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Abstract. We consider a stochastic model for the dynamics of the two-sided limit order book (LOB). For the
joint dynamics of best bid and ask prices and the standing buy and sell volume densities, we derive a functional
limit theorem, which states that our LOB model converges to a continuous-time limit when the order arrival
rates tend to infinity, the impact of an individual order arrival on the book as well as the tick size tend to zero.
The limits of the standing buy and sell volume densities are described by two linear stochastic partial differential
equations, which are coupled with a two-dimensional reflected Brownian motion that is the limit of the best bid
and ask price processes.
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1. Introduction

In modern financial markets almost all transaction are settled through Limit Order Books (LOBs). An LOB
is a record – maintained by an exchange or specialist – of unexecuted orders awaiting execution. Unexe-
cuted (standing) orders are executed against incoming market orders according to a set of precedence rules.
Orders standing at better prices have priority over orders submitted at less competitive price levels (“price
priority”) while orders with the same price-priority are executed on a first-in-first-out basis (“time-priority”).
From a mathematical perspective, LOBs can thus be viewed as high-dimensional complex priority queuing
systems. In this paper, we propose a queuing-theoretic LOB model whose dynamics converges to a coupled
system of reflected Brownian motions and SPDEs after suitable scaling.

There is a substantial economic and econometric literature on LOBs [2, 9, 12, 21] that puts a lot of emphasis
on the realistic modeling of the working of the LOB. At the same time, only few authors have analyzed
LOB dynamics from a more probabilistic perspective. Kruk [17] studied a queuing theoretic LOB model
with finitely many price levels. For the special case of two price levels, in his model the scaled number
of standing buy and sell orders at the top of the book converges weakly to a semimartingale reflected two-
dimensional Brownian motion in the first quadrant. Cont, Stoikov and Talreja [6] proposed an LOB model
with finitely many submission price levels where the LOB dynamics follows an ergodic Markov process.
Cont and DeLarrard [5] established a scaling limit for a Markovian limit order market in which the state of
the book is represented by the best bid and ask prices along with the liquidity standing at these prices (“top
of the book”). Under simplifying assumptions their price process converges to a Brownian motion with
volatility. Recently, the same authors [4] studied the reduced state space model under weaker conditions
and proved a refined diffusion limit by showing that under heavy traffic conditions the bid and ask queue
lengths are given by a two-dimensional Brownian motion in the first quadrant with reflection to the interior
at the boundaries, similar to the diffusion limit result for two price levels in [17].

When scaling limits of financial price fluctuations [1, 8, 10, 11, 14] or joint price and volume fluctuations at
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selected price levels [4, 5, 17] are studied, then the dynamics is finite-dimensional and its limit can naturally
be described by ordinary differential equations or finite-dimensional diffusion processes, depending on the
choice of scaling. The mathematical analysis is more challenging when the dynamics of the full book is
considered. To the best of our knowledge, Osterrieder [20] was the first to model LOBs as measure-valued
diffusions. Recently, Horst and Paulsen [13] proved a limit theorem for LOBs with an unbounded number
of submission price levels when the tick size tends to zero and order arrival rates tend to infinity. With their
choice of scaling the joint dynamics of volumes and prices converges to a coupled system of two PDEs that
describe the limiting volume dynamics and two ODEs that describe the limiting price dynamics. In this
paper, we consider a different scaling regime. With our choice scaling the best bid and ask price processes
converge in distribution to a 2-dimensional reflected Brownian motion while volumes converge in distribu-
tion to an SPDE.

We assume that limit and market order arrivals and cancellations follow a Poisson dynamics and that incom-
ing market orders match precisely against the standing liquidity at the best price. In particular, incoming
market buy orders increase the best ask price by one tick while incoming market sell orders decrease best
bid prices by one tick. Likewise, limit orders placed into the spread improve prices by one tick. In order
to model order placements in the spread we follow an idea in [13] and introduce a “shadow book”. More
precisely, limit order placements and cancellations occur at random distances from the best bid and ask
prices. Placements and cancellations at non-negative distances change the (visible) state of the book while
placements and cancellations at negative distances change the state of the shadow book. The shadow book
becomes part of the visible book when price changes occur. A sell order placement in the spread, for in-
stance, shifts in collection of the book in such a way that the volume that stood at one price level below the
best ask in the shadow book before the price change now stands at the best ask price while the volume that
previously stood at the best ask is now standing one tick into the book, i.e. at the new best ask price plus
one price tick.

As in [13] our scaling limit requires two time scales: a fast time scale for cancellations and limit order
placements outside the spread and a comparably slow time scale for market order arrivals and limit order
placements in the spread. We assume that incoming limit orders and cancellations are subject to mean-zero
noise. In the simplest case, an incoming limit order has a fixed size plus noise while cancellations are good
for fixed proportions plus noise. In order to keep the analysis tractable we make three simplifying assump-
tions on the noise dynamics: (i) the noise terms share a common component that stays constant between
prices changes; (ii) the impact of the common noise component on placements and cancellation is the same
across all price levels; (iii) the impact of the noise is linear. Relaxing the first assumption is possible but
it might lead to a different scaling limit, depending on the exact relaxation. Relaxing the second and third
assumption is requires different mathematical techniques. Since we are primarily interested in establishing
a benchmark framework within which to obtain an SPDE scaling limits for LOBs from first principles, i.e.
order arrival dynamics, we believe that it is appropriate to work under these assumptions.

Our main result states that when the rates of market order arrivals scale by a factor n, the rates of limit order
arrivals and cancellations scale by a factor n2, the tick size scales by a factor 1√

n
, the sizes (proportions)

of incoming orders (volumes cancelled) scale by a factor 1
n2 and the noise term scales by a factor 1

n , then
our LOB model converges to a diffusion limit as n → ∞. The limiting model is such that the best bid
and ask price dynamics can be described in terms of two-dimensional reflected Brownian motion, while the
dynamics of the buy and sell volumes can be described in terms of two SPDEs. The convergence concept
we chose is weak convergence in the class of càdlàg stochastic processes with sample bath in R2 ×E′ where
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E′ denotes the set of the tempered distributions. To justify our rather weak notion of convergence we note
that the scaling is highly non-linear, due to the simultaneous increase in order arrivals and submission price
levels.

The proof of convergence of the price process is standard and follows from established weak limit theorems
for two-dimensional reflected Brownian motion, cf. [16]. The proof of convergence of volumes is more
challenging. First, the volume process is not a Markov process, due to the nature of the noise. Second, the
complex interaction of the various event dynamics renders the proof of tightness complex. In particular, lim-
it order placements and cancellations follow a (spatial) Poisson dynamics on a Poisson time scale generated
by market order arrivals. To prove tightness we decompose the volume processes into three components
describing aggregate placements, cancellations and “noise contributions” at the various price levels, respec-
tively.1 We establish norm-bounds for each these processes from which we then deduce that the volume
process as a whole satisfies a standard tightness criteria. Once tightness has been established, we modify
a method of Kushner [19] to characterize the limit. To this end, we first prove joint convergence of prices
and the “noise contributions” to the volume processes. Subsequently, we identify the limits of aggregate
placements and cancellations and then use C-tightness to prove joint convergence of all the processes to the
desired limit. It turns out that the limiting volume dynamics is essentially described by a family of diffu-
sion processes (one for each price level) driven by two common Brownian motions (resulting from noisy
placements and cancellations) evolving in a random environment (generated by the best bid and ask price
processes).

The remainder of this paper is organized as follows. In Section 2 we define a sequence of limit order book
in terms of our scaling parameters, state the main result and give an outline of the proof. In Section 3 we
establish convergence of the bid/ask price dynamics to a 2-dimensional reflected Brownian motion. Section
4 is devoted to the analysis of the limiting volume dynamics. In Section 5, we give the conclusion. Selected
results on tightness of stochastic processes as well as some technical proofs are collected in the appendix.

2. Model and main results

2.1. The discrete model. In this section we introduce a sequence of discrete order book models. The
models are indexed by n ∈ N. While our modeling framework closely follows [13] the choice of scaling
and hence the limiting dynamics will be very different. Throughout, all random variables are defined on a
common probability space (Ω,F ,P).

The set of price levels at which orders can be submitted in model n is {xn
j } j∈Z. The assumption that there

is no smallest price is made for analytical convenience; it avoids the introduction of an additional reflection
term for the bid-ask price process at zero. We put xn

j := j ·∆xn for each j ∈ Z where ∆xn is the tick size, i.e.
the minimum difference between two consecutive price levels.

2.1.1. The initial state. The initial state of the book is given by a pair (Bn
0, A

n
0) with Bn

0 ≤ An
0 of best bid and

ask prices together with the buy and sell limit order volumes at different price levels. We identify volumes
at the bid (buy) and ask (sell) side of the book with the step functions:

vn
b(x) :=

∑
j∈Z

vn, j
b 1[xn

j ,x
n
j+1)(x), vn

a(x) :=
∑
j∈Z

vn, j
a 1[xn

j ,x
n
j+1)(x) (x ∈ R).

1It is the linearity of the noise that allows one to analyze aggregate “noise contributions” separately.
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Throughout, indices b and a indicate the bid and ask side of the book, respectively. The liquidity available
for selling/buying j ∈ N ticks below/above the best bid/ask price is then given by, respectively:∫ Bn

0+( j+1)∆xn

Bn
0+ j∆xn

vn
b(x)dx = ∆xn · v

n,Bn
0/∆xn+ j

b ,

∫ An
0+( j+1)∆xn

An
0+ j∆xn

vn
a(x)dx = ∆xn · v

n,An
0/∆xn+ j

a .

The restriction of the functions vn
b/a to volumes standing at non-negative distances from the best bid/ask

price will be called the visible book. The visible book collects the displayed volumes. The collection of
volumes standing at negative distances will be referred to as the shadow book. The shadow book specifies
the volumes that will be placed into the spread should such an event occurs next. The shadow book will
undergo random fluctuations similar to those of the visible book. The role of the shadow book will become
clear below; see also [13] for a detailed discussion of the shadow book.

Definition 2.1. The initial LOB state is given by a pair
(
Bn

0, A
n
0

)
of bid and ask prices and two volume density

functions vn
b/a(0, ·) : R→ R.

There are eight events – labeled Mb/a,Lb/a,Cb/a,Pb/a – that change the state of the book. The events
Mb,Lb,Cb,Pb affect the bid side of the book:

Mb := {market sell order} Lb := {buy limit order placed in the spread}

Cb := {cancellation of buy volume} Pb := {buy limit order not placed in spread}

The events Ma,La,Ca,Pa affect the ask side of the book:

Ma := {market buy order} La := {sell limit order placed in the spread}

Ca := {cancellation of sell volume} Pa := {sell limit order not placed in the spread}.

In the sequel we describe how different events change the state of the book. To this end, we denote by
vn

b/a(t, ·) the volume density function at the bid/ask side at time t > 0 and by (Bn(t), An(t)) the prevailing best
bid and ask prices.

2.1.2. Active orders and price dynamics. Market order arrivals (Events Mb/a) and placements of limit or-
ders in the spread (Events Lb/a) lead to price changes.2 We refer to these order types as active orders.

Assumption 1. Active orders arrive according to independent Poisson processes Ñn
b and Ñn

a with intensities
µn

b and µn
a at the bid and ask side of the book, respectively. The respective jump times are denoted

(̃
τn

b/a,i

)∞
i=1

.

We assume that market orders match precisely against the standing volume at the best available prices and
that orders placed in the spread are placed at the first best price increment. In particular, active orders change
prices by exactly one tick.

More precisely, a market sell order arriving at time t > 0 is good for vn
b(t−, Bn(t−)) · ∆xn shares. A limit buy

order placed in the spread at time t ∈ (0,T ) arrives at price level Bn(t−)−∆xn and is good for vn
b(t−, Bn(t−)−

∆xn) ·∆xn shares. This illustrates the role of the shadow book. For simplicity we assume that prices increase
and decrease with equal probability.

