let X B T2N x denote its discrete Fourier transform. Write
x′ B (x1, x3, . . . , x2N−1) and x′′ B (x2, x4, . . . , x2N), but (differently) X′ B (X1, . . . , XN)
and X′′ B (XN+1, . . . , X2N). Moreover, denote DN B diag(ω0

2N , . . . , ω
N−1
2N ) and c B

TN x′, d B DNTN x′′. Then

X′ = c + d, X′′ = c − d.
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Proof. Simple calculation using ω jl
N = ω

2 jl
2N . �

Lemma 4.19 forms the basis of a classical divide-and-conquer algorithm, the cele-
brated FFT.

Algorithm 4.20. Assume that N = 2J , J ≥ 1. Given x ∈ CN , apply the following
recursive algorithm to compute its discrete Fourier transform X = TN x:

1. If N = 2 go to 2, otherwise: split x into x′ and x′′ like in Lemma 4.19, apply the
FFT to compute c = TN/2x′, d = DN/2TN/2x′′ and return X = (X′, X′′) given by
X′ = c + d and X′′ = c − d.

2. If N = 2 compute X = T2x directly.

It can be easily shown that the computational effort to compute the discrete Fourier
transform using Algorithm 4.20 is, indeed, proportional to N log2(N).

Remark 4.21. In the same way, we can compute the inverse discrete Fourier transform.

Remark 4.22. Many variants of FFT exist. While most variants assume N to be a
power of 2 (or even 4 or 8 for higher efficiency), there are also other variants without
these requirements. Historically, the FFT was invented and implemented or used by
many people, the first one probably being Gauss in 1805. However, it only became
popular and widely used after the re-discovery of Cooley and Tukey [9]. Today, there
are many different variants and even more different implementations. It is probably one
of the most important algorithms, widely used in signal analysis, electrical engineering
and even algebra (fast evaluation of polynomials).

Remark 4.23. While Carr and Madan [6] use FFT for evaluating the option price
formula based on the Fourier transform, other authors like Lord and Kahl [11] advocate
alternative specialized algorithms or classical quadrature because of usual non-uniform
arrangements of strike-prices in practical calibration scenarios.

Cosine-series expansions
For even functions f , the Fourier transform specializes to the cosine transform,

f̂ (z) = 2
∫ ∞

0
f (x) cos(xz)dx.

In particular, by shifting variables, the Fourier transform of any function with bounded
support can be expressed by its cosine transform. Since the density of log-spot prices
sT usually decays very fast to zero when the log-spot price approaches ±∞, we may
assume that this is the case for the European option pricing problem. Starting from
this idea, Fang and Oosterlee [13] have constructed a very fast method based on cosine
expansions.

Remark 4.24. Before going into details, let us present the idea of Fang and Oosterlee
in an abstract form. Assume that the density q = qT of the log-spot price decays very
fast to 0, so that we may truncate it and treat it as a function with compact support,
w.l.o.g., supp(q) ⊂ [0, π] with q(π) = 0. Now, Pontryagin duality, as a starting point
see [39], tells us that the “right” notion of a Fourier transform of a function defined on
a finite subset of the real line is the Fourier series.

Consider a locally compact abelian group G. Then the dual group Ĝ is the set of
all characters of G, i.e., of all continuous group homomorphisms from G with values
in T, the unit circle of C. Here we are interested in two special cases:
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1. if G = R, then Ĝ ' R and the characters take the form χ(x) = eiux, for u ∈ R;

2. if G = [−π, π] (which is isomorphic to T), then Ĝ ' Z and characters take the
form χ(x) = einx, n ∈ Z.

Let µ denote the Haar measure of the group G. Then the Fourier transform f̂ of an
integrable function f : G → C is a bounded continuous function on Ĝ defined by

f̂ (χ) =

∫
G

f (x)χ(x)µ(dx).

Inserting the representations of characters for the groups R and [−π, π] as seen above,
we see that the abstract Fourier transform boils down to the following special cases:

1. if G = R, the Haar measure is the Lebesgue measure and we obtain the classical
Fourier transform f̂ (u) =

∫
R

e−iux f (x)dx;

2. if G = [−π, π], the Haar measure is again the Lebesgue measure, possibly
with normalization, and f̂ is the sequence of classical Fourier coefficients cn B
1

2π

∫ π

−π
f (x)e−inxdx, n ∈ Z.

Finally, note that the Fourier series of an even function f : [−π, π] → R actually
is a cosine series, i.e., all the sine-parts vanish. Thus, we may represent a function
f : [0, π]→ R as a cosine series, under some mild regularity conditions.