Since Ñn
b and Ñn

a are independent we may as well model price changes in terms of a single Poisson process
Ñn with suitable intensity µn and corresponding active order jump times

(̃
τn

i

)∞
i=0

along with two independent
sequences of i.i.d. random variables

(
ξb,i

)∞
i=0 and

(
ξa,i

)∞
i=0 where ξa,i takes the values +1 and −1 with equal

2A market order that does not lead to a price change can be viewed as a cancellation of standing volume at the best bid/ask price.
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probability for each i ∈ N. For instance, on the bid side, ξb,i = ξa,i = +1 increases the bid price by one tick,
and hence corresponds to a placement of a limit order in the spread; ξb,i = ξa,i = −1 decreases the bid price
by one tick and hence corresponds to a market sell order.

In order to guarantee that the best ask price never falls below the best bid price we introduce a reflection
term. More precisely, we model the price dynamics as follows:

dBn(t) =
∆xn

2
(ξb,Ñn(t) + ξa,Ñn(t)) dÑn(t) − ∆xn1An(t−)−Bn(t−)=∆xn dÑn(t),(1a)

dAn(t) =
∆xn

2
(ξb,Ñn(t) − ξa,Ñn(t)) dÑn(t) + ∆xn1An(t−)−Bn(t−)=∆xndÑn(t).(1b)

Remark 2.2. Of course, one could also introduce a reflection at zero for the bid price process. Such a
reflection does not pose significant mathematical challenges but it leads to quite cumbersome dynamics as
several cases have to be distinguished. We therefore choose to disregard the problem of negative prices.

2.1.3. Passive orders and volume changes. Limit order placements outside the spread and cancellations
of standing volume do not change prices. We refer to these order types as passive orders. In our model
cancellations (Events Cb/a) occur for random proportions of the standing volume at random price levels
while limit order placements outside the spread (Events Pb/a) occur for random volumes at random price
levels.

Assumption 2. Passive orders arrive according to independent Poisson processes Nn
b and Nn

a with intensities
λn

b and λn
a at the buy and sell side of the book, respectively. The corresponding jump times

(
τn

b/a,i

)∞
i=1

will be
called passive order times.

The submission and cancellation price levels are chosen relative to the best prices. Allowing for rather
general placement and cancellation dynamics, we assume that the price levels are chosen according to a
sequence of i.i.d. random variables (πi)∞i=0 where each πi is of the form:

(2) πi =
(
πCb

i , πCa
i , πPb

i , π
Pa
i , π

Nb
i , πNa

i

)
.

The entries takes values in an interval [−M,M] for some M > 0; positive values indicate changes in the
visible book while negative values indicate changes in the shadow book. Superscripts indicate event types
and ‘N’ stands for ‘noise’. The precise meaning of the entries will become clear below.

Passive order sizes are described by a sequence of i.i.d. random variables (ωi)∞i=0 where each ωi is of the
form

(3) ωi =
(
ωCb

i , ωCa
i , ωPb

i , ω
Pa
i , ω

Nb
i , ωNa

i

)
.

The random variables ωPb/a
i take values in [0,∞); they describe the sizes of order placements. Likewise,

the random variables ωCb/a
i take values in [0, 1] and describe the proportions of cancellations. Placements

and cancellations on both sides of the book are subject to noise. The impact of the noise is described
by the non-negative random variables ωNb/a and two sequences of i.i.d. random variables

(̃
ξb/a,i

)∞
i=0

where

ξ̃b/a,i ∈ {−1,+1} for each i ∈ N.

More precisely, let us assume that the i-th passive order event occurs at time t > 0. If

πCb
i = γ, πPb

i = δ, πNb
i = ζ
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then the impact of a cancellation, order placement and noise is felt at the respective price levels

l :=
⌊

Bn(t−) + γ

∆xn

⌋
, j :=

⌊
Bn(t−) + δ

∆xn

⌋
, r :=

⌊
Bn(t−) + ζ

∆xn

⌋
,

and the change in the bid-side volume density function is given by:

(4) vn
b(t, ·) − vn

b(t−, ·) = ωPb
i

∆vn

∆xn 1[xn
j ,x

n
j+1[(·)+

− ωCb
i

∆vn

∆xn vn
b(t−, Bn(t−) + γ)1[xn

l ,x
n
l+1[(·) + ωNb

i ξ̃b,Ñn(t−)

√
∆vn1[xn

r ,xn
r+1[(·).

Here ∆vn is a scaling parameter that measures the impact of an individual order on the state of the book.
Similar considerations apply to the ask side. For our scaling limit it will be important that the noise param-
eters ξ̃b/a stay constant between two price changes; this explains the random variable ξ̃a,Ñn(t−) in (4). Note,
however, that the constant fluctuation part ξ̃a/b is further modulated by the non-negative random factor ωNa/b ,
which changes between consecutive passive orders.

Remark 2.3. The frequency of change of the ‘common factor’ ξ̃a/b determines the structure of the martingale
part of the limiting dynamics. In our case, the martingale part will be a an integral with respect to a Wiener
process (resulting from the scaling of ξ̃a/b). If the common factor changes at the same rate at which passive
orders arrive, we expect the martingale part to be space-time white noise. This case is left for future research.

Remark 2.4. In real-world markets only one event (market order arrival, cancellation, placement) happens
at a time. Within our framework this corresponds to the special case where

π
Cb/a
k = π

Pb/a
k = π

Nb/a
k ,

and only one of the random variables ωCa/b , ωPa/b is different from zero. Our mathematical framework is
flexible enough to allow for such correlation. For instance, if only ωCb

k and ωNb
k are different from zero and

ωNb
k = 1, then the k-th event is a bid-side cancellation at the price level

γ =

Bn(t−) + πCb
k

∆xn


and the volume cancelled is:

ωCb
k · ∆vn · vn

b(t−, Bn(t−) + γ) + ωNb
k ξ̃b,Ñn(t−) ·

√
∆vn∆xn.

We acknowledge that volumes may become negative with our choice of scaling. This could be avoided
by multiplying the noise term with the standing volume as well. However, additional technical arguments
would be needed for such a multiplicative noise structure, which we postpone to future work.

Notation 2.5. We introduce the following important short-hand notations:
• For any (deterministic or random) function u : [0,∞) × R → R we denote by u(t) : R → R the

function x 7→ u(t, x) for t ∈ [0,∞).
• In the nth model, we denote by In(y) the sub-interval of the grid containing y ∈ R. More precisely,

its indicator function is given by

1In(y)(x) =
∑
j∈Z

1[xn
j ,x

n
j+1[(y)1[xn

j ,x
n
j+1[(x).

• Unless otherwise stated, (Lp, ‖ · ‖Lp) (p ∈ [1,∞]) refers to the space Lp (R,B(R), dx).
• For σ-algebras G ⊂ F we shall write EG [·] B E [· | G].
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For future use, we also introduce the filtration F n generated by the n-th model. More precisely, we set

F n
t B σ

((
Ñn

s

)
0≤s≤t

,
(
ξn

a,k

)Ñn(t)

k=1
,
(
ξn

b,k

)Ñn(t)

k=1
,
(
Nn

a (s)
)
0≤s≤t ,

(
Nn

b (s)
)
0≤s≤t

,
(
ωCa

k , ωPa
k , ω

Na
k

)Nn
a (t)

k=1
,(

ωCb
k , ωPb

k , ω
Nb
k

)Nn
b (t)

k=1
,
(
πCa

k , πPa
k , π

Na
k

)Nn
a (t)

k=1
,
(
πCb

k , πPb
k , π

Nb
k

)Nb
a (t)

k=1
,
(̃
ξn

b,k

)Nn
a (t)

k=1
,
(̃
ξn

a,k

)Nn
b (t)

k=1

)
.

In terms of the independent Poisson processes Ñn and Nn
b/a governing the arrival of active and passive orders,

respectively, and the active order arrival times
(̃
τn

i

)∞
i=0

, the dynamics of the buy and sell side volume density
functions follows the dynamics

dvn
b(t, ·) =

[
1

In

(
Bn (̃τn

Ñn(t−)
)+πPb

Nn
b (t)

)(·)ωPb
Nn

b (t−)
∆vn

∆xn(5a)

− 1
In

(
Bn (̃τn

Ñn(t−)
)+πCb

Nn
b (t)

)(·)ωCb
b,Nn

b (t−)v
n
b(τn

b,Nn
b (t−), ·)

∆vn

∆xn

+ 1
In

(
Bn (̃τn

Ñn(t−)
)+πNb

Nn
b (t)

)(·)ωNb
Nn

b (t−)ξ̃b,Ñn(t−)

√
∆vn

]
dNn

b (t),

dvn
a(t, ·) =

[
1

In
(
An (̃τn

Ñn(t−)
)+πPa

Nn
a (t)

)(·)ωPa
Nn(t−)a

∆vn

∆xn(5b)

− 1
In

(
An (̃τn

Ñn(t−)
)+πCa

Nn
a (t)

)(·)ωCa
Nn(t−)v

n
a(τn

Nn
a (t−), ·)

∆vn

∆xn

+ 1
In

(
An (̃τn

Ñn(t−)
)+πNa

Nn
a (t)

)(·)ωNa
Nn

a (t−)ξ̃a,Ñn(t−)

√
∆vn

]
dNn

a (t).

We see from the above equations that the random volume density functions evolve in a random environment
described by the best bid and ask price processes. The specific structure of the dependence of the volume
density functions on the bid and ask price as well as the random submission price levels reflects the fact the
submission and cancellation price levels are chosen relative to the best bid/ask price.

2.2. The main result. We prove below that our LOB model converges to a continuous time limit if the
order arrival rates tend to infinity and the impact of an individual order arrival on the book as well as the
tick size tend to zero in a particular way. In order to make the convergence concept precise, and to state the
main result, we need to introduce some notations.

2.2.1. Preliminaries. For m ∈ (−∞,∞), we denote by (Hm, ‖ · ‖m) the space of Bessel potentials equipped
with the usual Sobolev norm and inner product. Set

E′ = ∪mH−m ⊃ · · · ⊃ H−1 ⊃ L2 ⊃ H1 ⊃ · · ·H2 ⊃ · · · ⊃ ∩mHm = E.

It is well known that H0 = L2 and that E is a complete separable metric space. Sobolev’s embedding
theorem indicates that each element of E is an infinitely differentiable function. In what follows, denote the
dual between E′ and E by 〈·, ·〉, which coincides with the inner product of H0 = L2.

The convergence concept we use is weak convergence in the Skorokhod space D := D([0,∞);R2 × H−1 ×

H−1) of all càdlàg functions on [0,∞) taking values in the space R2 × H−1 × H−1. The spaceD is equipped
with the usual Skorokhod metric (see Jacod and Shiryaev [15]).
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2.2.2. The convergence result. In order to obtain our convergence result, we need the following assump-
tions. In particular, just as in [13], we need active and passive orders to arrive on different time scales.

Assumption 3. • The scaling parameters λn
b/a (arrival rate of passive orders), µn (arrival rate of active

orders), ∆vn (order sizes) and ∆xn (tick size) satisfy the following conditions:

λn
b/a = n2; µn = n; ∆vn = n−2; ∆xn = n−1/2.

• The Poisson processes Nn
a , Nn

b and Ñn are independent.
• For each ‘event type’ T = Cb/a,Pb/a,Nb/a the random variables ωT

i (i ∈ N) are i.i.d. with finite
fourth moment, ωCb/a

i ∈ [0, 1], ωPb/a
i , ω

Nb/a
i ∈ [0,∞), and the random variables πT

i have Lipschitz
continuous and hence bounded densities f T on some compact interval [−M,M]. The random vari-
ables ωT

i and πT
i (i ∈ N) are independent of the Poisson processes Nn

a , Nn
b and Ñn.

• The random variables ξ̃b/a,i and ξb/a,i are independent and independent of all other random variables
and take the values ±1 with equal probability.
• The sequence of initial data (An

0, B
n
0, v

n
a(0, ·), vn

b(0, ·)) converges to (a0, b0, va,0(·), vb,0(·)) in both R2 ×

L2 × L2 and R2 × L∞ × L∞.