Let q : [0, π] → R. Then, under certain conditions, q is represented by its cosine
expansion

q(θ) =

∞∑′

k=0

Ax cos(kθ), Ak B
2
π

∫ π

0
q(θ) cos(kθ)dθ,

where
∑′

signifies that the first summand is taken with weight 1
2 . For entire functions,

the convergence of the cosine series is exponential. If the function f is defined on a
finite interval [a, b], then the cosine expansion instead reads (by a change of variables)

(4.24) q(x) =

∞∑′

k=0

Ak cos
(
kπ

x − a
b − a

)
, Ak B

2
b − a

∫ b

a
q(x) cos

(
kπ

x − a
b − a

)
dx.

Now, let us suppose that we know the Fourier transform φ = q̂ of q but not necessarily
q itself – as is the case in many financial models, when q represents the density of the
log-spot price. We want to express the coefficients Ak of the cosine expansion in terms
of φ. In the first step, we need to replace the infinite domain of q by a finite domain,
i.e., we consider

φ1(u) B
∫ b

a
eiuxq(x)dx ≈ φ(u).

Taking real parts, we immediately obtain
(4.25)

Ak =
2

b − a
<

(
φ1

(
kπ

b − a

)
exp

(
−i

kaπ
b − a

))
≈

2
b − a

<

(
φ

(
kπ

b − a

)
exp

(
−i

kaπ
b − a

))
C Fk.

Numerically, we cannot add infinitely many numbers, thus we have to truncate the
summation after N summands. Hence, we approximate

(4.26) q(x) ≈ q1(x) B
N−1∑′

k=0

Fk cos
(
kπ

x − a
b − a

)
.

Note that q1 is explicitly available if φ is explicitly given.
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Remark 4.25. There are three different approximation errors in (4.26). First, we have
truncated the integral, i.e., the domain of the density, in order to be able to do the
cosine expansion in the first place. Then we replaced the Fourier transform of the
truncated density by the Fourier transform of the true density and used this to obtain
the coefficients of the cosine expansion. Finally, we replaced the infinite sum by a finite
sum.

In the next step, we truncate the domain of integration in the option valuation for-
mula

C(S 0,T ) = e−rT
∫ ∞

−∞

f (x)qT (x)dx

and then replace qT by its approximation (4.26) (where we drop the subscript T ). Thus,
we obtain the approximation

(4.27) C(S 0,T ) ≈ C1(S 0,T ) B e−rT
N−1∑′

k=0

<

(
φT

(
kπ

b − a

)
e−ikπ a

b−a

)
Ck,

where

(4.28) Ck B
2

b − a

∫ b

a
f (x) cos

(
kπ

x − a
b − a

)
dx.

Notice that φT is the Fourier transform of sT given that the spot-price at time 0 is S 0.
If we want to use the approximation (4.27) for pricing option, we only have to com-

pute the coefficients Ck of the cosine expansion of the payoff function f . Fortunately,
these are known explicitly for vanilla option.

Example 4.26. Consider a call option with payoff function f (x) = (K(ex − 1))+ in
terms of log-moneyness x = log(S T /K). Then the corresponding coefficient Ck is
given by

Ccall
k =

2
b − a

K(χk(0, b) − ψk(0, b)),

with

χk(c, d) B
1

1 +
(

kπ
b−a

)2

[
cos

(
kπ

d − a
b − a

)
ed − cos

(
kπ

c − a
b − a

)
ec+

+
kπ

b − a
sin

(
kπ

d − a
b − a

)
ed −

kπ
b − a

sin
(
kπ

c − a
b − a

)
ec

]
and

ψk(c, d) B


(
sin

(
kπ d−a

b−a

)
− sin

(
kπ c−a

b−a

))
b−a
kπ , k , 0,

d − c, k = 0.

For the put-option, we obtain

Cput
k =

2
b − a

K(ψk(a, 0) − χk(a, 0)).

We remark here that these formulas are valid for the call and put options written in
log-moneyness. Thus, we also have to use the density ψT (x) of log-moneyness, and
likewise for the characteristic function φT .
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Fang and Oosterlee [13] also analyse the error of the approximation (4.27), and
find that the error mostly depends on the smoothness of the density. While this does
not effect two of the error terms (corresponding to truncation of the integration domain
and replacing Ak by Fk), the error of the truncation of the infinite series converges
exponentially, i.e., like e−(N−1)ν for some ν, if the truncated density is smooth on [a, b],
or it converges algebraically, i.e., like (N − 1)−β with β larger or equal to the order
of the first derivative of the density with a discontinuity on [a, b]. Thus, at least for
smooth densities, we have rapid convergence of the expansion (4.27), implying that we
only need to compute a few of the coefficients. In fact, in the numerical experiments
presented in the paper, they observe that N ≈ 60 is usually enough to get a relative
error of around 10−3 even in cases where FFT requires many more grid points due to
high oscillations.