We are now ready to state the main result of this paper.

Theorem 2.6. Let Assumptions 1-3 be satisfied. There are four independent Wiener processes βa, βb, Wa and
Wb such that the sequence (An, Bn, vn

a, v
n
b) of stochastic processes converges in distribution inD([0,∞);R2×

H−1 × H−1) to (A, B, va, vb). Here (A, B) is a two-dimensional reflected Brownian motion:

dAt =
1
√

2
dβa

t + dLt; A0 = a0;

dBt =
1
√

2
dβb

t − dLt; B0 = b0;

dLt =1At=Bt dLt; L0 = 0

and the volume density processes satisfies the infinite-dimensional SDE

vb(t, ·) =vb,0(·) +

∫ t

0

(
E[ωPb

1 ] f Pb(· + Bs) − E[ωCb
1 ] f Cb(· + Bs)vb(s, ·)

)
ds

+
√

2E
[
ωNb

1

] ∫ t

0
f Nb(· + Bs) dWb(s), t ≥ 0;

va(t, ·) =va,0(·) +

∫ t

0

(
E[ωPa

1 ] f Pa(· + As) − E[ωCa
1 ] f Ca(· + As)va(s, ·)

)
ds

+
√

2E
[
ωNa

1

] ∫ t

0
f Na(· + As) dWa(s), t ≥ 0.

For any T ∈ (0,∞), the existence and uniqueness of the adapted solution of the above infinite-dimensional
SDE in L2(Ω × [0,T ] × R) is obvious; see [7] for a general theory on stochastic equations in infinite dimen-
sions. If the model parameters are sufficiently smooth, then the density functions are smooth as well. The
proof of the following corollary is an immediate consequence of Itô’s formula.

Corollary 2.7. If vb/a,0 and the densities f T belong to Hm with m > 3, then vb/a(t) take values in Hm and
hence by embedding, in C2(R). Furthermore, the relative volume processes

(Ua,Ub)(t, x) = (va(t, x − At), vb(t, x − Bt)),
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satisfies the stochastic partial differential equation:

dUa(t, x) =

[
1
4

∆Ua(t, x) + E[ωPa
1 ] f Pa(x) − E[ωCa

1 ] f Ca(x)Ua(t, x)
]

dt − ∂xUa(t, x)dLt

− ∂xUa(t, x)dβa
t +
√

2E
[
ωNa

1

]
f Na(x)dWa(t), t ≥ 0;

Ua(0, x) =va,0(x − a0);

dUb(t, x) =

[
1
4

∆Ub(t, x) + E[ωPb
1 ] f Pb(x) − E[ωCb

1 ] f Cb(x)Ub(t, x)
]

dt + ∂xUb(t, x)dLt

− ∂xUb(t, x)dβb
t +
√

2E
[
ωNb

1

]
f Nb(x)dWb(t), t ≥ 0;

Ub(0, x) =vb,0(x − b0).

2.3. Outline of the proof. The proof of Theorem 2.6 is carried out in the following sections. The proof
of convergence of the bid and ask price processes draws on established results on weak limits of reflected
random walks and is carried out in Section 3. The proof of convergence of the volume density processes on
the bid and ask sides of the limit order book is recalled in Section 4. For the convenience of the reader we
now give an outline of our strategy for the convergence proof for the volume densities.

2.3.1. Some auxiliary processes. We split the dynamics of the volume density functions into three process-
es, which we are going to handle separately, before finally pasting them back together to obtain the result
for the full dynamics.

From equation (5a) we identify the following three processes which drive the evolution of the bid-side
volume density function:

Vn,1
b (t, x) =

Nn
b (t)∑

i=1

1
In

Bn (̃τn
Ñn(τn

b,i)
)+πPb

i

(x)ωPb
i

∆vn

∆xn ,(6a)

Vn,2
b (t, x) =

Nn
b (t)∑

i=1

1
In

An (̃τn
Ñn(τn

b,i)
)+πCb

i

(x)ωCb
i

∆vn

∆xn ,(6b)

Vn,3
b (t, x) =

Nn
b (t)∑

i=1

1
In

Bn (̃τn
Ñn(τn

b,i)
)+πNb

i

(x)ωNb
i ξ̃b,Ñn(τn

b,i)+1

√
∆vn,(6c)

corresponding to the volume changes due to incoming order placements (Vn,1
b ), the proportional cancella-

tions of standing volume (Vn,2
b ) and aggregated random fluctuations (V3,n

b ). We notice that Vn,1
b and Vn,2

b are
increasing functions in time for each n. The process Vn,3

b will contribute the martingale part in the continuous
scaling limit.3 We introduce similar processes Vn,1

a , Vn,2
a and Vn,3

a for the ask side.

2.3.2. ‘Markovization’. The previously introduced processes are not convenient for characterizing the lim-
it process. The reason is that the discrete processes

(
V3,n

b/a(τn
i , ·)

)
i∈N

which capture the fluctuations are not
Markov chains because part of the fluctuations change only at active order times. As a result, we cannot
directly use existing results on the scaling of Markov processes.

3Note that Vn,3
b itself is not a martingale (in the filtration F n generated by the full model), as the fluctuations ξ̃ are constant

between two active order times.
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The necessary ‘markovization’ is achieved by registering changes to the processes V i,n
b/a and vn

b/a only at ac-
tive order times. To this end, we introduce the following processes (making use of our short-hand notations):

(7) v̂n
b/a(t) B vn

b/a(̃τn
k−1), V̂ i,n

b/a(t) B V i,n
b/a(̃τn

k−1), τ̃n
k−1 ≤ t < τ̃n

k ,

for i = 1, 2, 3. Note that we have, for instance,

V̂n,1
b (t, x) =

Ñn
t∑

k=1

Nn
b (̃τn

k )∑
i=Nn

b (̃τn
k−1)+1

ωPb
i 1

In
(
Bn (̃τk−1)+πPb

i

)(x)
∆vn

∆xn .

Obviously, together with
(
(An

τ̃n
i
, Bn

τ̃n
i
)
)

i∈N
the processes

(̂
vn

b/a(̃τn
i , ·)

)
i∈N

,
(
V̂n,1/2/3

b/a (̃τn
i , ·)

)
i∈N

are Markov pro-

cesses, and V̂n,3
b/a is, in fact, a martingale. Thus, the methods of, e.g., [19], are, in principle, applicable to

these processes. Nonetheless, we find it useful to add yet another layer of auxiliary processes, this time by
separating out active order times, i.e., by considering the process as if active orders arrive at deterministic
points in time. More precisely, we define the time-change η together with its inverse η by

η̄n
u B τ̃n

bnuc, u ∈ [0,∞);

ηn
u B inf{t : t > 0, η̄n

t > u} −
1
n
, u ∈ [0,∞).(8)

Then new processes are defined, which correspond to the “hat” processes when evaluated on the time-scale
ηn. More precisely, we put:

A
n
u B An

0 +
∆xn

2

bnuc∑
i=1

(ξb,i + ξa,i) + ∆xn
∑

0≤t≤u

1A
n
(t−)−B

n
(t−)=∆xn ,(9a)

B
n
u B Bn

0 +
∆xn

2

bnuc∑
i=1

(ξb,i − ξa,i) − ∆xn
∑

0≤t≤u

1A
n
(t−)−B

n
(t−)=∆xn ,(9b)

V
n,1
a (u, x) B

Nn
a (̃τn
bnuc)∑

i=1

ωPa
i 1

In

(
A

n
(
ηn
τn
a,i

)
+πPa

i

)(x)
∆vn

∆xn ,(9c)

V
n,2
a (u, x) B

Nn
a (̃τn
bnuc)∑

i=1

ωCa
i 1

In

(
A

n
(
ηn
τn
a,i

)
+πCa

i

)(x)
∆vn

∆xn ,(9d)

V
n,3
a (u, x) B

Nn
a (̃τn
bnuc)∑

i=1

ωNa
i 1

In

(
A

n
(
ηn
τn
a,i

)
+πNa

i

)(x)̃ξa,Ñn(τn
a,i)+1

√
∆vn,(9e)

vn
a(u, x) B vn

a(0, x) + V
n,1
a (u, x) + V

n,3
a (u, x)(9f)

−

Nn
a (̃τn
bnuc)∑

i=1

ωC
i 1

In

(
A

n
(
ηn
τn
a,i

)
+πCa

i

)(x)vn
a(τn

a,i, x)
∆vn

∆xn ,

and similarly for the processes on the bid side of the limit order book. Thus, we have the desired property
that, for instance,

(An, Bn, v̂n
a)(u) = (A

n
, B

n
, vn

a)(ηn
u).

Note that
(
(A

n
i/n, B

n
i/n, v

n
a(i/n, ·))

)
i∈N

is a Markov chain.



A FUNCTIONAL LIMIT THEOREM FOR LIMIT ORDER BOOKS 11

2.3.3. Structure of the proof. With these preparations we can now describe the structure of the proof. We
first prove tightness of each of the processes V

n,i
b/a (i = 1, 2, 3) and of vn

b/a in the distributional sense indicated
above. For this part, we heavily rely on Mitoma’s theorem (Theorem B.2) together with Kurtz’s criterion
(Theorem B.1). This first part is presented in Section 4.1, see Proposition 4.7.

The natural next step would be to extend the tightness result for vn
b/a to v̂n

b/a and, subsequently, to vn
b/a.

However, it turns out that this extension requires C-tightness of vn
b/a. Hence, in Section 4.2, we instead

characterize the limit vb/a of vn
b/a.

Finally, in the third step presented in Section 4.3 we extend the tightness to v̂n
b/a and prove tightness of vn

b/a.
In fact, we thereby also obtain the limits for these processes; as it turns out, the processes vn

b/a, v̂n
b/a and vn

b/a
must all have the same limit. In some more detail, we first show the joint convergence (in a weak sense) of(

vn
b/a , η

n
) n→∞
−−−−→

(
vb/a , id

)
.

By a theorem of Billingsley ([3, Lemma on p. 151]), this implies that (in the appropriate weak sense)

lim
n→∞

v̂n
b/a = lim

n→∞
vn

b/a ◦ (ηn) = vb/a.

Note that for this implication we need C-tightness of the sequence vn
b/a. Then we prove the tightness of vn

b/a
and further verify that v̂n

b/a − vn
b/a converges to 0 in an L2(Ω; L2(R))-sense, thereby implying that

lim
n→∞

vn
b/a = lim

n→∞
v̂n

b/a = vb/a.

At this stage, we have only treated the convergence of each of the individual sequences of processes
(An, Bn, vn

b) and (An, Bn, vn
a) to some limiting processes. However, as all these limiting processes are ac-

tually continuous, joint tightness and, finally, joint weak convergence of
(
An, Bn, vn

b, v
n
a

)
therefore follows by

Corollary B.3.

3. The scaling limit of the price process

In this section we prove convergence in law of the bid/ask price process to a 2-dimensional reflected Brow-
nian motion. We start with an auxiliary observation on the convergence of the time-change process ηn.
According to a strong approximation result, due to Kurtz [18], a standard Poisson process (Nt) can be real-
ized on the same probability space as a Brownian motion (Wt) in such a way that the random variable

Y := sup
t≥0

|Nt − t −Wt|

log(max{2, t})

has finite moment generating function in the neighborhood of the origin and hence finite mean. In particular,
Y is almost surely finite. In view of the law of iterated logarithm for Brownian motion, this means that

lim
n→∞

ηn
t = t

almost surely, uniformly on compact time intervals. Hence, we have the following result.

Lemma 3.1. The sequence of processes ηn converges almost surely to the identity function uniformly on
compact time intervals.

We are now ready to state the main result of this section.
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Proposition 3.2. As a sequence of processes whose sample paths lie in D([0,∞);R2), both (An, Bn) and
(A

n
, B

n
) are C-tight and converge to the two-dimensional reflected Brownian motion (A, B) satisfying

dAt =
1
√

2
dβa

t + dLt; A0 = a0;

dBt =
1
√

2
dβb

t − dLt; B0 = b0;

where a0 > b0, βa and βb are two independent Wiener processes and L is a non-decreasing process satisfying

Lt =

∫ t

0
1{As=Bs} dLs.