Fang and Oosterlee also comment on the truncation domain [a, b], and suggest
to choose it depending on the cumulants cn of the distribution. More precisely, they
suggest

(4.29) a = c1 − L
√

c2 +
√

c4, b = c1 + L
√

c2 +
√

c4

with L = 10.
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Appendix A

Stochastic differential equations

A.1 Existence and uniqueness
We start by a very general existence and uniqueness result for SDEs driven by gen-
eral semimartingales, which, in particular, covers the case of SDEs driven by Lévy
processes. The following theorem is a special case of Protter [34, Theorem V.7].

Theorem A.1. Let Z be a d-dimensional càdlàg semimartingale with Z0 = 0 and let
F : R≥0 × R

n → Rn×d be Lipschitz in the sense that for every t ≥ 0 there is a constant
Kt such that

∀x, y ∈ Rn : |F(t, x) − F(t, y)| ≤ Kt |x − y| .

Then the stochastic differential equation

Xt = X0 +

∫ t

0
F (s, Xs−) dZs

admits a unique solution X which is again a semimartingale.

We can also formulate everything in terms of the Stratonovich integral. Recall that
for two given semimartingales H and Z, the the quadratic covariation satisfies

[H,Z]t = H0Z0 + lim
|D|→0

∑
ti∈D

(Hti+1 − Hti )(Zti+1 − Zti ).

Let [H,Z]c denote the continuous part of the quadratic covariation. Then the Stratonovich
integral of H with respect to Z is defined by

(A.1)
∫ t

0
Hs− ◦ dZs B

∫ t

0
Hs−dZs +

1
2

[H, X]c
t .

The advantage of the Stratonovich integral is that Ito’s formula holds in a much simpler
form: let f : R≥0 × R

n → Rn be C1 in the first and C2 in the second component. Then

(A.2) f (t,Zt) = f (0,Z0) +

∫ t

0
∂t f (s,Zs−)ds +

∫ t

0+

∇ f (Zs−) · ◦dZs

+
∑

0<s≤t

( f (Zs) − f (Zs−) − ∇ f (Zs−) · ∆Zs) .

The following existence and uniqueness result for Stratonovich SDEs is a special
case of Protter [34, Theorem V.22].
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Theorem A.2. Assume that F : R≥0 × R
n×d → Rn satisfies the following conditions:

F = F(t, x) is C1 in t, F is C1 in x and the Jacobian DF is C1 in t and for every t
both x 7→ F(t, x) and x 7→ DFi(t, x)Fi(t, x) are Lipschitz, i = 1, . . . , d, where Fi(t, x) =

(F(t, x) j
i )

n
j=1. Then there is a unique semimartingale X solving

Xt = X0 +

∫ t

0
F(s, Xs−) ◦ dZs.

Moreover, X is also the unique solution of the Ito SDE

Xt = X0 +

∫ t

0
F(s, Xs−)dZs +

1
2

d∑
i=1

∫ t

0
DFi(s, Xs−)Fi(s, Xs−)d[Z,Zi]c

s,

where [Z,Zi] = ([Z j,Zi])d
j=1.

We will mostly consider SDEs driven by a d-dimensional Brownian motion B, i.e.,
SDEs of the form

(A.3) Xt = X0 +

∫ t

0
V(Xs)ds +

d∑
i=1

∫ t

0
Vi(Xs)dBi

s,

where V,V1, . . . ,Vd : Rn → Rn are vector fields and we have restricted ourselves to the
autonomous case for simplicity. In this case, the change from the Ito formulation to the
Stratonovich formulation corresponds to a change of the drift from V to

(A.4) V0(x) B V(x) −
1
2

d∑
i=1

DVi(x)Vi(x),

i.e., X solves the Stratonovich equation

(A.5) Xt = X0 +

∫ t

0
V0(Xs)ds +

d∑
i=1

∫ t

0
Vi(Xs) ◦ dBi

s.

In the Brownian case we also have that the solution to the SDE will have finite pth
moments provided that X0 already has them.

Example A.3. The Heston model is a stochastic volatility model, i.e., the volatility
of the the stock price is itself the solution of a stochastic differential equation. Since
the volatility must be positive (or at least non-negative), we either have to choose an
SDE for the volatility that is guaranteed to stay positive, or the volatility can be given
as a deterministic, positive function of the solution of an SDE. A popular choice of
a diffusion (i.e., a solution of an SDE driven by Brownian motion alone) that stays
positive is the square root process (in finance well known as Cox-Ingersoll-Ross model
for the short interest rate), and the corresponding stochastic volatility model is the
Heston model, see Heston [17]. More precisely, the stock price and its instantaneous
variance solve the following two-dimensional SDE

dS t = µS tdt +
√

VtS tdB1
t(A.6a)

dVt = κ(θ − Vt)dt + ξ
√

Vt

(
ρdB1

t +

√
1 − ρ2dB2

t

)
,(A.6b)
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with parameters κ, θ, ξ > 0. The correlation ρ is typically negative. Obviously, this SDE
fails to satisfy the Lipschitz condition of the existence and uniqueness theorem. More
sophisticated, but still standard techniques (Feller’s test of explosions, see Karatzas and
Shreve [20, Theorem 5.5.29]) show that a unique solution does, indeed, exist. Under
the obvious condition V0 > 0, the variance component Vt stays non-negative, and it
even stays strictly positive if 2κθ ≥ ξ2, a condition that is often assumed for Heston’s
model. Positivity of the stock price is obvious.

Example A.4. The SABR model is similar to Heston’s model. More precisely, we have

dS t = VtS
β
t dB1

t ,(A.7a)

dVt = αVt

(
ρdB1

t +

√
1 − ρ2dB2

t

)
.(A.7b)

Example A.5. The Stein-Stein model is more regular than Heston’s model or the SABR
model. Here, positivity of the stochastic volatility is simply assured by taking the
absolute value (of an Ornstein-Uhlenbeck process). More precisely, the model satisfies

dS t = µS tdt + |Vt | S tdB1
t ,(A.8a)

dVt = q(m − Vt)dt + σdB2
t .(A.8b)

Example A.6. A different class of models are local volatility models. The idea is that
the volatility smile can be exactly reproduced by choosing a peculiar state dependence
of the volatility in the Black-Scholes model, i.e., choose some function σ(t, x) and let
the stock price be given as solution to

(A.9) dS t = rS tdt + σ(t, S t)S tdBt.

Let C(T,K) denote the price of a European call option as a function of the strike price
K and the time to maturity T . If the local volatility σ satisfies Dupire’s formula

(A.10)
∂C
∂T

=
1
2
σ2(T,K)K2 ∂

2C
∂K2 − rK

∂C
∂K

,

then the local volatility model (A.9) produces the right prices for these call options, thus
reproduces the volatility surface. Of course, one might also impose a local volatility
function σ(t, x) for more fundamental modelling purposes.

A.2 The Feynman-Kac formula
Assume that the vector fields V,V1, . . . ,Vd driving the SDE (A.3) are uniformly Lip-
schitz. Given three continuous and polynomially bounded functions f : Rn → R,
g : [0,T ] × Rn → R and k : [0,T ] × Rn → R≥0, consider the Cauchy problem

(A.11)


∂

∂t
u(t, x) + Lu(t, x) + g(x) = k(t, x)u(t, x), (t, x) ∈ [0,T ) × Rn,

u(T, x) = f (x), x ∈ Rn.

Here, L denotes the second order linear partial differential operator defined by L =

V0 + 1
2
∑d

i=1 V2
i , with the usual identification of vector fields V with linear first order
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differential operators via V f (x) = ∇ f (x) ·V(x). Assuming that a C1,2 and polynomially
bounded solution u of (A.11) exists, then it can be expressed as
(A.12)

u(t, x) = E
[

f (XT ) exp
(
−

∫ T

t
k(s, Xs)ds

)
+

∫ T

t
g(s, Xs) exp

(
−

∫ s

t
k(v, Xv)dv

)
ds

∣∣∣∣∣∣ Xt = x
]
.

Similar stochastic representations exist for the corresponding Dirichlet and Neumann
problems.