Proof. It follows from a result on semimartingale reflecting Brownian motion by Kang and Williams [16,
Theorem 4.3] that (A

n
, B

n
) is C-tight and converges weakly to (A, B) which is the two-dimensional reflected

Brownian motion given above. Recalling that

(An
u, B

n
u) = (A

n
, B

n
) ◦

(
ηn

u
)
, u ≥ 0,(10)

the assertion follows from Lemmas 3.1 and B.4. �

4. The scaling limit of the volume density

In this section, we prove weak convergence in a distributional sense of the volume density function.Throughout,
we use the symbol C for deterministic constants which may change from occurrence to occurrence.

4.1. Tightness of the auxiliary process v
n
b/a. We first prove tightness of the processes vn

b/a. The arguments
are the same for the bid and ask side of the book. To ease notation we therefore drop the index indicating
bid/ask side volumes in what follows.

Notation 4.1. Where appropriate (i.e., when there is only a negligible chance of confusion and where all
considerations can be trivially generalized to all relevant processes), we shall adopt the following notations:

• We drop the superscript “n” (referring to the place in the model hierarchy) as well as the subscript
“a” or “b” and any other indices, which are not essential in the respective context. E.g., we may
write V

2
or even just V instead of V

n,2
b .

• We may denote by A or A either the ask or the bid price.
• We may denote the random location of any activity in the book by π or πi and its size by ω or ωi,

disregarding the type of activity and whether the sell or buy sides are involved.

We start with an elementary auxiliary lemma on the distribution of a Poisson process as seen from a second,
independent Poisson process. The lemma will be key to compute the distribution of passive order arrivals
between two consecutive active order times.

Lemma 4.2. Let N1 and N2 be two independent Poisson processes with intensities λ1 and λ2, respectively.
Moreover, let Ti, i = 1, . . ., denote the jump times of the Poisson process N1. For any α = 1, 2, . . ., the
random variable N2(Tα) has a negative binomial (NB) distribution with parameters r = α and p =

λ2
λ1+λ2

,
i.e., we have

P (N2(Tα) = l) =

(
l + α − 1
α − 1

) (
λ2

λ1 + λ2

)l (
λ1

λ1 + λ2

)α
, l = 0, 1, . . .
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In particular, the moment-generating function reads

EetN2(Tα) =

( 1 − p
1 − pet

)α
, for t < − log p,

and

E [N2(Tα)] = α
λ2

λ1
,

E [N2(Tα) (N2(Tα) − 1)] = α(1 + α)
λ2

2

λ2
1

,

E [N2(Tα) (N2(Tα) − 1) (N2(Tα) − 2)] = α(1 + α)(2 + α)
λ3

2

λ3
1

,

E [N2(Tα) (N2(Tα) − 1) (N2(Tα) − 2) (N2(Tα) − 3)] = α(1 + α)(2 + α)(3 + α)
λ4

2

λ4
1

.

In the next lemma, we provide growth estimates for the processes V
n,1/2

. As the growth mechanism for
these processes (but not for V

n,3
) work in the same way, we merge the discussion into one lemma. Denote

by F
n

the filtration generated by the processes V
n,1/2/3
a/b and vn

a/b.

Lemma 4.3. There is a constant C > 0 (independent of n, s, t) such that we can bound

E
F

n
s

[∥∥∥∥V
n,1/2

(t, ·) − V
n,1/2

(s, ·)
∥∥∥∥2

L2

]
≤ C

(
(t − s)2 +

|t − s|
n

)
,

sup
x∈R

E
F

n
s

[(
V

n,1/2
(t, x) − V

n,1/2
(s, x)

)2
]
≤ C

(
(t − s)2 +

|t − s|
n

)
,

E
F

n
s

[∥∥∥∥V
n,1/2

(t, ·) − V
n,1/2

(s, ·)
∥∥∥∥4

L4

]
≤ C

(
(t − s)4 +

|t − s|3

n
+
|t − s|2

n2 +
|t − s|

n3

)
,

sup
x∈R

E
F

n
s

[(
V

n,1/2
(t, x) − V

n,1/2
(s, x)

)4
]
≤ C

(
(t − s)4 +

|t − s|3

n
+
|t − s|2

n2 +
|t − s|

n3

)
.

Proof. Without loss of generality, we can choose s = 0. Moreover, following the notation convention
adopted above, we drop the super-scripts from all the processes and random variables and denote by “A”
either bid or ask price, respectively. Let α B bntc and consider

E
[
V(t, x)2

]
= E


N (̃τα)∑

i=1

1I
(
A(ητi )+πi

)(x)ωi


2

(
∆v
∆x

)2

.

Let G denote the σ-algebra generated by all sources of randomness except (ωi)i∈N. Using the fact that the
random variables ωi are i.i.d. and independent from all the other random terms above, we get

E
[
V(t, x)2

]
= E

[N (̃τα)∑
i, j=1

EG
[
ωiω j

]
1I

(
A(ητi )+πi

)(x)1I
(
A(ητ j )+π j

)(x)+

+

N (̃τα)∑
i=1

EG
[
ω2

i

]
1I

(
A(ητi )+πi

)(x)
] (

∆v
∆x

)2
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= E
[N (̃τα)∑
i, j=1

E [ω1]2 1I
(
A(ητi )+πi

)(x)1I
(
A(ητ j )+π j

)(x)+

+

N (̃τα)∑
i=1

E
[
ω2

1

]
1I

(
A(ητi )+πi

)(x)
] (

∆v
∆x

)2

.

Again using independence of πi, πi′ and all the other random variables, we can bound

E
[
1I(y+πi)(x)

]
≤ ‖ f ‖L∞ ∆x1[y−M,y+M](x),(11a)

E
[
1I(y+πi)(x)1I(y′+πi′)(x)

]
≤ ‖ f ‖2L∞ ∆x21[max(y,y′)−M,min(y,y′)+M](x).(11b)

Conditioning on the σ-algebra generated by all sources of randomness except (πi)i∈N, these bounds enable
us to estimate:

E
[
V(t, x)2

]
≤ E

[
E [ω1]2 ‖ f ‖2L∞ ∆x2

N (̃τα)∑
i, j=1

1[max
(
A(ητi ),A(ητ j )

)
−M,min

(
A(ητi ),A(ητ j )

)
+M](x)+

+ E
[
ω2

1

]
‖ f ‖L∞ ∆x

N (̃τα)∑
i=1

1[
A(ητi )−M,A(ητi )+M

](x)
] (

∆v
∆x

)2

.

At this stage, we can easily bound V both in L2(R) and as a supremum in x. More precisely, we have

E
[∥∥∥V(t)

∥∥∥2
L2

]
+ sup

x∈R
E

[
V(t, x)2

]
≤ (2M + 1)

(
E[ω1]2 ‖ f ‖2L∞ ∆x2E

[
N (̃τα) (N (̃τα) − 1)

]
+

+ E
[
ω2

1

]
‖ f ‖L∞ ∆xE

[
N (̃τα)

]) (∆v
∆x

)2

.

Finally, inserting the moment formulas given in Lemma 4.2 and applying the trivial estimate α = bntc ≤ nt
together with Assumption 3, we arrive at

E
[∥∥∥V(t)

∥∥∥2
L2

]
+ sup

x∈R
E

[
V(t, x)2

]
≤ Cn−7/2

{
n−1/2nt(1 + nt)

n4

n2 + nt
n2

n

}
= C

(
t2 + (n−1 + n−3/2)t

)
≤ C

(
t2 +

t
n

)
.

The estimate for the fourth moment follows analogously and is therefore skipped. �

The growth bound for V
n,3

works, in principle, similarly. Note, however, that the scaling for V
n,3

is much
smaller. Hence, we need to take advantage of the martingale-difference structure in order to avoid the mixed
terms in the proof of Lemma 4.3.

Lemma 4.4. There is a constant C (independent of n, s, t) such that

E
F

n
s

[
sup

s≤u≤t

∥∥∥∥V
n,3

(u) − V
n,3

(s)
∥∥∥∥2

L2

]
+ sup

x∈R
E
F

n
s

[
sup

s≤u≤t

∣∣∣∣Vn,3
(u) − V

n,3
(s)

∣∣∣∣2] ≤ C|t − s|,(12)

E
F

n
s

[
sup

s≤u≤t

∥∥∥∥V
n,3

(u) − V
n,3

(s)
∥∥∥∥4

L4

]
+ sup

x∈R
E
F

n
s

[
sup

s≤u≤t

∣∣∣∣Vn,3
(u) − V

n,3
(s)

∣∣∣∣4] ≤ C
(
(t − s)2 +

|t − s|
n

)
.(13)

Proof. Again, we restrict ourselves to proving the case s = 0, and we drop all indices from the notation.
Re-writing V in a form more clearly expressing its martingale structure, we consider

V(t) =

N (̃τα)∑
i=1

1
I
(
A(ηn

τn
i

)+πi

)(x)ωiξ̃Ñ(τi)

√
∆v =

α−1∑
j=0

N (̃τ j+1)∑
i=N (̃τ j)+1

1I
(
A( j/n)+πi

)(x)ωiξ̃ j
√

∆v,
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where we again use the short-hand notation α = btnc. Using Doob’s inequality and the fact that E
[̃
ξiξ̃ j

]
= δi j

with ξ̃2
i = 1, we have

E
[

sup
0≤u≤t

|V(u, x)|2
]
≤ 4E

[
|V(t, x)|2

]
= 4∆vE


α−1∑

j=0

ξ̃ j

N (̃τ j+1)∑
i=N (̃τ j)+1

1I
(
A( j/n)+πi

)(x)ωi


2

= 4∆vE


α−1∑
j=0


N (̃τ j+1)∑

i=N (̃τ j)+1

1I
(
A( j/n)+πi

)(x)ωi


2 .

In the next step, we shall again estimate the contribution of the random locations π in a similar way as
in (11). To this end, let G denote the σ-algebra generated by all the sources of randomness except (πi)∞i=1,
which is then by construction independent from G. Hence, we have

E
[

sup
0≤u≤t

∥∥∥V(u)
∥∥∥2

L2

]
≤ 4∆vE

[α−1∑
j=0

{ N (̃τ j+1)∑
i,i′=N (̃τ j)+1

ωiωi′

∫
R

EG
[
1I

(
A( j/n)+πi

)(x)1I
(
A( j/n)+πi′

)(x)
]}]

dx+

+

N (̃τ j+1)∑
i=N (̃τ j)+1

ω2
i

∫
R

EG
[
1I

(
A( j/n)+πi

)(x)
]

dx
]

≤ 4∆vE

α−1∑
j=0


N (̃τ j+1)∑

i,i′=N (̃τ j)+1

ωiωi′ ‖ f ‖2L∞ ∆x2(2M) +

N (̃τ j+1)∑
i=N (̃τ j)+1

ω2
i ‖ f ‖L∞ ∆x(2M)


 ,

and similarly,

sup
x∈R

E
[

sup
0≤u≤t

|V(u, x)|2
]
≤ 4∆vE

α−1∑
j=0


N (̃τ j+1)∑

i,i′=N (̃τ j)+1

ωiωi′ ‖ f ‖2L∞ ∆x2 +

N (̃τ j+1)∑
i=N (̃τ j)+1

ω2
i ‖ f ‖L∞ ∆x


 .

By independence of the Poisson processes N and Ñ from ωi and by the fact that the distribution of the
increments N (̃τ j+1)− N (̃τ j) of one Poisson process as seen from the other does not depend on j, we see that

E
[

sup
0≤u≤t

∥∥∥V(u)
∥∥∥2

L2

]
+ sup

x∈R
E

[
sup

0≤u≤t
|V(u, x)|2

]
≤ C ∆vE

[
α
{
E[ω1]2

∥∥∥ f π
∥∥∥2

L∞ (∆x)2N (̃τ1) (N (̃τ1) − 1) + E
[
ω2

1

] ∥∥∥ f π
∥∥∥

L∞ ∆xN (̃τ1)
}]
.