A.3 The first variation
Let Xx

t , x ∈ Rn, t ≥ 0, denote the solution to the Brownian stochastic differential
equation (A.3) started at Xx

0 = x. As indicated by the notation, we now consider
Xx

t as a function of its initial value x. Under the assumptions of the existence and
uniqueness Theorem A.1, for almost all ω ∈ Ω and all t ≥ 0, the map x 7→ Xx

t (ω) is
a homeomorphism of Rn → Rn – see [34, Theorem V.46]. In particular, the map is
bijective. Thus Xx gives a flow of homeomorphisms of Rn (indexed by t). If we impose
more smoothness on the driving vector fields, then the map x 7→ Xx

t (ω) is differentiable
(for almost all ω) and the Jacobian can be obtained by solving an SDE. This Jacobian
is known as the first variation, and we will denote it by J0→t(x)(ω). More precisely,
assume that the vector fields V,V1, . . . ,Vd are C1 with bounded and uniformly Lipschitz
derivatives. Then the first variation process exists and is the unique solution of the SDE

(A.13) dJ0→t(x) = DV(Xx
t )J0→t(x)dt +

d∑
i=1

DVi(Xx
t )J0→t(x)dBi

t,

with initial value Jo→0(x) = In, the n-dimensional unit matrix. Notice that (A.13) alone
does not fully specify an SDE, only an SDE along Xx. To get a true SDE, we have to
consider the system consisting of (A.13) together with (A.3). Further note that J0→t(x)
is an invertible matrix, and the inverse also solves an SDE, which can be easily obtained
by Ito’s formula.

If, moreover, the vector fields V,V1, . . . ,Vd are smooth (with bounded first deriva-
tive), then one can show that x 7→ Xx

t even gives (almost surely) a diffeomorphism, i.e.,
a bijective smooth map, with smooth inverse.

If we replace the driving Brownian motion by a continuous semimartingale, then
the above results remain true without any necessary modifications. If we use a general
semimartingale with jumps as our driving signal, however, then the results only remain
true as regards differentiability of the flow. If we want x 7→ Xx

t to be bijective, we
would have to add more conditions on the vector fields. For more information, see
Protter [34, Section V.7 – V.10].

A.4 Hörmander’s theorem
Hörmander’s theorem is a result on the smoothness of the transition density of the
solution of an SDE – at least, that is the probabilistic interpretation of the result. For
more information see the book of Nualart [31]. For the application to numerics of
SDEs we refer to Bally and Talay [2].

Consider the SDE (A.3) and assume that the vector fields V,V1, . . . ,Vd : Rn →

Rn are smooth and all their derivatives are bounded functions (but not necessarily the
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vector fields themselves). Given two smooth vector fields V and W, recall that the Lie
bracket is the vector field defined by

[V ,W] = DV ·W − DW · V,

where DV denotes the Jacobian matrix of V . Moreover, for a multi-index I = (i1, . . . , ik) ∈
{0, 1, . . . , d}k, |I| B k ∈ N, we define the iterated Lie brackets for |I| = 1 by V[(i)] = Vi if
i , 0 and V[(0)] = V , and recursively for I = (i1, . . . , ik+1) by

V[I] =


[
Vi1 ,V[(i2,...,ik+1)]

]
, i1 , 0,[

V ,V[(i2,...,ik+1)]
]
, i1 = 0.

Definition A.7. The vector fields V,V1, . . . ,Vd satisfy Hörmander’s condition at a point
x ∈ Rn if the vector space generated by the set of n dimensional vectors⋃

k∈N

{
V[I](x)

∣∣∣ I ∈ {0, 1, . . . , d}k , ik , 0
}

is equal to Rn.

Note that the drift vector field plays a special role here, as it does not appear in
the start (|I| = 1) of the recursive construction of the above set, but only by taking Lie
brackets. The reason for this is that only the diffusion vector fields contribute to the
smoothing effect.

Let pt(x, y) denote the transition probability density of the solution Xt of the SDE,
i.e., pt(x, ·) is the density of Xt conditioned on X0 = x.

Theorem A.8 (Hörmander’s theorem). If the driving vector fields satisfy Hörmander’s
condition at a point x ∈ Rn, then the transition probability density pt(x, ·) is smooth.

In its probabilistic proof, the theorem is obtained by showing that Xt is smooth in
the sense of Malliavin derivatives. In fact, one can even get further by imposing a
uniform version of Hörmander’s condition.

Definition A.9. For K ∈ N and η ∈ Rn define the quantities

CK(x, η) B
K∑

k=1

∑
I∈{0,...,d}k , ik,0

(V[I](x) · η)2, CK(x) B inf
|η|=1

CK(x, η), CK B inf
x∈Rn

CK(x).

We say that the uniform Hörmander condition (UH) holds if there is a K ∈ N such that
CK > 0.

Remark A.10. Note that the uniform Hörmander condition is considerably weaker
than uniform ellipticity, a condition often imposed in PDE theory. Uniform ellipticity
for a linear parabolic operator L f (x) =

∑
k, j ak, j(x) ∂2

∂xk∂x j f (x) +
∑

j b j(x) ∂
∂x j f (x) means

that there is a constant C > 0 such that
n∑

k, j=1

ak, j(x)ηkη j ≥ C |η|2

for every η ∈ Rn. But the relation between a and the vector fields is given by a j,k(x) =∑d
i=1 V j

i (x)Vk
i (x), therefore the above bound means that

d∑
i=1

(Vi(x) · η)2 ≥ C |η|2 ,

which is satisfied iff C B C1 > 0.
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Under the UH condition, there is an explicit exponential bound on the derivatives
of any order of pt(x, y) in all the variables t, x, y (provided that t > 0 of course), see
Kusuoka and Stroock [24].
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Appendix B

Lévy processes

We cite a few facts about Lévy processes. For more information about Lévy processes
and their stochastic analysis we refer to Cont and Tankov [7] and Protter [34].

Definition B.1. A stochastic process (Xt)t≥0 is called a Lévy process if

(i) X has independent increments, i.e., Xt − Xs is independent of Fs, the natural
filtration of X,

(ii) X has stationary increments, i.e., Xt+h−Xt has the same distribution as Xh, h > 0,

(iii) X is continuous in probability, i.e., lims→t Xs = Xt, if the limit is understood in
probability.

Example B.2. If a Lévy process X is even continuous almost surely, then it is a Brow-
nian motion with drift (i.e., Xt = µ + σBt for a standard Brownian motion B). On the
other hand, every Lévy process has a càdlàg modification.

Example B.3. If X is a Lévy process, then the law of Xt is infinitely divisible for every
t, i.e., for every n ∈ N we can find independent and identically distributed random
variables Y1, . . . ,Yn such that Xt has the same distribution as Y1 + · · ·+ Yn. Conversely,
given any infinitely divisible distribution µ, there is a Lévy process X such that µ is
the law of X1. This gives rise to plenty of examples. Since the Poisson distribution is
infinitely divisible, there is a Lévy process Nt such that N1 has the Poisson distribution
Pλ. Indeed, since the sum of n independent random variables Yi ∼ Pλi is again Poisson
distributed with parameter λ1 + · · · + λn, we have Nt ∼ Pλt, implying that N is the
Poisson process.

The last example shows that Lévy processes actually can have jumps. We say that
a Lévy process has finite activity if only finitely many jumps occur in every bounded
interval with probability one, and infinite activity in the contrary case. The Lévy-Ito
decomposition is a decomposition of a Lévy process into a diffusion, a process of finite
activity, and a process of infinite activity. More precisely, we have

Theorem B.4. Given a Lévy process X, we can find three independent Lévy processes
X(1), X(2) and X(3) such that X = X(1) + X(2) + X(3) and

• X(1) is a Brownian motion with drift,

• X(2) is a compound Poisson process (the finite activity part),
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• X(3) is a pure jump martingale, with jumps bounded by a fixed number ε > 0 (the
infinite activity part).

So we can approximate Lévy processes by sums of a Brownian motion with drift
and a compound Poisson process.

Theorem B.5 (Lévy-Khintchine formula). Given a (d-dimensional) Lévy process X.
Then there is an α ∈ Rd, a positive semi-definite matrix Σ ∈ Rd×d and a measure ν
satisfying ν({0}) = 0, ν(A) < ∞,

∫
B(0,1) |x|

2 ν(dx) < ∞ (B(0, 1) denotes the unit ball)
such that

E[exp(iu · Xt)] = exp(−tψ(u)),

where

ψ(u) = −iu · α +
1
2

Σu · u −
∫
Rd

(
exp(iu · x) − 1 − iu · x1|x|≤1

)
ν(dx).

We call (α,Σ, ν) the characteristic triplet of X.
Conversely, for every such characteristic triplet, there exists a corresponding Lévy

process X.

Any Lévy process is a Markov process and the generator L f (x) = limt→0
Pt f (x)− f (x)

t
for Pt f (x) = E[ f (Xt)|X0 = x] is given (for bounded C2-functions f on Rd) by

(B.1) L f (x) = ∇ f (x) · α +
1
2

d∑
j,k=1

Σ j,k
∂2

∂x j∂xk f (x)+

+

∫
Rd

(
f (x + y) − f (x) − ∇ f (x) · y1|y|≤1

)
ν(dy).

Notice that L is an integro-differential operator. Indeed, if f is constant around x, then

L f (x) =

∫
Rd

( f (x + y) − f (x))ν(dy).