Again appealing to Lemma 4.2 (with α = 1) together with Assumption 3, we obtain

E
[

sup
0≤u≤t

∥∥∥V(u)
∥∥∥2

L2

]
+ sup

x∈R
E

[
sup

0≤u≤t
|V(u, x)|2

]
≤ C

1
n2 nt

{
1
n

2
n4

n2 +
1
√

n
n2

n

}
= Ct{2 + 1/

√
n} ≤ Ct.

As in the proof of Lemma 4.3, the estimate for the fourth moment follows by the similar arguments. �

At this stage we can patch together the growth bounds of Lemmas 4.3 and 4.4 to obtain a similar growth
bound for the process vn. The proof is based on an event-by-event decomposition of the limit order book
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dynamics. More precisely, in terms of the increments

hn,1
a,i (x) B ωPa

i 1
In

(
A

n
(
ηn
τn
a,i

)
+πPa

i

)(x)
∆vn

∆xn ,

hn,2
a,i (x) B ωCa

i 1
In

(
A

n
(
ηn
τn
a,i

)
+πCa

i

)(x)
∆vn

∆xn ,

hn,3
a,i (x) B 1

In

(
A

n
(
ηn
τn
a,i

)
+πNa

i

)(x)ωNa
i ξ̃a,Ñn(τn

a,i)+1

√
∆vn

of the processes V
n, j
a ( j = 1, 2, 3) – and similarly for the buy-side – one has the following decomposition of

the LOB dynamics:

(14) vn(t, x) =

Nn (̃τn
bntc)∏

i=1

(
1 − hn,2

i (x)
)

vn(0, x)+

+

Nn
a/b (̃τn

bntc)∏
i=1

(
1 − hn,2

i (x)
) 

Nn (̃τn
bntc)∑

i=1

1∏i
m=1

(
1 − hn,2

m (x)
) (

hn,1
i (x) + hn,3

i (x)
)

Clearly, hn,1
i is the effect of the placement at the i’th passive order event, hn,3

i the fluctuation effect, whereas
hn,2

i is the proportion of standing volume canceled.

Lemma 4.5. There is a sequence of non-negative adapted process Cn
t and a deterministic constant C such

that for p ∈ {2, 4}

E
F

n
s

[
sup
s≤r≤t

∥∥∥vn(r) − vn(s)
∥∥∥p

Lp

]
+ sup

x∈R
E
F

n
s

[
sup
s≤r≤t

∣∣∣vn(r, x) − vn(s, x)
∣∣∣p] ≤ Cn

s
(
(t − s)p + (t − s)

)
with

(15) sup
n

E
[

sup
0≤s≤t

Cn
s

]
≤ C(tp + t).

Proof. We may again drop the dependence on n from the notation and w.l.o.g. assume s = 0. Note that
0 ≤ 1 − h2

i (x) ≤ 1 and ∣∣∣∣∣∣∣∣
N (̃τbntc)∏

i=1

(1 − h2
i (x)) − 1

∣∣∣∣∣∣∣∣ ≤
N (̃τbntc)∑

i=1

h2
i (x) = V

2
(t, x).

Hence, (14) together with Lemma 4.3 and 4.4 implies that for p ∈ {2, 4},

|v(t, x) − v(0, x)|p =

∣∣∣∣∣∣∣∣
N (̃τbntc)∏

i=1

(
1 − h2

i

)
− 1

 v(0, x) +

N (̃τbntc)∏
i=1

(
1 − h2

i

) N (̃τbntc)∑
i=1

1∏i
m=1

(
1 − h2

i

) (
h1

i + h3
i

)
∣∣∣∣∣∣∣∣
p

≤ C
{
|v(0, x)|p sup

x∈R

(
V

2
(t, x)

)p
+

∣∣∣∣V1
(t, x)

∣∣∣∣p + sup
0≤s≤t

∣∣∣∣V3
(s, x)

∣∣∣∣p} .
It then follows that for p ∈ {2, 4},

sup
x∈R

E
[

sup
0≤u≤t

|v(u, x) − v(0, x)|p
]

+ E
[

sup
0≤u≤t

‖v(u) − v(0)‖pLp

]
≤ C

(
sup
x∈R
|v(0, x)|p + E

[
‖v(0)‖pLp

]
+ 1

)
(tp + t).
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For a general s ∈ [0, t], this only proves the estimate for aF
n
s-measurable random variable Cn

s which depends
in an affine way on ‖v(s)‖L2 . Note, however, that the above estimate also implies that for p ∈ {2, 4}

sup
n∈N

(
E

[
sup

0≤s≤t

∥∥∥vn
a/b(s)

∥∥∥p
Lp

]
+ sup

x∈R
E

[
sup

0≤s≤t

∣∣∣vn
a/b(s, x)

∣∣∣p]) < C(tp + t),

so that we can, indeed, find a deterministic constant C which is independent of s, t and n and bounds
E

[
sup0≤s≤t Cn

s

]
≤ C(tp + t). �

Remark 4.6. In a similar way to the above proof, we obtain for p ∈ {2, 4} and k = 0, 1, 2, · · · ,

E

 sup
i∈[Nn

a (̃τn
k ),Nn

a (̃τn
k+1)]∩N

‖vn
a(τa,i) − vn

a(ηn
k)‖pLp

 + sup
x∈R

E

 sup
i∈[Nn

a (̃τn
k ),Nn

a (̃τn
k+1)]∩N

∣∣∣vn
a(τa,i, x) − vn

a(̃τn
k , x)

∣∣∣p ≤ C
t + tp

n
,

where the constant C is independent of n, k and t.

We are now ready to state and prove the main result of this section.

Proposition 4.7. The processes vn
b/a, V

n,1
b/a, V

n,2
b/a and V

n,3
b/a are tight as processes with paths inD

(
[0,∞); H−1

)
.

Proof. For Xn ∈ {vn
b/a,V

n,1
b/a,V

n,2
b/a,V

n,3
b/a}, according to the definition it is obvious that the tightness of Xn is

equivalent to that of ((1 + t)−1Xn(t))t∈[0,∞) which we denote again by Xn. The reason we scale the processes
this way is estimate (15) which prevents us from applying Theorem B.1 directly to the original processes.

By Mitoma’s theorem (see Theorem B.2), we need to prove tightness of the processes 〈Xn , φ〉 for any test
function φ ∈ E ⊂ L2(R, dx), for which we, in turn, will appeal to Kurtz’s criterion (see Theorem B.1).
Hence, we need to estimate

EF n
s

[〈
Xn(t) − Xn(s) , φ

〉2
]
.

As each of the processes vn,V
n,1
,V

n,2
,V

n,3
takes values in L2, the bracket 〈Xn , φ〉 is equal to the L2 inner

product 〈Xn , φ〉L2 , and so we can estimate

E
F

n
s

[〈
Xn(t) − Xn(s) , φ

〉2
]
≤ EF n

s

[∥∥∥Xn(t) − Xn(s)
∥∥∥2

L2

]
‖φ‖2L2 ≤ sup

τ∈[0,∞)
(1 + τ)−2Cn

τ

[
(t − s)2 + (t − s)

]
‖φ‖2L2 .

The second condition of Theorem B.1 follows with γn(δ) = supτ∈[0,∞)(1 + τ)−2Cn
τ(δ2 + δ) by Lemmas 4.3,

4.4 and 4.5.

For the first condition, i.e., tightness of the sequence of random variables 〈Xn(t) , φ〉 for each (rational) t, we
note that this trivially follows from uniform boundedness of the sequence of random variables 〈Xn(t) , φ〉 in
L2(Ω,F , P). Moreover, for any T ∈ (0,∞), we have by Lemmas 4.3, 4.4 and 4.5,

sup
n

E sup
t∈[0,T ]

‖Xn(t)‖2L2 ≤ C(T + T 2),

with the constant C being independent of n and T . It follows that for N ∈ (0,∞),

P
 sup

t∈[0,T ]
‖Xn(t)‖2L2 > N

 ≤ C(T + T 2)
N

→ 0, as N → ∞.

By Theorems B.1 and B.2, Xn and hence vn
b/a, V

n,1
b/a, V

n,2
b/a and V

n,3
b/a are tight as sequences of processes with

paths inD
(
[0,∞); H−1

)
. �
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Remark 4.8. This proof almost gives us tightness in D
(
[0,∞); L2(R)

)
for L2(R) equipped with the weak

topology. Note, however, that L2(R) is not a metric space when equipped with the weak topology. Hence
we cannot use Kurtz’s criterion as it does not apply to non-metric state spaces.

4.2. Characterization of the limit of v
n
b/a. In this section, we characterize the limit of the sequence vn

b/a.
We give the arguments for the ask side and write P, C and N for Pa, Ca and Na. The arguments for the bid
side are identical. We start with establishing joint convergence in distribution of bid/ask prices along with
the aggregate fluctuations of standing volumes on the ask side of the book.

Proposition 4.9. There is a Wiener process {Wa(t); t ∈ [0,∞)} such that (A
n
, B

n
,V

n,3
a ) ⇒ (A, B,V3

a ), with
(A, B) the two-dimensional reflected Brownian motion given in Theorem 2.6 and

V3
a (t) =

√
2E

[
ωNa

1

] ∫ t

0
f Na(x + As) dWa(s), t ∈ [0,∞).

Proof. Combining Proposition 4.7, Corollary B.3 and Proposition 3.2, we conclude that (A
n
, B

n
,V

n,3
a ) is

tight as a sequence of processes with paths lying in D([0,∞);R2 × H−1) and that (A
n
, B

n
) converges in

distribution to the two-dimensional reflected Brownian motion (A, B). By Skorohod’s lemma, we may
assume that all random variables and processes are defined on a common probability space, and – restricting
to a subsequence if necessary – that the sequence (A

n
, B

n
,V

n,3
a ) converges with probability 1 to (A, B,V

3
a) as

a sequence of processes whose sample paths belong toD(0,∞;R2 × H−1).

Since the sequence of price processes is C-tight and converges to the 2-dimensional reflected Brownian
motion, it is sufficient to characterize the weak accumulation point V

3
a. To this end, we define for any φ ∈ E

Y
n
t = 〈φ, V

n,3
a (t)〉, t ∈ [0,∞),

and denote by Gn the filtration generated by the processes (A
n
t , B

n
t ,V

n,3
t ). Note that the sequence (A

n
, B

n
,Y

n
)

converges with probability 1 to (A, B, 〈φ, V
3
a〉) as a sequence of processes whose sample paths belong to

D(0,∞;R3). Let

an
0(·) B

(∑
j

∫ xn
j+1

xn
j

f (x + ·) dx
∫ xn

j+1

xn
j

φ(x) dx
)2

(∆xn)−2E
[
ωN

1

]2
,

an
1(·) B

∑
j

∫ xn
j+1

xn
j

f (x + ·) dx
∣∣∣∣ ∫ xn

j+1

xn
j

φ(x) dx
∣∣∣∣2(∆xn)−2E

[
(ωN

1 )2
]

σn(·) B
{

(2an
0 +

1
n

an
1)(·)

}1/2

,

with f = f Na . Since the number of passive order arrivals
(
Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1

)
on [ k−1

n , k
n ) follows a negative

binomial distribution NB
(
1, λn

λn+µn

)
(see Lemma 4.2), we have:

EGn
k−1

n

[
|Y

n
k/n − Y

n
(k−1)/n|

2
]

= ∆vn
{ (

Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1

) (
Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1
− 1

) (∑
j

∫ xn
j+1

xn
j

f (x + A
n
k−1

n
) dx

∫ xn
j+1

xn
j

φ(x) dx
)2

E
[
ωN

1

]2
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+

(
Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1

)∑
j

∫ xn
j+1

xn
j

f (x + A
n
k−1

n
) dx

∣∣∣∣ ∫ xn
j+1

xn
j

φ(x) dx
∣∣∣∣2E

[(
ωN

1

)2
] }

= ∆vn(∆xn)2
{ (

Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1

) (
Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1
− 1

)
an

0(A
n
k−1

n
) +

(
Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1

)
an

1(A
n
k−1

n
)
}

=
1
n3

(
2n2an

0 + nan
1

)
(A

n
k−1

n
)

=
1
n

(
σn(A

n
k−1

n
)
)2
.