This formula has a very intuitive meaning, noting that ν describes the distribution of
jumps of a Lévy process (in the sense that the jumps form a Poisson point process
with intensity measure ν). If f is constant around x, then it can change values within
an infinitesimal time interval only by an instantaneous jump out of the region where
f (y) = f (x). Therefore, the Kolmogorov backward equation

∂

∂t
u(t, x) = Lu(t, x)

for u(t, x) = Pt f (x) is a PIDE (partial integro-differential equation).
Note that if the Lévy measure ν is a finite measure (with λ B ν(Rd)), then Zt is the

sum of a Brownian motion (with drift) and a compound Poisson process with intensity
λ and jump distribution 1

λ
ν.

In Theorem A.1 we have formulated the existence and uniqueness statement for
SDEs driven by general semimartingales. This, of course, also includes Lévy processes
as drivers. Let σ : Rn → Rn×d satisfy the assumptions of Theorem A.1 and let Zt

denote a d-dimensional Lévy process with characteristic triplet given in Theorem B.5,
and consider the SDE

(B.2) dXt = σ(Xs−)dZs.
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Then, given some boundedness and regularity conditions on f : Rn → R, u(t, x) B
E

[
f (XT )|X0 = x

]
satisfies the PIDE

(B.3)
∂

∂t
u(t, x) = Au(t, x)+

+

∫
Rd

(
u(t, x + σ(x)z) − u(t, x) − (σ(x)z) · ∇u(t, x)1|σ(x)z|≤1

)
ν(dz),

where

Ag(x) = ∇g(x) · (σ(x)α) +
1
2

n∑
i, j=1

∂2

∂xi∂x j g(x)(σ(x)Σσ(x)T )i, j.
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Appendix C

Affine processes

Definition C.1. A stochastically continuous Markov process Xt with state space D =

Rm
≥0 × R

n is called affine iff the logarithm of the characteristic function is affine in the
initial state X0 = x, more precisely if there are functions φ(t, u) taking values in C and
ψ(t, u) taking values in Cd, d = m + n, such that

E[eu·Xt ] = exp (φ(t, u) + x · ψ(t, u))

for all u ∈ Cd such that the expectation is finite. Here, x · y =
∑d

j=1 x jy j for x, y ∈ Cd.

Affine processes are often used in finance, not at least because they allow for effi-
cient computations using Fourier methods, see Section 4.2. The authorative reference
article on affine processes is Duffie, Filipovic and Schachermayer [12].

The infinitesimal generator L of an affine process X has the form

(C.1) L f (x) =
1
2

d∑
k,l=1

akl +

m∑
i=1

αi
klxi

 ∂2

∂xk∂xl
f (x) +

b +

d∑
i=1

βixi

 · ∇ f (x)+

+

∫
D\{0}

( f (x + ξ) − f (x) − hF(ξ) · ∇ f (x)) m(dξ)+

+

m∑
i=1

xi

∫
D\{0}

(
f (x + ξ) − f (x) − hi

R(ξ) · ∇ f (x)
)
µi(dξ),

where the parameters satisfy the admissibility conditions: Let I = {1, . . . ,m}, J =

{m + 1, . . . , d} and write x = (xI , xJ) for x ∈ Rd. The parameters are admissible if

• a, αi are positive semi-definite d × d matrices, b, βi ∈ Rd, c, γi ≥ 0, m and µi are
Lévy measures on D;

• akk = 0 for k ∈ I, α j = 0 for j ∈ J, αi
kl=0 whenever i ∈ I and k ∈ I \{i} or l ∈ I \{i};

• b ∈ D, βi
k ≥ 0 for i ∈ I and k ∈ I \ {i}, β j

k = 0 for j ∈ J and k ∈ I;

• γ j = 0 for j ∈ J;

•
∫

D\{0}min
(
|xI | + |xJ |

2 , 1
)

m(dx) < ∞, µ j = 0 for j ∈ J;

•
∫

D\{0}min
(∣∣∣xI\{i}

∣∣∣ +
∣∣∣xJ∪{i}

∣∣∣2 , 1) µi(dx) < ∞ for i ∈ I.
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Moreover, hF and hi
R are cut-off functions like in the Lévy-Khintchine formula.

Conversely, given admissible parameters, there is an affine process with genera-
tor (C.1).

Remark C.2. These admissibility conditions mainly serve to make the affine process
well-defined in the sense that the process exists and does not leave the state space
Rm
≥0 × R

n ⊂ D.

Even more important for numerical applications is the fact that there are tractable
equations for the characteristic exponent, i.e., for the functions φ and ψ in terms of the
parameters. They are solutions to the generalized Riccati equations

∂

∂t
φ(t, u) = F(ψ(t, u)), φ(0, u) = 0,(C.2a)

∂

∂t
ψ(t, u) = R(ψ(t, u)), ψ(0, u) = u,(C.2b)

where the right hand side is given by

F(u) =
1
2

(au) · u + b · u − c +

∫
D

(
eξ·u − 1 − hF(ξ) · u

)
m(dξ),(C.3a)

Ri(u) =
1
2

(αiu) · u + βi · u − γi +

∫
D

(
eξ·u − 1 − hi

R(ξ) · u
)
µi(dξ),(C.3b)

i = 1, . . . , d, with F : Cd → C and R = (R1, . . . ,Rd) : Cd → Cd.

Remark C.3. Another characterization of affine processes as semi-martingales can be
given in terms of the (local) semi-martingale characteristics, see Kallsen [19].

Example C.4. Recall the Heston model from Example A.3. Here we consider the
model under a risk neutral measure, and we set r = 0, i.e., we set µ = 0 in (A.6a). We
change variables to the log-price Xt B log S t, which satisfies the SDE

dXt = −
1
2

Vtdt +
√

VtdB1
t ,

dVt = κ(θ − Vt)dt + ξ
√

Vt

(
ρdB1

t +

√
1 − ρ2dB2

t

)
.

By looking at the formula (C.1) for the generator of an affine process, we easily see that
this two-dimensional SDE is, in fact, affine. Indeed, there are no jumps, so the integral
terms vanish. The drift term of the generator of the (log-) Heston model is clearly affine
in x, and so is the diffusion term, since the volatilities are linear in the square root of
the state. The right hand sides of the Riccati equations (C.2) for the log-spot price Xt

alone are given by

F(u,w) = κθw,

R(u,w) = −
1
2

u − κw +
1
2

u2 +
1
2
ξ2w2 + ρξwu,

i.e., E[exp(uXt)] = exp(φ(t, u) + xψ(t, u)). Several generalizations of the Heston model
like the Bates model, a stochastic volatility model with jumps, are affine processes, too.
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Example C.5. Here we consider a relatively general jump-diffusion model. Let Z
be a pure-jump semi-martingale with state-dependent intensity λ(x) and compensator
measure ν. Consider the SDE

dXt = µ(Xt)dt + σ(Xt)dBt + dZt,

with µ : Rn → Rn and σ : Rn → Rn×n, both smooth enough. Thus, the generator of the
Markov process X is given by

L f (x) = µ(x) · ∇ f (x) +
1
2

trace
(
σ(x)σ(x)T H f (x)

)
+

+ λ(x)
∫
Rn

( f (x + ξ) − f (x) − hF(ξ)∇ f (x)) ν(dξ),

where H f denotes the Hessian matrix of f . Comparing the generator with the generic
generator of an affine process given in (C.1), we see that X is affine if and only if the
drift µ(x) is an affine function in x, the jump intensity λ(x) is an affine function in x and
the diffusion matrix is such that σ(x)σ(x)T is an affine function in x.
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Computational finance. (Einführung in die numerische Berechnung von Finanz-
Derivaten. Computational finance.). Berlin: Springer. xii, 154 p., 2000.

[37] Denis Talay and Luciano Tubaro. Expansion of the global error for numer-
ical schemes solving stochastic differential equations. Stochastic Anal. Appl.,
8(4):483–509 (1991), 1990.

[38] David B. Thomas, Wayne Luk, Philip H. W. Leong, and John D. Villasenor. Gaus-
sian random number generators. ACM Comput. Surv., 39(4), 2007.

[39] Wikipedia. Harmonic analysis — wikipedia, the free encyclopedia, 2010. [On-
line; accessed 9-July-2010].

[40] Wikipedia. Linear congruential generator — wikipedia, the free encyclopedia,
2010. [Online; accessed 22-March-2010].

[41] Paul Wilmott. Paul Wilmott on quantitative finance. 3 Vols. With CD-ROM. 2nd
ed. Chichester: John Wiley & Sons. lxxv, 1379 p., 2006.

90


	Introduction
	Monte Carlo simulation
	Random number generation
	Monte Carlo method
	Quasi Monte Carlo simulation
	Pricing American options with Monte Carlo

	Discretization of stochastic differential equations
	Generating sample paths
	The Euler method
	Advanced methods

	Deterministic methods
	The finite difference method
	Fourier methods

	Stochastic differential equations
	Existence and uniqueness
	The Feynman-Kac formula
	The first variation
	Hörmander's theorem

	Lévy processes
	Affine processes
	References