Set

σ(·) =
√

2
∫
R

f πa (x + ·)φ(x) dxE
[
ωN

1

]
, t ∈ [0,∞).

In order to conclude, we apply a result on the convergence of interpolated Markov chains to a diffusion due
to Kushner [19]. For this we need to verify the following conditions for any t > 0:

E

 bntc∑
k=1

|σn(A
n
k−1

n
) − σ(A

n
k−1

n
)|2

 1
n
→ 0,(C1)

E
bntc+1∑

k=1

|Y
n
k/n − Y

n
(k−1)/n|

4 → 0.(C2)

Indeed, under (C1) and (C2), an easy extension of [19, Theorem 1, Page 44–48] gives convergence (with
probability 1) of (A

n
, B

n
,Y

n
) (or a proper subsequence thereof) to (A, B,Y) as a sequence of processes whose

paths belong toD(0,∞;R3) with

(16) dY t = σ(At)dWt, t ∈ [0,∞); Y0 = Y0.

Condition (C1) can be verified easily. Hence, we concentrate on the condition (C2) (specialized from as-
sumption (A4) of [19, Page 42]):

EGn
k−1

n

[
|Y

n
k/n − Y

n
(k−1)/n|

4
]
≤ C(∆vn)2(∆xn)4E

[∣∣∣∣∣Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1

∣∣∣∣∣4]
≤ C

1
n6

[
n4 + n

]
≤ C

1
n2 ,

where C is a positive constant which is independent n and may vary from line to line. Thus, for any
t ∈ (0,∞),

E
bntc+1∑

k=1

|Y
n
k/n − Y

n
(k−1)/n|

4 ≤ C(nt + 1)
1
n2 → 0 as n→ ∞.

Hence, Y
n

converges with probability 1 to Y of (16) being valued inD(0,∞;R). Since E is dense in H1 and
the limit does not depend on the selected subsequence, this proves our assertion. �
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Remark 4.10. In the above proof, the triples
(
A

n
k
n
, B

n
k
n
,Y

n
k
n

)
can be seen as a sequence of interpolated Markov

chains but fall beyond the framework of Kushner [19] as the limit of (A
n
t , B

n
t ) turns out to be the two-

dimensional reflected Brownian motion. However, after verifying the tightness of (A
n
t , B

n
t ,Y

n
t ) and charac-

terizing the limit of (A
n
t , B

n
t ), we use directly the method of [19, Theorem 1, Page 44–48] to identify the

limit of Y
n
t and the proof is so similar that we just verify the sufficient conditions listed therein.

The previous proposition characterizes the diffusion part of the limiting ask-side volume density process.
Next we are going to study the limiting structures of aggregate order placements and cancellations, disre-
garding the random fluctuations. As we expect order placements and cancellations to contribute the drift
part of the limiting model, we find it helpful to re-write their dynamics in the form of an integral in time.
That is, if we write

V
n,2
a (t, x) =

∫ bntc
n

0
gn(s, x)ds,

V
n,1
a (t, x) =

∫ bntc
n

0
g̃n(s, x)ds,

it is clear that we can identify the limiting drift term by studying the limits of gn and g̃n. Comparing with (9),
we have

gn(t, x) B
∞∑

k=1

Nn
a (̃τn

k )∑
i=Nn

a (̃τn
k−1)+1

1
In

(
πC

i +A
n
k−1

n

)(x)ωC
i 1[ k

n ,
k+1

n )(t)
∆vn

∆xn n,

g̃n(t, x) B
∞∑

k=1

Nn
a (̃τn

k )∑
i=Nn

a (̃τn
k−1)+1

1(
πP

i +A
n
k−1

n

)(x)ωP
i 1[ k

n ,
k+1

n )(t)
∆vn

∆xn n.

With regards to aggregate cancellations, gn only captures the proportionality of cancellations in terms of
present volume. Therefore, we need to introduce one more term gn describing the actual cancellations, i.e.,

vn
a(t, x) − va(0, x) − V

n,1
a (t, x) − V

n,3
a (t, x) =

∫ bntc
n

0
gn(s, x)ds.

Clearly, gn is given by

gn(t, x) B
∞∑

k=1

Nn
a (̃τn

k )∑
i=Nn

a (̃τn
k−1)+1

1
In

(
πC

i +A
n
k−1

n

)(x)ωC
i vn

a(τn
a,i−1, x)1[ k

n ,
k+1

n )(t)
∆vn

∆xn n.

We will analyze the impact of order cancellations in the limit in two steps: first we show that we can replace
gn by the (much simpler) expression gnvn

a in the limit (see Lemma 4.12), and then we characterize the limit
of the latter term in the appropriate sense (see Lemma 4.13, where we also characterize the limiting object
of the order placements).

Remark 4.11. From Lemma 4.3, it follows that for p ∈ {2, 4},

E
[∥∥∥gn(t)

∥∥∥p
Lp

]
+ sup

x∈R
EF n

s E
[∣∣∣gn(t, x)

∣∣∣p] ≤ C,

which implies that

sup
x∈R

E
∫ t

0

∣∣∣gn(s, x)
∣∣∣p ds + E

∫
R

∫ t

0

∣∣∣gn(s, x)
∣∣∣p dsdx ≤ Ct,
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with the constants C being independent of n and t.

Lemma 4.12. For any t > 0, we have

lim
n→∞

E

∫
R

∫ bntc
n

0

∣∣∣∣gn(s, x) − gn(s, x)vn
a(s, x)

∣∣∣∣2 dsdx

 = 0.(17)

Proof. Using Fubini’s theorem and Remark 4.6, we have

E
∫
R

∫ bntc
n

0

∣∣∣∣gn(s, x) − gn(s, x)vn
a(s, x)

∣∣∣∣2 dsdx

=

∫ bntc
n

0
E

∫
R

∣∣∣∣∣∑
k∈N

Nn
a (̃τn

k )∑
i=Nn

a (̃τn
k−1)+1

1
In

(
πC

i +A k
n

)(x)ωC
i

(
vn

a(τn
a,i−1, x) − vn

a(s, x)
)
1[ k

n ,
k+1

n )(s)
∆vn

∆xnn−1

∣∣∣∣∣2 dxds

≤

∫ bntc
n

0

∑
k∈N∪{0}

1[ k
n ,

k+1
n )(s)

(
E

∫
R
|gn(s, x)|4dx

)1/2(
E sup

i∈[Nn
a (̃τn

k−1),Nn
a (̃τn

k )]∩N
‖vn

a(τa,i) − vn
a(̃τn

k−1)‖4L4

)1/2
ds

≤ C
1
√

n

∫ bntc
n

0

(
E

∫
R
|gn(s, x)|4dx

)1/2
ds

≤ C
1
√

n

(
E

∫ bntc
n

0

∫
R
|gn(s, x)|4dx

)1/2

,

which by Remark 4.11 converges to zero as n tends to infinity. �

We can now analyze the limiting objects obtained from order placements and cancellations. The proof of
Lemma 4.13 is technical and rather long and hence postponed to Appendix A.

Lemma 4.13. For any t =
bntc

n with n ∈ N,

lim
n→∞

sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(
gn(s, x) − E[ωC

1 ] f C(As + x)
) (

1 − α + αvn
a(s, x)

)
ds

∣∣∣∣∣∣2
 = 0, ∀α ∈ {0, 1},(18)

lim
n→∞

sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(̃
gn(s, x) − E[ωP

1 ] f P(As + x)
)

ds

∣∣∣∣∣∣2
 = 0.(19)

Combining the characterization of the limit of the fluctuation part of vn
a/b obtained in Proposition 4.9 with

the characterization of the limits of order cancellations and placements obtained in Lemma 4.13 together
with Lemma 4.12, we are in the position to characterize the limit of vn itself.

Theorem 4.14. There is a Wiener process {Wa(t); t ∈ [0,∞)} such that (A
n
, B

n
,V

n,3
a , vn

a) ⇒ (A, B,V3
a , va),

with (A, B) the two-dimensional reflected Brownian motion, V3
a the limit obtained in Proposition 4.9 and

va(t, x) = va(0, x) +

∫ t

0

(
E[ωP

1 ] f P(x + As) − E[ωC
1 ] f C(x + As)va(s, x)

)
ds+

+
√

2
∫ t

0
E

[
ωN

1

]
f N(x + As) dWa(s), t ≥ 0.

Proof. The sequence of bid/ask prices is C-tight as a process taking values in R2 and converges to a 2-
dimensional reflected Brownian motion. The processes V

n,3
a and V

n,3
a are tight taking values in H−1, due to
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Proposition 4.7. Furthermore, V
n,3
a is C-tight, due to Proposition 4.9. Hence, the sequence (A

n
, B

n
,V

n,3
a , vn

a)
is tight with paths in D(0,∞;R2 × H−1 × H−1). Thus, to characterize the limit of (A

n
, B

n
,V

n,3
a , vn

a), it is
sufficient to identify the limit of vn

a.

In view of Skorohod’s theorem we may assume that all processes are defined on a common probability
space and that the sequence (A

n
, B

n
,V

n,3
a , vn

a) converges to (A, B,V3
a , va) w.p.1 (for some process va to be

determined) along a subsequence as a sequence of processes whose sample paths lie inD(0,∞;R2 × H−1 ×

H−1). In particular, this implies that (A
n
, B

n
,V

n,3
a , vn

a) converges to (A, B,V3
a , va) in R2×H−1×H−1 for almost

every (ω, t) along this subsequence.

To prove our convergence result, we analyze each term of the following additive decomposition separately:

vn
a(t, x) − vn

a(0, x) = V
n,1
a (t, x) + Ṽn,2

a (t, x) + V
n,3

(t, x), (t, x) ∈ [0,∞) × R,(20)

where

Ṽn,2
a (t, x) :=

∫ [nt]
n

0
gn(s, x)ds.

Moreover, we restrict our processes to an interval [0,T ] with arbitrary fixed T > 0. Let us next show that va

is actually a weak limit of the sequence vn
a in the Hilbert space L2 (Ω × [0,T ] × R), where (Ω,F , P) denotes

the probability space obtained by Skorohod’s theorem. The reason we work with L2 here is that below we
want to test against L2 functions, not just Schwartz functions, as the latter might not contain the density f C.

Let us now recall that the sequence of processes {vn
a} is uniformly bounded in L2(Ω× [0,T ]×R) by Lemma

4.5, and thus admits a weakly converging subsequence, say with a limit ṽa. By the Banach-Saks theorem, ṽa

is a strong limit in Cesaro sense of a subsequence (of the chosen subsequence) of vn
a in L2(Ω× [0,T ]×R) ⊂

L2
(
Ω × [0,T ]; H−1

)
. Hence, its limit ṽa must coincide with va, as a weak limit in L2 (Ω × [0,T ] × R).

Due to Lemma 4.13, the process V
n,1
a (t) converges (along the selected subsequence) P⊗dx-a.e. to the process

V
1

defined by

V
1
(t) := E[ωP

a ]
∫ t

0
f P
a (· + As)ds.

In view of (20), we may assume that Ṽn,2
a converges to some process K taking values in H−1 for almost

all (ω, t). In view of the boundedness estimates of Lemma 4.5, combining Lemmas 4.12 and 4.13, we are
allowed to take K as the weak limit of Ṽn,2

a as well as of∫ ·

o
E[ωC

1 ] f C(As + ·)vn
a(s, ·) ds

in the Hilbert space L2(Ω × [0,T ] × R,FT ⊗ B([0,T ] × R)).

In order to identify the process K we test against test functions ψ ∈ L∞(Ω × [0,T ],F ⊗ B([0,T ])) and
φ ∈ L2(R). Weak convergence of vn

a and Ṽn,2 in the Hilbert space L2(Ω× [0,T ]×R,F ⊗B([0,T ]×R)) yields
that

E
∫ T

0

∫
R
ψ(t)K(t, x)φ(x) dx dt = lim

n→∞
E

∫ T

0
ψ(t)〈Ṽn,2

a (t), φ〉 dt

= lim
n→∞

E
∫ T

0
ψ(t)

∫ [nt]
n

0

∫
R

gn(s, x)φ(x) dxds dt

(by Lemma 4.12)



A FUNCTIONAL LIMIT THEOREM FOR LIMIT ORDER BOOKS 23

= lim
n→∞

E
∫ T

0
ψ(t)

∫ [nt]
n

0

∫
R

gn(s, x)vn
a(s, x)φ(x) dxds dt

(by Lemma 4.13)

=E[ωC
a,1] lim

n→∞
E

∫ T

0
ψ(t)

∫ [nt]
n

0

∫
R

f C(x + As)vn
a(s, x)φ(x) dxds dt

=E[ωC
a,1] lim

n→∞
E

∫ T

0

∫
R

f C(x + As)vn
a(s, x)φ(x) dxE

F s

[ ∫ T

s
ψ(t) dt

]
ds

(by the weak covergence in Hilbert space)

=E[ωC
a,1]E

∫ T

0

∫
R

f C(x + As)va(s, x)φ(x) dxE
F s

[ ∫ T

s
ψ(t) dt

]
ds

=E[ωC
a,1]E

∫ T

0
ψ(t)

∫ t

0

∫
R

f C(x + As)va(s, x)φ(x) dxds dt,

where F t denotes the filtration generated by all the processes A, B, vn
a and va. Since φ ∈ L2 and ψ ∈

L∞(Ω × [0,T ],F ⊗ B([0,T ])) are arbitrary, we get

K(t, x) = E[ωC
1 ]

∫ t

0
f C(x + As)va(s, x) ds

for almost every (t, ω, x) ∈ [0,T ] ×Ω × R. Hence, the limit va satisfies

va(t, x) = va(0, x) +

∫ t

0

(
E[ωP

1 ] f P
a (x + As) − E[ωC

1 ] f C(x + As)va(s, x)
)

ds+

+

∫ t

0
f N(x + As) dWa(s), t ≥ 0. �

4.3. The limit of the volume density. With tightness of the sequence of auxiliary processes vn
a/b established

in Proposition 4.7, we can now turn to the actual volume densities vn
a/b. Recall that

v̂n
a/b(u) = vn

a/b(ηn
u),

where v̂n
a/b is a piece-wise constant right-continuous process obtained by registering all order cancellations

and placements at the next price-change, see (7), and ηn
u was defined in (8). Then Lemmas 3.1, B.4 and

Theorem 4.14 implies that the limit of (An, Bn, v̂n
a) coincides with that of (A

n
, B

n
, vn

a), namely (A, B, va) of
Theorem 4.14.

Let δvn
a/b B vn

a/b − v̂n
a/b and define analogously δVn,i

a/b B Vn,i
a/b − V̂n,i

a/b, i = 1, 2, 3. Below, we shall prove
that δvn

a/b converges weakly to 0 as n → ∞. Obviously, this implies (see Theorem 4.18 below) that if vn
a

converges then the limit must coincide with that of v̂n
a as well as of vn

a, namely va.

The first step for proving δvn
a/b → 0 is to establish bounds for second moments of the increments, in a similar

way to Lemmas 4.4 and 4.5. In fact, analogous to Proposition 4.7 these estimates indicate the tightness of
vn

a and thus the tightness of (An, Bn, vn
a). The rather technical proof is deferred to Appendix A.

Lemma 4.15. There holds

EF n
s

 3∑
i=1

∥∥∥Vn,i
a/b(t) − Vn,i

a/b(s)
∥∥∥2

L2

 ≤C
[
(t − s) + (t − s)2

]
, 0 ≤ s ≤ t < ∞,
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EF n
s

[∥∥∥vn
a/b(t) − vn

a/b(s)
∥∥∥2

L2

]
≤Cn

s

[
(t − s) + (t − s)2

]
, 0 ≤ s ≤ t < ∞,

with supn E
[
sups∈[0,t] Cn

s

]
≤ C(t2 + t), t ∈ [0,∞), where the constants C are independent of n, s and t.

Furthermore, we will show that δvn
a/b(t) converges point-wise to 0, for which we need some elementary

results on Poisson processes.

Lemma 4.16. Let N1 and N2 be two independent Poisson processes with intensities λ1 and λ2, respectively.
Moreover, let Ti, i = 1, . . ., denote the jump times of the Poisson process N1. Then we have

E
[
N2(t) − N2(TN1(t))

]
=
λ2

λ1

(
1 − e−λ1t

)
,

E
[(

N2(t) − N2(TN1(t))
) (

N2(t) − N2(TN1(t)) − 1
)]

= 4
λ2

2

λ2
1

(
1 − (1 + tλ1)e−λ1t

)
.

Proof. Notice that conditional on N1(t) = l, the relative difference (t − Tl)/t has a beta distribution with
parameters 1 and l, as this is the distribution of the differences in the order statistics of l random variables
distributed uniformly on [0, 1]. Hence, elementary calculations give

E [N2(t) − N2(Tl) |N1(t) = l] =

∞∑
k=0

k
∫ 1

0
e−λ2tx (λ2tx)k

k!
1 − x)l−1

B(1, l)
dx =

λ2t
1 + l

and

E [(N2(t) − N2(Tl)) (N2(t) − N2(Tl) − 1) |N1(t) = l] =

∞∑
k=0

k(k−1)
∫ 1

0
e−λ2tx (λ2tx)k

k!
1 − x)l−1

B(1, l)
dx =

2λ2
2t2

2 + 3l + l2
.

Multiplying these terms with P(N1(t) = l) = e−λ1t (λ1t)l

l! and summing over l gives the formulas from above.
�

Lemma 4.17. Let u = u(t) = u(t, x) denote any of the processes δvn
a/b, δVn,i

a/b, i = 1, 2, 3. Moreover, assume
that the sequence vn

a/b(0) is uniformly bounded in L2. Then there is a constant C independent of n or t such
that

E
[
‖u(t)‖2L2

]
≤ C(1 + t + t2)/n, ∀ t ∈ [0,∞).

Proof. Let us first consider u = δVn,i
a/b for some i = 1, 2, 3 and a or b. Note that for some random variables

ωi and πi we have for some scaling constant ε (either equal to ∆v/∆x or equal to
√

∆v)

u(t, x)2 =


N(t)∑

i=N
(̃
τÑ(t)

) 1
I
(
An (̃τn

Ñ(t)
)+πi

)(x)ωi


2

ε2,

as ξ̃a/b,i is constant in i and ξ̃2
a/b,i = 1. LettingG denote the σ-algebra generated by all sources of randomness

except (ωi)i∈N, we have

E
[
u(t, x)2

]
= E




N(t)∑
i,i′=N

(̃
τÑ(t)

)EG [ωiωi′] 1
I
(
An (̃τn

Ñ(t)
)+πi

)(x)1
I
(
An (̃τn

Ñ(t)
)+πi′

)(x) +

N(t)∑
i=N

(̃
τÑ(t)

)EG
[
ω2

i

]
1

I
(
An (̃τn

Ñ(t)
)+πi

)(x)


 ε2
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= E




N(t)∑
i,i′=N

(̃
τÑ(t)

) 1
I
(
An (̃τn

Ñ(t)
)+πi

)(x)1
I
(
An (̃τn

Ñ(t)
)+πi′

)(x)E[ω1]2 +

N(t)∑
i=N

(̃
τÑ(t)

) 1
I
(
An (̃τn

Ñ(t)
)+πi

)(x)E
[
ω2

1

]
 ε2.

Furthermore, conditioning on the σ-algebra generated by all sources of randomness except for (πi)i∈N, we
can bound in a similar way to (11)

E
[
u(t, x)2

]
≤ E

[
E [ω1]2 ‖ f ‖2∞ ∆x2

(
N(t) − N

(̃
τÑ(t)

)) (
N(t) − N

(̃
τÑ(t)

)
− 1

)
1[

A(̃τÑ(t))−M,A(̃τÑ(t))+M
](x)+

+ E
[
ω2

1

]
‖ f ‖2∞ ∆x

(
N(t) − N

(̃
τÑ(t)

))
1[

A(̃τÑ(t))−M,A(̃τÑ(t))+M
](x)

]
ε2.

Hence, plugging in Lemma 4.16, we obtain

E
[
‖u(t)‖2L2

]
≤ C

(
∆x2E

[(
N(t) − N

(̃
τÑ(t)

)) (
N(t) − N

(̃
τÑ(t)

)
− 1

)]
+ ∆xE

[(
N(t) − N

(̃
τÑ(t)

))])
ε2

= C
(
∆x24

λ2

µ2

[
1 − (1 + tµ)e−µt

]
+ ∆x

λ

µ

[
1 − e−µt

])
ε2

≤ C
(
1
n

n4

n2 +
1
√

n
n2

n

)
ε2

= C
(
n +
√

n
)
ε2.

Now we recall that ε2 = ∆v2

∆x2 = n−3 in case i = 1, 2 and ε2 = ∆v = n−2 in case i = 3.

The proof for the estimate of δvn
a/b works in precisely the same way as the proof of Lemma 4.5, taking into

account the appropriate estimates for δVn,i
a/b derived above. �

Combining these lemmas with the results in Theorem 4.14 we can now prove the last part of the main
Theorem 2.6, namely the convergence of the volume densities.

Theorem 4.18. There are two independent Wiener processes {Wa(t); t ∈ [0,T ]} and {Wb(t); t ∈ [0,T ]} such
that (An, Bn, vn

a, v
n
b) ⇒ (A, B, va, vb), with (A, B) the two-dimensional reflected Brownian motion and the

volume processes va and vb satisfying the infinite-dimensional SDE

vb(t, ·) =vb,0(·) +

∫ t

0

(
E[ωPb

1 ] f Pb(· + Bs) − E[ωCb
1 ] f Cb(· + Bs)vb(s, ·)

)
ds

+
√

2E[ωNb
1 ]

∫ t

0
f Nb(· + Bs) dWb(s), t ≥ 0;

va(t, ·) =va,0(·) +

∫ t

0

(
E[ωPa

1 ] f Pa(· + As) − E[ωCa
1 ] f Ca(· + As)va(s, ·)

)
ds

+
√

2E[ωNa
1 ]

∫ t

0
f Na(· + As) dWa(s), t ≥ 0.

Proof. Recall that
(An, Bn, v̂n

a)(u) = (A
n
, B

n
, vn

a)(ηn
u).

Combining Lemmas 3.1, B.4 and Theorem 4.14, we conclude that (An, Bn, v̂n
a) ⇒ (A, B, va). On the other

hand, in a similar way to Proposition 4.7 we derive from Lemma 4.15 the tightness of (An, Bn, vn
a). Ad-

ditionally, Lemma 4.17 indicates that the limit of (An, Bn, vn
a) coincides with that of (An, Bn, v̂n

a), namely
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(A, B, va). This implies the C-tightness of (An, Bn, vn
a) and thus the tightness of (An, Bn, vn

a, v
n
b) by Corollary

B.3. Furthermore, in a similar way to the ask side we verify that (An, Bn, vn
a, v

n
b)⇒ (A, B, va, vb). �

5. Conclusion

This paper establishes a functional limit theorem for limit order books. The limiting dynamics are derived
from individual order arrival, placement and cancellation dynamics. With our choice of scaling, the limiting
dynamics converges in distribution to a coupled system of reflected Brownian motions and linear SPDEs.
We essentially assumed that all random variables were independent. It should be too difficult, though,
to establish a similar limiting result for a model where the intensities of active and passive orders arrivals
depend on the prevailing prices (or the spread) and hence to obtain a mean-reverting dynamics for the spread.
Allowing for a non-linear impact of the noise terms is more challenging. For instance, it would certainly be
desirable to allow for multiplicative noise to avoid negative volumes. This case, as well as a limiting result
where the martingale part is driven by a random measures (rather then Brownian motions) is left for future
research.

Appendix A. Technical proofs

Proof of Lemma 4.13. We prove (18); the second assertion follows similarly. Without any loss of generality,
we assume E[ωC

1 ] = 1. For each s ∈ ( 1
n , t) with n ∈ N, we choose kn

s ∈ Z such that s ∈ [ kn
s +1
n ,

kn
s +2
n ). For

s ∈ (0, 1
n ), put kn

s = 0. For notational simplicity, we set ṽn
a(s, x) = 1 − α + αvn

a(s, x), with α ∈ {1, 0}. Then

sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(
gn(s, x) − E[ωC

1 ] f C(As + x)
)

ṽn
a(s, x) ds

∣∣∣∣∣∣2
≤ 2 sup

x∈R
E

∣∣∣∣∣∣
∫ t

0

(
f C(x + A

n
kn
s
n

) − f C(x + As)
)

ṽn
a(s, x) ds

∣∣∣∣∣∣2 + 2 sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(
gn(s, x) − f C(x + A

n
kn
s
n

)
)

ṽn
a(s, x)ds

∣∣∣∣∣∣2
:= 2(Γ1 + Γ2).

Since f C is Lipschitz continuous and vanishes outside a compact interval there exists a constant C < ∞ such
that

Γ1 = sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(
f C(x + A

n
kn
s
n

) − f C(x + As)
)

ṽn
a(s, x) ds

∣∣∣∣∣∣2
≤C sup

x∈R
E

∫ t

0
|ṽn

a(s, x)|2ds E
∫ t

0
|As − A

n
kn
s
n
|2 ∧ 1 ds.

Hence, by Lemma 4.5, Γ1 → 0 as n→ ∞ by dominated convergence, due to the a.s. continuity of the reflect-
ed Brownian motion A. Using independence of cancellation price levels and volumes, a direct computation
yields:

Γ2 = sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(
gn(s, x) − f C(x + A

n
kn
s
n

)
)

ṽn
a(s, x) ds

∣∣∣∣∣∣2

= sup
x∈R

E

∣∣∣∣∣∣∣∣∣∣
∫ t

0


Nn

a (̃τn
kn
s +1

)∑
i=Nn

a (̃τn
kn
s
)+1

∑
j∈Z

1[xn
j ,x

n
j+1)(πC

i + A
n
kn
s
n

)ωC
i 1[xn

j ,x
n
j+1)(x)

∆vnn
∆xn − f C(x + A

n
kn
s
n

)

 ṽn
a(s, x) ds

∣∣∣∣∣∣∣∣∣∣
2
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≤ 3 sup
x∈R

E

∣∣∣∣∣∣∣∣∣∣
∫ t

0

Nn
a (̃τn

kn
s +1

)∑
i=Nn

a (̃τn
kn
s
)+1

∑
j∈Z

(
1[xn

j ,x
n
j+1)(πC

i + A
n
kn
s
n

)ωC
i −

∫
[xn

j ,x
n
j+1)

f C(y + A
n
kn
s
n

) dy
)
1[xn

j ,x
n
j+1)(x)

∆vnṽn
a(s, x)n

∆xn ds

∣∣∣∣∣∣∣∣∣∣
2

+ 3 sup
x∈R

E

∣∣∣∣∣∣∣∣∣∣
∫ t

0

Nn
a (̃τn

kn
s +1

)∑
i=Nn

a (̃τn
kn
s
)+1

∑
j∈Z

1
∆xn

∫
[xn

j ,x
n
j+1)

f C(y + A
n
kn
s
n

) dy1[xn
j ,x

n
j+1)(x) − f C(x + A

n
kn
s
n

)

 n∆vnṽn
a(s, x)ds

∣∣∣∣∣∣∣∣∣∣
2

+ 3 sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

((
Nn

a (̃τn
kn

s +1) − Nn
a (̃τn

kn
s
)
)

n∆vn − 1
)

f C(x + A
n
kn
s
n

)ṽn
a(s, x) ds

∣∣∣∣∣∣2
:= 3

(
γ0 + γ1 + γ2

)
.

To estimate γ0 we use again independence of involved random variables, the fact that

EF n
kn
s
n

[
1[xn

j ,x
n
j+1)(πC

i + A
n
kn
s
n

)ωC
i

]
=

∫
[xn

j ,x
n
j+1)

f C(y + A
n
kn
s
n

) dy

along with Lemmas 4.2 and 4.5 and the properties of the scaling constants to conclude that:

γ0 ≤Ct2 sup
x∈R

E sup
s∈[0,t]

|ṽn
a(s, x)|2

λn

µn

(n∆vn

∆xn

)2
‖ f C‖L∞∆xn ≤ Ct2

(
t2 + t + 1

)
∆xn −→ 0, as n→ ∞.

To estimate γ1 we first deduce from Lipschitz continuity of f C for x ∈ [xn
j , x

n
j+1) that

1
∆xn

∫
[xn

j ,x
n
j+1)

∣∣∣ f C(y + A
n
kn
s
n

) − f C(x + A
n
kn
s
n

)
∣∣∣ dy ≤ L

1
∆xn

∫
[xn

j ,x
n
j+1)
|∆xn| dy = L∆xn.

Thus, using again Lemmas 4.2 and 4.5, the properties of the scaling constants and the fact that f C vanishes
outside a compact interval we find a constant C < ∞ such that:
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)ṽn
a(

l − 1
n

, x)
1
n

∣∣∣∣∣∣∣
2

+ 2 sup
x∈R

E

∣∣∣∣∣∣∣
∫ 1

n

0
f C(x + A

n
0)ṽn
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Proof of Lemma 4.15. Without any loss of generality, we take s = 0 and prove the assertions for the ask
side. To this end, let G denote the σ-algebra generated by all the sources of randomness except (πi)∞i=1 and
(ωi)∞i=1, which is then by construction, independent from G.
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Ñn(τn
a,i′ )

) + πPa
i′ )




+

l∑
i=1

∑
j∈Z

E|ωPa
i |

21[xn
j ,x

n
j+1)(x)1[xn

j ,x
n
j+1)(An(τ̃n
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[ Ñn(t)∑

k=1

∥∥∥∥∥∥
Nn

a (τ̃n
k )∑

i=Nn
a (τ̃n

k−1)+1

∑
j∈Z

1[xn
j ,x

n
j+1)(π

Pa
i + An(τ̃n

k−1))1[xn
j ,x

n
j+1)(·)

∥∥∥∥∥∥2

L2

+

∥∥∥∥∥∥
Nn

a (t)∑
i=Nn

a (τ̃n
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with the constant C independent of n and t.
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The estimate of vn
a/b follows in precisely the same way as the proof of Lemma 4.5, taking into account the

appropriate estimates for Vn,i
a/b derived above. �

Appendix B. Classical tightness results

For the convenience of the reader, we recall some classical results on tightness which the derivations of
Section 4 are based on. We first note that though the following theorems and lemmas may be originally
established on finite time intervals, we state them on the half line [0,∞) since there is no essential difficulty
to make such extensions in the spirit of Jacod and Shiryaev [15].

The first result is a sufficient condition for tightness in the Skorokhod space D([0,∞); E) for a complete
separable metric state space (E, ρ) due to Aldous and Kurtz. We take it from [22, Th. 6.8].

Theorem B.1. Let Xn be a sequence of processes taking values inD([0,∞); E) such that the family (Xn(t))n∈N
of random variables is tight (in E) for any rational t. Moreover, assume that there is a number p > 0 and
processes (γn(δ))δ∈[0,∞), n ∈ N, such that

E
[
ρ (Xn(t + δ), Xn(t))p

∣∣∣ F n
t

]
≤ E

[
γn(δ) | F n

t
]
,

lim
δ→0

lim sup
n→∞

E
[
γn(δ)

]
= 0,

where the filtration F n is generated by Xn. Then (Xn)n∈N is tight inD ([0,∞); E).

Proof. See [22, Th. 6.8]. Note that Walsh assumes one joint filtration Ft, whereas we allow for filtrations
depending on n. This difference is, however, inconsequential, e.g., by choosing Xn to be defined on a
common probability space in an independent way and then choosing Ft to be the filtration generated by all
the filtrations F n

t . �

The main theoretical tool in this paper is Mitoma’s theorem, on basis of [22, Th. 6.13, Lem. 6.14, Note
on p. 365], which relates tightness of distribution-valued processes to real-valued processes obtained by
applying test-functions. We specialize the general formulation given in [22] so that the theorem can be
directly applied to our setting.

Theorem B.2 (Mitoma’s theorem). For any positive integer d, let Xn := (Xn
1 , · · · , X

n
d) be a sequence of

processes with sample paths lying in D
(
[0,∞); (E′)d

)
. The sequence Xn is tight as processes with paths in

D
(
[0,∞); (E′)d

)
, if and only if for any φ1, · · · , φd ∈ E we have tightness of the sequence of D ([0,∞);R)-

valued processes
∑d

i=1

〈
Xn

i , φi
〉
. In particular, if for any ε,N ∈ (0,∞) there exists Ñ ∈ (0,∞) such

that supn P(supt∈[0,N]
∑d

i=1 ‖X
n
i (t)‖L2 > Ñ) < ε, then Xn is tight as a sequence of processes with paths in

D

(
[0,∞);

(
H−1

)d
)
.

Here we choose H−1 for convenience. Indeed, in view of the arguments in [22, Page 335, Example 1a],
we can replace the space H−1 by H−m for any m > 1/2. On the other hand, an immediate application of
Theorem B.2 is the following corollary, which states that joint tightness of a pair of sequences of stochastic
processes follows from individual tightness assuming that at least one of the involved sequences is C-tight,
i.e., all its accumulation points are continuous processes.

Corollary B.3. Let Yn and Zn be sequences of stochastic processes taking values in (E′)d and (E′)l re-
spectively, with d, l ∈ N. If Yn is C-tight with paths in D

(
[0,∞); (E′)d

)
and Zn is tight with paths in

D
(
[0,∞); (E′)l

)
, then the pair of processes (Yn,Zn) is tight with paths inD

(
[0,∞); (E′)d+l

)
.
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Proof. We fist note that for the finite-dimensional case where (E′)d and (E′)l are replaced by Euclidean
spaces, Corollary B.3 coincides with [15, Cor. VI.3.33]. Obviously the C-tightness of Yn with paths in
D

(
[0,∞); (E′)d

)
implies that of

∑d
i=1〈Y

n
i , φi〉 with paths in D ([0,∞);R) for any φ1, · · · , φd ∈ E. As Theo-

rem B.2 allows us to prove the tightness of distribution-valued processes by verifying that of the real-valued
processes obtained by applying test-functions, there follows the tightness of pair of processes (Yn,Zn) with
paths inD

(
[0,∞); (E′)d+l

)
. �

We remark that the method of proof for the finite-dimensional case (see [15, Page 353, Cor. VI.3.33]) can
not directly be applied to Corollary B.3, as the compactness of the unit ball is key to their proof of the finite-
dimensional case. On the other hand, if we replace (E′)d for Yn by Rm × (E′)d with m ∈ N, then Corollary
B.3 still holds, since the finite-dimensional space is isomorphic as well as homeomorphic to some subspace
of E′.

Finally, we use a lemma of Billingsley about weak limits under time-changes.

Lemma B.4. Let Xn be a sequence of processes taking values in D([0,∞); E) for some separable metric
space E and let Φn be a sequence of non-decreasing processes with paths inD([0,∞); [0,∞)). Assume that
(Xn,Φn) converge weakly to a pair of processes (X,Φ) ∈ D ([0,∞); E × [0,∞)) such that X ∈ C ([0,∞); E)
with probability 1. Then

Xn ◦ Φn ⇒ X ◦ Φ.

Proof. The proof in Billingsley [3, p. 151] (for the special case E = R) can be immediately adapted to this
more general setting. �
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